
The Case for Storage-Centric Architecture Design

Shahrukh Rohinton Tarapore† Clinton Wills Smullen† Sudhanva Gurumurthi†

Parthasarathy Ranganathan‡ Mustafa Uysal‡

† Department of Computer Science, University of Virginia
Charlottesville, VA 22904

{shahrukh,cws3k,gurumurthi}@cs.virginia.edu

‡ Hewlett Packard Labs
Palo Alto, CA 94304

{partha.ranganathan,mustafa.uysal}@hp.com

Technical Report CS-2007-08
May 2007

Abstract

The proliferation of digital data is likely to cause storageand information-centric applications to be a key
part of future enterprise workloads. This likely change in the workload mix will need a corresponding rethink-
ing of system architecture designs to bestorage-centric. In this paper, we evaluate one possible dimension in
this space: the offload of computation to processing elements closer to the storage. We make two contribu-
tions in this regard. First, we examine a continuum of choices where the computation is offloaded toexisting
system components–a disk drive processor, a disk array controller, or a management processor. Our evaluation
demonstrates that there are interesting tradeoffs in the choice of each location. Second, we evaluate the impact
of microarchitectural changes to enhance the offload processor. We show that our new architecture can achieve
orders of magnitude higher performance, at significantly lower power.

1 Introduction

The past few years have seen an explosive growth in digital data in all market segments–desktop, enterprise, and

mobile systems. For example, IDC estimates that almost 30 exabytes (30 x1018 bytes) of total storage capacity

were shipped in 2005 alone. This rate is expected to double inthe next two years [9]. This huge growth in the

amount of data has come with associated challenges in processing and management. Consequently, there has been

a corresponding increase in the number and complexity of applications that process large volumes of data. These

applications address a range of tasks from passive data maintenance such as virus scanning and data indexing

to more active processing such as data analytics and data mining. Furthermore, applications like bioinformatics

and drug discovery, scientific data processing and visualization, geographical information systems, etc. have

traditionally processed large amounts of data. These are likely to continue to be important in the future as well.

1

We call this overall class of applicationsstorage-centricto reflect their common feature of having to process large

volumes of data effectively.

Given that such storage-centric workloads are likely to form an important part of future workload mixes,

we argue that it is important to have a corresponding rethinking of system architecture designs targeted at these

workloads. This paper evaluates one suchstorage-centricarchitecture design. In particular, we observe that cur-

rent systems have device controllers of varying levels of complexity outside the main host processor, and that

Moore’s Law are likely to provide increased computational power at current costs. We leverage these observa-

tions to propose and evaluate new architectures where the storage-centric computation isoffloadedto processing

elements closer to the stored data. The ability to exploit higher-levels of parallelism closer to the storage im-

proves performance, while the use of more power-efficient components improves energy efficiency. A key feature

of our approach is thereuse of components already present in the system, which allows us to achieve these im-

provements at similar costs to previous generations. This approach is similar in spirit to past work on “Active

Storage” [6, 1, 33, 22] which considered simple computationon disk controllers. However, in contrast to these

studies, our work considers the entire I/O path as a programmable computational substrate, with support for

general-purpose computing at various points on the I/O pathto optimize performance-power tradeoffs. To this

end, we make the following contributions:

• We develop a detailed simulator and benchmark suite that is representative of storage-centric applications.

Using these, we evaluate the benefits of our proposed approach and consider offloading at three levels:

(i) the management processor; (ii) the array controller; and (iii) the disk controller. We first discuss our

approach in the context of the computational capacity foundon current systems. Our results show that there

is a potential for benefit, even with the restrictive computational capacity available for offloading.

• We conduct a detailed design space exploration of storage-centric architectures, looking at both to which

processor to offload as well as its microarchitectural characteristics. For two of the four benchmarks that

we consider, we see dramatically improved performance by factors of three to six compared to the baseline,

and a 10-20% performance degradation for the other two. We discuss the tradeoffs between instruction-

level parallelism (ILP), fine and coarse-grained data-level parallelism (DLP), and clock frequency, and

we suggest opportunities for more radical redesigns. In allof these cases, we find offloading provides

significant power efficiency. We also show how the power efficiency of computation offloading could be

further improved by employing frequency scaling at the host.

2

The rest of the paper is organized as follows. Section 2 provides more background on storage-centric architec-

tures and discusses the related work. The simulation infrastructure, workloads, and experimental configurations

are described in Section 3. Section 4 presents the experimental results and Section 5 concludes the paper.

2 Storage-Centric Architectures

DPU
Physical
Medium

Array
Controller

Host Processor

Storage
Interconnect

Front-Side Bus

Disk Drive
Host System

Storage System Enclosure

MP

System
Interconnect

MP Management Processor
DPU Disk Processing Unit

Figure 1: Architecture of the I/O Path.

Our work is based on the observation that the I/O path provides a critical optimization opportunity for im-

proving the performance of future storage-centric applications. Figure 1 illustrates a typical system architecture.

The I/O path includes the hierarchy of components between the host processor and disk drives and includes

computation power embedded at various locations–in the disk drive controllers, in the array controllers, and in

the management processors. Currently, these embedded processors provide limited computing power. However,

Moore’s Law, and the consequent increase in performance at agiven cost point, is likely to provide more pow-

erful, general-purpose processors along the I/O path in thefuture (subject to power budget constraints at each

level). Indeed, some recent trends toward general-purposestorage controllers [13] and management processors

[17] already point in this direction.

In addition to getting an increased number of computation cycles for free, these locations offer additional ben-

efits for storage-centric workloads. In particular, the proximity to data allows for lower latencies when accessing

the data. Furthermore, these embedded processors typically provide greater power efficiency, by virtue of not

needing to optimize for aggressive general-purpose workloads. Offloading computation to these processors can

potentially improve the energy efficiency of the overall solution. Additionally, the more local view of power and

temperature events offered by these I/O path processors canenable more aggressive performance-power tradeoffs

than have been considered in the past. Finally, as with any other approach to offload computation, a key issue

pertains to the software model for offloading. In this paper,we assume a data-parallel implementation where the

3

application offloads its computation to the I/O path processors through a well-defined interface [35].

Note that we are not proposing storage-centric architectures as replacements for multi-core processors. In-

stead, storage-centric architectures harness the computational capability of processors on the I/O path, which are

otherwise underutilized, to improve end-to-end performance. The cores on the host processor can still be used

for other compute-intensive tasks in conjunction with the processing on the I/O path. However, in many servers,

where the number of disks in the system tend to significantly outnumber the cores on the host [33], storage-centric

architectures offer a more scalable solution, performanceand power wise, for extracting DLP.

