
MultiNets: Policy Oriented Real-Time Switching of
Wireless Interfaces on Mobile Devices

Shahriar Nirjon1∗, Angela Nicoara2, Cheng-Hsin Hsu3, Jatinder Pal Singh4, and John Stankovic1

1Department of Computer Science, University of Virginia, Charlottesville, VA
2Deutsche Telekom R&D Laboratories USA, Los Altos, CA

3 Department of Computer Science, National Tsing Hua University, Hsin-Chu, Taiwan
4Department of Electrical Engineering, Stanford University, CA

smn8z@virginia.edu, angela.nicoara@telekom.com, chsu@cs.nthu.edu.tw, jatinder@stanford.edu, stankovic@virginia.edu

ABSTRACT
In this paper we present MultiNets, a system which is capa-
ble of switching between wireless network interfaces on mo-
bile devices in real-time. MultiNets is motivated by the need
of smartphone platforms to save energy, offload data traffic,
and achieve higher throughput. We describe the architecture
of MultiNets and demonstrate the methodology to perform
switching in Linux based mobile OSes such as Android.
Our analysis on mobile data traces collected from real users
shows that with real-time switching we can save 27.4% of
the energy, offload 79.82% of the data traffic, and achieve 7
times more throughput on average. We deploy MultiNets in
a real world scenario and our experimental results show that
depending on the user requirements, it outperforms the state-
of-the-art Android system either by saving up to 33.75%
energy, or achieving near-optimal offloading, or achieving
near-optimal throughput while substantially reducing TCP
interruptions due to switching.

1. INTRODUCTION
Cellular networks today provide nationwide coverage in

several countries all over the globe. The proliferation in mo-
bile applications like mobile TV, video on demand, video
conferencing, tele-medicine, and numerous location based
services is attracting an increasing number of consumers.
However, the challenges to effective use of mobile networks
remain manifold. Firstly, the mobile data traffic is soaring at
a high rate. A recent study forecasts that global mobile data
traffic will increase by 39 times with a compound annual
growth rate of 108% over the next five years [3]. Secondly,
the usable battery lifetime of mobile devices has become
alarmingly low with feature packed mechanisms like touch
screens and accurate positioning system. Thirdly, modern
mobile applications typically require high throughput and/or

∗Shahriar Nirjon was an intern at Deutsche Telekom R&D Labs
USA while this research was conducted.

fast response time which are difficult to deliver with scarce
cellular bandwidth and expensive spectrum.

Contemporary mobile devices come equipped with net-
work interfaces such as WiFi. This offers an attractive
proposition to alleviate the staggering increase in data traf-
fic over cellular networks owing to high bandwidth and low
cost (or, often no cost) offered by WiFi networks. Although,
the spatial coverage of WiFi is not comparable to the cel-
lular networks due to short coverage range of the WLAN
technology, the availability of WiFi is becoming more per-
vasive in houses, offices, campuses, stores, coffee shops, and
even many public transport systems - locations where most
mobile users tend to spend most of their time.

The state-of-the-art devices tend to leave the choice of se-
lecting the network to the end-user, which we argue is not
only inefficient but also undesirable in terms of smartphone
usability. A user should instead be able to decide the high
level goal and the device should switch to suitable interface
to achieve that intent. By real-time switching, we mean acti-
vating a new network interface and deactivating the current
one - dynamically and without interrupting existing connec-
tions. Here, real-time stands for switching interfaces in real-
time as opposed to meeting a deadline. Multifold benefits
can be realized by real-time switching. For example, battery
life is prolonged if the device stays over the cellular network
during its idle time and switches to WiFi during its data ac-
tivity. An end-user who is concerned about the battery life
can set the device to energy-saving mode, and the device can
monitor the user’s activity and perform the switching when
appropriate. Similarly, by switching to the network that has
the highest bandwidth, the mobile device can provide a bet-
ter user experience with faster data rates. Switching is also a
solution to the skyrocketing data problem faced by the mo-
bile operators who want to offload data traffic to WiFi net-
work to conserve cellular bandwidth.

Switching from one network interface to the other is chal-
lenging due to the connection-oriented nature of the ongoing

1

data sessions. Unless properly dealt with, switching between
interfaces results in interruptions, loss of data, and undesir-
able user experience. Existing works that attempt to solve
this problem either require additional infrastructure support
such as gateways [20, 4, 16, 21, 19, 18] and masters [14],
or require changes in the network protocols [9, 22, 26, 10,
17], and thus are not practical since modification to infras-
tructure tends to be extremely expensive and modification to
a standard network protocols is not a compatible pathway
with regard to existing and deployed systems and applica-
tions. In [6], authors characterize TCP flows on iPhones to
analyze the feasiblity of flow migration between interfaces.
The authors do not consider issues such as the policies de-
termining when to switch, or rigorously quantify different
benefits that are achieved by switching.

In this paper we present MultiNets, a pragmatic client-
based solution, which does not require any changes to the
network protocols, and enables existing applications to run
transparently without any modification. MultiNets is able
to dynamically switch between cellular and WiFi interfaces
in real-time and make switching decisions based on one of
its three interface selection policies: energy saving, data of-
floading, and performance. These policies address three cru-
cial needs of a mobile device in being able to conserve bat-
tery power, offload data to WiFi, and increase throughput,
respectively. A user of mobile device equipped with Multi-
Nets can select one of these high-level policies and MutiNets
performs dynamic switching accordingly.

We have implemented MultiNets on Android-based
mobile devices. However, the design and principles of
MultiNets are general enough to be adopted in any other
mobile OSes. Like all state-of-the-art mobile OSes, Android
does not perform dynamic switching. Access to network in-
terfaces in Android is exclusive, i.e., either the cellular or
the WiFi is active at a time. The cellular network is the de-
fault network and is assumed to always be present. On the
other hand, WiFi has to be manually turned on, and typically
the user is prompted to select WiFi when it is available. A
limitation of Android is that switching is not seamless i.e.,
all the TCP connections are bound to be interrupted. Fur-
thermore, when the device is connected to WiFi, switching
back to the cellular network can only be done by manually
turning off the WiFi connectivity. In MultiNets, we obviate
this exclusive network access and make it possible to keep
both the interfaces on simultaneously for seamless and non-
disruptive switching. In addition, this feature can be used
to simultaneously access multiple network interfaces by the
applications that are developed on top of MultiNets.

We perform extensive experiments to evaluate various as-
pects of MultiNets. First, we measure the system overhead
and switching time between cellular and WiFi. Second, we
analyze our collected data traces from real mobile phone
users and quantify the benefits of each of the three policies
separately. Finally, we demonstrate the performance of our
system in a real-world scenario.

Back haul

Base Station IP

Web Server
Internet

Base Station

IP3
Phone

IP1

IP2

WiFi AP

Figure 1: A phone is trying to switch TCP sessions from
3G(IP1) to WiFi(IP2).

This paper makes the following contributions:
• We conduct a three months long empirical study and

summarize the TCP characteristics in Android smart-
phones, complementing a similar study with iPhone
users in [5, 6]. We devise a switching technique which
is client-based, transparent to applications, and does
not require any protocol changes.

• We design and implement three switching policies.
Our analysis on usage data collected from real mo-
bile device users shows that with dynamic switching
we can save 27.4% of the energy, offload 79.82% data
traffic, and achieve 7 times more throughput on aver-
age.
• We present MultiNets, which is to the best of our

knowledge, the first complete system of this kind
and demonstrate its performance in a real-world sce-
nario.1 MultiNets outperforms the state-of-the-art An-
droid system either by saving up to 33.75% energy, or
achieving near-optimal offloading, or achieving near-
optimal throughput while substantially reducing TCP
interruptions due to switching.

2. SWITCHING NETWORK INTERFACES
In this section, we describe the problem of seamlessly

switching interfaces, and provide a solution to this problem
based on our study on the characteristics of data flows in
Android phones.

