A HIERARCHICAL GRAPH MODEL OF
CONCURRENT REAL-TIME SOFTWARE SYSTEMS
Paul David Stotts, Jr.

University of Virginia

Computer Science Report No. TR-86-12
May 23, 1986






A HIERARCHICAL GRAPH MODEL OF
CONCURRENT REAL-TIME SOFTWARE SYSTEMS

A Dissertation
Presented to
the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosopky (Computer Science)

by

Paul David Stotts, Jr.

August, 1985



ABSTRACT

A model of a software system is introduced which is based on the theory of H-graph
semantics. The model is intended to support a variety of performance studies for real-
time concurrent programs. This work presents the formal concepts of the model, and

discusses some analyses that can be applied to it.

The model of a concurrent system includes not only the application program but the
host hardware as well. viewed as a collection of procedures with duration but no struc-
ture. Each procedure model in the system has three components: a data model, a static
program model. and a control flow model. Concurrency is represented in the control flow
component by a marked, timed Petri net which is distinguished by its notion of place
duration and its restricted firing rule. A technique using Parallel F'iow. Graphs is intro-
duced for producing well structured Petri nets with obvious interpretations in terms of
software. Witi} such models, we can automatically detect and correct conflicts in accesses
to shared variables and data structures, as well as produce upper and lower bounds on
execution times for portions of the modeled sysiem. The analyses use a modified form of
the Petri net reachabilily tree. one in which the effects of the concurrent firing rule and

token timing are represented as restricting the set of reachable states.
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Chapter 1

INTRODUCTION

A Hierarchical Graph model of a concurrent software system is a formal representa-
tion of interacting algorithms, amenable to analysis and transformation. The context of
this work is the broad class of concurrency models for the procedural, von Neumann
computational paradigm. In this chapter, a distinction between paradigms and models is
first discussed briefly. The structure of the report is then outlined, and the major contri-

butions of the research are summarized.

1.1. Computation paradigms and concurrency

Of the various computing paradigms thal current programming languages support,
the dominant one is still that of the von Neumann machine--the imperative, procedural
style of programming. Originally offering only a sequential view of compuiation. this
paradigm developed first, probably because sequential computation was a natural starting
place for systems with a single hardware processing element. Functic;nai separation of
computing tasks followed, and then physical separation of computing devices. The
natural outgrowtk of this progression (or the cause in some cases) was the realization that
some algorithms are not inherently limited to sequential performance of their individual
operétions. New computing paradigms were developed to provide insight into concurrent
computation. In addition to extensions of the von Neumann paradigm to include multiple
sequential machines, paradigms like data flow computation and functional programming
are now being studied which have no inherent notion of necessarily sequential computa-
tion. Under these views, if several operations are to proceed in sequence, it is because of

data dependencies rather than the semantics of the computation system.



The ability for independent operations to proceed in parallel is common to most
currently used computing paradigms. The methods by which parallel activities are
expressed, controlled, and understood are termed models of concurrent computation. Two
models may be based on a common computation paradigm and yet be very different,
depending on the aspects of computation that each emphasizes or ignores. A mode] neces-
sarily abstracts away some of the complexity of the modeled system, in order to make

more accessible to analysis the features of interest.

Many different models of parallel computation are currently under theoretical study .
or in practical use as programming languages. One of the difficulties in programming con-
current activities that solve problems is ensuring the correctness of the solution. The
communication and synchronization patterns must allow the desired interaction among
the concurrent activities and be shown to be free of deadlock and starvation; the algo-
rithms must be shown to eventually té_rminate (or perhaps not to do so); a guarantee
should be given that the program will produce some (desirable) results. Proving such
properties is iraditionally difficult for sequential algorithms; for concurrent ones, clear
techniques have only lately begun to emerge [23,25,48). Proving correctness is just one
of several analyses that a programmer might wish to perform on concurrent programs.
Others include determination of resource use, proving time constraint satisfaction, strong
type checking across module boundaries, and determination of possible aliasing of vari-

ables,

This report presents our work on the modeling and analysis of concurrent computa-
tion in the context of software systems with real~time execution constraints. We have
several motivations for this investigation. Programming environments have begun to
evolve towards tool-oriented operation; a user produces a program with the aid of the
environment and then uses analysis tools to guide verification and transformation of the

product. Only recently has the emphasis been directed towards having a wunified,



mathematical model serve as the basis for the operation of the entire environment:
development. analysis, transformation, and code generation for multipie targets. The
Diana intermediate representation [1] for the Ada® language [2] is an example of this
emphasis. but it is not mathematically rigorous enough to form the basis for an entire
environment. We offer a computation model that provides this capability. Because code
can be generated directly'f rom the model, and because the analysis and transformation
techniques presented are language independent, the source text from which a model is

generated can be written in various languages.

A second goal is the inclusion of the host machine in the computation model of a
software system. We feel that adequate timing analysis cannot be performed on software
without regard for the hardware that is 1o execute it. A program that runs on two
different bosts mﬁst be viewed as two different computations for real-time purposes. We
present a model that allows the host architecture to be modeled as a collection of pro-
cedures, just as the software is. A systeﬁx model can include all aspects of the execution
environment: the machine; portions of an operating system; the language support rou-

tines; the application program.

1.2. Overview of topics

In Chapter 2 we examine several theoretical models of concurrent computation and
discuss their utility as the foundation for modeling concurrent programs and languages.
We also look at the models underlying several concurrent programming languages, and
examine their features for communication and synchronization of parallel activity, their

amenity to verification and other analyses, and their general operating principles.

Building on the results of this past research, we present in Chapter 3 the formal
definitions of a hardware/software system modeling theory. Termed the HG model of

concurrent software systems, it is based on Pratt’s theory of sequential program modeling

®Ada is 2 registered trademark of the United States Government, Ada Joint Program Office (AJPO).



with Hierarchical Graphs [56]. The HG model presents a concurrency model based on
timed Petri nets, an extension to regular Petri net theory which allows representation of
execution duration for the modeled software. The execution rule for the model contains a
notion of true event simultaneity. A set of concurrent operations contributes to a single
data state transformation rather than an arbitrary sequence of individual transforma-
tions, allowing the equation of a state change with the passing of a unit of real-time. The
HG model has a design permitting modular analysis of programs and verification of the

interaction of concurrently executing computations.

Chapter 4 describes 2 model construction technique based on a graphical syntax.
Termed parailel fiow graphs, these algorithmic structures provide a disciplined method of
creating HG system models that do not have the potential complexity and difficulty of
interpretation of models created in an ad hoc fashion. Parallel flow graphs can be used
directly as an algorithmic description language, or they can serve as semantic guides for
translating program text in common languages into HG models. We demonstrate this
generality and utility with examples of existing parallel language constructs expressed as

parallel flow graphs.

Chapter 5 describes the detection and correction of conflicts in access 1o shared data
structures by concurrent procedures in an HG model. Incorrecti mutual exclusion
(incorrect synchronization) in a computation can invalidate the data state. Though Petri
nets can express the mutual exclusion of critical regions, the paralle’i.ﬂow graph syntax
has no explicit construct 10 do so. Instead, we rely on .automaaic identification of critical
regions in a modeled procedure where shared siructures are being accessect in a way
which. if done incorrectly, could compromise the integrity of the data state. The Petri
net is then altered to provide mutual exclusion of these critical regions. The solution of
this problem is possible by analysis of a special form of the Petri net reachability tree.

The tree is constructed to reflect only the states achievable under the concurrent firing



rule,

Chapter 6 discusses the timing aspects of the HG model. The notion of syétem tim-
ing consistency is introduced, and algorithms are presented which construct a pair of con-
sistently timed models, one giving the minimum duration of a system’s execution and the
other the maximum. Any behavior the modeled system can exhibit must fall between
these bounds, which provide the basis for timing constraint verification. An extension to
the concurrent reachability tree is introduced which makes use of the timing figures as
Petri net state information. Aspects of model deadlock detection from this reachability

tree are addressed as well.

We draw our conclusions from this investigation in Chapter 7. The report ends
with a discussion of several topics which, based on these results. look promising for

future research.

1.3. Contributions of this research

Several aspects of this work are novel. The HG model offers a unigue view of con-
current computation, in that the granularity of concurrency is variable and the daia state
has both distributed and shared aspects. A modeled system has a hierarchical structure,
presenting each procedure as an independently analyzable object. The formalism provideé
a unified treatment for a software system and the hardware on which it executes. allow-
ing various timing analyses to be performed on a model. Though others have used timed
Petri nets to express control aspects of a computation, the concurrent transition firing rule
applied to these nets is uncommon. It allows the equation of state sequenées with time
sequences and thereby provides a measurable notion of simultaneity. Though the timing
analysis is partially automatable, only the beginning of a general solution is obtained in

this work.

Parallel flow graphs not only provide a general syntax for expressing concurrent

activities. but also play an important role as a vehicle for producing well-formed



concurrent system models. Such models are automatically derivable from the graphical
syntax, and the Petri nets produced from them are of a simpler class than the general
nets. The graphical syntax is convenient for expressing algorithmic interactions, but can
be cumbersome to use without appropriate tools and graphical output devices. Parallel
flow graphs are general enough to express many major concurrency constructs succinctly,
but they are not sufficient to model some interactions, notably the Ada rendezvous [2].

They also lack explicit nondeterminism in their present form.

The analysis techniques presented for detection and mutuai exclusion of accesses to
shared data structures are fully automatable. Moreover, the method for adding mutual
exclusion to the model is independent of the methods whereby conflicts are identified.
The analyses depend on the new form of reachability tree, which expresses in finite form
the subset of nofmal Petri net states obtainable under the constrained firing rule, with
toKen duration. Though the altered trees are adequate for solving the problems presented
in this report, they offer no extra leverage over normal reachability trees in solving long-

standing Petri net problems related to state reachability.



Chapter 2

MODELS OF COMPUTATION

As a context for the new computation model developed in Chapters 3-6, we rev.iew
the features of several models of computation, divided into three categories: theoretical
models, process-based language models, and non-process-based language models. In addi-
tion. some aspects of distributed computation and distributed models are discussed
~ briefly. From the extensive amount of literature available covering these topics, only the
mox;e relevant works are mentioned here. A comp.rehensive overview of the field of

parallel computation is offered by Filman and Friedman [22].

2.1. Theoretical models

Theoretical models of concurrent computation are developed 10 provide a mathemat-
ical basis for understanding the nature of computation. Usually they are not intended to
be used directly as programming language models. as their generality provides more free-

dom than is necessary for writing algorithms.

2.1.1. Petri nets

The introduction of Peiri nets by Petri in 1962 [52] marked one early attempt to
mathematically formalize the concept of parallel computation. Complete presentations of
these nets and their use are given by Miller [45] and Peterson [50,51]. The syntax is
graphical, consisting of nodes of two types. with directed arcs connecting the nodes. A
place node can hold tokens; it may serve as an inpu place or as an out put place for a tran-
sition node. The state of a Petri net is represented by a marking, which is a mapping of

each place in the net to a finite, possibly zero. number of tokens. A transition node



becomes enabled when each of its input places contains one or more tokens. Firing a
transition removes a token from each transition input place and deposits a token in each
output place. If two or more iransitions have common input places, the.transitions are
said to be in conflicc. When two transitions in conflict are simultaneously enabled, the
one to fire is chosen nondeterminately. If several arcs leave a transition, then a token is
created for each outgoing arc when the transitions fires. Figure 2.1 shows a small Petri
net with a sample marking of places 1, 2. and 4 having one token each, the others none.
Transitions 2 and 3 are thereby enabled, with execution nondeterminately choosing one of

them to fire to effect the next state change.

In theory, modeling of the concurrent activity in a computer system with Petri nets
is a straightforward operation: the states of the system are represented by places and
markings. while the actions are assigned appropriate transition nodes. Petri nets are also a

natural model for data flow computation {(discussed below); transition nodes are associ-

Figure 2.1 Petri net




ated with fine-grained actions such as the addition of two integers. The complexity of a
net, however, grows exponentially with the number of its transition nodes. Practical use
of this modeling technique alone, then, is limited to small systems or portions of systems,
and programs of only moderate size. Examples of Petri net modeling of paralle! activity

can be found in [42,61.19,46].