2.1 Related work

Our work derives inspiration from earlier systems work on active disks which seeks to move computation close to

the data it processes [1, 22, 33]. In this paper, we argue for generalization of the computation offloading principle

and evaluate a continuum of architectural choices for offloading computation onto the I/O path. Moreover, we

present the first detailed analysis of computational offloading in terms of overall system power consumption and

its effects on the microarchitectural design of the offload processors. To the best of our knowledge, ours is the first

comprehensive evaluation of computational offloading thatconsiders all the system attributes, including power

and microarchitecture, in addition to application performance, as in [19, 25, 40].

For the general computational offloading to work, there mustbe broad system-software support to take advan-

tage of its capabilities. Several projects have tackled this issue, the existing proposals include: new interfaces at

the storage subsystem level like OSD [41], searchlet/disklet interface [19], and dynamic file system views [25],

which serve to bridge the semantic gap at different parts of the computer system [36]. While general-purpose

application processing offloading is still not in the mainstream, much of the system functionality has already

benefited from offloading [30, 31].

Several projects have tackled the problem of increasing thepower efficiency of computer systems at the

component or subsystem level, for example dynamic voltage scaling of processors [14], memory [18], and disk

drives [16], to conserve energy. Our work benefits from thesetechniques and introduces new possibilities to apply

each of them at multiple places where we offload computation.

4

3 Experimental Setup and Workloads

3.1 Simulation Infrastructure

Detailed evaluation of storage-centric architectures requires good simulation support. We have built a cycle ac-

curate execution-driven simulator for evaluating such architectures. Our simulator has detailed, parameterized

models for the processors, disk drives, and interconnection network, and captures the interaction between the

various components. The simulator models file system and memory management operations such as data layout

and swapping. The interconnection network model provides timing information for all simulated data transfers

and accounts for contention and queuing in the system. The simulator also provides an API to facilitate building

applications for storage-centric architectures. We use this API to develop the suite of applications that we use in

this study.

3.2 Simulated Architecture

The simulated architecture consists of four microarchitecturally heterogeneous processors- (i) host, (ii) manage-

ment processor (MP), (iii) storage array controller (AC), and (iv) disk processing units (DPU). The host processor

is assumed to be an 8-way superscalar processor running at 3.2 GHz with 2 GB of main memory. We assume

the Front Side Bus (FSB) bandwidth of the host to be 24 GB/s. The MP is typically implemented as an ASIC.

We used the description of the iLO processor given in [11] to model the MP. The MP is modeled as a 66 MHz

in-order processor with 8 MB of RAM. We assume the storage system to be an array enclosure, consisting of a

controller and a set of disk drives. As shown in Figure 1, the system interconnect links the storage array to the

host system, which we assume to be a 3-foot VHDCI-type SCSI cable. The AC is assumed to be two generations

behind the host processor and is simulated as a 500 MHz 2-way superscalar processor with 128 MB of main

memory. The AC communicates with the disk drives in the enclosure through a SCSI interconnect that we assume

to have a bandwidth of 320 MB/s. Each disk drive in our simulated architecture consists of a DPU, DRAM, and

the mechanical data transfer system (platters and disk arms). The DPU is configured as a 200 MHz Intel XScale

PXA255 processor [20], which is similar to the ARM-based embedded cores used in modern SCSI disks [4]. The

disk memory size is set to 32 MB while the physical media of thedisk consists of a single 3.3” platter, rotating at

10,000 RPM, having an average seek time of 4.48 ms.

5

Hardware Device Power (Watts)
Host Processor 118.38

Host Main Memory 13.824
AC Processor 44.84

AC Main Memory 1.43
MP Processor 5
Spindle Motor 4.92
Arm Actuator 6.27

Windage 0.87
Read/Write Channel 2.00

200 MHz DPU 1.637
Disk Main Memory 0.252

Table 1: Power consumption parameters and values of simulated processors and disk drive.

3.3 Modeling Power Consumption

We model the power consumption of the simulated hardware components using analytical models. The total power

consumed by the host and AC processors was determined using Wattch [8]. Since the AC is modeled as a processor

that is two generations behind the host, we assume each of them to use a different process technology. The

power consumption of the host and AC processors is calculated assuming the use of 100 nm and 250 nm process

technologies, respectively. When calculating power, we conservatively assume that all the microarchitectural

structures in the processor are active. The power consumed by their main memory system is calculated using

Micron datasheets [28]. We assume the host to use a registered DIMM consisting of sixteen 1 Gb 333 MHz

DDR2 SDRAM devices and the AC memory to use a single 1 Gb 167 MHzDDR SDRAM device. We estimate

the power under the conservative assumption that all of the banks are performing data transfers. For the disk,

we account for the power consumed by the DPU, memory, and the spindle and arm assemblies. The peak power

consumed by the DPU is obtained from the datasheet of the PXA255. For calculating the power consumed by the

disk memory, we used the specifications of a 256 Mb 133 MHz mobile SDRAM device, again calculated from

Micron datasheets. For the electro-mechanical parts, we calculate the power consumed by the spindle motor,

windage losses due to the spinning platter, the arm assembly, and the read/write channel that transports bits

between the platters and the drive electronics. The power consumed by these parts of the disk are calculated using

the models given in [23]. We assume the disks to consume theirpeak power as well, which occurs during periods

of heavy seek activity. Since power-related details about the iLO processor are not available in the public domain,

we corresponded with engineers in industry, and estimated its power to be 5 W. The power consumption of each

component is summarized in Table 1.

6

3.4 Workloads

To evaluate the architecture considered in this study, we need applications that are inherently storage-centric.

Specifically, we need applications that do significant processing and disk I/O, preferably with variations in their

characteristics along both these dimensions. We identifiedfour such storage-centric applications, which we shall

now describe briefly:

• Image Edge Detection:This workload uses the Smallest Univalve Segment Assimilating Nucleus (SU-

SAN) [38] edge detection algorithm. The application detects the facial features of individuals in an image.

Our image dataset is drawn from the MIT CBCL Face RecognitionDatabase [29]. The application consists

of a loop in which a processor requests an image from disk, applies the SUSAN algorithm over the pixels

of the image, and moves on to the next image in the dataset. Edge-detection algorithms are widely used

for Content-Based Image Recognition [37], which is becoming a popular search technique, and also for

matching fingerprints [26].

• Nearest Neighbor Search:This search procedure is used to find thek closest matches for a given query

on a database. We use a database from the National Oceanic andAtmospheric Administration which con-

tains information about tropical cyclones in the North Atlantic from the years 1851-2005 [21]. Our nearest

neighbor search procedure finds the three tropical storms that occurred closest to a given latitude and longi-

tude coordinate. This query is processed by scanning through the entire database, calculating the Euclidean

distance between the target coordinates and the storm coordinates stored in each record, and maintaining a

list of the three closest matches. The Nearest Neighbor Search workload is representative of a number of

applications that perform proximity searches across largedatasets. These applications include data mining

[5], spatial databases [34], and bioinformatics [27].

