
Multiple Inheritance and the Closure of Set Operators
in Class Hierarchies

John L. Pfaltz
James C. French

IPC-TR-92-004
June 25, 1992

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 2290l

This research was supported in part by
DOE Grant #DE-FG05-88ER25063 and
JPL Contract #957721

Abstract

In this report, we establish essential closures in class hierar-
chies of database systems that support set operations, such
as union and intersection, in their query language. In par-
ticular, we rigorously demonstrate that multiple inheritance
is an implementation requirement, as is the formal treat-
ment of the class hierarchies as lattices with defined least
upper, and greatest lower, bound operators.

Multiple Inheritance and the Closure of Set Operators
in Class Hierarchies †

John L. Pfaltz
James C. French

Institute for Parallel Computation
University of Virginia, Charlottesville VA

Two capabilities seem essential in new database implementations — class inheritance and set opera-

tions. In the course of designing and prototyping ADAMS, a distributed database language developed in

the Institute for Parallel Computation at the University of Virginia, we sought implementation semantics

for both of these key concepts. They are non-trivial; our initial intuitive semantics turned out to be

flawed.

We began by assuming an underlying, object based [Weg87] entity database model which is compa-

tible with extended entity-relationship models [Che76, TYF86], many semantic models [AbH87, PeM88],

and to which the relational model can be easily extended by adjoining a unique symbolic identifier to

every tuple — as is common in many implementations. In short, this entity model, developed in the

remainder of this section is intended to be a purely vanilla model with no surprises, of which more practi-

cal systems are refinements. On this we define (in Section 2) the concept of the "compass" of a class,

which then forms the basis of our set operation semantics (in Section 3). One consequence of this seman-

tic analysis will be the need for multiple inheritance [AbH87, Car84, Tou86], even though, as Peckham

and Maryanski [PeM88] note, it "can be difficult to control". Its control can be facilitated [PFG91] by

implementing classes as entities themselves in well-defined lattices with the associated least upper bound,

and greatest lower bound, operators.

1. Entity Database Model

The key presupposition of the entity database model is that the database is implemented by creating

uniquely identifiable entities. We impose a type structure on entities, or objects, by assigning them to a

class. All entities in the class, for example the class PERSON, will share common properties, such as

name, home_address, age, and social_security_number. We will also assume the existence of subclasses.

Most semantic and object-oriented databases use an IS_A construct to support the concept of class and

subclass.

Brachman [Bra83] correctly notes that inheritance as defined by the IS_A construct is really little

more than convenient syntactic shorthand for incrementally creating subclasses, so we will ignore actual

inheritance mechanisms per se. The important feature that is abstracted in the entity database model is

the very existence of classes and subclasses, which can be declared by what ever syntactic formalism is

convenient. For example, the class DOCTOR, with the additional properties speciality, training, and

office_address, might be a subclass of PERSON. The class PERSON may also subsume a subclass

PATIENT, with the additional properties case_history, complaint, and outstanding_amount_due.

In these preceding examples, classes and subclasses have been characterized by properties which are

called attributes in both relational and object-oriented terminology. For our purposes, we will assume

that a class attribute is a singled valued function, f , of a single variable x where x denotes the unique

identifier of an entity instance within the class. The image of f may be a value (e.g. printable string or

icon), or some other entity. Permitting f to be set-valued as in DAPLEX [Shi81] will not alter the gen-

erality of our approach.

In most database systems, classes are defined in terms of their associated attribute properties. But

they can also be defined by imposing predicate restrictions on class membership. For example, we might

choose to declare JUVENILE to be a subclass of PERSON, with the restriction that age < 21.

The preceding intuitive introduction to classes, subclasses, and a class hierarchy in the entity data-

base model can be made more formal. Let F = { f i } denote a set of functions associated with a particular

2

class C . Following the syntax used in ADAMS [PSF88] we will use the expression x.f i to denote the

image of x under f i . For all x ∈ C the attribute expression x.f i is said to be meaningful for any f i ∈ F ,

even though its actual value, or image, may as yet be undefined. That is, all attribute functions are

assumed to map into a domain to which an additional undefined value has been adjoined.