2.1 Switching Interfaces: The Challenge
Switching from one wireless interface to another is not as

trivial as it may appear to be at first. Simply turning on one
interface and turning off the other does not work as it results
in interruptions, partially loaded web pages, loss of data, an-
noying error messages and user dissatisfaction in general. It
is rather a challenging problem to transfer connection ori-
ented data traffic from one interface to another under the
constraints of no user interventions, no interruptions, no
changes of network protocols and requiring no extra support
from the existing network infrastructure.

Figure 1 illustrates this problem briefly. An end host, hav-
ing two interfaces (IP1 and IP2) creates a TCP connection
1A video demo of MultiNets can be watched at the following url:
http://12.71.54.173/multinets/multinets.html

2

0 1 2 3 4 5 6 7 8 9 10 11 12
0

25

50

75

100

Number of Concurrent Sessions

C
D

F

Browser

Email

Maps

Facebook

MyAccount

YouTube

Twitter

Figure 2: A steep rise in CDF in
between 1 − 3 indicates that the
mean concurrency lies in that in-
terval.

0

50

100

%
 o

f T
C

P

< 5s

5−15s

15−60s

60−120s

> 120s

Browser
Email

Maps
Facebook

MyAcc
YouTube

Twitter

Figure 3: Applications with high con-
currency tend to have most of their ses-
sions with a lifetime of < 15 sec.

0 20 40 60 80 100

Twitter

YouTube

MyAccount

Facebook

Maps

Email

Browser

Time (Sec)

Figure 4: Data activity in long ses-
sions are not continuous, rather
they have an average burst length
of ∼ 3 sec.

at it’s portAwith the remote server’s (IP3) portB. The con-
nection is uniquely identified by the pair (IP1/A, IP3/B).
We now analyze what happens if the host decides to turn off
its interface, IP1 and wants to continue the communication
over IP2. By changing the routes of all outgoing packets,
the host may be able to send the next data packets using IP2,
but these packets will not be recognized as belonging to the
same session at the server, as to the server, IP1 and IP2 are
two different hosts. If we change the packet headers at the
host to carry IP1 as their sources even if they are sent using
IP2, the packets will be either dropped at IP2’s network or
even if they get to the server, the ACKs will not reach the
host as the server will send ACK to IP1 which is closed.

2.2 Potential for Switching Interfaces
A client based solution that deals with this problem has to

wait for all ongoing sessions over the first interface to fin-
ish, before it turns off the interface and activates the other
one in order to not cause any interruptions. This waiting
time can be theoretically infinite, but in practice, it depends
on the usage of the phone and the characteristics of the ap-
plications that are running. To understand the type of data
flows in mobile phones, we conduct a 3-months long ex-
periment to collect the usage data from 13 Android phone
users. These users are of different ages, demography, sex,
and used a variety of applications. The results are therefore
not homogeneous, rather highly diverse as evident later in
Figures 15, 16, and 17. The results are also consistent with
a 3-months long study involving 27 iPhone users in [5, 6].

In our study, the users used a total of 221 applications, and
35 of these applications require Internet connectivity. We
analyze the collected data traces of these 35 applications and
study the characteristics of the TCP sessions. We study TCP
since our earlier work shows that almost all (99.7%) mobile
traffic is TCP [5]. From this log, we try to answer three
questions: (1) how many concurrent TCP sessions are there
at any instant of time within a mobile phone? (2) what are
the durations of these sessions? and (3) how much activities
are there over these sessions? Answers to these questions
are crucial since if we see that there are a large number of
TCP sessions having long durations and high data activities,
it is not worthy to wait for them and not wise to close them.

Figure 2 shows the cumulative distribution functions
(CDF) of concurrent TCP sessions of the most popular 7
applications in the order of their usages. This is averaged
over 10-minutes time windows of all users. This figure has
to be studied in conjunction with Figure 3 which classifies
these sessions into five classes based on their durations. In
Figure 2, we observe that the concurrency of the TCP ses-
sions has a steep rise in between 1 − 3. This means that the
average value (∼ 2) lies in this region. Therefore, turning
off the interface at any time may interrupt about 2 sessions
on average, assuming that only one application is active at
a time. In case of multi-tasking phones, the number of in-
terruptions is not much higher. Applications like Browser
and Twitter seem to show high concurrency (of maximum
10-11), but Figure 3 shows that about 80% of their sessions
have lifetime < 15 seconds. For these applications, we may
on average have to wait for 15 seconds before switching
to the other interface. Applications like Email, Maps, and
T-Mobile’s MyAccount have very high percentage of long
lasting sessions (> 120 seconds) which may seem a bar-
rier to waiting for them to finish. However, the number of
such long TCP sessions are very small (about 1), and with
these TCP sessions, the applications keep themselves con-
nected to a specific server (e.g., in case of Google Maps, it is
74.125.45.100) for the entire lifetime, and that explains
why they are so long.

We conduct further investigation to examine the data ac-
tivities in these long sessions. Figure 4 shows the presence
of data activity of the longest lasting TCP sessions of each of
these applications for a randomly selected user for the first
100 seconds as an example. This shows that, the data activi-
ties over these longest TCP sessions are not continuous, but
rather sporadic. Averaged over all usages we see an average
of 3 seconds data activity between any two gaps over these
sessions. This indicates that we may have to wait on aver-
age about 3 seconds for these applications before switching
to a new interface to prevent any data loss. Although this
technique will cause that TCP session to terminate, luckily,
mobile phone applications are written keeping in mind of
the sudden loss of network connectivity. Therefore, in such
cases, when we switch to a new interface, the application
considers it as a loss of connectivity and re-establishes the

3

connection with the server. We empirically observed this in
all 35 applications.

The characteristics of TCP sessions in mobile phones can
be summarized as follows:
• Average lifetime of TCP sessions is ∼ 2 seconds.
• Average concurrency of these sessions is < 2.
• TCP activities are in bursts of average ∼ 3 seconds.
• There exists some sessions that are alive during the en-

tire lifetime of the application, which keep the appli-
cation connected to its server. Disconnections of such
sessions are automatically reestablished by the appli-
cation.

2.3 Switching in MultiNets
MultiNets handles connectionless and connection-

oriented sessions separately during the switching. UDP
and TCP are the dominant transport protocols that we have
observed in Android, and therefore we use them in this
section for illustration.

2.3.1 Connectionless Sessions
Connectionless sessions (e.g., UDP) are rare: less than

0.3% traffic amount. They are easier to switch. UDP appli-
cations communicate using DatagramSocket and each
connection is bound to a port and assigned an IP address
of an available interface by the OS. To switch network in-
terface, MultiNets first turns on the new interface and re-
moves the default route over the old interface. We have
found that doing so does not affect the functionality of
DatagramSocket: the out-bound traffic is sent with the
IP of the new interface, while the in-bound traffic is received
at the old interface. MultiNets then turns off the old inter-
face, which initially incurs some packet loss of the in-bound
traffic, but we have observed that, in most cases, this is han-
dled by the application layer.

2.3.2 Connection-Oriented Sessions
Connection-oriented sessions are mostly TCP, comprising

of about 99.7%. These are trickier to switch as explained
earlier. MultiNets performs the following steps for switching
these sessions:

Step 1: MultiNets counts the number of ongoing TCP
connections on the old interface. We should not harm these
connections. We exclude the sessions that have gone past the
ESTABLISHED state during the counting.

Step 2: If the count is non zero, MultiNets adds new rout-
ing table entries for all these connections explicitly specify-
ing the destination address, gateway and mask for the old
interface. This is to ensure that the ongoing TCP sessions
still remain in the old interface.

Step 3: MultiNets now brings up the new interface and
adds routing table entries for it including the default route
and removes the default route of the old interface from the
routing table. Any new connections start using the new in-
terface from now on.

Step 4: MultiNets waits for a predefined timeout in order
for the ongoing TCP sessions over the old interface to finish.
Finally, it tears down the old interface completely and the
system moves on to the new interface.