• Malware Search: Given the highly networked nature of modern computing systems, protecting against

computer viruses and worms is a serious concern. The most commonly used malware detection technique

is signature-matching, where the bytes of a file are comparedagainst a database of known malware byte-

sequences, known as “signatures.” We implement parallel signature-matching using the efficient Boyer-

Moore string searching algorithm [7]. We use a database of 256 randomized signatures where each signature

is, on average, 64 B in length. The dataset to be scanned is randomly generated with each file being 256

KB, on average. Our technique detects the presence of malware by running an instance of the Boyer-Moore

algorithm for each signature in the database. If any one of the signatures matches, the name of the file is

7

returned, and we skip to the next file. The Malware Search application captures the behavior of several

security-related applications including: antivirus software, spyware scanners, rootkit scanners and intrusion

detection systems. In fact, the performance of malware detection is considered such an important issue,

especially for servers, that there are commercially available co-processors that are designed specifically to

perform signature-matching [39].

• Geo-Spatial Data Fusion:Data fusion aims to obtain information originating from different sources by

combining their individual data into a composite entity. Our workload implements basic pixel-based geo-

spatial data fusion [15] on a dataset that consists of several satellite images, which we obtained from the

NASA World Wind database [32]. For a given pair of images, theworkload performs a sequence of three

processing stages: (i) image enhancement, (ii) edge detection, and (iii) pixel-based image fusion. Image

enhancement applies a combination of low-pass and high-pass filters to the imagesi, which are then fed into

stage (ii), which uses the same algorithm as our Image Edge Detection workload to extract the edges of the

images. The third processing stage combines common pixels in the two images to produce a new image

that highlights the differences between the two input images. Geo-Spatial Data Fusion is commonly used

in Geographical Information Systems, to aid urban planning, forestry, disaster relief etc. [12].

4 Experimental Results

The first set of experiments quantify the impact of offloadingan application to each of the processors on the

I/O path. We then conduct a detailed design-space exploration of storage-centric architectures, quantifying the

performance and power benefits of offloading. Finally, we show how we can reduce the host power without

impacting performance using dynamic frequency scaling.

4.1 Impact of Embedding Computation on the I/O Path Processors

Storage-centric architectures offer three key advantages: (i) a reduction in the volume of data that needs to be

transported to the host, (ii) freeing up resources on the host by offloading computation onto the I/O path, and

(iii) speeding up computation by exploiting DLP at the disk level. The degree to which we can meet these

objectives depends on a variety of issues including the “distance” that the data has to travel on the interconnect,

the microarchitecture of the offload processors, and the characteristics of the application. We need to carefully

balance all these factors to achieve performance and/or power benefits. We now explore these issues in detail.

In our experiments, the scenario where the entire workload is run at the host is ourbaseline. The baseline

8

system uses the same number of disks as its storage-centric architecture counterparts. The primary metric that

we use isspeedup, which is calculated as the ratio between the total execution time of an application on a given

configuration to that on the corresponding baseline. We simulate all disk I/O as being sequential, thereby mini-

mizing seek and head switching activity at the disks. Each simulated disk drive is assumed to be allocated a fixed

amount of application data. Therefore, in the experiments where we vary the number of disks, the applications use

correspondingly larger or smaller datasets. To optimize I/O performance, we assume that for cases where we run

application code at a processor other than the DPU, the files in the underlying storage system are striped across

the disks. We cannot stripe the file data if code is run at the DPUs because there is no mechanism for one DPU to

communicate with another, either directly or indirectly through a higher level processing component, under our

architecture assumptions [41]. We use a stripe-size of 8 KB for these storage system organizations.

We consider three different processors, namely, MP, AC, andthe DPU, that are candidates for running compu-

tation offloaded from the host. One simple technique is to offload the entire application to one of these processors

and return only the results to the host. The effect of such offloading is shown in Figure 2. For each workload, each

set of bars shows the speedup achieved when the application is offloaded to the MP, AC, and DPUs respectively.

Note that the y-axis of all the graphs are in log-scale.

Image Edge Detection
Normalized Speedup

0.001

0.01

0.1

1
MP AC DPU

Processor Type

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

2 Disks

4 Disks

8 Disks

Nearest Neighbor Search
Normalized Speedup

0.01

0.1

1

10
MP AC DPU

Processor Type

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

2 Disks

4 Disks

8 Disks

(a) (b)
Malware Search

Normalized Speedup

0.01

0.1

1
MP AC DPU

Processor Type

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

2 Disks

4 Disks

8 Disks

Geo-spatial Data Fusion
Normalized Speedup

0.001

0.01

0.1

1
MP AC DPU

Processor Type

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

2 Disks

4 Disks

8 Disks

(c) (d)

Figure 2: Impact of Embedding Computation on the I/O Path.

9

As we can see from Figure 2, the result of offloading computation onto the I/O path varies significantly

depending upon the application and the processor that we choose to run the computation. Across all the workloads,

we observe that the MP suffers the highest performance degradation. The performance degradation is exacerbated

when more disks are added, since the higher number of disks results in a larger amount of data that the MP

needs to handle, causing it to bottleneck even further. Whenwe choose the AC to be the offload processor,

we observe a dramatic change in performance. Recall, from Section 3.2, that the MP is a 66 MHz single-issue

processor, whereas the AC is 500 MHz 2-way superscalar with 16 times the amount of memory as the MP. This

higher processing capacity significantly improves performance, although the AC does not provide a speedup over

the baseline for any of the datapoints. Finally, when we offload the computation to the DPUs, we start observing

speedups over the baseline by virtue of being able to exploitDLP. For the Nearest Neighbor Search workload, even

a 2-DPU configuration provides a speedup, and the speedup with 8 DPUs is nearly 3.5. However, we observe that

for all other applications the speedup is below 1, thereby indicating that it is better to perform all the computation

at the host to get the best performance. Moreover, even for those applications that experience a slowdown, the

magnitude of the variation between the applications is large.

We now investigate the prime causes for these performance trends. Before we present the analysis, we first

define three terms:effective bandwidth, absolute bandwidth, andutilization. The effective bandwidth of an appli-

cation,Beff , is the total amount of data transferred over the interconnection network divided by the total network

transfer time. The absolute bandwidth of an application,Babs, is the total amount of data transferred over the

interconnection network divided by the total execution time of the application. The difference betweenBeff and

Babs is that the latter accounts for idleness in the network whereas the former does not. We calculate the band-

widths over all the network links in the system. The utilization, U , is defined as(Babs

Beff
) and is expressed as a

percentage. The utilization, therefore, expresses the time that is spent by an application transferring data over the

network as a fraction of the overall execution time. Utilization is an end-to-end metric that takes into account both

the processing overheads and the efficiency of data transferover all the network links. A high value forU can be

interpreted as being indicative of low processing overheadand buffering delays as the data streams through the

processor. From the network viewpoint, any bottlenecks in the data transfer (e.g., contention for a physical link),

would translate to increases in the overall execution time and would therefore lower theU value.

We now analyze the degree to which the utilization is affected by the network and processing components. We

perform an experiment where we assume that all the non-host processors are microarchitecturallyhomogeneous.