By a class restriction, we shall mean an expression E in the predicate calculus with exactly one free

variable. The expression V.age < 21 is an example. (Here we capitalize the free variable for visual

emphasis.) The expression is evaluated by replacing the free variable with an entity instance x to deter-

mine if it can belong to the class.

A class is defined by its set F of associated attribute functions and a restricting expression E . That

is, C = (F , E). F may be empty and E may be omitted. In the latter case x.E = true vacuously. It will

be convenient to assume a meta-linguistic operator class_of which given a specific instance x of an entity

belonging to a class C denotes its class. That is, class_of(x) = C, ∀ x ∈ C.

A class Ci = (Fi , Ei) is said to be a subclass of Ck = (Fk , Ek), denoted Ci < Ck , if

(a) Fi ⊇ Fk , and

(b) Ei → Ek (that is, Ei logically implies Ek).

Condition (a) seems to be universally accepted in both object-oriented and semantic-network class hierar-

chies; and we would assert that a condition similar to (b) is also essential since membership in the sub-

class Ci must imply membership in its superclass Ck . Given this definition, it is easy to show that

Proposition 1.1: < is a partial order on any collection of classes.

We will now say that a database implementation belongs to the entity database model if the imple-

mentation supports

(a) uniquely identifiable entity instances;

(b) a class hierarchy including on attribute properties and/or predicate restrictions; and

(c) the standard set operations (e.g. union, intersection, relative complement) on sets of entities.

3

The unique identifiability of any entity instance is an important formal characteristic of the entity data-

base model. However implemented—it could be a literal storage address, a symbolic string, or a func-

tional accessing mechanism—the unique identifier which we denote by lower case letters x, y or z, is not

an attribute of the instance it identifies. In the entity database model, two distinct entity instances x and y

belonging to a single set of instances of class C may be functionally identical in all respects, that is we

may have x.f i = y.f i for all f i ∈ FC . This is impossible in the relational model, in which any two tuples

belonging to a single relation r with schema FR must at least differ over some set of key attributes

K ⊆ FR . Khoshafian and Copeland give a general discussion of object identity in [KhC86]. Some of the

issues encountered in implementing an entity naming paradigm are discussed in [PFW88]. In this report,

the precise mechanism used to identify entities is not at issue.

In the entity database model, one deals with sets of entities. These sets, which we will denote by

the uppercase letters X, Y, and Z, are themselves entities and so must belong to some class which is dis-

tinct from the class of their constituent entities. We require a class constructor of type SET which defines

a new class, denoted by S [C], of sets whose elements belong to the class C . Many type theories intro-

duce class constructors based on Cartesian product (for tuples) [HuK87] or disjoint sum (for variant

records) [AtB87]. It is our belief that class extension using a set constructor is conceptually simpler.

It may be the case that FS [C] = ∅; although a subclass of S [C] might have attribute functions asso-

ciated with the set as a whole, distinct from the individual elements. But ES [C] can not be omitted. ES [C]

must include the predicate

(∀x ∈ V) [class_of(x) = C]

as one of its conjuncts. Here V is the free variable. The expression is evaluated by replacing V with a

specific set instance, so that if X is an instance set in S [C] then (∀x ∈ X) [class_of(x) = C].

Proposition 1.2: S [Ci] < S [Ck] implies that Ci < Ck . Further, if S [Ck] has no additionally declared
attributes or predicate conjuncts, then Ci < Ck implies S [Ci] < S [Ck].

Proof: If S [Ci] < S [Ck] then ES [Ci] → ES [Ck], hence (∀v ∈ V)[class_of(v) = Ci] → (∀v ∈ V)[class_of(v)
=Ck]. Since V can range over all sets of Ci elements, x ∈ Ci , implies x ∈ Ck .

4

Conversely, if Ci < Ck then (∀v ∈ V)[class_of(v) = Ci] → (∀v ∈ V)[class_of(v) =Ck]. If ES [Ck]

has no additional conjuncts, then ES [Ci] → ES [Ck]; and if FS [Ck] = ∅, the conditions for a subclass
are satisfied.

�

This proposition emphasizes the apparent isomorphic correspondence between the class hierarchy of sets

of elements and the class hierarchy of their constituent elements, as is illustrated in Figure 1-1, provided

no additional attributes or restrictions are associated with these set classes.