A common extension to basic Petri net theory is the inclusion of execution times on
net events. The earliest work uses deterministic timing figures. Ramamoorthy and
Ho [58] employ a model in which a duration is associated with each iransition in the Sys-
tem, indicating how long the firing of the transition lasts. With these durations, they are
able to compute for completely cyclic nets the number of times each transition will fire in
each cycle of the net execution, and the minimum cycle time (maximum performance).
Coolahan and Roussopoulos [15] present an alternative view in their model. A time is
associated with each place, and a token is assumed to reside at a placé for that number of
state changes before it can participate in enabling any following transitions. From the
timing ﬁgux;es is calculated the frequency with which each transition fires, relative to a
base place/transition cycle called the clock. The average wait between enablings is also

computable for each transition in the net.

The two forms of timing are functionally equivalent, though timing the transitions
deétroys the notion of instantaneous firings in the basic theory. Moreover, the notion of
enforced duration for tokens at places is a more natural extension since, in a normal Petri
net, tokens often reside at places for several siate changes anyway. Merlin [44] presents a
model that falls in between these two views in its behavior. Two timing figures are asso-
ciated with each transition, giving a range of time in which a transition must fire after it
becomes enabled. Time in Merlin's model is not deterministic. since a transition ¢ may

choose to fire at any point in its time range on each enabling.
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2.1.2. Parallel program schemata

Parallel program schemata {34, 45] present another mathematical notion of parallel
program. The theory combines the actions specified by a sequencing automaton with a
formalized finite store, represented as a set of memory cells and their possible values. A
parallel program schema S is defined by a triple (M,A,7" ) in which M is the set of
memory locations, A is the set of operations, and T is the control. For each operation
a € A, there exists an associated number of outcomes K(a) with a termination symbol g;
for each outcome 1 Ki € K(a). a set of domain locations D(a) C M, and a set of range
locations R{a) € M. The control is an automaton (Q.9,.E,7) in which Q is a set of
states: go. the initial state, is an element of Q; I is the alphabet, the union of the initiation
symbols T; ={a | @ €A} and the termination symbols ¥, = {ay.a3. " .ax() | @ €A}
and 7 is the transition function, a partial function mapping Q XE into Q, and totally
deﬁned on Q XL,. Concurrency enters in that, once initiated, an operation must not
necessarily terminate before others are started. The control can be visualized as a flow
graph with states at the nodes (providing history sensitivity to a computation) and with
operation names as arc labels. Figure 2.2 illustrates such a graph: the set of operations A
is {r.s.t}. with the outcome numbers being K {(r)=2, K{(s}=1,and X(¢)=2. Opera-
tions  and s can proceed simultaneously, so the control allows their initiations and ter-

minations in any order. Both must terminate, however, before ¢ can proceed.

As defined, the schema has no meaning assigned to the computation it specifies; it is
simply a collection of atomic actions that read and write memory cells, each action being
initiated and terminated under the governance of the control. To supply semantics to a
schema, an inzerpretation I is required. The interpfetation provides functions that associ-
ate values with the memory elements of a schema. Formally, 7 is fully specified by a
function C mapping each ¢ in M into a set C(i) of possible values, by an initial memory

contents tuple co. and by two functions for each a € A: F, and G,. The element ¢, is
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or subprograms). Because of the use of a solitary hardware processor, most of the
processes are inactive at any time. Processes are swapped onto and off the processor
according to elapsed execution time and current resource use or requirement. Interaction
among processes is limited to requests for services from standard routines common to all,
like allocate memory: effort is usually expended to prevent user processes from interacting
(interfering) with each other. Queuing theory is often used to analyze the structure and

performance of the concurrent activities.

Most parailel programming languages in common use are based on models of con-
current computation that present a set of macroscopic, cooperating, sequential processes.
Computation is accomplished by multiple sequential code segments that go about their
business as independently as possible, sending messages or signals back and forth as
needed to keep pace with one another. Process-based language models are derived by
application of operating system process ideas to the procedures in a traditional sequential
programming language. As such they are a logical first step in the development of practi-

cal concurrent computation.

The process-based languages discussed in the following sections are representatives
of the class of languages termed imperative, or procedural. They express computation as a
collection of statements that prescribe some step-by-step sequence of events. Because of
these sequential code segments, imperative programs contain constraints on action execu-
tions other than those necessitated by data dependencies (termed precedence constraints).
The gramudarity of true parallelism is limited by the sizes of the sequential routines,
which tend to be at least a dozen or so language statements. Smaller routine sizes can.
introduce inefficiency because of the mechanics of process invocation. similar to the effect

of excessive procedure calling in a sequential program.

Process-based Janguages can be further classified according to methods of communi-

catior, for which two major schools of thought exist. One communication technique is
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based on the sharing of data areas, as used in Concurrent Pascal and Ada. Though several
processes may have the rights 10 read and alter the same data. often the integrity of the
data is protected with some mechanism that sequences accesses, disallowing simultaneous
attempts to record new values. Another communication method is message passing, as
used in Communicating Sequential Processes and Gypsy. Copies of data values are tran-
sported from one locale to another, or signals sent to indicate the existence of interesting

data conditions.

Verification of programs in process languages is a two-step procedure. First, stan-
dard veriﬁcatio.n techniques are applied to the individual sequential routines, to prove
their compliance with formal specifications. Then the network of communication and
synchronization operations governing process interaction must be shown to be free of
deadlock, starvation, race conditions, and other undesirable properties. Additionally, the
network must be shown to guarantee the attazinment of desirable program states, a pro-

perty termed liveness by Owicki and Lamport [49].

2.2.1. Concurrent Pascal

Designed and implemented by Per Brinch Hansen in the early 1970'5,‘Concurrent
Pascal [28] operates on the principles of monitors, which were ﬁrst. developed by Brinch
Hansen [27} and Hoare [30]. A fixed number of processes is declared, and all are invoked
when a program execution is initiated. The process topology is static, and the processes
communicate by altering shared data structures via calls to monitor procedures. Syn-
chronization is provided gratis since the semantics of a monitor force mutual exclusion of
processes on its data. Monitor procedures may place calling processes on queues for
periods of time, and awaken them as well, providing rudimentary real-time capabilities
to the language: other real-time features like interrupt handling and ﬂexible process

scheduling are absent.
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Concurrent Pascal attempts to provide static checking of monitor calls to prevent
deadlock of concurrent processes. To accomplish this several restrictions are imposed on
the language. Before a procedure can be called it must be declared. Procedure deﬁhitions
in monitors cannot be nested, and monitor procedures cannot call themselves recursively.
Monitor calls and system access rights are thus hierarchically ordered: the resulting tree

- ensures deadlock freedom without run-time checking or restarting of processes.

2.2.2. Ada

The concurrent programming features of Ada [2] are generically termed tasking. An
Ada task consists of a set of entry definitions and a body of executable statements. An |
entry declaration is similar to a procedure declaration: an entry call is made by a process
outside the task, but the code for the entry is executed by the owning task. An accept
statement in the task body defines a point at which a particular entry can be executed.
An outstanding entry call is not honored until the task executes a corresponding accept
statement in its body; conversely, a task that arrives at an accept statement for which no

entry call has been made must wait.

The synchronization forced on the calling and accepting tasks at an entry is termed a
rendezvous. The rendezvous facility can be thought of as defining points in a task execu-
tion at which work may be done on behalf of other tasks. The code of an eniry executes
in mutual exclusion, so interprocess communication may be accomplished via sharing of
common data areas. Parameters may also be passed at an eniry call, so the Ada con-

currency mechanisms have some of the flavor of both monitors and messages.

2.2.3. Communicating Sequential Processes

An early process language model of concurrency is that of C. A. R. Hoare's Com-
municating Sequential Processes, or CSP [31]. CSP presents a view of parallel processing

consisting of a set of macroscopic routines executing asynchronously and concurrently,
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operating on local data and exchanging messages to communicate signals and intermediate
results. Both sender and recipient must agree to rendezvous: hence the term synchronized
send is used to describe the interaction between CSP processes. Messages are not buffered,
$0 a program wishing to communicate With an unavailable partner synchronizes by wait-
ing until the co-communicant arrives at the corresponding message operation in its own

execution.

CSP offers little aid for verification of the possibly complex programs one can pro-
duce in its notation. It also has no real-time programming features. However, the model
was presented as an incomplete experiment. and later efforts have resulted in exten-

sions [62,37] and axiom systems [5] aimed at verification of CSP programs.

2.2.4. Gypsy

- Developed by Donald Good and others in the late 1970's, Gypsy [24] is designed for
production of verifiable system software. Towards this end. the language is modular and
allows inclusion of Hoare-like assertions on the state of program variables. The compil-
ing environment depends heavily on a theorem prover for verifying the consistency of the
assertions with the executable code. Global data is absent and aliasing is disallowed (by

both static and run-time checks).

The concurrent computation model has procedure invocations as processes; commun-
ication between processes is provided solely by messages passed in variable-length (but
finite) buffers. Synchronization is achieved via three mechanisms: the kernel provides
mutual exclusion of processes on buffers when reading or writing a message; multiple
process executlions are started by a cobegin statement, the semantics of which prevenf the
caller from proceeding until all spawned processes terminate; and an awaif statement
allows a process to explicitly pause until a certain data condition holds. Await can have
several conditioﬁs that restart a process, thereby enabling nondeterminate computation in

Gypsy. Forcing the routine invoking a cobegin to wait for termination creates a hierarchy
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‘of process invocations that guarantees freedom from some types of deadlock.

2.2.5. Modula and Modula-2

Defined by Niklaus Wirth in the middle 1970’s, Modula [65] is an extension of Pas-
cal to handle concurrent and real-time systems programming. Abstraction of data is sup-
ported by the extended scope rules of modules. For real-time programming, Modula pro-
vides .direct communication between an executing program and physical devices in its
environment, and facilities for fielding interrupts from these devices. Concurrency is
achieved with parallel processes, assumed to be executing on a uniprocessor and scheduled
- according to a discipline built into the language definition. Processes communicate by

exchanging messages via the wair and signal primitives.

Modula-2 [66], designed by Wirth in 1980, is intended to achieve the same goal as
Modula, that of supporting real-time systems construction. The Modula process struc-
ture, considered too inflexible for low-level programming. is replaced in Mo‘dula-—z by a
coroutine mechanism. Coroutines are created dynamically from procedure declarations.
The user is then free to write modules that construct the concurrent process anc_i com-
municatlion mechanisms of choice. In keeping with this philosophy, no schéduling discip-
line is incorporated into the language. A coroutine is suspended when and only when it
directly invokes another. Modula-2 is designed to be implemented on a uniprocessor, so

many of the synchronization considerations in other concurrent. languages do not apply.

The language facilitates the construction of large (multi-programmer) projects by
allowing independently compilable code blocks and module specifications without
corresponding bodies. For program veriﬁéation. both Modula and Modula-2 provide only
slightly more aid than Pascal. Meeting the timing constraints of real-time software
requires the freedom of scheduling that Modula-2 provides. However, the potential
concurrency--actual and simulated--presents verification problems more complex than

those of sequential Pascal programs.
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2.3. Non-process-based language models

Most languages having a computation model not based on processes are experimen-
tal; none has been developed commercially. though several are sufficiently advanced that
they could be. The computation paradigms that gives risé to such models are significantly
different from the von Neumann paradigm which spawned the process-based concurrency
models; they have only recéntly been examined in detail. Non-process models have a con-
currency unit of finer granularity than is normally associated with a procedure. Gen-
erally they cannot be implemented efficiently on existing computer architectures, so
research is being conducted to discover machines to support non-process languages. We
review several non-process-based computation paradigms: data flow, string reduction, and

graph reduction.

2.3.1. Data flow

Some of the first work on the data flow computation paradigm is that of
Dennis [20,18]. Following the early work, a number of researchers developed appropriate
languages and supporting machine architectures for this paradigm [21,17,6]. A

comprehensive overview of data flow computation is given by Ackerman [4].

Programs in a data flow language are expressed as directed graphs with actions at the
nodes. Data values propégate along arcs. Actions may execute when aillrequired data
values are present on the input arcs. Computed values are duplicated as required to place
a copy on each output arc. The graph expresses only the precedence constraints imposed
on action executions by data dependencies. Arbitrary sequencing encountered in standard
imperative, process-oriented languages is not present, so parallelism is naturally expressed
without explicit programmer notation. The granularity of concurrency depends on the
actions at the graph nodes. Maximum parallelism is achieved by making the actions
arithmetic operations, with individual operands 6n the arcs; thus, even expressions can be

evaluated concurrently. Figure 2.4 shows a portion of a data flow program graph for
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Figure 2.4 Data flow program graph

evaluating the expression (x +2)°* 5 + (y /2); the computations in progress are for the

(x,y ) value pairs (3,4 ) and (5,2).