We configure the MP and AC to be identical to the DPU. The utilization values for the MP (UMP) and AC (UAC),

10

Workload 2 Disks 4 Disks 8 Disks
UMP UAC UMP UAC UMP UAC

% % % % % %
Image Edge Detection 0.27 0.3 0.47 0.53 0.87 0.91

Nearest Neighbor Search 1.17 1.17 2.08 2.08 3.86 3.86
Malware Search 0.12 0.12 0.21 0.21 0.39 0.39

Geo-Spatial Data Fusion 0.16 0.16 0.28 0.28 0.5 0.5

Table 2: Utilization of MP and AC for the 4-disk configurationwith homogeneous processors. The MP and AC
are configured to be microarchitecturally identical to the DPUs.

for each storage-system size, using these homogeneous processors are given in Table 2.

For each of the 2, 4, and 8-disk configurations, we observe that the values forUMP andUAC are very close

or equal to each other. We do not show the utilization for the DPUs, since they read data off the platters, not the

network. Instead, the DPUs interact with the network only after they have processed the data. With homogeneous

non-host processors, these results clearly indicate that the network is not fully saturated and therefore does not

significantly influence the performance of the offloading strategies. Thus, the reason for the lower utilization of

the offload processors is primarily processing overheads. Given this result, the remainder of this study focuses on

optimizing the microarchitecture of the offload processors. Also, due to its very poor performance relative to the

other processors, we do not consider the MP any further.

4.2 Microarchitectural Analysis of the Offload Processor Design

Having seen that application performance relies more on theoffload processors, we explore their design in more

detail. Our design space consists of: (i) the choice of offload processor, which can be AC or DPU, (ii) number of

disks/DPUs, which can be 4 or 8, (iii) clock frequency, and (iv) superscalar width of the offload processor. The

results of these design space exploration experiments are given in Figure 3.

The first experiment studies the impact of DPU clock frequency. In addition to the 200 MHz DPU, we consider

two higher clock frequency values of 300 and 400 MHz. We choose these clock frequencies because the PXA255

processor is available at these two higher speeds. We then study the speedup that these faster DPUs provide for the

4 and 8-disk storage-system configurations. This experiment is shown in the leftmost column of graphs in Figure

3. The second set of experiments investigate what benefits, if any, could be obtained by exploiting ILP at the

DPUs. We study the impact of using a superscalar DPU, for all three clock frequencies, and present the results for

an 8-disk configuration in the second column in Figure 3. Since the PXA255 is not a superscalar processor, it is

difficult to ascertain the exact power consumption of these DPU configurations. However, there are commercially-

available microprocessors that resemble the superscalar DPUs that we simulate, and they operate at the same

11

Image Edge Detection
Effect of Disk Processor Frequency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200 MHz 300 MHz 400 MHz

DPU Clock Frequency

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

4 Disks
8 Disks

Image Edge Detection
Effect of Disk Processor Width - 8 Disk System

0

0.5

1

1.5

2

2.5

3

3.5

1-way 2-way 4-way

Processor Width

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

200 MHz
300 MHz
400 MHz

Image Edge Detection
Effect of Array Controller Frequency

0

0.05

0.1

0.15

0.2

0.25

500 MHz 1 GHz 1.5 GHz

Array Controller Clock Frequency

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

4 Disks
8 Disks

Image Edge Detection
Effect of Array Controller Width - 8 Disk System

0

0.5

1

1.5

2

2.5

2-way 4-way 8-way

Processor Width

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

500 MHz
1 GHz
1.5 GHz

(a) (b) (c) (d)
Nearest Neighbor Search

Effect of Disk Processor Frequency

0

1

2

3

4

5

6

200 MHz 300 MHz 400 MHz

DPU Clock Frequency

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

4 Disks
8 Disks

Nearest Neighbor Search
Effect of Disk Processor Width - 8 Disk System

0

1

2

3

4

5

6

7

1-way 2-way 4-way

Processor Width

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

200 MHz
300 MHz
400 MHz

Nearest Neighbor Search
Effect of Array Controller Frequency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

500 MHz 1 GHz 1.5 GHz

Array Controller Clock Frequency

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

4 Disks
8 Disks

Nearest Neighbor Search
Effect of Array Controller Width - 8 Disk System

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2-way 4-way 8-way

Processor Width

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

500 MHz
1 GHz
1.5 GHz

(e) (f) (g) (h)
Malware Search

Effect of Disk Processor Frequency

0

0.1

0.2

0.3

0.4

0.5

0.6

200 MHz 300 MHz 400 MHz

DPU Clock Frequency

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

4 Disks
8 Disks

Malware Search
Effect of Disk Processor Width - 8 Disk System

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1-way 2-way 4-way

Processor Width

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

200 MHz
300 MHz
400 MHz

Malware Search
Effect of Array Controller Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

500 MHz 1 GHz 1.5 GHz

Array Controller Clock Frequency

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

4 Disks
8 Disks

Malware Search
Effect of Array Controller Width - 8 Disk System

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2-way 4-way 8-way

Processor Width

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

500 MHz
1 GHz
1.5 GHz

(i) (j) (k) (l)
Geo-spatial Data Fusion

Effect of Disk Processor Frequency

0

0.05

0.1

0.15

0.2

0.25

200 MHz 300 MHz 400 MHz

DPU Clock Frequency

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

4 Disks
8 Disks

Geo-spatial Data Fusion
Effect of Disk Processor Width - 8 Disk System

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1-way 2-way 4-way

Processor Width

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

200 MHz
300 MHz
400 MHz

Geo-spatial Data Fusion
Effect of Array Controller Frequency

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

500 MHz 1 GHz 1.5 GHz

Array Controller Clock Frequency

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

4 Disks
8 Disks

Geo-spatial Data Fusion
Effect of Array Controller Width - 8 Disk System

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2-way 4-way 8-way

Processor Width

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

500 MHz
1 GHz
1.5 GHz

(m) (n) (o) (p)

Figure 3: Design of the Offload Processor.

power consumption range as the PXA255. For example, the Hitachi SH4 [3] is a 2-way superscalar processor

that operates at 200 MHz and consumes only 1.2 W of power. The next two experiments investigate processing

speed and ILP effects when the computation is offloaded to theAC. We consider two higher clock frequencies of

1 GHz and 1.5 GHz and also 4 and 8-way superscalar processors for the AC. An important point to consider when

incorporating such high performance processors at the AC ispower consumption. In our original system, the AC is

assumed to be two generations behind the host processor and therefore uses an older process technology. One way

of accommodating the higher performance designs within thepower budget is to first migrate the AC processor

design to a newer process technology and then make the desired microarchitectural changes. The area and power

12

DPU Parameters
Microarchitecture Power (Watts)

300 MHz 2.057
400 MHz 2.598

AC Parameters
Microarchitecture Power (Watts)