S [C 6]

S [C 5]S [C 4]S [C 3]

S [C 2]S [C 1]

S [C 0]

C 6

C 5C 4C 3

C 2C 1

C 0

Figure 1-1.

However, none of the following results which assert necessary properties of the element classes, Ci ,

depend on this isomorphism property.

2. The Compass of a Set

A class, C = (F , E), can be regarded as either a generic template by which class membership is

defined, or as the conceptual set of all possible entities which could belong to the class, that is all con-

ceivable x over which all of the f i ∈ F are defined and x.E is true, whether instantiated or not.1 It will be

convenient to refine the idea of a conceptual set of possible entities by introducing a formalism called

compass .

���

1 In some object-oriented implementations [GoR83, Kim89], the class (through its class manager) also denotes
all actually instantiated elements as well.

5

By the compass of an expression, denoted comp(exp), we mean the conceptual set of all entities

which could possibly satisfy the expression; that is, the abstract set of all entities which could be encom-

passed by exp. For example,

comp(F) = { x � the expression x.f i is meaningful for all f i ∈ F }, and

comp(E) = { x � x.E = true }.

The compass of such expressions is typically an infinite set, and hence tends to be of theoretical rather

than operational interest.

Proposition 2.1:
If Fi ⊇⊇ Fk , then comp(Fi) ⊆⊆ comp(Fk).
If Ei →→ Ek , then comp(Ei) ⊆⊆ comp(Ek).

Proof: Let x ∈ comp(Fi) implying that x.f is valid for all f ∈ Fi . Since Fk ⊆ Fi , if f ∈ Fk then x.f
must be valid, so x ∈ comp(Fk).

Since if x.Ei is true, x.Ek must be true by implication, the second containment follows immedi-
ately �

The inversion of containments of the first assertion has also been noted in [ACO85].

The compass of a class expression, comp(C), is then just the class itself, since any x in comp(C)

must have all f i ∈ FC associated with it, and must also satisfy any restricting expression E . Further, it is

evident that

comp(C) = { x � class_of(x) = C } = comp(FC) ∩ comp(EC).

Recall that Ci was said to be a subclass of Ck if Fi ⊇ Fk and Ei → Ek , so we immediately have

Proposition 2.2: If Ci is a subclass of Ck then comp(Ci) ⊆⊆ comp(Ck).

This accords completely with our intuition. The set of entities which could belong to the class DOCTOR

must be contained in the set which could belong to the class PERSON.

3. Set Operators in a Class Hierarchy

Given specific instance sets, the fundamental set operators union (∪) and intersection (∩) must be

supported. One can adopt implementation semantics which require that the elements of the operand sets

6

be of precisely the same type, or class, in order for the operator to be defined. For example, in a strongly

typed language, such as Pascal, one can not apply the boolean AND operator to two operands, one of

which is boolean and one of which is real, because it makes no sense. However, it is also customary to

loosen the implementation semantics whenever possible, provided that the type of the result is meaning-

ful. Thus in Pascal, it is legal to perform arithmetic operations (+, -, *, /) even though the operands are of

mixed real and integer type—the result is assumed to be real. (Notice that one could regard the class

integer as a subclass of the class real, and that comp(integer) ⊂ comp(real).)

The concept of a union of a set of doctors and a set of patients, regarded simply as people clearly

makes sense. Cardelli and Wegner call this inclusion polymorphism in [CaW85]. Entities of type doctor

can always be regarded as being of the form PERSON. Similarly, the concept of the intersection of a set

of doctors and patients to denote those persons who are both DOCTORS and PATIENTS also makes

polymorphic sense. We seek implementation semantics that will be consistent with the class hierarchy.

3.1. Set Union

Suppose that the operation X ∪ Y is well defined. To what class should the elements of the resul-

tant, X ∪ Y , belong?

Let X be an instance set in S [C 1] and let Y be a set in S [C 2]. X ∪ Y will be an element of

S [C 1∪2], where C 1∪2, denoting the class of elements in X ∪ Y, is to be defined. Readily, if C 1 = C 2 then

C 1∪2 = C 1 = C 2, and if C 1 < C 2 then C 1∪2 = C 2. For the most general case assume that C 1 and C 2 are

non-comparable classes.