The users of MultiNets have to configure the WiFi net-
work by providing the authentication information only once.
After that, MultiNets switches the interfaces dynamically
without requiring any manual intervention. The proposed
switching solution in MultiNets is fully client based – it does
not require additional support from the access points or gate-
ways. Furthermore, MultiNets does not require any modifi-
cation to the network protocols. It only reads the transport
information and adds or removes routing table entries to per-
form a switch. This is why, existing applications run trans-
parently on MultiNets without any change. There is a pos-
sibility that during the Step 4 of the switching, a very long
TCP session may get interrupted due to timeout. In Sec-
tion 4.3, we empirically derive a timeout value, for which
this interruption becomes a rare phenomena. We notice that
the proposed switching technique may also be applicable to
other applications, e.g., Alperovich and Noble [23] propose
a similar technique to switch among homogeneous WiFi ac-
cess points, and thus is quite different from MultiNets.

2.3.3 Switching API
MultiNets uses the API shown in Figure 5 to switch to a

new interface. The method switchInterface() takes
the name of the interface as an argument and returns either
success or failure. Upon failure, it throws an exception ex-
plaining the reason of failure.

1 SwitchingManager mgr = new SwitchingManager(getSystemService(”SM”));
2 try {
3 if (mgr.switchInterface(mgr.MOBILE) == true) {
4 // Success. New sessions start over 3G now
5 }
6 } catch(SwitchingException ex) { ex.printStackTrace(); }

Figure 5: Using switchInterface() method.

3. DESIGN AND IMPLEMENTATION
The design of MultiNets is modular, consisting of

three principal components – Switching Engine, Monitoring
Engine, and Selection Policy as shown in Figure 6. These
components isolate the mechanism, policy and monitoring
tasks of the system, and allow extending their capabilities
without requiring any changes to the architecture.

3.1 The Switching Engine
The Switching Engine performs the switching between

cellular and WiFi. It maintains an internal state machine to
keep track of the connectivity status. It also has a Switching
Utility module that performs some low level tasks related
to switching. The Switching Core module coordinates these
two.

3.1.1 The State Machine

4

Kernel

Switching Core

State

Machine

Switching API

Switching

Utility

(6) switching

action

Switching Engine (1) select

policy
Offload

Traffic

Selection Policy

(3)

switching

needed?

Energy

Saving

Perform

ance

Power

Monitoring Engine

Network

Flow
Wireless

(4) query

(7) change connectivity (5) read

(2)

getstate

Figure 6: MultiNets Architecture.

S1
S4

Cellular

No TCP in WiFi / Timeout

S0

Connected
To Cellular

Switching
To Cellular

Cellular
Available

WiFi
Available

Lost
Both

Lost
Both

No
Connectivity

Lost
Both

Lost
Both

Switching
Needed

Switching
Needed

S2
S3

Connected
To WiFi

Switching
To WiFi

Available

No TCP in Cellular / Timeout

Figure 7: State Diagram.

ConnectivityManager,
WiFiManager

NetworkInfo,
WiFiInfo

ConnectivityService,
WiFiService

MobileStateTracker,
WiFiStateTracker

Kernel

P
ub

lic
 A

P
I

In
te

rn
al

 A
P

I
JN

I
N

at
iv

e
C

od
es

Android Connectivity MultiNets

NetworkUtils,
WiFiNative

android_wifi_WiFi.cpp,
android_Netutils.cpp

wifi.c,
Ifc_utils.c

SwitchingManager

SwitchingInfo

switching_utils.cpp

swi_utils.c

SwitchingUtils

SelectionPolicy

SwitchingService

MonitoringService

Figure 8: Layered Implementation.

Figure 7 shows the state diagram together with all the
states and transitions. The system remains at NoConnectiv-
ity state (S0) when neither cellular nor WiFi is available, and
keeps seeking for a network to connect to. The states Con-
nectedToCellular (S1) and ConnectedToWiFi (S3) are simi-
lar. At these states, the device uses only one wireless inter-
face and periodically checks with the Selection Policy (see
Section 3.3) to see if a switch is needed. The states Switch-
ingToWiFi (S2) and SwitchingToCellular (S4) are the tran-
sition states. Both of the interfaces are active during these
states, but only the new connections start over the new in-
terface while existing sessions still remain in the previous
interface. The engine stays at these states as long as the old
interface has active TCP sessions or until a timeout. Under
normal circumstances, the system moves around within the
states {S1, S2, S3, S4} circularly. To cope with any loss of
connectivity, the system makes some transitions shown in
dotted arrows. A loss of WiFi connectivity at S2 takes the
system to S3, but it immediately starts switching back to cel-
lular upon detecting such a disconnection.

3.1.2 The Switching Utility
The Switching Utility provides the utility methods to per-

form the switching. It includes the following tasks – count-
ing the ongoing TCP sessions over a specific network in-
terface, updating the routing table to keep the existing TCP
sessions over a specific interface, adding and deleting de-
fault routes of the network interfaces, and connecting, re-
connecting or tearing down interfaces. These methods are
called by the core switching module to perform a switch.

3.2 The Monitoring Engine
The Monitoring Engine is responsible for monitoring all

the necessary phenomena pertaining to switching. It con-
tains several different monitors, each of which observes one
or more system variables, and holds the latest value of that
variable. We have implemented 4 monitors – (i) Data Mon-
itor: Monitors the amount of transmitted and received data

over WiFi and cellular interfaces in bytes and packets since
the interface is turned on, (ii) Wireless Monitor: Monitors
the connectivity status, signal strengths, and information of
access points, (iii) Network Flow Monitor: Monitors the
number and state of all TCP and UDP sessions, routing in-
formation from the routing table, and (iv) Power Monitor:
Monitors the state of the battery and its voltage, current, and
capacity. All these monitors are singleton and are created in
an on-demand basis. They have a common interface to an-
swer to all the queries. The query and its response form a
< key, value > pair. The Selection Policy component (see
Section 3.3) issues these queries. The modular design of the
monitors and a common interface to talk to them allow us to
add new monitors into the system and to extend the capabil-
ity of the existing monitors easily.

3.3 The Selection Policy
The Selection Policy defines the policy for interface

switching. By separating the policies from the rest of the
system, we are able to add new policies or modify the exist-
ing ones without requiring any change to the other parts of
the system. For example, one of our policies is based on the
fact that WiFi is much faster than the cellular network. But
in future, this situation may change and cellular data connec-
tivity may outperform WiFi and thereby requiring a change
in current policy or adding a new policy that leverage that.
Currently, we have developed and implemented three poli-
cies which are described next. Only one of these policies is
active at a time. The user of MultiNets determines which
policy is to be used.

3.3.1 Energy Saving Policy
The aim of this policy is to minimize the power consump-

tion. We describe an optimum energy saving algorithm in
Appendix A, which requires the knowledge of future data
traffic. For a realistic setup, we propose a switching heuris-
tic, which is inspired by our energy measurements. Accord-
ing to this policy, the mobile device connects to the cellular
network when it is idle, and starts to count the number of

5

bytes sent over the cellular network after the user launches
an application. As soon as the total amount of data over
the cellular network exceeds a threshold τ , the device de-
cides to switch to WiFi. The mobile device switches back
to the cellular network once the WiFi network is idle for ζ
seconds. We empirically derive the best τ and ζ values in
Section 4.5.1. This policy levarages one fact that the idle
power of WiFi is much higher than that of cellular. Tech-
niques such as [11, 13] may save some part of the energy
that is consumed for scanning WiFi APs– which accounts
for about 40% of the idle energy. But even after applying
such techniques, WiFi’s idle power remains more than 50
times higher. Hence, switching interfaces dynamically is a
better option to save energy.

3.3.2 Offload Policy
The aim of this policy is to offload cellular data traffic to

any available WiFi network. According to this policy, when-
ever WiFi is available, we switch to WiFi. We only switch
back to the cellular network when WiFi’s signal strength is
below a threshold η dBm for smooth switching. The advan-
tage of this policy is to reduce data traffic on cellular net-
works. But the downside is that, if the network is not being
used, only to keep the WiFi interface idle is more expensive
in terms of energy.