500 MHz 4-way superscalar 24.4286
500 MHz 8-way superscalar 39.2802
1.0 GHz 2-way superscalar 34.1366
1.0 GHz 4-way superscalar 44.1161
1.0 GHz 8-way superscalar 73.8546
1.5 GHz 2-way superscalar 48.1667
1.5 GHz 4-way superscalar 63.1656
1.5 GHz 8-way superscalar 107.715

Table 3: Power consumption of DPU and AC. The power consumption of the 200 MHz DPU and 500 MHz 2-way
superscalar AC used in the original configuration are 1.637 Wand 44.84 W respectively.

benefits of using newer process technologies provide flexibility in designing more aggressive microarchitectures

that would have not been feasible to accommodate within the power budget of an older technology. This technique

of reusing or enhancing existing processor designs to newerprocess technologies has also been proposed for the

design of heterogeneous multi-core processors [24]. Assuming the AC uses the same 100 nm process technology

as the host, we calculate their peak power consumption, using Wattch, for all combinations of clock frequencies

and processor widths. The power consumption of these additional DPU and AC microarchitectures are given in

Table 3. The power consumed by several of the AC configurations are very close to the original AC. The power

consumption of the faster DPUs are also within 1 W of the 200 MHz processor. The workload simulation results

for the AC clock frequency and ILP experiments are given in the third and fourth columns of Figure 3.

When we look at the third column of graphs (Figures 3 (c), (g),(k), and (o)), we see that the performance

of running code at the AC improves slightly when there are fewer disks in the system. The reason for this is

that the AC accesses disk data that is striped, thus a single file can span multiple disks. This results in the AC

receiving data from the storage system at a higher rate, particularly when the size of the files are large and there

are more disks. For example, the Malware Search applicationprocesses files that are 256 KB in size on average,

and therefore, with the 8 KB stripe size, we can even utilize the full bandwidth of the 8-disk configuration to

transfer a file to the AC. The combined effect of parallel datatransfers coupled with sequential disk I/O results in

a high volume of data being transferred to the AC within a veryshort time interval. Therefore, when there are a

larger number of disks, faster array controller processorsare needed to match the higher data rates.

In the discussions that follow, we analyze the behavior of each application, looking at both performance and

power aspects of the various offloading strategies and microarchitectural configurations. When we calculate the

system power, we conservatively assume that the host, arraycontroller, and the DPUs are drawing their peak

power. Although we assume that disk I/O is sequential, we conservatively assume that the electro-mechanical

13

parts of the disk drive draw their peak (seek) power as well.

4.2.1 Image Edge Detection

For this workload, optimizing the DPU and AC provides a speedup. For the case where the workload is offloaded

to the DPU, the use of superscalar processors (shown in Figure 3(b)) almost always provides a speedup. In the

scenario where the Image Edge Detection workload is run on the AC, the 1 GHz 4-way and the 1 GHz and 1.5 GHz

8-way superscalar microarchitectures yield a speedup overthe baseline. This speedup is due to queuing delays

which are introduced when data must traverse the I/O path from the disks to the host. Each disk has a dedicated

connection to the AC, from which the data must then be multiplexed onto a single channel in order to reach the

host. This results in queuing delays that are twice as high for the baseline as for the AC configuration, which raises

the latency of data access by the host. Comparing the range ofspeedup values provided by optimizing the DPU

to that obtained by optimizing the AC, it is clear that the former provides more improvements in performance

than the latter. This is because exploiting DLP at the DPUs provides more benefit than any latency (i.e., clock

frequency) or ILP enhancement at the AC. By increasing either the clock frequency or the ILP at the DPUs, the

DLP benefits get magnified.

Within the DPU optimization space, when we compare clock frequency and ILP, we observe large gains for

the latter. The reason for this is that pixel data is represented as integers, and increasing the superscalar width

correspondingly increases the number of integer functional units available for use. Moreover, the edge detection

algorithm itself is highly data-parallel in the sense that the processing of one pixel is not dependent upon the

processing of another. Therefore, if we can deliver data to the processor core efficiently and exploit ILP, we can

process multiple pixels within a smaller time frame. This can be viewed as a form offine-grained DLP. As we

increase the amount of ILP, we exploit more of this fine-grained DLP, and achieve greater speedup. At the same

time, offloading the computation onto the DPUs attempts to exploit coarse-grained DLP, wherein we process

multiple image files, in parallel, across all the disks. Offloading computation to the superscalar DPUs allows us

to exploit both fine and coarse-grained DLP, thereby providing a large performance boost.

When we look at the array controller, again we see ILP optimization providing far greater performance benefits

than increasing the clock frequency. Again, this is becausethe AC is able to exploit the fine-grained DLP within

each image. However, although the AC can exploit higher ILP than the DPUs in the 8-way configuration, it cannot

exploit coarse-grained DLP and therefore the speedup provided is less than in the DPU offloading scenarios. For

example, the speedup provided by an 8-way superscalar AC running at 500 MHz and that of 8 independent single-

14

issue DPUs running at 400 MHz are 0.69 and 0.83 respectively.

Power Analysis: For this workload, we find several iso-performance configurations within the design space of

the DPU and the AC. For example, in Figure 3(a), we can see thathaving four DPUs running at 400 MHz yields

roughly the same performance as having 8 DPUs running at 200 MHz. The system power consumed by these

two DPU configurations are 238.11 W and 290.07 W respectively. Thus, use of fewer but faster DPUs provides

the same level of performance with a 17.9% reduction in the system power consumption. The main reason for

this large power difference is because a substantial part ofthe disk power is consumed by the electro-mechanical

parts, e.g., the spindle motor. Comparing DPU and AC configurations, we can see that this 8-DPU configuration

matches the performance of a 4-way superscalar AC that runs at 500 MHz. From Tables 1 and 3, we can see that

this AC would consume 24.43 W, whereas these eight DPUs wouldcollectively consume only 13.1 W. However,

given that the AC configuration used in the original system consumes over 44.84 W, using this 4-way AC provides

a 45.6% reduction in the AC power consumption and delivers higher performance than the 500 MHz 2-way

controller. Overall, replacing the original AC with this lower power counterpart provides 7% savings in the total

system power.

4.2.2 Nearest Neighbor Search

When we look at the results for the Nearest Neighbor Search workload, we again find that offloading to the DPUs

is the best option for boosting performance. In fact, the performance scaling achieved by using 4-way superscalar

DPUs (Figure 3(f)) nearly reaches the theoretical ideal speedup. However, unlike Image Edge Detection, the

performance gap between clock frequency scaling and ILP scaling at the DPU level is narrower for this workload

than it is for Image Edge Detection. As we increase the superscalar width, we get commensurately higher number

of integer functional units but only a moderate increase in the number of floating-point units. The coordinates on

which the workload performs the search opertion are represented as real numbers, and therefore the workload is

floating-point intensive, using long latency operations such as square roots for calculating Euclidean distances.

Since the floating-point execution pipeline is still relatively narrow, even at high superscalar widths, the ILP

benefit also tends to be modest.