Since data flow computations have values as input and produce only values, no
notion of variable is present in data fiow languages. Consequently. no side effects can
occur. Rather than directly writing programs as graphs, some daia fiow language
designers choose a fairly standard, imperative syntax that a compiler then translates for _
execution. The languages VAL [3,43] and ID {7] each offer such a syntax. The assign-
ment statement then represents a permanent binding of a name to a value, not an altera-

tion of a storage location. To aid in enforcing this view, data flow programs obey the sin-
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gle assignment rule, which states that no name may appear on the left side of an assign-
ment statement more than once across the scope of its binding. Creative interpretation is
applied for looping--the scope is simply the lcop body. and assignment (binding) is done

at the start of each ¢ycle.

Data flow programs are amenable to verification because of the single assignment
rule. Ackerman [4] notes that for languages of this sort, called definitional languages. the
assignment statements are like assertions on variable values; they may be used in

verification of correctness.

2.3.2. String and graph reduction

Computation by reduction is perhaps better known as functional, or applicative,
computing. The development of reduction languages and supporting architectures follows
early work on the paradigm by Backus [8,9] and Berkling [11]. A review of current

work in reduction and its comparison to data flow is presented by Treleaven et al. [63].

In the underlying computation paradigm a program is an expression, the application
of a function to arguments (some of which may be function applications themselves).
Control is expressed as recursion. Execution of a redgction language program consists of
evaluation of the program expression. Unlike data flow, in which compﬁtation consists of
sequences of fixed sized operations driven by the availability of operand data, reduction
computation is carried out by successively rewriting, or reducing, the nested subexpres-
sions into simpler form. A reduction terminates when all subexpressions evaluate to data

values, which are irreducible.

As in data flow languages, reduction languages are definitional. No concept of vari-
ables or storage locations is included in the computation model. The assignment state-
ment of imperative languages is replaced by the identifier definition, in which an expres-
sion is given a name by which it can be referenced. All subsequent references 1o a partic-

ular name use the one definition for it, a property known as referential transparency.
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The functional notation imposes no spurious sequencing on a computation, expressing
only the operation precedence created by data dependencies. This property, coupled with
referential transparency, provides reduction languages with inherent parallelism and con-

text independence for subexpression evaluation.

Reduction proceeds by replacing each identifier reference in an expression with its
definition. Two methods of evaluation are commonly used: string reduction, and graph
reduction. They differ in their handling of arguments and their preferred order of argu-

ment evaluation.

String reduction handles arguments with a by-value mechanism. When a subexpres-
sion is reduced, a copy of its definition is substituted into the computation, and reduction
proceeds on each copy. Figure 2.5 demonstrates this reduction with a sample expression
evaluation. Some inefficiency ié introduced by duplicated effort. but addressing overhead

in the hardware is low because the components of an instruction are directly referenced.

. definitions
SRS R
evaluate e (+ a b)
= e(+(*xy)(-yx))
=2 e {(+(*(+m 1)(*m n))(~-(*mn)(+m1)))
= e (+(*(+ 4 1)(*43))(-(*a3)(+41)))
= e (+(* 5 12)(- 12 5))

e:(+ 60 7)

IR

167

Figure 2.5 String reduction
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String reduction is especially suited to innermost (most deeply nested) function evalua-
tion first. since it decreases the amount of copying that is done by only applying func-
tions to fully reduced arguments. This is sometimes termed data driven, sihce data
values are the innermost components of nested expressions. The architecture developed
by Mago [40, 41] exemplifies the use of string reduction. The machine language he uses is

Backus® FP [10]. and reduction proceeds innermost first.

Graph reduction handles arguments with a by-reference mechanism. Fach use of an
identifier causes a pointer to its definition to be substituted into the computation, hénce
the idea of a graph. No duplication of effort results, but addressing overhead is greater
since pointers must be traversed. Since structures are references, théy can be manipulated
without being reduced, making graph reduction well suited to outermost function evalua-
tion first, as éhown in Figure 2.6. A function can remadin unevaluated until it is explicitly

required in a computation. Then, once a subexpression has been reduced, further refer-’
ences to it receive the reduced value and are spared the work of reduction. The term
demand driven is used 1o describe this property. AMPS. [35] is a computation system
based on graph reduction. The language used is a variant of LISP called FGL (Flow

Graph LISP), described in [36].

2.4. Distributed models

Distributed computation might be considered as concurrent computation in which
some assumptions about the underiying hardware can no longer be made without penalty.
The extra considerations are concentrated in the areas of communication and data protec-
tion. In concurrent computation on single machines or on multiple machines that are in
close proximity, communication of signals and other data among execution units is usu-
ally relatively fast and inexpensive. Transmission is also assumed to be reliable. so all
messages arrive at their destination in a timely fashion, ungarbled. In a distributed sys-~

tem. in contrast, communication cosis can be very high and the transmission medium



evaluate ee(+ab)

w}e:(f‘t) "‘-a:(*ID{'x:((: ) m: 4
=> e ( I\ ) \:(*I ) :(
AR S D@:(r

.—=:>e:(+f ) ‘"a:(*I ) x5 m: 4
m‘:»e:(+I ) ~a:(* 5 12) x5 m: 4
L——-——b:(-12 5) y: 12 n: 3
#'e:(+I ) ~a: 60 x5 m: 4
L-———b:"l y: 12 n: 3

= e:(+ 60 7) a: 60 x5 m: 4
b 7 y: 12 n: 3

= e 67 a: 60 x5 m: 4
b7 vy 12 n: 3

Figure 2.6 Graph reduction

itself unreliable. Consequently, the model cannot be simplified by assuming away the

network costs of time and lost transmissions.

Research has been conducted to determine the essential differences between distrj—
buted computation and general concurrent computation. Liskov_ has defined some primi-
tive operations required for distributed models [38.39]. Several languages have been
designed for expressing computation on physically distributed pieces of hardware [14,29)].
Operating systems have been constructed for controlling distributed processor gys-
tems [47,67.68]. This research project is not explicitly concerned with distributed ¢com-

putation; however, the proposed model does not preclude extension to distributed compu-
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tation in later work.

2.5. Summary

Reviews are given of prior work in the field of concurrent computation modeling. In
the class of theoretical models, we consider Petri nets, parallel program schemata, and
process algebra. Features of each model are identified that are desirable in achieving the
goals of our work. We then survey several concurrent programming languages which
follow the procedural, von Neumann computation paradigm, notably Concurrent Pascal,
Ada, CSP, Gypsy. Modula, and Modula-2. The underlying concurrency structure in each
Is examined, with the goal of discovering the features our formalism must possess in
order to be suitable for modeling programs in such languages. Several non-process-based
cémputation paradigms are then examined, including data flow computation, string reduc-
tion, and graph reduction. In the final section we look at the extra requirements that

physical distribution of computing elements places on concurrency models.



Chapter 3

THE HG SOFTWARE SYSTEM MODEL

In this chapter we present the formal model of a software system for concurrent,
real-time computation. The model is intended to provide the mathematical bésis for vari-
ous analyses and transformations of the modeled system, notably those described in the
later chapters of this report. The first section places our work in the context of earlier
research into Hierarchical Graphs and their applications. The following sections present
the modeling formalism as a collection of component ;:leﬁnitions. examples of use, and
associated discussions of interpretation. Most notable are the development of the timed
Petri net; its representation of software system attributes; the concurrent transition firing

rule and its notion of simultaneity in real-time.

3.1. Overview of Hierarchical Graph modeling

Hierarchical graph structures, developed by Pratt [53], have been studied in various
forms for the past fifteen years by several researchers. The earliest usc was in operation-
ally specifying the semantics of programming languages [54,55]. A program was
expressed as a hierarchical graph that contained both data graphs and a code graph. the
behavior of a standard automaton on executing the code graph defined the semantics of
the instructions. and the state of the data on termination provided the results of compu-

tation.

Hierarchical Graphs (HG) now provides a complete, mathematically based program-
ming language, the foundation of a software specification and analysis system [56).
Rather than defining the semantics of an.entire.language, the theory models individual

programs. The text of a program guides the transiation intc the HG model of its static

27
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and dynamic semantics. This model has three parts: the data model, the static program
model, and the control flow model. These components express the properties of the
software that can be known prior to run-time. Such static information includes the com-
position and organization of the data to be manipulated, and the form and relationships
among the instructions that describe the computation. The execution rule for the control
flow component captures the dynamic nature of the software being modeled, in that it
describes all possible execution sequences. In this sense, the comroll component is a gen-
eralization and a simplification of the automaton of the older theory. Features that may
only be studied at the time of execution are available through this dynamic aspect of the
model. A mathematical basis in set theory and formal grammars provides the framework

in which programs are analyzed.

In Pratt’s sequential formulation, the data model is composed of a set of states, each
‘an h-graph. The possible data states are defined by a formal graph grammar. The static
program model is a set of basic blocks, each a sequence of procedure calls. The control .
flow model is a deterministic finite automaton (DFA) which describes all potential
sequem;.es of basic blocks that execution of the model can produce. Given the current
state of the system, and a value from the data state, the DFA indicates which block exe-

cutes next, and the block dictates a certain transformation on the data state.

The concurrent computation model presented here differs from the sequential ver-
sion in several respects. The data model has been retained. but in a slightly altered form;
the graph grammar is absent, and some locations in each state are distinguished for argu-
ment passing. The static program model is basically unchanged, but in the control flow
model a timed Petri net replaces the DFA for specifying possible block execution
sequences. The Petri net enables expression of parallel control paths as multiple tokens in

the net.
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The HG software system model contains desirable features from severa! of the.
theoretical computation models presented in the previous chapter. We have chosen to
separate the computation into distinct components, much as in parallel program sche-
mata [34,45]. The data state corresponds roughly to the set of memory locations used in
parallel program schemata, though the notion of structure in our model is distinct. The
second component is the collection of instructions, grouped into sequential blocks accord-
ing to the demands of the algorithm; a parallel program schema has no such grouping on
its set of instructions per se. The third component is the control, which describes all pos-
sible sequences of instructions that an execution can produce. Whereas a paralle] program
schema employs a deterministic finite automaton as the control component, we choose &
modified form of Petri net because of the interpretations we can give the places and tran-
sitions in relation to the instruction blocks. We add the notion of duration to the places
'in the Petri net to model the fact that real (as opposed to idealized) computation§ take .
time to complete. This quantifies somewhat the idea in parallel program schemata that

initiation and termination of an operation are two different events.

Another advantage of choosing Petri nets as the basis of the control component of
the HG software system model is that the model can be made hierarchical, like V. R.
Pratt's process algebra [57). In a Petri net, any place or transition in the network (indeed,
any subnetwork) can be replaced by a more complex Petri net, thereby providing details

of the computation that the simpler subnet represents.

Finally. the granularity of concurrency is variable in the HG model, depending on
the wishes of the modeler. If the algorithm designer wishes only to examine the con-
currency at the level of the procedure {as in Ada tasks or CSP procesges) then he may
leave all lower level operations such as arithmetic, memory allocation, etc., as primitive
procedures--ones with no model structure other than a known duration and effect on the

data state. If the desired analysis is to go deeper, then the operating system calls and the
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language support features can be included in the model as procedures with full data énd
control components. Their respective operations would eventually invoke the machine
instructions (primitive procedures). The model components for the machine instructions
could represent actual existing hardware, or they might represent a simulated novel

architecture for executing a different computational paradigm such as datafiow.

3.2. H-graphs, selectors, and the Data Model

The definitions in the following sections present the basic tenéts of the HG theory
for modeling concurrent software systems. Definitions 1-1 through 1-4 and 1-9 through
1-14 are adapted from the theory of sequential software modeling introduced by Pratt.
Definitions 1-5 through 1-8 are adapted from those presented by J. N. Wilson in his
dissertation work on aliasing in h-graphs{64]. The remaining definitions represent the

extensions we have developed to allow concurrent computation modeling.