3.3.3 Performance Policy
The aim of this policy is to maximize the network

throughput. It achieves this by switching to the network in-
terface with the highest bandwidth. Let, BW (s) and BC(s)
be the bandwidth functions for WiFi and cellular networks
respectively where s denotes the signal strength, which is
read via Android system API. We empirically derive the
bandwidth functions BW (s) and BC(s) in Section 4.5.3
through extensive experiments. The performance policy
compares the values of these two functions every δ seconds,
and switches to the network interface with the higher band-
width.

3.4 Layered Implementation
We have closely studied the software architecture of the

data connectivity in Android. Like Android, the implemen-
tation of MultiNets is layered. Classes and methods of our
system that are similar to those of Android are implemented
at the same layer. Yet, our system is vertically distinguish-
able from Android as shown in Figure 8. At the bottom of the
architecture, we have the unmodified Linux Kernel. Right
above the Kernel, we have a layer of native C/C++ mod-
ules that perform the lower level tasks of file I/O to get all
the information used by the Monitors and some socket I/O
to add, remove or update routing table entries. We improve
the implementation of Android’s ifc util.c, route.c,
and netstat.c by adding these non-existing modules
and put them into our own module swi utils.c. But no
changes are made into the network protocols. These mod-

Method Description
getInfo Returns the status, state and current policy.
activateEngine Activates or deactivates the engine.
setPolicy Sets the current Selection Policy.
switchInterface Request to switch to a particular interface.
useInterface Request to use a specific interface.

Table 1: Description of SwitchingManager API.

ules are wrapped by JNI and are called from the Internal
Classes layer. The Switching Service, Monitoring Service
and Selection Policy are implemented as system services at
the Internal Classes layer. These services are created dur-
ing the device start-up and they run as long as the device is
running. We have modified the Android’s System Server to
start these services when the device starts. All the changes
are done by adding 209 lines of C/C++ code and 650 lines
of Java code to Android (Eclair 2.1).

We provide API to configure and control the Switching
Engine which is described in Table 1. We use this API to
extend Android’s built in wireless control settings applica-
tion so that the Switching Engine can be stopped, restarted
and configured to run in different modes from the application
layer. When the engine is stopped, this API can also be used
by the application programmers to switch interfaces, send a
specific flow using a specific interface, or to use multiple in-
terfaces simultaneously. Two of the methods in the API are
very useful from the application programmers’ point of view.
The first one is, the switchInterface()method, which
allows the programmers to switch interface when needed.
This is useful for those kinds of applications that need to
send, for example, proprietary data over the cellular net-
work, but for all other purposes prefer to be on WiFi. An-
other important method is, the useInterface()method.
It is useful to send or receive data using a specific inter-
face for a specific connection. Note that, it does not switch
the interface, rather if the preferred network is available, it
sends the data using that interface for the specified connec-
tion only. With this method, an application can use multiple
interfaces simultaneously. Figure 9 shows an example usage
of this method. Both of these methods are requests to the
switching system. The requests may fail if the application
does not have proper permissions or the Switching Engine is
currently running. In Appendix B, we describe this feature
in detail.

1 SwitchingManager mgr = new SwitchingManager(getSystemService(”SM”));
2 String ip = ”12.71.54.184”; int port1 = 5050, port2 = 5051;
3 InetAddress a = InetAddress.getByName(ip);
4 try {
5 if (mgr.useInterface(a, mgr.MOBILE)){
6 Socket ms = new Socket(ip, port1);
7 // transfer sensitive data over secured cellular network.
8 }
9 if (mgr.useInterface(a, mgr.WIFI)){

10 Socket ws = new Socket(ip, port2);
11 // transfer less sensitive data over public WiFi.
12 }
13 } catch(SwitchingException ex){ ex.printStackTrace(); }

Figure 9: Using useInterface() method.

6

4. EVALUATION
Our evaluation consists of three sets of experiments. First,

we measure the system overhead (Section 4.2), switching
time overhead (Section 4.3) to determine the system parame-
ters, and energy consumption of interfaces (Section 4.4) that
are used in the later experiments. Second, we discuss a set
of experiments (Section 4.5) that are trace based, where we
apply the three policies on the 3 month long collected data
trace to demonstrate the benefits of switching. Third, we
demonstrate the performance of MultiNets in a real world
scenario (Section 4.6).

4.1 Experimental Methodology
4.1.1 Hardware Setup

All experiments are performed on multiple Android De-
veloper Phones 2 (ADP2) [2]. The mobile devices are run-
ning MultiNets which is developed on top of Android OS
(Eclair 2.1-update 1). The devices are 3G-enabled T-Mobile
phones that use 3G, EDGE, GPRS and WiFi 802.11 b/g con-
nectivity and are equipped with an 528 MHz ARM proces-
sor, 512 MB flash memory, 192 MB RAM, and 1 GB mi-
croSD card.

4.1.2 Software Setup
We have used benchmarks, data traces from real users, and

real usage of our system as our workloads. We have used
a number of benchmarks that are available in the market,
such that they as a whole exercise different aspects of the
system. Although these benchmarks are useful to evaluate
the overhead of the system, we find none of them useful for
evaluating the performance of the connectivity of the phone.

Driven by this need, we have developed a data logger that
is capable of logging every important information of the run-
ning applications within the phone periodically and send it to
a remote server. 13 volunteers from our research lab, includ-
ing research scientists, graduate students, faculty, and staffs
of age group 25 to 35, were equipped with these phones with
our data logger and they carried around the phones to wher-
ever they wanted and used them for both voice and data con-
nectivity for 90 days. The information that we collect from
these logs include the names and types of the applications,
the frequency and the duration of their usage, and the data
usage information for each wireless interface for each user.
For each of these applications, we have the total number of
bytes and packets transmitted and received over cellular and
WiFi. We modified the Linux’s netstat tool for Android
to get the information about all the TCP and UDP sessions,
which include IP addresses, ports, start time, and durations.

We then implement a traffic generator to reproduce the
data sessions. The traffic generator replays the exact same
sessions as that are in the log except for that they are now
using different server IPs which are situated in our lab in-
stead of the original ones. We load the information about all
the sessions into the traffic generator running on the phone
and start a process that replays those sessions.

Benchmark Description
Linpack Solves dense NxN system of linear equations.
Fps2d Measures 2D graphics frames per second.
CMark Measurements performance of java programs involving

prime generation, loop, logic, method, and floats.
Graphics Draws opacity and transparent bitmaps.
Cpu CPU performance of MWIPS, MFLOPS, and

VAX MIPS (SP and DP).
Mem Memory copy operation.
File File create, write, read, and delete.

Table 2: Description of the benchmarks.

Linpack Fps2d Cmark Graphic Cpu Mem File
0

5

10

Benchmarks

O
ve

rh
ea

d(
%

)

10 sec 5 sec 1 sec

Figure 10: A monitring interval of 5 sec or more keeps
the overhead below 5%.

4.2 System Overhead
The Switching Engine starts several background system

services at the device startup. Running such system services
may add additional overhead to the system. The goal of this
experiment is to derive a minimal sleeping interval for the
monitoring services so that their overhead is reasonable. We
run a set of benchmarks on the device, with and without
the Switching Engine and compare the two scores. None
of these benchmarks use any data connectivity and, hence,
no switching happens during this experiment. The overhead
is due to the engine’s continuously monitoring and check-
ing for an opportunity to switch only. We use seven sets
of benchmarks that are available in Android Market that has
been downloaded 10, 000 to 50, 000 times. Table 2 describes
the benchmarks.