Power Analysis: For this workload, we find two iso-performance storage system configurations at the DPU

level, which are shown in Figure 3(f). These are the (200 MHz,2-way; 300 MHz 1-way) and (200 MHz 4-

way; 400 MHz, 1-way). The fact that we can get the same speedupusing faster in-order processors, rather than

15

going in for slower out-of-order superscalar processors has benefits from a complexity-effectiveness viewpoint.

Given the challenges associated with designing processorswith high superscalar widths, especially at the very

low DPU power budgets, the ability to extract speedup with just in-order processors can be beneficial from the

power viewpoint as well. There are design tradeoffs at the AClevel as well, although the speedup we obtain by

offloading the workload to this component is less than unity.Figure 3(h) shows two pairs of AC organizations

that deliver nearly the same speedup. They are: (500 MHz, 8-way; 1 GHz, 2-way) and (1 GHz, 4-way; 1.5 GHz,

2-way). Table 3 shows the power consumption of these AC pairsto be very close to each other as well: (39.28 W;

34.14 W) and (44.11 W; 48.16 W) respectively.

4.2.3 Malware Search

For this workload, none of the microarchitecture optimizations, either at the DPU or at the AC, are able to provide

better performance than the baseline. Given the inherent data-parallel nature of the workload, offloading computa-

tion to the DPUs is the most advantageous solution for improving performance. This application also shows good

sensitivity to ILP, especially as the clock frequency is scaled up, coming close to the baseline performance with

400 MHz 4-way superscalar DPUs, as shown in Figure 3(j). We believe that this is because of the way that the

malware scanning process works. Given our signature database and a set of files with randomly generated content,

the probability of a mismatch (i.e., not finding the signature in the file) is quite high. Malware Search consists of

three nested loops. The outer loop streams across the file as fast as the parallel Boyer-Moore implementation will

allow, while the middle loop performs string matching for each signature on the current buffer contents. Since the

checking of one signature is independent of the checking of another, there are no loop-carried dependences for

the middle loop. This allows more iterations of the loop to bein-flight, as we increase the superscalar width, thus

providing a performance benefit.

Power Analysis: As with Image Edge Detection, we again find that the 400 MHz 4-DPU system delivers slightly

better performance than the 200 MHz 8-DPU system, thereby providing the same 17.6% reduction in the system

power. A more interesting case arises when we compare the 400MHz 8-DPU point, shown in Figure 3(i), to the

1 GHz 8-way superscalar AC, in Figure 3(l), which both deliver roughly a speedup of 0.5. However, the power

consumption of these DPUs and the AC processor are 20.78 W and73.85 W respectively! If we assume the power

budget for the AC to be the same as that for the original AC configuration (44.84 W), then it is not possible to

accommodate this 1 GHz 8-way superscalar AC within the system without provisioning additional cooling.

16

4.2.4 Geo-Spatial Data Fusion

Comparing the graphs for the DPU and AC, we can clearly see thebenefits of exploiting DLP at the DPUs.

Between clock frequency and ILP, we find that the latter has a more profound impact on performance on both

the DPU and the AC. In fact, with 400 MHz 4-way DPUs, we almost break even with the baseline. Geo-Spatial

Data Fusion is different from the other three workloads in the sense that the application involves multiple sub-

computations. Recall, from Section 3, that there are three stages to the fusion process: image enhancement, edge

detection, and pixel-based fusion. The image enhancement stage, like edge detection, can take advantage of fine-

grained DLP within images and can therefore be optimized forperformance on ILP processors. In the fusion

stage, for each edge in the result set of an image, we need to identify the common pixels between it and the edge

set of the other image, in the fusion pair; this repeats untilall edges of the two images have been processed. The

fusion stage does not benefit from ILP because finding common pixels within the edge set is highly dependent on

the pixels around it in the images. For example, when checking if pixel i is on a common edge in the two images

being fused, we must look at pixeli + 1 as well, since it may be part of the same edge in one or both of the edge

sets. As a result of this, as the fusion stage iterates over pixels, there is a loop-carried dependence that reduces the

amount of ILP that can be exploited in this stage. Therefore,increasing the clock frequency is the only option that

we have for optimizing the performance of the fusion stage. Finally, since the three stages for Geo-Spatial Data

Fusion need to be done in a pipelined fashion, we cannot exploit any parallelism across the stages for any given

pair of images.

When we offload the work onto the DPUs, we get the benefit of coarse-grained DLP across image pairs.

However, with superscalar DPUs, we can also exploit fine-grained DLP in the first two stages thus giving the

large performance boost shown in Figure 3(n). In fact, when we compare the potential for performance growth

with the addition of superscalar DPUs, only Image Edge Detection and Geo-Spatial Data Fusion show a steady

upward trend, while the others exhibit diminishing returns. However, due to the higher processing load of the Geo-

Spatial Data Fusion application, the speedup does not scaleup by the same magnitude as it does for Image Edge

Detection and falls short of the break-even point. Increasing the clock frequency of the DPUs only improves the

performance of the third stage, thereby providing less speedup. For the AC, large superscalar widths facilitate the

exploitation of fine-grained DLP. However, the AC cannot exploit coarse-grained DLP and consequently shows

less speedup than when offloaded to the DPUs. On the other hand, the high clock frequencies of the AC improve

the performance of the third stage. Since the pixel-based fusion stage is only a small part of the overall fusion

process, scaling up the clock frequency does not provide much benefit to overall performance, as shown in Figure

17

3(o).

Power Analysis: Geo-Spatial Data Fusion again underscores the power consumption benefits of DLP, wherein

we can use multiple lower power DPUs rather than a single powerful AC. For example, the set of 400 MHz in-

order DPUs and the 1 GHz 4-way AC processor, shown in Figures 3(n) and 3(p), consume 20.78 W and 44.11

W, respectively, and deliver roughly the same performance.From Figure 3(m), we again find that using fewer but

faster DPUs is preferable due to the higher power consumption of the electro-mechanical parts of the drive.

4.3 Discussion of the Results

Having studied how applications behave in the design space of storage-centric architectures, we now discuss the

overall trends that we can infer from the results. Across theexperiments, we observe the following:

• Between DLP, ILP, and clock frequency, DLP is the most important factor to optimize. Once we have

provisioned resources for extracting DLP, ILP is the next important factor, and then the clock frequency.

These results motivate the use of multiple, but relatively slow DPUs, that can exploit ILP, rather than fast,

monolithic processors located elsewhere on the I/O path.

• DLP can be exploited at two granularities. Coarse-grained DLP, which is the approach advocated by active

storage [1, 22, 33], has the largest impact on performance and can be obtained by using multiple disks and

offloading the workload to the DPUs. Such DPU-level offloading is also typically the best in terms of power

efficiency. However, if an application has fine-grained DLP as well (such as the Image Edge Detection and

Geo-Spatial Data Fusion workloads), we can get large performance gains by using superscalar processors.