There are at least three different possible implementation semantics to be considered.

Option 1: F 1∪2 = F 1 ∪ F 2, E 1∪2 = { any definition }.

Since F 1∪2 = F 1 ∪ F 2 ⊇ F 1, comp(X ∪ Y) = comp(F 1 ∪ F 2) ⊆ comp(F 1) = comp(X). However,

this contradicts our understanding of the union operator for which one expects comp(X) ⊆

comp(X ∪ Y).

Option 2: F 1∪2 = F 1 ∩ F 2, E 1∪2 = (E 1 ∨ E 2).

7

The problem with this semantic interpretation of the union class is that E 1 ∪ 2 = E 1 ∨ E 2 need not

be well defined on F 1 ∩ F 2. That is, FE1∨E2
may not be contained in F 1 ∩ F 2. Note that only

functions applied to the free variable can cause trouble. This leads to the following variation.

Option 3: F 1∪2 = F 1 ∩ F 2, E 1∪2 = E′ .

This refinement of option 2 assumes that it is possible to find a maximally restrictive expression

E′ that is defined over F 1 ∩ F 2 with the property that E 1 → (E 1 ∨ E 2) → E′ and E 2 → (E 1 ∨ E 2)

→ E′ . One way of deriving E′ is to express E 1 ∨ E 2 in conjunctive normal form. Those con-

juncts which are not well defined on F 1 ∩ F 2 are discarded to obtain E′ .

The implementational semantics associated with the latter option are logically consistent. Since

F 1∩F 2 ⊆ F 1 and E 1 → E ′, we have comp(X) ⊆ comp(X ∪ Y), and similarly comp(Y) ⊆ comp(X ∪ Y).

For these reasons we assert that

Proposition 3.3: If X ∈ S [C 1] and Y ∈ S [C 2], then X ∪ Y ∈ S [C 1∪2], where F 1∪2 = F 1 ∩ F 2, and
E 1∪2 = E ′, where E 1 ∨ E 2 →→ E′ , where E′ is the maximally restrictive expression defined
over F 1 ∩ F 2 such that the implication holds.

This is illustrated in Figure 3-1. Note that in the general case, F 1∪2 = F 1 ∩ F 2 may be empty, in which

case E′ must be vacuously true . Any entity (that is not a set) must belong to such a universal class of all

entities (with no declared properties).

In a semantic class hierarchy that has been created by both specialization and generalization, the

proposition above denotes the most general, logically consistent definition of a union class. However,

C 1∪2:(F 1∩ F 2,E′)

C 2:(F 2,E 2)

C 0:(F 0,E 0)

C 1:(F 1,E 1)

Figure 3-1

8

there are practical reasons for not supporting generalization as a mechanism for creating new classes, c.f.

[Pfa88]. All object-oriented, and many semantic, database systems, including ADAMS, only allow the

creation of new classes through specialization, or subclass declaration. In this context there is yet a fourth

option for specifying the implementation semantics of the union operator that is also logically consistent,

although not completely general.

In this case, we assume that C 1 and C 2 are non-comparable subclasses of C 0 (C 1 < C 0 and

C 2 < C 0) which is the most restrictive super class of both; that is C 0 is their least upper bound in the par-

tial order <.

Option 4: F 1∪2 = F 0, E 1∪2 = E 0.

Since F 1∩F 2 ⊆ F 0 and E 1 → E 1 ∨ E 2 → E 0, we have comp(X) ⊆ comp(X ∪ Y), and similarly

comp(Y) ⊆ comp(X ∪ Y), demonstrating that these implementation semantics are, at least, logically con-

sistent. These are the union class implementation semantics that have been adopted by ADAMS.

3.2. Set Intersection

Following the reasoning we employed above regarding the union operator, there is only one plausi-

ble choice for the class of resultant elements in the case of the intersection operator.

Option: F 1∩2 = F 1 ∪ F 2, E 1∩2 = (E 1 ∧ E 2).