This first collection of definitions introduces the formalism by which data is
modeled. The theory presupposes two universal, finite base sets: the set ® of nodes; and
the set & of characters. Given these, the following definitions lead to the concept of an

h-graph, the basic model of data in this theory:

Definition 3-1: Atom
An atom is a finite sequence of characters from . The set of all atoms is
denoted A, and A=E", The atom # denotes the null, or empty, string.

Definition 3-2: Graph
An extended directed graph (or simply graph) over $ and A is a triple
g = (M.E.m") in which

M ={m;, - .m} k21, isa finite subset of &,
E. MxA — M, a partial function
m'eM

M is termed the node set, E the arc set, and m' the initial node of the graph g.
If E(m;,a)=m; then theére is said to be an arc labeled a from node m; to node
m; in g. For simplicity we assume that m'=m, and so write g=(M.E}. The
set of all graphs over ® and A is denoted (.
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Definition 3-3: H-graph
An h-graph over ® and A is a triple. A=(G,V,r), in which
G=lg1. - .g}. k21, isa finite subset of Q, such that each g;=(M, E;)
k

v: .l.__JIM,- -GUA

r€G
G is termed the graph set of k., V is the immediate value function;r is the root

graph of h. We assume that r =g and write h={(G,V).

Related terms:
k
_E)}M,- is the nodeset of h, written M (k).

b. ¥ meM(h), V(m)is the value of m in h.

c. If V(m)€G then m is a graph-valued node of h; otherwise V{(m)€A
and m is an atom-valued node of h.

The set of all h-graphs over ® and A is denoted I'.

The set ¥=T U A is termed the set of values.

a.

An h-graph is essentially a collection of directed graphs and atoms. and a function which

maps the nodes in the graphs into these entities., thus creating a structural hierarchy

—27 3.25

* = initial node of a graph

Figure 3.1 Ezample h-graph
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among the graphs. Fiéure 3.1 illustrates these concepts. Often we find it convenient to
use a string syntax for expressing the structure of h-graphs. In this syntaz, identifiers are
atoms, square brackets ([ ] ) denote nodes, arrows with imbedded atoms denote labeled
arcs, and vertically aligned arcs denote common parentage. The h-graph in Figure 3.1 is

then expressed as:

? 1 ~d-> [ [ [ %1 ]
: ~x-> [ 287 ]
~y-> [ 8.25 1]

Definition 3-4: Extended value function :
Given an h-~graph A={G,V,r}, the extended value function for h is the func-
tion V*: M(h) - ¥. Form €M(h), V* is defined by:

a. Vi{(m)=V(m)if Vim)ea;
b. V¥(m)=h'if V(m) is a graph: where k' is the h-graph (G V', V(m)).
with &' recursively defined as

i V(m)eG’ . -
ii. If g€G' and m’ a node in g such that V(m') is a graph, then
V(m")eG'

and with V'=V | M(G").
If V*(m)€T then V™(m) is termed the sub-h-graph defined by node m.

The next four definitions are adapted from Wilson's work on aliasing detection in
h-graphs [64). A graph selector is used to identify a particular node in a graph, usually
to obtain its value in an analysis. The definition is in two parts: the syntax, to describe
the appearance of a graph selector. and the functién denoted by the syntax, which
describes the operation performed by a graph selector on'a graph. The notation empidyed

to distinguish these parts is [ synzactic entity ]|, where syntactic entity is the text of a
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selector and the [[ ]] brackets indicate the function represented by the contained selector.

Definition 3-8 Graph selectors
The syntax of a graph selector gsel, an element of the syntactic domain Gsel of
all such selectors over 4, is given by the production
gsel =

/
| /a
| /a 1.2
i/ay.az.a;

where each q; € A.

Definition 3-6: Function denoted by a graph selector
a. The are traversal function O: QX(®U{LDxA = (®U{L}) is defined, for
g={M.Emy€.m,m; €EM,and a €A, to be:
m; iff E(m;,a)=m;
Olg.mi.@) =11 therwise
Og.L.a)= L.
b. The function [[ gsel ]] denoted by a graph selector gsel € Gsel is a function
[[gsel ]1: @ = ®U{L} which is defined by these cases:
Let g ={M E,m') € Q) andeach ay, - - .a, € A.
e if gsel =/ then [[gsel g)=m". /is the initial node selector
o if gsel = /a, then [[gsel Wg)=0( [[/]l(g).ay)
o if gsel = ja,. - .a,., n>1,then
([gsel N(gd)=0(g.l/ay. -+ .a,—1 )(g).a,)
¢. A nodem of a graph g is termed selectable if there is a graph selector gsel
such that {[ gsel I(g)=m.

Note that a selector gsel =/a;.a; - - - a, defines a directed path in a graph from the
initial node to the node selected by it. Thus, a node is selectable if there exists some path
to it from the initial node. Consider the graph g that is the value of the top level node in
the h-graph of Figure 3.1: some sample selectors for this graph, and their respective func-
tion values, are shown below. Note that the value of each selector application {[ gsel [Kg)

is actually the node represented by the outer brackets in each example. Node values are

shown inside the brackets for clarity:
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gsel [[gsel 1ig)

/ - [ #+ ]

/b - [ 4.1 ]

/Q - [ 17 ]
/e.d - L0 #1711

-X-> [ -2%7 1
-y-> [ 3.28 ]

Selection of a node from the hierarchical structure of an h-graph is performed by an
h-graph selector, or simply selector. H-graph selectors are syntactically the concatenation
of one or more graph selectors. Semantically, a node is selected by repeating for each
graph selectox.- this procedure: apply. the graph selector to the target graph, obtaining a
‘node; apply the value function of the target graph to the node, obtaining a new target -

graph. The selection is started by using the root graph of the b-graph as the first target

graph.

Definition 3-7: H-graph selectors
The syntax of an h-graph selector s, an element of the syntactic domain § of
all such selectors over Gsel, is given by the production
§ =
gsel
| gsel, gsel,
| gsel, gsel, gsel,

where each gsel; € Gsel .

Definition 3-8: Function denoted by an h-graph selector

a. The function {{s ]] denoted by s €S is a function {[s }: I' = @U{ L) defined
by these cases:

Let h=(G.V.r) €T and each gsel,, - - .gsel, € Gsel.
o if 5 = gsel then [[s ]J(h)=[[gsel ()
o if 5 = gsel,---gsel,.k>1 then
(L gsel, IV [ gsely - - - gsely TR
s ln)= if V([[gsel, - gsel, ., IR )EQ
4 otherwise
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b. A node m of an h-graph h is termed selectable if there is an h-graph selector
s such that [[s {R) =m.

Considering the entire h-graph & in Figure 3.1, some sample h-graph selectors and their
respective function values are shown below. As in the previous selector example. the
value of each selector application {{s ]2} is the node designated by the outer brackets.

Node values are indicated for clarity:

s ([s RS
/ — [ [ # 1]
~a-> [ B ]
~b-> [ 4.1 ]
—o-> [ 17 ] -d-> [ [ [ # 1 ]
-x-> [ -B8%7 ]
: ~y-> [ 3.25 1
]
//a - [ 5 ]
//e.d/x = [ -2%7 ]
/le.d// =~ [ % ]

Note that the single "/" selector denotes the top level node in the h-graph, and that the

value in that node is the graph g we looked at in the previous graph selector example.

Definition 3-9 Data model
Let S be a get of h-graph selectors. A data model D over § is a four-tuple
D ={H.hg A .R) in which
H CT is a set of h~graphs,
ho€H is the initial data state,

A={a;, - 4, is the sequence of formal argument selectors, each a; €S
such that [[a; [hy)#= L, and
R={ry, - r,) is the sequence of formal result selectors, each r; €S such

that VR €& | J(R)=1 }

The data model describes the structure of the local data area for a procedure. The initial
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data state ko describes the structure of the data when the associated procedure begins its
execution. The selectors 4 designate locations in the initial data h-graph into which argu-
ment values will be copied from the invoking environment prior to execution. Each for-
mal argument selector must be well-formed. in that each must designate a unique node in
the initial h-graph. The formal result selectors R likewise designate unique nodes. but |
these nodes are further required to exist in all h-graphs in the data model. Execution of a
procedure causes a sequence of transformations from one h-graph h to another &', where
both h,h'€H. The set R then designates locations in the final h-graph of such a
sequence (if the sequence terminates) from which result values will be copied back to the
invokir;g environment. The concepts involved in procedure execution are formally

specified in subsequent definitions.

3.3. Data transformations and the Static Program Model

The following collection of definitions presents the formalism for altering a data
state h-graph under software control. The notion of a procedure as a transformer of
tuples of atoms is coupled with the procedure call, a specification of which portions of a
data state to transform. The collected procedure calls in an algorithm form its static pro-
gram model. Note that in the next definition. that of assignment, alterations to an h-
graph (data state) are limited to replacing the existing value of a node by an atom: no

assignment of graph values is defined.

Definition 3-10: Assignment
The assignment function
o IXPxA -~ T
is defined as follows. Let 2=(G.,V,r )€l be an h-graph. m €M (h), and y€A
an atom. Then '
alh.m. ) = h' = {G,.V',r)eT
such that: ‘
a. Form'eM(h"),
v if m'=m
Vim*) if m's#m
b. If m¢gM(h) then ofh,m.¢) is undefined and is written as

Vilm!') =
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alh,m, ¥)=1.
In an assignment a(k.m ., ¥), h is termed the local state, m the selected node,

and ¥ the value assigned.
The assignment function is the means by which one alters the values of nodes in the com-
ponent graphs of an h-graph. If we let the h-graph in Figure 3.1 be &, then the effect of

the sequence of assignments

alh [[//a UR),14) = B
ok [[//ed/y (h').6.75) = h"
alh " [[/fed// R ) true) — R™

is to produce the h-graph &' represented by

[ [ ¢ 1]
~a-> [ 14 ]
-b-> { 4.1 ]
-¢~> [ 17 1 -d-> [ { [ true ] ]
-x-> [ -27 1]
-y-> [ 86.75 |

in which the graph structures are the same as in 2, but some atomic node values have
" been altered. Since the bracket notation [ - - - ]} denoting the function for the text of a
selector can be cumbersome. it is omitted from some of the remaining presentation. The
notation s (A ) is used to désignate a node in an h-graph when it is clear from the context
that its meaning is the same as [ s ]}(# ).
Definition 3-11: Procedure
A procedure f is a function
A" = A", m20.n>0
mapping m-tuples of atoms into n-tuples of atoms. A named procedure is a

pair {f , f ) in which f is the identifier naming the procedure f. Let F be the
set of all names of procedures.
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Definition 3-12¢ Procedure call
a. Let § be a set of h-graph selectors. A procedure call over S and F is a triple -
w=(f,A.R) in which
f €F is the called procedure;

A={a;,...,a,), each g; €S, is the list of actual argument selectors;
R=(ry,...,ra), each ; €S, is the list of actual result selectors.
A procedure call w is normally written ry, ... ,7r, = flay, ..., a,).

b. Given a procedure call w={f ,A.R), a procedure f AT AT corresponding
to f, and an h-graph A={(G.V) €T, the result of execution of w in state h
ish' €T, defined as:

e evaluate the argument selectors A in k to get an m-tuple of argu-
ment atom values: d; =V {(g;(h)), 1€i €m
¢ evaluate the called procedure on these values to get an n-tuple of
result atom values: f(dp e dg )=V, vy
¢ apply the assignment sequerce defined by w to get the result state:
a(h,-.rg(h,-).v,-) = h,-+1 where h =h1 and h'*hnq-;
e if any 7;(2;)=L, or if any d; €A, then the result state A'=.L..

Definition 3-13: Basic block

a. A basic block b={(w,,w,, - ,w,} is a finite sequence of procedure calls, or-
dinarily written wyiwo; - - iw,.

b. Given basic block b and % €T, the reswlt of execution of b in state k. written
b(h). is the h-graph k' in which h'=w, (w,_;( - - - (wy(h)) - - - ). If one or
more of the procedure calls w; is undefined on its arguments then the
result of execution of b is undefined and we write b(h )=1,

¢. The assignment sequence defined by execution of 4 in state A is the concate-
nation of the individual assignment sequences defined by each of the pro-
cedure calls in b.