Although the AC cannot exploit coarse-grained DLP, we can still exploit the fine-grained component and get

good speedup, as we see for Image Edge Detection. As pointed out earlier, there are commercially available

superscalar processors [3] that are similar to those that wehave used in the experiments and whose power

consumption is in the same range as the ARM-type cores that are used in modern disk drives.

• Due to the high power consumption of the electro-mechanicalparts of the disk drive, it is preferable to use

fewer disks with faster DPUs. In general, we find that using four 400 MHz DPUs yields roughly the same

speedup as having eight DPUs clocked at 200 MHz. A large part of the electro-mechanical power comes

from the spindle motor, which rotates the disk platters. Given the cubic relationship between disk RPM

and power, dynamic RPM scaling techniques [10, 16] could be used to reduce the power of the electro-

mechanical parts. This would allow flexibility in provisioning more powerful DPUs within established

18

power budgets. At the same time, the lower RPM would have a detrimental impact on disk access time.

Studying the tradeoffs between the design of the electro-mechanical data transfer system and the DPUs is

part of our future work.

• For applications that have phases that are more sensitive toDLP, ILP, or clock frequency than to the other

factors, as in the Geo-Spatial Data Fusion application, no single processor is well-suited for meeting all

the performance goals. Using multiple DPUs provides DLP, but power constraints limit the ILP or clock

frequency that we can provision at each DPU. The AC has a higher power budget and, consequently, can

have higher clock frequencies and superscalar widths, but they cannot exploit coarse-grained DLP. It might

be more fruitful to investigate how we could use more than oneprocessor to offload an application onto the

I/O path. Exploring such offloading possibilities is part ofour future work.

4.4 Reducing Host Power Consumption via Computation Offloading

Image Edge Detection
Effect of Host Processor Frequency

0

0.5

1

1.5

2

2.5

3

8-disk, 200 MHz,
4-way

8-disk, 300 MHz,
2-way

8-disk, 300 MHz,
4-way

8-disk, 400 MHz,
2-way

8-disk, 400 MHz,
4-way

Experiment [# disks, DPU frequency, DPU width]

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

3.2 GHz

1.0 GHz

Nearest Neighbor Search
Effect of Host Processor Frequency

0

1

2

3

4

5

6

7

4-
d

is
k,

 2
00

M
H

z,
 1

-w
ay

8-
d

is
k,

 2
00

M
H

z,
 1

-w
ay

8-
d

is
k,

 2
00

M
H

z,
 2

-w
ay

8-
d

is
k,

 2
00

M
H

z,
 4

-w
ay

4-
d

is
k,

 3
00

M
H

z,
 1

-w
ay

8-
d

is
k,

 3
00

M
H

z,
 1

-w
ay

8-
d

is
k,

 3
00

M
H

z,
 2

-w
ay

8-
d

is
k,

 3
00

M
H

z,
 4

-w
ay

4-
d

is
k,

 4
00

M
H

z,
 1

-w
ay

8-
d

is
k,

 4
00

M
H

z,
 1

-w
ay

8-
d

is
k,

 4
00

M
H

z,
 2

-w
ay

8-
d

is
k,

 4
00

M
H

z,
 4

-w
ay

Experiment [# disks, DPU frequency, DPU width]

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

3.2 GHz

1.0 GHz

Image Edge Detection
Effect of Host Processor Frequency

0

0.5

1

1.5

2

2.5

3

8-disk, 1 GHz, 8-way 8-disk, 1.5 GHz, 4-way 8-disk, 1.5 GHz, 8-way

Experiment [# disks, AC frequency, AC width]

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

3.2 GHz

1.0 GHz

(a) (b) (c)

Figure 4: Reducing power by scaling down the clock frequencyof the host processor.

Storage-centric architectures provide the opportunity tooffload computation, normally done on the host, onto

processors on the I/O path. Since offloading lowers the utilization of the host processor, we have the opportunity

to reduce the power consumption of the host and achieve a net performance benefit. The host processor is one of

the largest power consumers in the system, accounting for 56% of the power in the 2-disk system and over 40%

for a storage system with 8 disks. We now explore the possibility of saving power on the host when the application

is offloaded to the I/O path.

We assume that the host processor is equipped with Dynamic Frequency Scaling (DFS) and that it can tran-

sition to a clock frequency of 1 GHz (from the 3.2 GHz that we have used in the experiments). Using Wattch,

we determine the power consumption at this clock frequency to be 38.94 Watts, which is a 3X reduction from

the baseline value, shown in Table 1. This power consumptionratio between the highest and lowest performance

19

states concurs with trends in modern high-performance microprocessors [2]. We select all the datapoints in our

design space from the previous set of experiments that showed a speedup equal to or better than the baseline

system and perform simulations with the 1 GHz host configuration. The results from this experiment are given in

Figure 4.

For each configuration shown on the x-axis, each pair of bars gives the speedup with a 3.2 GHz and 1.0 GHz

host processor respectively. Figures 4(a) and (b) show the datapoints where computation is offloaded to the DPU

and Figure 4(c) gives the data for the Image Edge Detection workload when computation is offloaded to the array

controller. We can clearly see the power benefits of offloading. Across all the datapoints, the speedup that we

obtain is practically the same, whether we use a 3.2 GHz or a 1.0 GHz host.

5 Conclusion

The visible shift in the computational workloads due to explosive growth in digital data and growing concerns over

the relentless surge in power consumption of systems force us to rethink our computational paradigms. In this

paper, we argue for aggressive computational offloading to various processing components along the I/O path. A

key aspect of our approach is the reuse of components that arealready present in the system, and therefore would

not be adding significant cost to existing architectural designs.

We evaluate a continuum of architectural choices to offload computation along the I/O path: (i) management

processors, (ii) disk array controllers, and (iii) disk controllers. We find that there are dramatic performance

improvements for two of the four benchmarks we consider by factors of three to six, though we see degraded

performance by about 10–20% on the other two benchmarks. We evaluate implications of offloading computation

on the system power consumption using analytical models. Our findings are very encouraging: computational of-

fload along the I/O path produces significant power savings inall cases we consider and broadens the architectural

flexibility to pick the best places to use the available powerbudget. We evaluate microarchitecture designs of the

offloaded processors, and find that extracting DLP is the mostimportant factor contributing to application perfor-

mance, followed by ILP, and last clock frequency. Based on our analysis, we conclude that there are significant

advantages in terms of performance gains and power savings to be extracted by offloading computation to various

processors along the I/O path.

References

[1] A. Acharya, M. Uysal, and J.H. Saltz. Active Disks: Programming Model, Algorithms and Evaluation.
In Proceedings of the International Conference on Architectural Support for Programming Languages and

20

Operating Systems (ASPLOS), pages 81–91, October 1998.

[2] AMD Opteron Processor Power and Thermal Data Sheet, May 2006.