Applying the containment relations to the compass concept we obtain comp(X ∩ Y) ⊆ comp(X)

and comp(X ∩ Y) ⊆ comp(Y) as we intuitively expect. Moreover, since any element x ∈ X ∩ Y

must denote an entity that is in both the instance sets X and Y, it must necessarily have all

f i ∈ F 1 and all f k ∈ F 2 defined on it. And it must satisfy both restrictions E 1 and E 2.

Thus, we obtain the following proposition and class structure shown in Figure 3-2.

Proposition 3.4: If X belongs to S [C 1] and Y belongs to S [C 2] then X ∩ Y belongs to S [C 1∩2],
where F 1∩2 = F 1 ∪ F 2 and E 1∩2 = E 1 ∧ E 2.

Note that (1) given two classes C 1 and C 2, their intersection class is always well defined; and that (2) the

schema of a natural join in the relational model (which can be interpreted as an intersection operator) is

9

also F 1 ∪ F 2.

C 2:(F 2,E 2)

C 1∩2:(F 1∪F 2,E 1∧E 2)

C 1:(F 1,E 1)

C 0:(F 0,E 0)

Figure 3-2

Intersection classes can be declared at the same time that any two classes C 1 and C 2 are defined,

thereby allowing the creation of entity instances belonging to the intersection. But the process is an open

ended one. Suppose that we create a third subclass C 3 of C 0. Then to support all possible intersections

we would need the class structure as shown in Figure 3-3.

C 1∩2∩3:(F 1∪F 2∪F 3,E 1∧E 2∧E 3)

C 2∩3:(F 2∪F 3,E 2∧E 3)C 1∩3:(F 1∪F 3,E 1∧E 3)C 1∩2:(F 1∪F 2,E 1∧E 2)

C 3:(F 3,E 3)C 2:(F 2,E 2)C 1:(F 1,E 1)

C 0:(F 0,E 0)

Figure 3-3

10

There is no logical reason to resist the construction of such a semi-lattice of class declarations; but

to manually declare it is surely tedious. An implementation of an entity database model can do this

automatically whenever two or more subclasses are declared. The necessary information is available; and

the automatic construction of Ci ∩k :(Fi ∪Fk , Ei ∧ Ek) is quite straightforward. To prevent a proliferation

of unnecessary class definitions, in ADAMS, we defer actual creation of intersection classes until at least

one entity will become a member of the class. Note that the class hierarchy automatically becomes a lat-

tice of data types as described in [Sco76], or more particularly a semi-lattice structure as described in

[Ada85], if one does not assume that the least upper bound of two classes need exist, and a distributive

lattice if one assumes a universal super class with no attributes or predicates, together with the implicit

definition of all intersection classes.

4. Summary

If we seek to implement an entity database model which allows the creation of a class hierarchy

through successive refinement, or specialization, as most object-oriented and semantic database models

do, and if we expect the implementation to support standard set operations, then certain requirements fol-

low naturally.

1) In addition to base entity classes C 1, C 2, ... Ck there must be corresponding set classes S [C 1],

S [C 2], ... S [Ck] characterizing those manipulable entities which are sets of entities.

If, in the implementation language, one strictly restricts set operations to operands belonging to the

same set class, then no more is required. But such a restriction is overly stringent. Assuming a more gen-

eral polymorphic treatment of intersection and union operators as discussed above, we have the following

conclusions.

2) In order to obtain closure for the intersection operator, given two non-comparable classes Ci and Ck ,

one must be able to declare their intersection class Ci ∩k and, of course, the associated set class

S [Ci ∩k] to which the resultant set will belong. Similarly, to ensure closure for the union operator, a

11

reasonable implementation approach is to let the union class consist of elements whose class Ci ∪k is

the least upper bound of Ci and Ck . This is not the most general possible implementation.

3) The implementation system must maintain, possibly only implicitly, a semi-lattice of class declara-

tions C 1, C 2, ... Cn , whose greatest lower bound is the intersection class C 1∩2∩ . . . ∩n :

(F 1 ∪ F 2 ∪ . . . ∪ Fn , E 1 ∧ E 2 ∧ . . . ∧ En). A similar semi-lattice of set-class declarations, and

possibly of set-set-class declarations must also be maintained.

4) In view of 3) above, a form of multiple inheritance induced by the formation of intersection classes

is required. But it need not be of the generality described in [Car84] or [Tou86].