A basic block is the main unit of concurrent software in the model. Eac.h modeled pro-
cedure is composed of perhaps many blocks, any of which may be simulmnecusly' execut-
ing with others in the procedure. The component procedure calls in a block, however, are
assumed 10 be required by the algorithm 1o execute in sequence. We do not seek with our
analysis o identify situations in which a single block can be dissected into two or more
concurrently executable sub-blocks. A sample basic block 10 calculate the quadratic for-

mula is:
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Block ROOTS

/11 := negate ( /b )

/12 = sqrt ( /discriminant )

/13 = mult ( /2, /a )

/rootl, /root2 = quadratic ( /11, /12, /t3 )

in which the procedure names are suggestive of their functions. Note that procedure calls

can return multiple results.

Definition 3-14: Static program model
A static program medel is a triple SP={S,NP,B) in which
S is a set of selectors.
NP is a set of named procedures, and ‘
B={b;, ... ,b,} is a set of basic blocks, each containing only selector
names from S, and called procedures f such that (f, f JENP,
Given a static program model SP and an h-graph h €T, the following terms can
be defined:
a. Let B'CB be a set of basic blocks. A concurrent execution of B’ in state
h, written B'(h), is the execution in A of a basic block composed of an
arbitrary interleaving of the procedure calls comprising the blocks in
k

B'. Formally, let n=zﬂllength (b,), for b, €B' and k=|B'|. An inter-
im=

leaving of B' is a basic block b'=(w,, - -+ ,w,) in which each &; €B’
appears as a distinct subseguence. that is, no two block subsequences
share any w; inb’. Then B(h) is defined to be 5'(% ), the result of ex
ecutionof ' in k. :

b. An execution seguence is a {possibly infinite) sequence (B, B, - ) of
sets of basic blocks, each B; CB.

c. Let £=(B.B,. - - be an execution sequence. A data state sequence
defined by £ for initial state » is a sequence of h-graphs (hy.ha, * @ )
in which

hy=h,and
hivy = Bi(h)).

Each h; is termed an intermediate state of the sequence, and B;{(k;) is a
concurrent execution of B; in that state. Each pair (k;,h;.q) is termed
a state transition. If for some i, Bi(h;) = L, and i is the smallest sub-
script for which this occurs, then the data state sequence is undefined
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after h; and is written as h;4=1. If the data state sequence is defined
for every intermediate state, then if £ is finite and terminates at B, -1
the sequence of intermediate states is also finite, and it terminates at
h.; otherwise the intermediate state sequence is infinite. For a finite
sequence, h, is termed the final data state.

Note that there can be many distinct concurrent executions of a set of basic blocks,

depending on how the 'interleaving is chosen. Chapter 7 discusses the implications of this

feature for the determinacy of a computation.

3.4. Timed Petri nets and the Control Flow Model

The previous definitions provide the formalism for modeling the data and textual
aspects of a software system. We now introduce the portions of the model that deal with
the control aspects of a computation, that is. describing the various possible sequences of
parallel block executions an algorithm will allow. We employ an extended form of Petri
net 1o do this. Parts of the following definitions are adapted from basic Petri net theory
as presented by Peterson [51]. Though we employ the standard net structure, we have
made modifications to the surrounding Petri net theory to allow time bounds to be placed
on the components of a modeled software system. The definition of a marking has been
extended to facilitate the timing.

Definition 3-15: Petri net structure
A Petri net structure is a quadruple, N={P,T,7,0) in which

P ={pi....,p,} is a finite set of places with n 20;

T =1{t,...,tn} is a finite set of transitions with m 20. and P NTr=e:

I:T — 27 is the inpw function, a mapping from transitions to sets of
places: '

O:T — 27 is the owput function. also a mapping from transitions to sets
of places.

The net structure is a bipartite graph in which P U7 is the set of nodes. We think of the
functions / and O as defining the directed arcs connecting places to transitions and transi-

tions to places. It is convenient to overload their definitions with these extensions:
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Inp —2f
O P - 27

The two formulations of the functions describe the same set of arcs, o that if

I(ti)%{pﬂ and O(t,')m{Pk}
then

0(p;) ={t;} and I(p,) = {t;}.
We will find it useful at times to be able to treat the two functions as taking either places

or transitions as their domain elements.

We define a multiplicity function 8: P27 — {0,1} that, given a place and a set of
places, returns the number of times the individual place occurs in the set. This number is

either O or 1, indicating either absence or membership!. The set of places supplied as a
domain element to 8 is usually 7(¢;) (or O(¢;)) for some ¢;, and so § is usually inter-
preted as telling whether a particular place is an input (or an output) of a particular
transition.
Definition 3-16: Marking ,
A marking @ of a Petri net structure N=(P.T,7.0) is a function ‘

P =101, - ixt-,~1,0.1, -} _
mapping each place in the net into an ordered pair of integers. The marking
can also be described as an n-tuple of pairs, u=(uy,...,M, ) in which each
w; €401, - -Ix{--,~1,0,1, - -} and n=|P|. The two representations are
related by u(p;)=p;, where p; €P.

Each ordered pair in a marking provides information about a particular place in the
net. The first component of an ordered pair is the number of tokens residing in that
place. The second component represents the age of the "oldest” token, that is, the token of

the current resident group that was first to arrive. For a particular ordered pair u;, we

will use the notation {uf,u[) to distinguish the individual components. The meanings of

YThe function § is a restriction of the multiplicity function # presented in Peterson’s text, in which he
uses muitisets of places to descride the inputs and outpuis for transitions. The use of multisets allows more
than one arc 1o connect a place p; o a transition ¢, in either direction; the multiplicity then would be any in-
teger m 0. We have restricted the definitions of 7 and O to use sets of places, thereby allowing at most one arc
between any place and transition in each direction. The two formuiations of Petri nets are equivalent.
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these concepts are more fully explained below.

Modeling real-time software requires analysis techniques for determining the time
bounds on execution of portions of the system. Towards that end, timing figures are
included in the Petri nets used for programs. As other researchers have done [15], we
associate with each place in the net a number of time units; transitions are still considerad
to fire instantaneously as in pure Petri net theory.

Definition 3-17: Timing
A timing 7 for a Petri net structure N={(P,T,] .0} is a function
P -{12, -}
mapping each place in the net into one of the natural numbers. The timing can

also be described as an n-tuple, 7=(ry,...,7,) in which n=|2| and each
7:€{1,2, - - }. The two representations are related by 7(p;)=7;, where p; €P.

Definition 3-18: Marked timed Petri net
A marked timed Petri net is a triple TP=(N, u,,7) in which
N is a Petri net structure,
#o is a marking of NV, termed the initial marking, and
7 is a timing for N. '
The marked timed net _is sometimes written as a sextuple,
CTP=(P.T.1,0,u7), combining the net structure, the initial marking, and the
timing into one construction.

Figure 3.2 illustrates the concepts of Petri net structure, marking, and timing.

In a marked timed Petri net, a token arriving at a place p; must reside in p: for 7;
units of time before it can enable. or participate in enabling, ihe transitions that follow
pi- Thus, p; could represent the condition that a corresponding instruction or group of
instructions in the modeled prdgram is executing, and the timing figure would then
represent the relative amount of time required for it to complete. On completion (ie.,
after 7; time units), the transitions following p; are enabled by the resident token and
may fire, signaling the start of execution of the code represented by the places that receiv_e
tokens thereby. If another token arrives at a place p; in which a token is already

resident, the new token does not begin to age until the previous token has resided for the



43

7 {2.4.3)  m (1:2,0:0,0:0)

After 3 state changes (de?ending on whether ¢; or ¢, fires
during the second state change) the marking could be

{0:0,1:3,0:0) or {0:0,0:0.1:2}

Figure 3.2 Example of a marked timed Petri net

full duration 7; and has caused a subsequent transition to fire,

Definition 3-19: Control Fiow Model

Let SP=(S,NP.B) be a static program model. A conirol flow model over SP is

a four-tuple CF=(T?,8.0.p), in which
TP={(P,T.1,0,up 7} is a marked timed Petri net.

B: P — B is the basic block selection function,
o P — § is the label selector function.
p: PxA — 27 is the path selection function, a partial function subject to
these restrictions:
for p€P and a;.q; €A, _
o either p{p.a; ) CO(p) or p(p.a;) is undefined
e p(p.a;)\p(p.a;) =B, a; #a;

a. Let 7T be the set of all possible markings of the net structure in T7P. A
configuration of CF is a pair {={u,h) in which w€7I is termed the current
cortrol state, and h €@ is termed the current data state.

b. An initial configuration of CF is a configuration {,={(uo.h}, where h €1,



c. Given TP and a configuration {={u,h ), where h =(G,,Vy).

i. The set P, = {p; | p; €P and u} >0} is termed the set of active places.

ii. The set P. = {p; | pi€F, and uf X 1} is termed the set of completely
aged places. ' '

iii. The set of enabled transitions, that is, the set of transitions that the
places in P, fully enable, is defined as T, = {¢t | I(z )CP,}.

iv. The set of enabling places. that is, the places which are inputs to the en-
abled transitions, is defined as P, = rg I().

. [

v. The set of data enabled transitions, that is. the transitions that are en-
abled and designated by the path seiection function as eligible to fire,
is defined as T, ={t €7, | Vp €1(z),t €p(p.V, ([ (p) RN}

vi. The set of data enabling places, that is, the places which are inputs to
data enabled transitions, is defined as P, = tgdl (z). Note that

P,CcP,CcP.CP,CP.
vii. The set Ty of firable transitions, that is. transitions that are data en-
abled and chosen 10 actually fire, is iteratively defined. Given a set of
. data enabled transitions T, the set P;' of all input places tc these
transitions, and a set I's! of transitions, then:
1. choose some ¢t €7,
2.7 M = Tt U {e}
3.8, =P = 1(2)
4, de+1 = {f Gde lI(I)CPd“}
5. Pdﬂ'lm U I(t)

IETdP&‘l
The iteration begins by letting 7, °=@, P,°=P,, and 7,°=T,. It ter-
minates when T, *'=@, at which point we define 7; =7, ‘*1. Note that
Tf crycr,cr.
viil. The set of participating input places, that is. the places that actually
iose a token due to the firing of a transition. is defined to be

Py = U 7(z). Note that P, C Py.
€T #
ix. Similarly, the set of participaring output places. that is, the places that

actually gain a icken due to the firing of a transition. is defined to be
Fp = ELJ}" O(z). Note that P; and P, are not necessarily digjoint.
18y

viii. The set B, of executable basic blocks is defined to be
B, ={B(p)lpepr},
i.e., the blocks associated with the places that each lose a token in the
current state change.
d. Given a configuration {={u.h}. a next configuration defined by CF is
{'=(uw' k') in which ‘
i. u'is defined 1o be

wr=ul—=8pF) + L 83,00,
IR,
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i if p, €P, and p; €F,
#-;r”'l if Pi EPQ- and Pi eP[

#i= 1o if p €P; and w'¥=

T if p;€P; and w'}>0, orif p; €P, and p; €P
ii. R’ is defined to be the h-graph resulting from a concwrrent execution of
B, in state h, written B, (h)=h"

e. The pair of configurations (§,{') is termed a state change for CF. A computa-
tion of CF is a (possibly infinite) sequence of state changes
(£o0.80). {€1. L2} ({2.&a). - - - starting from an initial configuration, which is
more succinctly denoted {o.{1. {2, - - - '

f. A final configuration {;={us hs) is a configuration in a computation for
which P, =@. If a configuration is reached in which P, @ and u/ <0 for
each p; €P,, then the configuration is said to be a deadlock; the {; is then
defined as the first such deadlocked configuration. A computation which
contains a final configuration is said to terminate.

The path selection function p serves as an oracle which, when a place has several
transitions in its output set. specifies a particular subset of those transitions. From this
set, one transition is chosen to fire, thus contributing to the state change. The set is
selected based on a value from the data state h-graph, the location of which is designated
by the selector produced by the label selector function o. Using the oracle to select some
paths over others during execution of a model does not alter the structure of the Petri
net. We simply do not employ a completely nondeterministic choice at these branch
points. The model does provide in the net structure all possible control paths. We can
still perform analyses to determine what control states are permitted in a system without
considering the makeup of the basic blocks themselves. When a particular set of basic
blocks is considered, that is, when particular procedure calls and their effects on the data

state are viewed, some paths may actually be excluded during the exzecution of a model

with a particular control structure.