[3] F. Arakawa, O. Nishii, K. Uchiyama, and N. Nakagawa. SH4 RISC Multimedia Processor.IEEE Micro,
18(2):26–34, March-April 1998.

[4] ARM Collaborates With Seagate For Hard Disc Drive Control, June 2002. ARM Press Release.

[5] C. Bohm and F. Krebs. High performance data mining using the nearest neighbor join. InProceedings of
the International Conference on Data Mining (ICDM), December 2002.

[6] H. Boral and D.J. DeWitt. Database Machines: An Idea Whose Time Has Passed? InProceedings of the
International Workshop on Database Machines, pages 166–187, September 1983.

[7] R.S. Boyer and J.S. Moore. A Fast String Searching Algorithm. Communication of the ACM, 20(10):762–
772, 1977.

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-Level Power Analysis
and Optimizations. InProceedings of the International Symposium on Computer Architecture (ISCA), pages
83–94, June 2000.

[9] J. Buttress and D. Reinsel. Worldwide Hard Disk Drive 2005-2009 Forecast: The Growth Is Sustainable,
but the Industry Is in Transition. Technical Report 33432, International Data Corporation, June 2005.

[10] E.V. Carrera, E. Pinheiro, and R. Bianchini. Conserving Disk Energy in Network Servers. InProceedings
of the International Conference on Supercomputing (ICS), June 2003.

[11] Compaq Computer Corporation Technology Brief - Integrated Lights-Out Technology: Enhancing the Man-
ageability of ProLiant Servers, April 2002.

[12] A.M. Waxman et al. Information Fusion for Image Analysis: Geospatial Foundations for Higher-Level
Fusion. InProceedings of the International Conference on Information Fusion (ISIF), pages 562–569 Vol.
1, July 2002.

[13] W. W. Wilcke et al. IBM Intelligent Bricks Project-Petabytes and Beyond.IBM Journal of Research and
Development, 50(2/3):181–197, March/May 2006.

[14] Krisztián Flautner, Steve Reinhardt, and Trevor Mudge. Automatic Performance Setting for Dynamic Volt-
age Scaling. InProceedings of the International Conference on Mobile Computing and Networking (MOBI-
COM), pages 260–271, New York, NY, USA, July 2001.

[15] R. Gens. Geospatial Data Fusion - Seminar Talk, Geophysical Institute, University of Alaska Fairbanks,
February 2004.

[16] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.Franke. DRPM: Dynamic Speed Control for
Power Management in Server Class Disks. InProceedings of the International Symposium on Computer
Architecture (ISCA), pages 169–179, June 2003.

[17] HP Managment Processor. http://h71028.www7.hp.com/enterprise/cache/4230-0-0-0-121.html.

[18] H. Huang, C. Lefurgy, T. Keller, and K.G. Shin. Memory Traffic Reshaping for Energy-Efficient Memory.
In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), pages
393–398, August 2005.

[19] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan, G.R. Ganger, E. Riedel, and A. Ail-
amaki. Diamond: A Storage Architecture for Early Discard inInteractive Search. InProceedings of the
USENIX Conference on File and Storage Technonologies (FAST), April 2004.

[20] Intel PXA 255 Processor. http://www.intel.com/design/pca/prodbref/252780.htm.

[21] B.R. Jarvinen, C.J. Neumann, and M.A.S. Davis. A Tropical Cyclone Data Tape for the North Atlantic
Basin, 1886-1983: Contents, Limitations, and Uses. Technical Report NWS NHC 22, National Oceanic and
Atmospheric Administration (NOAA), 1984.

21

[22] K. Keeton, D.A. Patterson, and J.M. Hellerstein. The Case for Intelligent Disks (IDISKs).SIGMOD Record,
27(3):42–52, September 1998.

[23] Y. Kim, S. Gurumurthi, and A. Sivasubramaniam. Understanding the Performance-Temperature Interactions
in Disk I/O of Server Workloads. InProceedings of the International Symposium on High Performance
Computer Architecture (HPCA), pages 179–189, February 2006.

[24] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, and K.I. Farkas. Single-ISA Heterogeneous Multi-
Core Architectures for Multithreaded Workload Performance. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA), pages 64–75, June 2004.

[25] X. Ma and A.L. N. Reddy. MVSS: An Active Storage Architecture. IEEE Transactions on Parallel and
Distributed Systems, 14(10):993–1005, 2003.

[26] D. Maio and D. Maltoni. Direct Gray-Scale Minutiae Detection in Fingerprints. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(1):27–40, January 1997.

[27] R. Mao, W. Xu, S. Ramakrishnan, G. Nuckolls, and D.P. Miranker. On Optimizing Distance-Based Simi-
larity Search for Biological Databases. InProceedings of the IEEE Computational Systems Bioinformatics
Conference (CSB), pages 351–361, August 2005.

[28] Micron. http://www.micron.com/.

[29] MIT Center for Biological and Computational Learning (CBCL) Face Recognition Database.
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html.

[30] J. Mogul. TCP Offload Is a Dumb Idea Whose Time Has Come. InProceedings of the 9th Workshop on Hot
Topics in Operating Systems (HotOS IX), USENIX Assoc., 2003.

[31] D. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale Storage Cluster: Delivering Scalable
High Bandwidth Storage. InSC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
page 53, Washington, DC, USA, 2004. IEEE Computer Society.

[32] NASA World Wind. http://worldwind.arc.nasa.gov/.

[33] E. Riedel, G. Gibson, and C. Faloutsos. Active Storage for Large-Scale Data Mining and Multimedia. In
Proceedings of the International Conference on Very Large Data Bases (VLDB), pages 62–73, August 1998.

[34] N. Roussopoulos. Nearest Neighbor Queries. InProceedings of ACM SIGMOD, pages 71–79, May 1995.

[35] M. Sivathanu, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Evolving RPC for Active Storage. InPro-
ceedings of the Tenth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS X), pages 264–276, San Jose, CA, October 2002.

[36] M. Sivathanu, V. Prabhakaran, F. Popovici, T. Denehy, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau.
Semantically-Smart Disk Systems. InProceedings of the Annual Conference on File and Storage Technology
(FAST), March 2003.

[37] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, andR. Jain. Content-based Image Retrieval at the End
of the Early Years.IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12):1349–1380,
December 2000.

[38] S.M. Smith and J.M. Brady. SUSAN - A New Approach to Low Level Image Processing.International
Journal of Computer Vision, 23(1):45–78, May 1997.

[39] Tarari Anti-Virus Content Processor. http://www.tarari.com/antivirus/index.html.

[40] M. Uysal, A. Acharya, and J. Saltz. Evaluation of ActiveDisks for Decision Support Databases. InProceed-
ings of the International Symposium on High-Performance Computer Architecture (HPCA), pages 337–348,
January 2000.

[41] R. Weber. SCSI Object-Based Storage Device Commands (OSD). Technical Report T10/1355-D, InterNa-
tional Committee for Information Technology Standards, July 2004.

22