Figure 10 shows the benchmark scores of the device for
running the Switching Engine at 10, 5, 1, and 0.5 seconds
sleeping intervals. The scores are normalized to the scores
achieved by a phone running original Android. We see that
the more the sleeping interval, the smaller the overhead and
the closer the score is to that of without running the engine.
But if this interval is large, the responsiveness of the engine
becomes lazy. We therefore run the engine in 5 seconds in-
terval which keeps the overhead below 5% and at the same
time the responsiveness is also good. Note that, this over-
head is due to the polling style implementation of the moni-
toring engine and is not an inherent problem of the switching
technique itself. A more efficient implementation of the en-
gine is left as our future work.

4.3 Switching Time
The switching time is the duration between the instant

when the engine decides to switch and the instant when it
completely connects to the new interface and disconnects the
old one. Figure 11 illustrates an example of switching. In
this scenario, we start sending data over the 3G, and switch
to WiFi when the data rate over 3G exceeds 16 KBps, and
switch back to 3G when the WiFi is idle for the last 30 sec-

7

0

5

10

15

20

3G
 D

at
a

R
at

e
(k

bp
s)

0

8

16

24

32

W
if

i D
at

a
R

at
e

(k
bp

s)

t
1

t
3

t
4

t
0 t

2
t
5

Connected
to 3G Connected

to Wifi

Figure 11: Both interfaces are active during the switch-
ing times [t1, t2] and [t4, t5].

0 15 30 45 60
0

5

10

15

20

Timeout (Sec)

Sw
itc

hi
ng

 T
im

e
(S

ec
)

0 15 30 45 60
0

1

2

3

Timeout (Sec)

In
te

rru
pt

ed
 T

C
P

3G to WiFi
WiFi to 3G

Figure 12: Timeout value of 30 sec or more makes the
switching time ∼ 15 sec, and keeps the TCP disconnec-
tions < 1.

onds. The timeout for all ongoing TCP sessions over the old
interface is set to 20 seconds. The parameters chosen for
this experiment are for the demonstration purpose only, they
are not set for optimizing anything. The top figure shows
the data rate over 3G and the bottom one shows the same
for WiFi. We start using 3G for browsing various web pages
at t0. At t1, when the Monitoring Engine detects that the
threshold of 16 KBps is exceeded, the Switching Engine de-
cides to switch to WiFi. It turns on the WiFi connectivity
and guides all new sessions to start over WiFi while keep-
ing old sessions active over 3G. This continues till t2, when
the timeout occurs and all existing TCPs over 3G are closed.
The duration of [t1, t2], is the switching time during when
both the interfaces have one or more active TCP sessions.
After t2, the phone is connected to WiFi only and continues
at this state until it discovers at t4 that it has been idle since
t3 = t4 − 30s. At t4, the engine again initiates a switching
from WiFi to 3G. Since this time we do not have any on-
going TCP over WiFi, the switching to 3G happens almost
immediately at t5.

Table 3 shows the measured switching time overhead. In
this case, we do not send or receive any data over any in-
terface. Switching to WiFi takes about 1 second more than
switching to 3G. This is because, connecting to WiFi goes
through a number of steps involving scanning for access
points, associating with one of them, handshaking and a
dhcp request, which are not required for 3G.

Figure 11 reveals that the timeout (20 secs) is the principal
component that determines the switching time. To prevent

Type Switching time (msec)
3G to WiFi 1212
WiFi to 3G 196

Table 3: Minimum time to switch to WiFi is 6 times
higher than switching to 3G.

TCP interruptions, we should set the timeout to infinity. But
doing so would increase the energy consumption as both in-
terfaces are on during the transition time. Hence, we conduct
several experiments to quantify the tradeoff between switch-
ing time and number of interrupted TCP sessions.

Figure 12(left) shows the switching time in presence of
data activity for different timeout values. We see that the
switching times are closer to the corresponding timeouts for
values < 5 seconds. As most of the TCP sessions are short-
lived and they finish in 10− 15 seconds, towards the right of
the figure this difference is higher. There are still some ses-
sions that remain till the end of timeout even for values> 30
seconds, but they are small in number. Figure 12(right) plots
the number of TCP sessions that gets disconnected against
varying timeouts. We see that this number becomes less than
1 after 15 seconds and continues to get lower with increas-
ing values. These long sessions are the ones that the applica-
tions use to communicate with their servers and any interrup-
tions of these automatically initiate new connections with the
server, and hence there are no visual interruptions for this.
Yet, we set the timeout to 30 seconds to reduce the number
TCP disconnections and maintain an average switching time
of 15 seconds.

4.4 Energy Measurements
We used a high precision digital multimeter [1] to ob-

tain fine-grained energy measurements once every 1 msec
as shown in Figure 13. To measure the power drawn by the
battery, we opened the battery case to place a 0.1 ohm re-
sistor in series with the battery. The voltage drop across the
resistor was used to get the battery current, and this current
and the input voltage to the phone were used to calculate the
energy consumption. The battery charger was disconnected
to eliminate interference from the charging circuitry during
this measurement.

Figure 14 shows the average energy consumption for both
downloading and uploading of 4 KB to 4 MB data over 3G
and WiFi networks. Our experiments were performed using
a remote server running Linux 2.6.28 with a static IP address
located in our lab. We repeated the experiment ten times
for each data size and averaged the results. The standard
deviation for all these measurements is less than 5%.

For all experiments, we configured the smartphone screen
brightness to minimum. We measured the average idle
power consumed by the 3G and WiFi network interfaces
and found them to be 295.85 mW in case of WiFi and 3.11
mW in case of 3G. In addition, the average energy costs of
turning on WiFi and 3G interfaces are 7.19 J and 13.13 J,
respectively. We subtract these numbers during the energy

8

Figure 13: The digital multime-
ter, an open battery used for en-
ergy measurements, and a sample
output graph is shown.

0 1000 2000 3000 4000
0

25

50

75

100

Data Size (Kilo Bytes)

E
ne

rg
y

(J
ou

le
s)

3G Upload

3G Download

WiFi Upload

WiFi Download

Figure 14: Energy consumption dur-
ing data activity is higher for 3G than
WiFi, and uploading is more costly
than download.

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

Users

En
er

gy
 (K

J
/ D

ay
)

12 13

50

100

150

200Optimum
Actual
Heuristic

Figure 15: Energy saving heuristic
cuts down the average daily energy
usage by 27.4% and is close to opti-
mum.

measurements in Figure 14 and report only the energy costs
for data transfers.

Every data transfer request contains an energy overhead
of 12 J for 3G and 1 J for WiFi. After the connection has
been established, the energy used to both upload and down-
load is increasing with the amount of data being uploaded or
downloaded. These observations are consistent with previ-
ous work [15, 7]. Figure 14 shows that the energy needed to
upload data is higher than that for download since the upload
bandwidth is typically smaller. Similarly, because of lower
bandwidth of 3G, 3G consumes more energy than WiFi for
the same amount of data transfer.

We use the energy measurements for data transfers, turn-
ing and keeping on the interfaces to obtain a simple energy
model. The energy model is used to estimate the energy for
downloading or uploading varying data sizes across 3G and
WiFi networks without any other activity on the mobile de-
vice. We model the energy cost as follows:

E = EON + ED(d) + P̄ × (d/R̄),

where EON is the energy to turn on the interface, ED(d)
is the energy to transfer d bytes of data, P̄ is the average
power to keep the interface on, and R̄ is the average data
rate. We determine ED(d) by using linear interpolation and
extrapolation on sample points in Figure 14.

4.5 Trace Driven Experiments

4.5.1 Energy Efficiency
Using the energy model, we estimate the average daily en-

ergy consumption for each user in our data traces. We have
considered data transfer over WiFi and 3G, and also con-
sidered the idle power. We then compute the optimum en-
ergy consumption of each user assuming they switched op-
timally. We use dynamic programming to get this optimum
value, which is described in the Appendix A. While the algo-
rithm achieves the optimum energy consumption, it assumes
that the future data usage is known, which is not realistic.
Therefore in MultiNets, we use a simple heuristic to switch
interfaces. As data communication in WiFi is cheaper, for
switching from 3G to WiFi, we use a data threshold of τ
KB. If the phone crosses this limit, we switch to WiFi. On
the other hand, since idle power of WiFi is much higher than

3G, we switch the phone back to 3G when data activity is
absent over WiFi for the last ζ seconds. We systematically
tried various τ and ζ values using the data traces, and found
that τ = 1 KB and ζ = 60 seconds minimizes the deviation
from the optimum energy saving. Therefore, we let use these
two values throughout the paper if not otherwise specified.