The set T, of transitions that aciually fire is some subset of 7,, all the ones that
could possibly fire and are designated by the data state as eligible. For the analysis in the

remainder of this report we assume that the size | T | of this set is as great as possible at
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each state change, that is, we fire as many transitions per state change as the data con-
straints will allow. No transition that is enabled and selected by the data state as eligible
will have its firing arbitrarily delayed until another state change. unless it is in conflict
(as defined in section 2.1.1) with another eligible transition. This assumption creates a
firing rule in ﬁvhich all transitions that can possibly fire are required to do so within the
same state change in which they become eligible. The physical situation we wish to
reflect with this firing rule is one in which enough hardware is available that no ready
process must wait for a processor when executing the software system. Thus, all waiting
in our model will be a direct consequence of the synchronization required by the algo-
rithm rather than possibly an artifact of the host machine. As an extension. the added
generality of allowing an arbitrary subset of the enabled transitions to fire would favor
modeling systems in which the hardware does impose some waiting and other scheduling
- constraints on the execution. The final chapter on future research issues discusses the
impiicqtions of selecting some subset of firable transitions which is smaller than the max-
im;am.

Note that the opposite firing restriction to the one we have adoptéd ig that the cardi-
nality |77 | be always one. This generates the firing rule of normal Petri nets: from the
set of all enabled transitions, one is chosen to fire and a new state results from the firing.
The ha.rdwarenoriented interpretation that we are giving to the cardinality of the set T +
suggests that Petri nets with the normal firing rule are useful for real-time concurrency

analysis primarily with a time-shared uniprocessor implementation.

Consider the iterative definition of the set 7 ¢- The set is constructed so that as
many of the enabled transitions as possible will fire, according to the values of the
current data state. First we consider all the transitions which are enabled by fully aged
tokens and have been designated by the path selection function as eligible to fire. One of

these is selected and added 1o the firable transition set. The input places for the chosen



47

transition are removed from the set of enabling places, and a new set of of data enabled
transitions is found. This process is repeated until no data enabled iransitions remain to

be considered.

In constructing the next configuration from the current one, two decisions are made
which the model does not constrain. One such decision comes in cfeazing the set 7'y from
the set of data enabled transitions. The choice is made by selecting data enabled transi-
tions one at a time, and recording which previously enabled transitions are disabled by
the choice, until none remain. Since the block selection function B maps each place into a
basic block which we consider to have been executing while a token in the place ages, the
decision is thereby made to terminate the set of basic blocks associated with the input
places for the chosen transitions, and to begin execution of the blocks associated with the
output places. In each iteration, then, the choice of which single transition in 7' to con-
sider next encapsulates a notion of scheduling. The choice technique is left unspecified to

allow different scheduling strategies to be modeled and explored.

The second unconstrained decision is made in determining the data state resulting
from concurrent execution of the set of blocks B,. An interleaving of the blocks in B,
must be created. and the mode! does not prescribe the method for its generation. Again
the choice encapsulates a notion of scheduling, but on a somewhat lower level than the
first decision. Selecting the interleaving involves putting some procedure call executions

before others, and different interleavings can lead to different data states.

The notion of time units discussed in the definition of a timed Petri net has been
equated 10 state changes in the control model: one state change represents the passing of
one time unit. A timing 7; on a place p;, then, really means that a token arriving at p
must reside there for 7; control state changes before the following Petri net transition is
enabled. We can think of each Petri net place p; with timing 7; > 1 as being equivalent to

a linear subnet of places and transitions, as shown in Figure 3.3. The subnet consists of
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i
Pmatex

T; places

P T7,—1 transitions

i Mi = T;

e T e |

Figure 3.3 Equivalence of timed and normal Petri nets

T; places and 7,1 transitions, connected in the order pi.zi.p5,th, - - VPt b 1. P

The transitions that are inputs to the original p; are, in the replacement subnet, inputs to

Pi: the transitions that are outputs of p; become the outputs of Py, A mutual exclusion

place p; .. is also required, since only one token at a time is allowed 1o age at each place
in a timed net. We make pru.x an input to the first transition ¢{ in the sequence, and we

make it an output of any following transitions z; .

The original basic block B(p;) is associated with the final plate p! in the expanded
net. The other newly created places p{, 1<k <7;, all have null basic blocks associated

with them, as does the mutual exclusion place p/ ...
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Applying the same execution rule to the expanded nets as we do 1o the timed nets of
the control model--all transitions that are enabled must fire in the next state change--we
see that the timed nets and the untimed, expanded nets are equivalent. Essentially, the
expanded, untimed nets can be viewed as timed nets in which all places have a duration
of one state change. Since the structure of the linear sequence of place/transition pairs in
the untimed nets (representing a single piace in the timed nets) precludes any waiting
past the single state change. they all fire in sequence. taking exactly 7; state changes to do

50.

3.5. Procedure models and the Software System Model

The definitions in this final collection unify the concepts presented in the preceding
sections. A procedure model and the function it computes are first defined as a named
entity having a data state, some prescribed data transformations, and a control descrip-

tion. A collection of such models is then termed a software system.

Definition 3-20: Procedure model
A procedure model 7 is a four-tuple w={f ,D,SP,CF) in which
f is the procedure name,
D is a data model,
SP = (§,NP.B) is a static program model, and
CF = (TP,B,0.p) is a control flow model over SP.

When invoked, a procedure mode! is executed by applying the transition rule of its
control flow model to an initial configuration {ue. ko) Where kg is an h-«graph in D and ug

is the initial marking of 77,

Definition 3-21: Procedure represenied by a procedure model
Given a procedure model w={(f.D,SF,CF,;, where D =(H hoA.R),

A={ay, --- a,). and R=(ry, - r,), the procedure represented by m is the
function f:A™ — A", defined as follows:
a.Let {dy, - -.d,)€A™. The argument transmission sequence is

a(h,- .a,-,,,l(h,-).diﬂ) = hi+1. where 0‘~<-.L -‘im—l
To ensure that each h; # 1 we require that no a; is a prefix of a;, i % .
See definition 5-1 for the formal meaning of a selector prefix.
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b. The initial configuration of CF is {o={ue.hp).
¢. Execute 7 as defined by the control flow model CF with initial
configuration {o to get a final configuration {; =(u; .k}, if one exists.

d. If {; does not exist. then f{d}, - - .dy) is undefined. If {; does exist,
then f(dy, - .dp)=(vy - -,v,} where each v, =V{ri(hs)) for
hy=(G V).

For the purposes of this analysis. we require CF to be deterministic so that the result
values of f are uniquely defined, i.e., the procedure represented by each procedure model
is a function. Note that if both scheduling decisions in the control flow model (choosing a
transition and choosing an interleaving) are made using deterministic techniques, then this
restriction will hold. If either choice is made nondeterministically, then the procedure
represented by the procedure model is a relation rather than a function. The final chapter
on future research discusses the implications of allowing nondeterministic control flow
models.
Definition 3-22: Software system model
a. A software system model is a triple SS=(F,II, 7, in which
F is a set of named procedures. termed the primitive procedures;
Il is a set of procedure models, subject to the restriction below:
€Il is the main procedure.
The set of procedure models II must be constructed so that if
w=(f.D,SP,CF}€Il. where SP={S,NP,B), then Vf €NP either f'€F
or dw'={(f"D" SP,CF") €11

b. The procedure represented by SS is the procedure represented by the main
procedure . ‘

A software system model defines a collection of procedure models and primitive pro~
cedures that describe all the computation in the software to be analyzed. Each procedure
model s composed of basic blocks which call only the primitive named procedures or pro-
cedures which have a model in the system. The intent is to have the primitive procedures
be the machine instructions of the host architecture. No structure is known for the com-
putation each performs. but the effect each has on the data state and the time each

requires is known. The procedure models are then the user-defined software components
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of the system.

3.6, Summary

The formal HG model of a concurrent software system is introduced and is seen o
have some desirable features found in previous computation medels: hierarchical decom-
position into independently analyzable procedures; separate components for the different
computation aspects of data. program text, and control flow; time (computation duration)
as a measurable entity in the model; a notion of simultaneity in the ezecution rule for the
model. The flow of parallel control paths in a modeled algorithm is represented by a
Petri net, augmented by times on the places and by an execut’ion rule allowing multiple
transition firings to create a single state change. We present an interpretation of this
model in terms of the parts of a software system and their execution on a parallel host

architecture.



Chapter 4

CONTROLLING HG MODEL COMPLEXITY

The control flow model. as presented. is largely a general Petri net with some addi-
tions that enhance its suitability for real-time analysis. We find it convenient to intro-
duce a technigue for controlling the acceptable structure of these nets, that is, limiting the
software modeler to using only a subset of the general Petri nets. The restrictions serve
the same purpose in our theory that structured programming does for the generation of
manageable algorithms--they limit achievable complexity but not expressive power. We
describe in the first section the formalism of a notation for expressing concurrent algo-
rithmg. termed parallel flow graphs. In the second section we describe how to translate a
parallel flow graph into its HG model components for analysis. As a demonstration of
their utility for modeling softwére, the final section presents examples of concurrent con-
trol structures from existing programming languages expressed in the notation of parallel

flow graphs.

4.1. Parallel flow graphs

To accomplish the goal of modeling concurrent computation with a Petri net struc-
ture of limited complexity, we view the static program model and the control flow model
as a unified entity, represented in a graphical notation termed a parallel flow graph
(hereafter abbreviated PFG). A program can be consgtructed as a PFG and then dissected
into the two component models for analysis. The components of a Petri net produced
from a PFG are easily associated with portions of the modeled software, thus ensuring

that analysis is attempted only for HG models with reasonable interpretations.

52
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Definition 4-1: Parallel flow graph
Let W be a set of procedure calls, § be a set of selectors, and Y be a dis-
tinguished node value. A parallel flow graph ¢ over W.S, and Y is a tuple
¢=(g .V ,#) in which
a. g={M.Esm) where

7} is a finite set of nodes,

7 €7} is the initial node, and

£y is a finite set of arcs, each ey €E4 of the form (m;,m;.a) with

7;. T €7} and a €4, indicating that an arc labeled with atom a ex-
ists from node M; to node 7, : the arcs in E4 are subject to the res-
trictions stated below.

b. V:7) = SUWU{Y} is a function mapping each node in g into either a
selector, a procedure call, or the distinguished value Y.

c. 7 —{1.2, -} is a function that associates a positive, integral exe-
cution time with each node in the PFG.

Each node of a parallel flow graph contains either a probedure call to affect the data
state, a selector to direct branqhing (and concurrency creation). or the distinguished vaiue
Y (termed join) to perform synchronization (and concurrency deletion). Because each
procedure begins with a single control path, the initial node %' may not contain Y. The
arcs between nodes represent the flow of control from one action in an algorithm to the
next, and each arc has an atomic label associated wi-th it. To ensure connectivity; each
node in the graph must be on a directed path from the initial node. Obviously at least
one arc, then, must enter each node (other than the initial node), but we place no upper
limit on this number. The initial node may have no arcs entering it. Arcs leaving a node
are governed by several consiraints. A node containing a procedure call or a join may
have no arcs leaving it, ér it may bave a single arc leaving it with the label on that arc
being null, written #1. A selector node. or branch node, may have any positive number
of arcs leaving it. The label on each of these arcs may be any atom from A, and they

need not be unique, i, an atom may serve as label for two or more of the out-arcs of a

iBy default, an arc with no written label has the rudl label,
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branch node. Figure 4.1 illustrates this synthesis with a portion of a PFG in which each
5; represents a selector and each w; represents a procedure call. In subsequent figures
involving PFGs we employ a notational shorthand for sequences of procedure call nodes.

Rather than explicitly picture each node in such a sequence. we represent the entire
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Figure 4.1 Parallel flow graph
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sequence s a single node. The label on such a node is b; to indicate a block of procedure

calls rather than a singie procedure call. This notation is illustrated in Figure 4.2.

Execution of the flow graph proceeds from the initial node. An initial data state,
represented by an h-graph, is assumed. If a node contains a procedure call, then the data
state is altered as specified by the definition of the called procedure. If a node contains a
selector, then the data. state is consulted at the node selected and a choice of next node (or
nodes) is made based on the value found there. Since separate arcs leaving a branch node
need not have unique labels, several control paths may be concurrently started from such
a node. Two or more parallel control paths can be created in this way. If a node contains
a join Y, then synchronization of the potentially many incoming concurrent control paths -

is performed, and a single control path continues from the node.