We believe that these represent minimal characteristics which must be present in any entity, or

object based, database implementation whose class hierarchy is defined by specialization, or subclass

declaration. These characteristics can be implemented [PFG91]. More general implementations, such as

one which would support generalization, or equivalently the complete closure of the union operator, seem

possible, but computationally complex.

5. References

[AbH87] S. Abiteboul and R. Hull, IFO: A Formal Semantic Database Model, Trans. Database
Systems 12,4 (Dec. 1987), 525-565.

[Ada85] T. Adachi, Powerposets, Inf. and Control 66(1985), 138-162.

[ACO85] A. Albano, L. Cardelli and R. Orsini, Galileo: A Strongly Typed Interactive Conceptual
Lanugage, Trans. Database Systems 10,2 (June 1985), 230-260.

[AtB87] M. P. Atkinson and O. P. Buneman, Types and Persistence in Database Programming
Languages, Computing Surveys 19,2 (June 1987), 105-190.

[Bra83] R. J. Brachman, What IS-A Is and Isn’t: An Analysis of Taxonomic Links in Semantic
Networks, COMPUTER 16,10 (Oct. 1983), 30-36.

[Car84] L. Cardelli, A Semantics of Multiple Inheritance, in Semantics of Data Types, Lecture Notes
in CS 173, Springer Verlag , June 1984, 51-67.

[CaW85] L. Cardelli and P. Wegner, On Understanding Types, Data Abstraction, and Polymorphism,
Computing Surveys 17,4 (1985), 471-522.

12

[Che76] P. P. Chen, The Entity-Relationship Model---Toward a Unified View of Data, Trans.
Database Systems 1,1 (Mar. 1976), 9-36.

[GoR83] A. Goldberg and D. Robson, Smalltalk-80: The Language and Its Implementation, Addison
Wesley, Reading, MA, 1983.

[HuK87] R. Hull and R. King, Semantic Database Modeling: Survey, Applications, and Research
Issues, Computing Surveys 19,3 (Sep. 1987), 201-260.

[KhC86] S. N. Khoshafian and G. P. Copeland, Object Identity, OOPSLA ’86, Conf. Proc., Sep. 1986,
406-416.

[Kim89] W. Kim, A Model of Queries for Object-Oriented Databases, Proc. 15th Conf. on VLDB ,
Amsterdam, Aug. 1989, 423-432.

[PeM88] J. Peckham and F. Maryanski, Semantic Data Models, Computing Surveys 20,3 (Sep. 1988),
153-190.

[PFW88] J. L. Pfaltz, J. C. French and J. L. Whitlatch, Scoping Persistent Name Spaces in ADAMS,
IPC TR-88-003, Institute for Parallel Computation, Univ. of Virginia, June 1988.

[PSF88] J. L. Pfaltz, S. H. Son and J. C. French, The ADAMS Interface Language, Proc. 3th Conf. on
Hypercube Concurrent Computers and Applications, Pasadena, CA, Jan. 1988, 1382-1389.

[Pfa88] J. L. Pfaltz, Implementing Set Operators Over a Semantic Hierarchy, IPC TR-88-004,
Institute for Parallel Computation, Univ. of Virginia, Aug. 1988.

[PFG91] J. L. Pfaltz, J. C. French and A. Grimshaw, An Introduction to the ADAMS Interface
Language: Part I, IPC TR-91-06, Institute for Parallel Computation, Univ. of Virginia, Apr.
1991.

[Sco76] D. S. Scott, Data Types as Lattices, Siam J. on Computing 5,3 (Sep. 1976), 522-587.

[Shi81] D. W. Shipman, The Functional Data Model and the Data Language DAPLEX, Trans.
Database Systems 6,1 (Mar. 1981), 140-173.

[TYF86] T. J. Teorey, D. Yang and J. P. Fry, A Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model, Computing Surveys 18,2 (June 1986), 197-
222.

[Tou86] D. S. Touretzky, The Mathematics of Inheritance Systems, Morgan Kaufmann Publ., Los
Altos, CA, 1986.

[Weg87] P. Wegner, Dimensions of Object-Based Language Design, Proc. OOPSLA ’87, Oct. 1987,
168-182.

13