Figure 15 shows the average daily energy consumptions
of all the users for three strategies: optimum, actual and the
heuristic that we use in MultiNets. This figure shows that
switching optimally saves on average 24.17 KJ energy per
user per day, which is as high as 89− 179 KJ for some users
(e.g., 12, 13). We also see that our simple heuristic achieves
near-optimal energy consumption with an average deviation
of only 13.8%, and we are able to cut down the daily energy
usage by 27.4% (21.14 KJ) on average.

4.5.2 Offloading Traffic
In order to estimate how much data traffic we are able to

offload from 3G to WiFi network with MultiNets, we ana-
lyze the data traces that we have collected. For each user,
we compute the average daily WiFi usage and compare it to
the amount of data that is possible to offload if MultiNets
was used. Our offloading strategy is to switch all 3G traffic
to WiFi whenever we find a connectible access point. We
consider an access point connectible if and only if its signal
strength s is above η = −90 dBm and has been used by the
user in the past. The threshold−90 dBm is derived from real
experiments: when the signal strength is below it, the WiFi
is not usable. Figure 16 shows this comparison for each of
the users. We see that, for some users (e.g., 3, 7) we are
able to offload 11− 14 times more data, and for some users
who does not tend to use available WiFi at all (e.g., 13) this
difference is about 150 MB per day. Considering all users,
with switching, we are able to offload on average 22.45 MB
of data per day per user which is 79.82% of the average daily
usage (28.13 MB).

4.5.3 Performance
Performance of web applications get a significant boost

by switching to the interface with the higher bandwidth.
In our data trace, we have recorded the signal strengths of
both the cellular and all available WiFi networks at 30 sec-

9

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

Users

O
ffl

oa
d

(M
B

 /
D

ay
)

12 13

50

100

150
Actual Usage

Offload Mode

Figure 16: An average of 22.45 MB more data per day
per user is offloadable using dynamic switching.

onds intervals. We conduct extensive measurements using
iperf tool to find the correlation between signal strength
s and bandwidth B. We run iperf server on our server,
and iperf client on Android phones, and iperf pack-
ets traverse through the Internet. We have taken measure-
ments in both indoor and outdoor environments and report
the average of 10 measurements at varying signal strengths
in Table 4. We define the bandwidth function BW (s) (for
WiFi) and BC(s) (for cellular) using linear interpolations
on measurement samples in this table.

Using the bandwidth functions, we calculate the average
daily throughput of each user for his actual usage, and we
also do the same if MultiNets was used. Figure 17 shows
that, with MultiNets, it is possible to achieve an average
throughout of 2.58 MBits/sec, which is 7 times more than
the actual usages. For some users (e.g., 1, 2, 4, 13) this gain
is about 14 − 24 times. These are the users who tend to re-
main in the 3G network even if WiFi is available for them to
connect.

Note that, based on our measurement results, even if we
take decisions to switch based on the signal strengths, state-
of-the-art 3G network being always slower than WiFi, the
policy selects WiFi almost as if it were in Offload mode.
This is, however, not always true, e.g., with the rapid ad-
vancement of cellular data network technology, this gap is
diminishing. Our measurements with recent High Speed
Packet Access Network (HSPA+) in Table 4 shows that this
network is about eight times faster than 3G. We believe, in
near future, cellular networks will have a comparable band-
width to WiFi, and the performance mode of MultiNets will
have a higher impact at that moment. Finally, measurement
studies report that WiFi throughput may be lower than 3G
throughput under certain practical circumstances [4].

WiFi HSPA+ 3G
Signal Bandwidth Signal Bandwidth Signal Bandwidth
(dBm) (Mbps) (dBm) (Kbps) (dBm) (Kbps)
≤ −50 8.58 −65 929 −63 138

(−50,−60] 7.06 −73 858 −89 115
(−60,−70] 6.16 −89 746 −101 104
(−70,−80] 3.99 −97 509
> −80 1.25

Table 4: Bandwidth of WiFi, HSPA+, and 3G at different
signal levels measured by iperf

4.6 Real Deployment
To quantify the performance of our system in a real-world

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

Users

T
hr

ou
gh

pu
t

(M
B

its
 /

S
ec

) Actual Performance Mode

Figure 17: The achievable throughput is 7 times higher
with switching.

scenario, we conduct actual experiments at the Stanford Uni-
versity campus. We have chosen this campus since it has
WiFi connectivity both inside and outside of the buildings
and also has several areas where WiFi is either completely
unavailable or has a very poor signal strength. High avail-
ability of WiFi is important for us since we want to demon-
strate that our system is switching back to 3G to conserve en-
ergy even in presence of WiFi. On the other hand, loss and
reconnection of WiFi connectivity is important to demon-
strate that our system is capable of switching smoothly. We
take 4 ADP2 phones with us. Two of these have our system
installed and the other two run Android (Eclair 2.1). All 4
phones are fully charged and their screen brightnesses are set
to the lowest level. For a fair comparison, we use our traffic
generator to replay the same data traffic in all of them. The
traffic generator runs in the phone and sends and receives
data over the Internet to and from our server which is situ-
ated in our lab at 4 miles distant from Stanford. The phones
replay the traffic patterns of the most popular 6 applications
from our data traces having sessions of varying numbers, du-
rations, delays and concurrencies. Once started, the phones
run each of these applications for 10 minutes followed by
a 10 minutes break, repeatedly one after the other. We log
the transmitted and received bytes, signal strengths, MAC
addresses of WiFi APs, battery current, voltage and capacity
into the file system of the phone periodically every 2 seconds
for later analyses.

4.6.1 Energy Efficiency
In this experiment, we configure one of our phones into

the energy saving mode. We take another two phones that
run Android– one with WiFi enabled, and the other staying
over 3G only. We start the traffic generator in all 3 phones
and begin our 168 minutes long campus tour starting from
the Computer Science building. We move around all 5 floors
of the building for an hour, then take an hour long round trip
tour within the campus as shown in Figure 18, and finally
get back to the building to spend the rest of the tour. Dur-
ing this tour, we encounter 37 different WiFi APs, an aver-
age signal strength of −68.46 dBm inside the building and
−82.34 dBm outside the building, 28 disconnections from
WiFi to 3G, and a total of 49 switchings by our system. Us-
ing the instantaneous values of current and voltage obtained
from the log, we compute the energy consumption of each
of these phones and plot the cumulative energy consumption

10

Figure 18: We encounter 37 WiFi APs, average signal
strengths of −68.46 dBm (inside) and −82.34 dBm (out-
side), and 28 WiFi disconnections during the tour.

0 30 60 90 120 150
0

50

100

150

Time (min)

E
ne

rg
y

(J
)

EnergySaving Mode

Android (3G Only)

Android (WiFi ON)

Figure 19: Energy saving mode saves about 28.4% −
33.75% energy as compared to Android.

in Figure 19. Despite the fact that the battery voltages and
currents read from the Android system are not in high preci-
sion, we still see a clear difference of the energy consump-
tion among these 3 phones. We see that for the same data
traffic, our system achieves about 28.4% − 33.75% energy
savings as compared to state of the art Android systems.