An elaboration on arc f oilowing is in order. On completion of the action at any PFG

node, the next nodes in the execution sequence are determined by following one or more

Wi

Figure 4.2 Sequence of procedure call nodes as a single node
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of the arcs (if any) leaving the current node. The atom that identifies the arcs to follow
is found in one of two ways, depending on whether the current node is a branch or not.
If the current node contains a branch selector, then the appropriate atom is identified as
previously stated: the value of the node chosen by the selector identifies the arc or arcs to
follow. If the current node contains either a procedure call or a join, though, the desired
atom is simply defined to be #. Recall that procedure call and join nodes are restricted to
having no more than Qneloutuarc each. which must be labeled with the nudl atom #. That
single arc, if present, is then followed. Since branch nodes are the only nodes allowed to
have multiple out-arcs, they are the only points in a PFG at which concurrent control

paths can be created.

If no arc bearing the specified atom as label is found leaving a node, then the control
path through that node expires: execution does not continue from the node. Execution of

the entire PFG terminates when all individual control paths expire.

Since a PFG has é singie initial node. the execution of a PFG always begins with one
control path. When a branch node selector produces an atom that labels several out arcs,
then concurrent control paths come into being. Subsequently, the progression of actions
along each parallel control path is considered to be executing asynchronously and con-
currently with the other parallel paths. Though the synchronization and merging of
'parallel paths is possible with Y nodes, it is not required. Two or more paraliel paths
may come together in a common segment of a PFG without being joined. Fach path
retains its separate identity and proceeds in tlurn to execute the PFG nodes in the common
section. This feature, coupled with the fact that PFGs may be cyclic, allows a polentially
unbounded number of parallel paths to be created in a computation.. The number of such
paths that can actually be executing at any time (as opposed 1o activated but waiting) is

bounded, however, since the number of nodes in a PFG is finite.
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Note that sequential computation is represented by a special form of the parallel
fiow graph. one in which labels on arcs leaving a branch node must be unique. Since no
more than one arc may leave a procedure node, and since under this restriction no arc
leaving a particular branch node may bear the same label as another arc leaving that
node, at most one contirol path may proceed from each node in a sequential PFG. With
only one initial node, no concurrent activity can then be generated. This simple and suc-

cinct restriction adds to the attractiveness of the theory as a unified computation model.

Though graphs are fairly well understood from flowcharting, we can go one step
further in abstraction away froxﬁ the model by indicating that a software designer need
not even deal with graph structures in producing a program. As discussed in section 4.4
below, many standard programming language features are ezisily translated into paraliel
flow graphs {and hence to the component HG models). The transformation can occur

either in intermediate steps, i.e.. text — PFG — HG models. or directly.

4.2. Extracting the model components from a PFG

Once a designer has produced a PFG which describes a desired computation, the com-
ponent HG models may be derived automatically from the graph. All analysis is per-

formed on the models, not on the parallel flow graph.

We first look at the constructions from a descriptive level and postpone a detailed
presentation. To form the static program model, each basic block is produced from a node
(or sequence of nodes) appearing a1 or between branch points and merge points in the
PFG. For the control flow model, each node (or sequence of nodes) in the PFG produces a
subnet component having a particular form, depending on the role that the PFG node per-
forms. The Petri net components are then hooked together in the same manner as the PFG

nodes.

Each basic block produced from a sequence of procedure call nodes in the PFG

creates a place/transition pair (termed a P/T component) in the Petri net. The two are
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connected by a directed arc from the place to the transition. The P/T component is the
basic net structure. If the place in such a component is empty, the arrival of a token
represents the beginning of execution of an instance of the basic block associated with
that’ place. The firing of the transition in the pair signals the end of that execution. A
token arriving at an occupied place is treated as a request for an execution, which begins

as soon as the iransition in the P/T component fires to terminate the current instance.

Each branch node produces a P/nl" component, composed of a place followed by n
transitions where n is the number of distinct atoms appearing as labels on the arcs leav-
ing the branch node in the PFG. Each arc conhecting the place to a transition is associated
(through the path selection function p) with a different one of these atoms. A transition
has as many arcs leaving it as there are arcs bearing its atom as label leaving the branch

node in the PFG.

Each PFG join node produces in the Petri net an nP/T component, composed of n
places serving as input to a single transition. The number of arcs coming into the join
node detefmines n. it represents the number of active parallel paths of control that are to
be synchronized and merged. Figure 4.3 illustrates these constructions for a portion of a

paraliel flow graph. We now explain these procedures in more formal detail.

4.2.1. Building the static program model

The static program model, being a set of basic blocks, each of which is a sequence of
procedure calls, is formed from the values of nodes in the PFG according to the arcs con-
necting them. Each branch node produces a basic block. representing the procedure calls
required to evaluate the selector expression that produces the atom controlling branching.
We let each join node create a basic block as well, to contain the procedure calls required
to perform synchronization and control path deletion. The remaining basic blocks are
formed by combining sequences of procedure call nodes. A new sequence starts with each

procedure call node immediately following a branch node or a join node: a new sequence
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Figure 4.3 Creating P/T, P/nT, and nP/T components for PFG nodes

also must start with any procedure call node baving more than one input. arc, and with
the initial node 7. A sequence then includes (in PFG order) all procedure call nodes on
the path between its initiating node and a branch node, a join node, the initial node 1), or
a procedure call node with multipie input arﬁs. The basic block produced by a subse-
quence 7y, ‘- .m; of PFG nodes is (wy, -+ w;) = (V(ny), - - V(n;)). This basic
block becomes one of the elements of the set B of basic blocks in the static program
model. An exhaustive search of the PFG will produce all such basic blocks, constructing

the set such that B={by,b, - - ,b,}. Ordering of the basic blocks in the set is irrelevant



60

to their respective locations in the PFG.

The set of named procedures NP in the static program model is constructed as sim-
ply the collection of all procedures named in the procedure calls in the PFG. Since only
procedure calls, selectors. and Y exist as values of PFG nodes, the set is easily isolated.
The set S likewise is simply the collection of all selectors that appear in the PFG, and it is
equally easy to comstruct. Algorithm 4.1 summarizes the procedure for constructing the

static program model from a parallel flow graph.

The algorithm we present for constructing the static program model seeks to build
the largest possible basic blocks, with the overall goal of producing from a procedure the
smallest possible Petri net control fiow model. The smaller the Petri net, the more tract~
able are the analysis algorithms, many of which require time and space exponential in the
size of the net. Since the procedure calls between multi-arc nodes in the PFG are in a
sequence, we produce a single block from them. However, if two blocks were produced
from such a PFG structure the execution order of the component procedure caiis would be
the same. More generally, the individual basic blocks may be as small as that produced
by a single procedure call node or as large as that produced by the unsubdivided séquence
of PFG nodes as just described. This decision is a design choice and depends on the
analysis required of the system. Our algorithm makes the choice not to subdivide, but
there are situations in which subdivision may be desirable. For example, in representing a
pipélined computation the components of the pipe must be separate basic blocks in order
10 have several of them concurrently executable (see section 4.4.5). Such situations

require a modified version of the construction algorithm for the static program model.

Note that the construction algorithm does not specify the contents of the basic
blocks created from branch and join nodes. One block for each such node is included in
the set B in the static program model. Any selectors and procedures referenced in them

are included in § and NP, respectively. The basic block formed from a branch node is
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algorithm build_static_program_model { ¢ )

— The input argument ¢$=(g .,V ,7) is a PFG

— The model is built in three pieces:

—  F:set of procedure names

— 8. set of selectors

—~ B! set of basic blocks

— This algorithm creates a basic block from each branch node, each join

— node, and each maximal sequence of procedure call nodes; the PFG initial
— node is handled first to ensure that it begins one of the busic blocks.

F.§ —@
for all nodes 7
assert = seen(m;)
add selectors in V(n;) 10 §
if V(n)ew
| add procedure named by V(7;) to F
Be@ j—0
for all nodes 7; ( 1; = 7' ) such that = seen{(7;)
if V(n;)esU{Y}
assert seen(7); )
~j e sucej), b = (m;)
for all nodes 7, such that (1;.m,.a) € E4 a €A
j o+ succ(j). b; «
while v, and V{(nm,) € W and m, has one input arc
assert seen{(m, )
add m, onto b;
T  Thex SUch that (M, Nuex . #) € E
add b, to B
else if 7; has multiple input arcs — know here that V(1) €W
J o suee(j). b < ()

T YT

whilené'n, and V(m,) € W and 1, has one input arc
assert seen(m,)
add m, onto b;
M < Mhexe SUch that (M, Npexs . #) € E,

add bj o B

end build_static_program_model

Algorithm 4.1 Constructing the static program model
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meant to provide a means to model the overhead encountered in activating concurrent
control paths on the host machine: it should contain procedure calls to accomplish this
task. The block for a join node should likewise contain procedure calls modeling the
overhead in eliminating concurrent paths. Since these basic blocks represent sysheni*
specific information, defined outside the context of the PFG, they are not considered in

detail here.

4.2.2. Building the control flow model

The control flow model is more complicated to extract from the parallel flow graph.
A translation is performed from the PFG, guided by the node types and their arc inter-
connections, into Petri sub-nets, termed net components. The components are connected
together as dictated by the PFG arcs. We look first at the net component created for each
1ype of PFG node. and then we describe the interconnections. As each component is
developed, we describe its contribution to the functions 7, 8, o, p. and the initial marking

o of the control flow model.

4.2.2.1. Coalescing sequences of procedure call nodes

Before generating any Petri net structures, the number of PFG entities to be handled
is reduced. The sequences of individual procedure call nodes, each of which forms a basic
block in the static program model. are coalesced into single call sequence nodes as illus-
irated in Figure 4.2. Since there is a one-to-one correspondence between these nodes and
the sequences of calls which form basic blocks, the call sequence nodes can actually be
created when the static program model is built. We shall treat these "group” nodes as
notational conveniences. and assume that the individual procedure call nodes comprising a
call sequence 7 are recorded and numbered as m={n', - - -, m*), where there are k pro-
cedure call nodes represented in M. If a call sequence node contains the initial node of the

original PFG, it is designated the initial node of this modified formulation of the PFG.
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4.2.2.2. Petri net components from PFG nodes

After the call sequence nodes are c¢reated, the marked timed Petri net I'P is con-
structed by creating a subnet component with a distinct form for each type of node
encountered in the resulting PFG. The specific form of the component for each node 7 is
dictated by the set of PFG arcs leaving 7 (and for join nodes only. the arcs entering 7).
In a second step, after all the PFG nodes and their out-arc sets have been considered, the
Petri net components are interconnected according to the arcs entering their generating

PFG nodes.