4.6.2 Offloading and Throughput
In this experiment, we compare the offloading and

throughput of our system with that of the state-of-the-art
Android. In MultiNets, we set the switching timeout to be
30 seconds. Recall that, cellular network being much slower
than WiFi, the outcomes of Offload and Performance modes
are similar, although their decision mechanisms are com-
pletely different. Therefore, we present them together in
Table 5. This table also gives the achievable lower and upper
bounds of Android on offloading and throughput. The lower
bound is derived by disabling WiFi interface (3G Only), and
the upper bound is achieved by always switching to WiFi
whenever it is available (WiFi ON). This table shows that:
MultiNets (i) leads to three times higher throughput than
the Android lower bound, (ii) achieves near-optimal offload-
ing and throughput, and (iii) experiences zero TCP discon-
nections throughout the experiments, while Android upper
bound results in eight TCP disconnections.

4.6.3 Energy Efficiency vs. Offload Trade-off
It is interesting to see the trade-offs between the energy

savings and offloading. Table 6 shows that, MultiNets in
energy-saving mode consumes about 55.85% less energy
than offload mode, but sacrifices about 14.25% of offloading
capability. The reason behind is that, energy saving mode

System Offload Throughput Disconnections
(MB) (kbps) (Count)

MultiNets 45.41 116.20 0
Android (3G Only) 0 39.29 0
Android (WiFi ON) 44.54 116.26 8

Table 5: For near-optimal offloading and throughput,
MultiNets experiences no TCP disconnections thought
the experiments.

keeps the phone in 3G while it is idle. When data transmis-
sion starts, it keeps the phone in 3G mode for a while before
completely switching to WiFi, and hence the overall WiFi
offloading is slightly lower in this case. This experiment il-
lustrates that, users of MultiNets achieve different objectives
by putting the system in different modes.

Mode Energy Consumption Offload
(J) (MB)

Energy Saving 90.36 38.94
Offload 204.65 45.41

Table 6: Energy saving mode saves 55.85% more energy,
but sacrifices 14.25% offloading.

5. RELATED WORKS
Switching among multiple network interfaces of a mobile

device has been considered in the literature. New protocols
in various layers have been designed to support switching
among access networks. Wang et al. [9] propose a rate con-
trol algorithm for multiple access networks, which needs
to be integrated into application-layer protocols. Kim and
Copeland [22] and Wu et al. [26] propose TCP variants that
result in better performance by switching among access net-
works. Mobile IP [10] uses foreign/home agents to forward
network traffic from/to a smartphone that move among ac-
cess networks but incurs additional network latency. Mobile
IP v6 [17] uses optimized routes for lower network latency,
but it still relies on deploying foreign/home agents for mo-
bility management. In contrast to MultiNets, widely deploy-
ing TCP variants and mobile IP agents in the Internet incurs
tremendous costs and burden, and may take years to be done.

Gateways between smartphones and the Internet can be
used for accessing multiple network interfaces. Balasubra-
manian et al. [4] design a system to reduce the network traf-
fic over cellular networks by transmitting delay tolerant data
over WiFi and real-time data over cellular networks. Sharma
et al. [19] propose a system that uses gateways to aggregate
network resources from multiple access networks among
several collaborative smartphones. Armstrong et al. [24]
uses a proxy to notify the phone via sms about content up-
dates and suggests interface to use. Unlike MultiNets, gate-
way solutions require deploying expensive gateways, incurs
additional network latency, and may need users to config-
ure the proxy settings in applications. A master/slave solu-
tion [14] chooses an always-connected access network as the
master network, and uses other access networks as slave net-
works for opportunistic routing. Different from MultiNets,

11

deploying master/slave solutions requires complete control
over multiple access networks, which is difficult due to busi-
ness reasons. Higgins et al. [8] propose intentional network-
ing where applications provide hints to the system and sys-
tem chooses the best interface opportunistically. In contrast,
MultiNets is completely transparent to the existing aplica-
tions. Rahmati et al. [6] demonstrate the feasibility of TCP
flow migration on iPhones, but they do not address or rigor-
ously quantify the policies and different benefits of switch-
ing interfaces.

6. CONCLUSION
In this paper, we consider the problem of real-time switch-

ing between multiple network interfaces on mobile devices.
We first conduct a three month long empirical study to un-
derstand the TCP characteristics on Android devices. Based
on this study, we design a client based solution to the switch-
ing problem. We then present the MultiNets system that uses
this technique to dynamically switch between WiFi and cel-
lular networks based on three policies: energy efficiency, of-
floading data traffic, and higher throughput. Our evaluation
results show that our system outperforms the state-of-the-art
Android either by saving up to 33.75% energy, or achieving
near-optimal offloading, or achieving near-optimal through-
put while substantially reducing TCP interruptions due to
switching.

7. REFERENCES
[1] Agilent 34410A Digital Multimeter. http://www.home.agilent.com/

agilent/product.jspx?pn=34410A.
[2] Android Developer Phone 2 (ADP2).

http://developer.htc.com/google-io-device.html.
[3] Cisco Visual Networking Index: Forecast and Methodology, 2009–2014.

http:
//www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf.

[4] A. Balasubramanian, R. Mahajan, A. Venkataramani. Augmenting Mobile 3G
using WiFi. In Proc. of ACM 8th International Conference on Mobile Systems,
Applications, and Services (MobiSys’10), San Francisco, USA, March 2010.

[5] A. Rahmati, C. Shepard, A. Nicoara, L. Zhong, J. Singh. Mobile TCP Usage
Characteristics and the Feasibility of Network Migration without Infrastructure
Support. In Proc. of ACM 16th International Conference on Mobile Computing
and Networking (MobiCom’10), Poster Session, Chicago, USA, September
2010.

[6] A. Rahmati, C. Shepard, A. Nicoara, L. Zhong, J. Singh. Seamless flow
migration on smartphones without network support. Technical Report
2010-1214, Rice University, December 2010.

[7] A. Rahmati, L. Zhong. Context-for-Wireless: Context-Sensitive
Energy-Efficient Wireless Data Transfer. In Proc. of ACM 5th International
Conference on Mobile Systems, Applications, and Services (MobiSys’07), San
Juan, Puerto Rico, June 2007.

[8] B. Higgins, A. Reda, T. Alperovich, J. Flinn, T. Giuli, B. Noble, D. Watson.
Intentional networking: opportunistic exploitation of mobile network diversity.
In Proc. of ACM 16th International Conference on Mobile Computing and
Networking (MobiCom’10), Chicago, USA, September 2010.

[9] B. Wang, W. Wei, J Kurose, D. Towsley, K. Pattipati, Z. Guo, Z. Peng.
Application-Layer Multipath Data Transfer via TCP: Schemes and Performance
Tradeoffs. Elsevier Performance Evaluation, 64(9-12):965–977, October 2007.

[10] C. Perkins. Mobile IP. IEEE Wireless Communications Magazine, 35(5):84–99,
May 1997.

[11] G. Ananthanarayanan, I. Stoica. Blue-Fi: enhancing Wi-Fi performance using
bluetooth signals. In Proc. of ACM 7th International Conference on Mobile
Systems, Applications, and Services (MobiSys’09), Wroclaw, Poland, June
2009.

[12] J. Apostolopoulos, M. Trott. Path Diversity for Enhanced Media Streaming.
IEEE Communications Magazine, 42(8):80–87, August 2004.

[13] K. Kim, A. Min, D. Gupta, P. Mohapatra, J. Singh. Improving Energy Efficiency
of Wi-Fi Sensing on Smartphones. In Proc. of IEEE International Conference
on Computer Communications (INFOCOM’11), Shanghai, China, April 2011.

[14] K. Pahlavan, P. Krishnamurthy, A. Hatami, M. Ylianttila, J. Makela, R. Pichna,
J. Vallstron. Handoff in Hybrid Mobile Data Networks. IEEE Personal
Communications, 7(2):34–47, April 2000.

[15] N. Balasubramanian, A. Balasubramanian, A. Venkataramani. Energy
Consumption in Mobile Phones: A Measurement Study and Implications for
Network Applications. In Proc. of ACM SIGCOMM Internet Measurement
Conference (IMC’09), Chicago, USA, 2009.

[16] N. Thompson, G. He, H. Luo. Flow Scheduling for End-Host Multihoming. In
Proc. of IEEE International Conference on Computer Communications
(INFOCOM’06), Barcelona, Spain, April 2006.

[17] P. Nikander, J. Arkko, T. Aura, G. Montenegro. Mobile IP Version 6 (MIPv6)
Route Optimization Security Design. In Proc. of IEEE Vehicular Technology
Conference (VTC’03-Fall), Orlando, USA, October 2003.

[18] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, S. Banerjee. MAR: a
Commuter Router Infrastructure for the Mobile Internet. In Proc. of ACM 2nd
International Conference on Mobile Systems, Applications, and Services
(MobiSys’04), Boston, USA, June 2004.

[19] P. Sharma, S. Lee, J. Brassil, K. Shin. Handheld Routers: Intelligent Bandwidth
Aggregation for Mobile Collaborative Communities. In Proc. of International
Conference on Broadband Networks (BroadNets’04), San Jose, USA, October
2004.

[20] R. Chalmers, K. Almeroth. A Mobility Gateway for Small Device Networks. In
Proc. of IEEE International Conference on Pervasive Computing and
Communications (PerCom’04), Orlando, USA, March 2004.

[21] S. Kandula, K. Lin, T. Badirkhanli, D. Katabi. FatVAP: Aggregating AP
Backhaul Capacity to Maximize Throughput. In Proc. of USENIX Symposium
on Networked Systems Design and Implementation (NSDI’08), San Francisco,
USA, April 2008.

[22] S. Kim, J. Copeland. TCP for Seamless Vertical Handoff in Hybrid Mobile Data
Networks. In Proc. of IEEE Global Telecommunications Conference
(GLOBECOM’03), San Francisco, USA, December 2003.

[23] T. Alperovich, B. Noble. The Case for Elastic Access. In Proc. of the ACM 5th
International Workshop on Mobility in the Evolving Internet Architecture
(MobiArch’10), Chicago, USA, September 2010.

[24] T. Armstrong, O. Trescases, C. Amza, E. Lara. Efficient and transparent
dynamic content updates for mobile clients. In Proc. of ACM 4th International
Conference on Mobile Systems, Applications, and Services (MobiSys’06),
Uppsala, Sweden, June 2006.

[25] Web Page of Video Traces Research Group, 2010.
http://trace.eas.asu.edu/tracemain.html.

[26] X. Wu, M. Chan, A. Ananda. TCP HandOff: a Practical TCP Enhancement for
Heterogeneous Mobile Environments. In Proc. of IEEE International
Conference on Communications (ICC’07), Glasgow, UK, June 2007.

[27] Y. Wang, S. Wenger, J. Wen, A. Katsaggelos. Error Resilient Video Coding
Techniques. IEEE Signal Processing Magazine, 17(4), July 2000.

APPENDIX
A. OPTIMUM ENERGY COMPUTATION

Given, the data usage Di of a user for every T seconds,
energy for turning on (EW

ON , EC
ON), data transfer (EW

D (Di),
EC

D(Di)), and idle power (PW , PC) of the WiFi and cel-
lular, and the availability of WiFi, our goal is to find the
optimum energy consumption considering switching. The
problem is an instance of classical multi-stage graph opti-
mization problem where the time points are the stages and
the interfaces are the choices (sometimes only one choice of
3G) at each stage. Let us define f(i, C) as the optimum en-
ergy from the starting time (time = 1) till i−th time such that
we use 3G at time i. Similar is the definition of f(i,W) for
WiFi. We now formulate the following recurrence relations:

f(i, C) = min

{
f(i− 1, C) + PC × T + EC

D(Di)
f(i− 1,W) + EC

ON + PC × T + EC
D(Di)

f(i,W) = min

{
f(i− 1,W) + PW × T + EW

D (Di)
f(i− 1, C) + EW

ON + PW × T + EW
D (Di)

with initial conditions f(0, C) = EC
ON , f(0,W) = EW

ON .
These recurrences are written assuming WiFi is available.
To address the cases when WiFi is not available, we ignore

12

f(i − 1,W) in f(i, C), and make f(i,W) = f(i, C). Fi-
nally, the optimum energy is computed as the minimum of
f(n,W) and f(n,C) where n is the total number of time
points.

B. MULTIPLE NETWORK ACCESS
State-of-the-art mobile OSes maintain static priorities

over its network interfaces and always connect to the in-
terface with the highest priority and tear down the interface
with a lower priority. The applications cannot choose the
network interface by themselves. In contrast, using Multi-
Nets API, applications with proper permissions can request
the OS to use a specific interface for communicating with
a specific remote device. An application notifies MultiNets
which interface it wants to use for a remote device. Multi-
Nets then checks whether the interface is available for con-
nectivity, and in case it is available, a route is added into
the system routing table for the specific remote IP. Any sub-
sequent TCP or UDP connections are bound to the chosen
interface. Figure 9 gives a sample API usage, in which the
application transfers sensitive data, such as user credentials,
over a secured cellular network, and less sensitive data over
a public WiFi network. By using this API, it is also pos-
sible to use multiple network interfaces simultaneously for
sending and receiving data to separate remote devices.

B.1 Video Streaming over Multiple Interfaces
Unlike generic applications, video streaming services

consume high network bandwidth and have stringent delay
constraints, and thus can benefit from concurrently using
multiple interfaces [12]. Through a real implementation, we
demonstrate that MultiNets also supports real-time applica-
tions.

We have implemented a streaming server on Linux, which
transmits video data using UDP packets to mobile clients.
The streaming server supports multi-path video streaming
for each client, and employs a leaky bucket for every path
to control the transmission rate. We have also implemented
an Android client using MultiNets API, which can receive
video packets from 3G, WiFi, or both interfaces. The client
continuously requests video packets from the server, and pe-
riodically reports the average packet loss ratio of each inter-
face to the server. The server adjusts the transmission rates
to ensure that the packet loss ratio is below 5% and can be
concealed by standard video coding tools [27]. The mean
packet loss ratio across all experiments is 4.48%.

To faithfully emulate a commercial service, the streaming
server is connected to the Internet via a 10 Mbps dedicated
link, and the mobile phone has two access networks: a 3G
network and a WiFi network with residential DSL service.
We randomly chose six video traces from a video trace li-
brary [25]. The video traces were extracted from MPEG-4
and H.264/AVC coded streams with diverse video charac-
teristics. We configure the server to stream each video for
two minutes, and we instruct the mobile client to log packet

Tokyo NBC Sony Lord Star Matrix
0

500

1000

1500

Videos

S
tr

ea
m

in
g

R
at

e
(K

B
its

 /
S

ec
) WiFi 3G Both

Figure 20: Streaming with both interfaces leads to higher
streaming rate.

Preroll Delay Matrix StarWar Olympic
(sec) (sec) (sec)

3G 195.50 77.42 477
WiFi 20 1.36 117

3G & WiFi 0.16 0.15 51

Table 7: Streaming with both interfaces achieves lower
preroll delay

arrival times. We repeat the experiments with 3G, WiFi,
and both interfaces. We consider two performance metrics:
streaming rate and preroll delay. Streaming rate refers to
the achieved transmission rate, and preroll delay is the time
for the client to fill its receiving buffer in order to guarantee
smooth playout.

We plot streaming rates in Figure 20, which shows that
the streaming service achieves higher streaming rates by us-
ing both interfaces. More precisely, compared to WiFi and
3G, streaming over both interfaces increases the streaming
rate by 43% and 271%, respectively. Table 7 presents the
preroll delays of three high-resolution videos; other videos
have much lower encoding rates and require negligible pre-
roll delays. Table 7 illustrates that streaming over both in-
terfaces significantly reduces the preroll delay, e.g., the pre-
roll delay of Matrix is reduced from 195.5 seconds (or 20
seconds) to merely 0.16 seconds by using both interfaces.
Higher streaming rates and lower preroll delays lead to bet-
ter user experience, which is made possible by MultiNets.

13