Call sequence nodes

For each call sequence node 7 in the PFG, create a transition ¢, a place Pn. and an

arc e, to connect the pair such that

I(t,) =lp,t and Op,) = {t,}.
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Figure 4.4 P/T Petri net component for a call sequence node
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Note that the arc leaves p, and enters t,,. Termed a P/T component, this Petri sub-net is
illustrated by Figure 4.4. Let the label selector function o associate with p, a selector
that designates a special node that always has the null atom # as its value. We assume
here that the root node of the data state h-graph has this value, so use the selector "/".
Let the path selection function p then designate ty as the image of p, and #. Let the
basic block selection function 8 associate with p.,, the basic block in the static program
model which gave rise to the call sequence node 1 (call it b,). Let the net timing 7 associ-
ated with p, be the sum of the PFG node timings of the procedure calls " comprising the
sequence node 7. Let the contribution of 7 to the initial marking go of the Petri net be
that p, is marked with a single token (and the token's age set to the place’s duration)
only if m is the initial node of the PFG. Formally, these constructions are expressed as
follows:

e o(py) =/

o plp, #) =1,

Blpy) = b,

-

s
T(py) = 21 ('), for k procedure calls in 7
i=

_ [{1.7(ew)} if m is the initial node 7
Holpy) = {0,0) otherwise

Branch {selector) nodes

For each branch node 7 in the PFG create a place Py and n transitions z3,, 1<i €n
where n is the number of unique atom labels appearing on the arcs leaving M. Arcs e,

15i Sn, are created, one between p, and each ¢}, such that

I1(G5) =1p,). 1€i€n  and O(p,) ={z} | 1<i €n).
Note that each arc is directed from the place to one of the transitions. Termed a P/inT
component, this Petri sub-net is shown in Figure 4.5. Let the label selector function o

associate with p, the selector which is the value of the PFG node 7. Let the path
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Figure 4.5 P/nT Petri net component for a branch node

selection function p designate each df the transitions ¢¥, as the image of p, and a different
_one of the n atom labels on the arcs leaving m. Let the basic block selection function S
associate with p, the basic block in the static program model which was formed from it
(call it b,)). Let the net timing 7 associated with p, be simply the PFG timing of 7. Let
the contribution of 1t to the initial marking u; of the Petri net be fhat P 15 marked with
a single token (and the token's age set to the place’s duration) only if 'r}.is the initial node
of the PFG. Formally, these constructions are expressed as follows:

o olp,) =Vin)

L

plpy.a;) =t},, where ay, - * - ,a, are the n unique atom labels on arcs leaving 7
Blpy) = b,

7(py) = 7(m)

L

(1.7(25)} if 7 is the initial node 0
#olpy) = (0.0} otherwise
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Join nodes

For each join node 7 in the PFG create a transition ¢, and n places pi, 1<i €n
where n is the number of arcs entering M. Arcs e, 1€{<n, are created, one between
each p} and ¢,, such that

It ={py 1 1€iSn} and O(pi) ={r,). 1Sk <R,
Note that each arc is directed from one of the places to the transition. Termed an nP/T
cormponent, this Petri sub-net is shown in Figure 4.6. As with the call sequence nodes, let
the label selector function o associate with each pi the selector "/" designating the root
node of the data state h-graph, which is assumed to always have the null atom # as its
value. Let the path selection function p then designate ¢, as the image of each pi, and #.
Let the basic block selection function 8 associate with each p% a copy of the basic block in
the static program model which was formed from m (call it 5}). Let the net timing 7
associated with each pi be simply the PFG timing of 7. Since a join node may not be the
initial node of a PFG, the contribution of m to the initial marking uo of the Petri net is
simply that each pi, is unmarked. Formally, these constructions are expressed as follows:

For 15i €n, where 1 has n entering PFG arcs,

Figure 4.6 nP/T Petri net component for a join node
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o ol(pi)=/
* p(pi,,#)Mtn
B(pi) = bl

m(py) = 7(m)

#olpy) = (0,0) -

4.2.2.3. Arcs interconnecting Petri net components

Each arc created in the Petri net up to this point has been part of a net component
and has been directed from a place to a transition. Next. Petri net arcs are created that
correspond one-to-one with the arcs that enter and leave the nodes in the PFG, connecting
the branch nodes, join nodes, and call sequence nodes. These net arcs serve to intercon-
nect the net components and are directed from transitions to places. We look at the arcs
generated by each PFG node 1 according to its type and the set of arcs that enter 1. For a
particular node 7. this in-arc set is designated E4(n). Each arc e4z€E4(n) is of the form

es={"M:. M a;} where 1€i € | E4(n) |, indicating an arc from 7; to 7, labeled g;.

[N |

[ ok e ey

Figure 4.7 Arcs connecting components 1o a call sequence component
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Figure 4.8 Arcs connecting components to a branch component

‘Call sequence nodes

Given a call sequence node 7, for each e4€E4(m) construct arcs ¢;. 1€i €| E4(m) [, in |
the Petri net, each directed from the appropriately labeled transition in the component for
7 1o the place py in the component for . Pormally, these arcs ¢; are defined by:

Given that ¢ =p(p7,i,ai) for some place Py, in the Petri net component for 7;. let
ot €1(p,)
o O@t) = {p,)

This construction is shown in Figure 4.7.

Branch (selector) nodes

Creation of arcs 1o connect arbitrary components to branch node componenis
proceeds as for call sequence components. Both forms of component contain only one
place, so all arcs coming in must connect to it. The formal expression of the construction

is the same as in the previous section. Figure 4.8 illustrates the arcs created in this way.
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Figure 4.9 Arcs connecting components 1o a join component

Join nodes

The component for 2 join node 7 lcontains one plac.e ph for each of the FE4(m) |
incoming arcs. For each egz€E4(n) construct arcs e;, 1%i €| E4(m) |, in the Petri net. each
directed from the appropriately labeled transition in the component for 7; to a different
one of the places in the component for 7. lFormaily. these arcs e; are defined by:

Given that ¢t = p(pm.a,-) for some place Py, in the Petri net component for ;, let
ot =1(pl)
e O(t)={pi}

An example of this construction is shown in Figure 4.9

The control flow model is thus created by a three-step process: coalesce procedure
call nodes into call sequence nodes: create a Petri net component from each PFG node and
its out-arc set; connect the net components together according to the in-arc set for each

PFG node. The control functions 8, ¢, p, the initial marking uo. and the timing 7 are all
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algorithm build_control_flow_model ( ¢ )

— The input argument ¢=(g ,V .7) is a PFG

— The model consists of four pieces:

- TP=(P.T,I,0,u,.7): the marked timed Petri net

—  B: the basic block selection function

— O the label selector function

- p: the path selection funétion

— 1t is constructed in three steps:

~ (1) coalesce procedure call sequences into single PFG nodes

~  (2) construct sub-net components for each PFG node according to its out-arcs
—  {3) connect components according to node in-ares :

— Assume that step (1) is done when the static program model is built, so that
— the PFG has call sequence nodes instead of procedure call nodes

P.T «~@; B.0,p. 7+« undefined; u,« (0.0
— construct the net components from the PFG nodes and out-arcs

for aill PFG nodes n

if V(mes

P pUlpl

B(p) < b,

a(p) « V(m)

(p) « #(n)

if n=n
molp) — {1,7(p))

O(p) «— &

for all atoms a such that {n,7.a) €E,
T «T Ut}
I(t) ~ {p}
Op) ~0(p)U {r}
plp.a) «—¢

else if V(=Y

T =7 U}

[ -3

for all PFG arcsey= (v, n.a)
P~ pPU{p}
I(e) = 1ty U{p}
O(p) « {¢}
B(p) — copy (b,)
olp) «~/
plp.#) ¢t
1(p) « #(m)

Algorithm 4.2: Constructing the control flow model
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else — n is a call sequence node
P« pU{p}
T T Ule}
Blp) « b,
U’(p)*-/
plp #)—t
7(p) = #(m)
if n=mn
| o(p) « (1,7(p))

- interconnect the net components according to the in-arcs of each PFG node

for all PFG nodes n
if Vin)=
for all PFG arcs eh={n.na)
t — plpy.a; for some py in the component for n'
I(ph) — I(pi) U iz}
else — mis a call sequence node ora bmnch node
for all PFG arcseg = (7. M.a;)
t & plpy a% for some p in the component for 7'
I{py) I(pn) U e}
end build_control_flow_model

Algorithm 4.2 Constructing the control flow model (continued)

created when the net components are created. Algorithm 4.2 summarizes the procedure

for constructing the control flow model from a parallel low graph.

4.3. Modeling language constructs with PFGs

As presented in the previous chapter, in definition 3-19, the control flow model
employs a general Petri net structure with no restrictions on the types of place-transition
interconnectioﬁs that may appear. Peiri nets can be constructed thai have no immediate
interpretation in terms of software processes executing for some duration. Using paralle!
flow graphs for model design ensures that only well structured Petri net models will be
produced, ones that have clear interpretations in terms of software systems. We have
associated with each software unit (a basic block) in a procedure a place p; in the Petri

net model, for which the timing value 7(p;) represents the duration of the software’s exe-
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cution. A token arriving at such a place signals the start of execution of the associated
basic block. The token must reside at the place for a time; when it is fully aged and any
directly following transitions have fired, the block of procedure calls is viewed as having

completed its execution.

One interesting note about token aging is that the association of blocks of procedure
calls with net components allows a measurement of waiting times if execution should be
delayed for synchronization or for some other reason: Aging of a token in the control
flow model is accomplished by starting a token at a place p;, with an age equal o the time
for the place, 7, = 7(p;). The age is decremented at each state change until the age is one,
at which point the token is allowed to enable any following transitions. A fully aged
token in an input place mﬁy not, however, be sufficient to cause a transition to fire. Con~
sider, for instance, the Petri net structure created by a join node: several places serve as
inputs toa single transition. and each place must contain a fully aged token before that
transition can fire. In such a case, the token continues to age past one, attaining a more
negatiive age value with each subsequent state change in which the transition does not fire.
Thus. a place with a negative age component in the net marking indicates that waiting is
occurring. and the magnitude of the age indicates the number of time units that the asso-

ciated basic block has been delayed.

In a PFG structure, initiation of concurrent activity is limited to branch points, and
these have a particular Petri net representation. Synchronization of concurrent activity
occurs at PFG join nodes and at procedure call nodes with maultiple input arcs, each of
which creates a distinct form of Petri net component. A discussion of mutual exclusion
structures in these nets appears in thé following chapter. Using a PFG, then, to form a
Peiri net creates a net structure that has easily identifiable features. each with a well-
defined purpose in terms of the modeled software system. In particular, we know that in

the marked, timed Petri nets produced from PFGs,
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e a place with multiple inputs can occur in any part of the net, for it represents
control passing to the start of a block of procedure calls;

e a place with multiple outputs can only occur at a branch point or at a place that
controls mutual exclusion:

e a transition with multiple inputs can only occur at a join point or at the begin-
ning of a2 mutually excluded section of the network:

e a transition with multiple outputs can only occur at a branch point at which
concurrent activity is being initiated or at the end of a mutually excluded sec-
tion.

The Petri net structures created f rﬁm PFGQ are of the class ternied free choice, intro-
duced by Hack [26]. Any transition ¢; in a free choice Petri net that is in confliet with
another transition z;. that is, that shares one or more input places with ¢;, has only a sin-
gle place p in its input set 7(z). The choice of which transition to fire from a conflicting
group is unconstrained by places other than p having to be marked. Hence it is a free
choice. Hack provides necessaty and sufficient conditions for a free choice Petri r;et to be
live and safe. A net is live if no marking creates a deadlock, that- is, if execution from any
state will eventually enable every net transition. A net is safe if no place ever contains
more than one token. The problem of determining if a net is live is not known to be
decidable for general Petri nets. The safeness problem is decidable for general nets, using

the reachability iree.

It is easily seen that PFGs produce free choice hets. The only time that arcs from
places to transitions are created is when net components are made from PFG nodes. The
only Petri net component with multipie transitions is that of a branch node, the P/nT
component. A P/nT component has only one place in it, and all n of its transitions share
that place as input. No arcs are created between components unless they are directed
from a transition to a place. Hence, only free choice structures are created in the Petri net

produced from a PFG.

When conflicts on shared data are detected, the alierations required to create mutual
exclusion in the control flow model move the resulting net structures out of the free

choice class into the class of general nets. These procedures are described in the following
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chapter. If no conflicts are discovered, then the Petri net is unaltered and remains free

choice.

A Petri net produced by using 2 PFG has a distinct behavior in terms of con-
currency. Paths of control in a computation are represented by tokens in the net. Since a
PFG has but one initial node. execution always begins with a single control path. At a
branch point a single path can be expanded into a fixed number of concurrently executing
paths by the selection of a transition with multiple out-arcs. In a completely acyclic net,
then, the total number of parallel control paths is bounded by the total number of tokens
that can exist in the net at any point in execution. The addition of cycles in a net allows
creation of a potentially unbounded number of paths, depending on the data values
obtained during execution. Once a token is created, the path of control it represents
remains in existence until one of two events takes place:

‘e it enables a transition with no out-arcs, and is absorbed when the transition fires;

e it arrives at a place in a join component, and is coalesced along with other paths
into one path when the transition of the join component fires; the new path con-
tinues on from the join as a single token. '

The existence of concurrent control paths creates concurrent activity in the data
state of a procedure. Since basic block executions are associated with the aging of tokens
in places in the Petri net, concurrently existing tokens {control paths) in separate places
represent two or more basic blocks affecting the datz state simultaneously. If their
accesses overlap. the potential for destructive interference exists. Moreover, reading of
locations in the data state occurs at branch points. when tokens arrive and the associated
selectors are evaluated. This reading may overlap with other activity on the s.ame loca~
tions. The remaining portions of this section deal only with the concurreni controi
aspects of PFG modeled computations. The issues of concurrent access to the data state

are discussed in the final section of this chapter, and in the next chapter.
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Given that well-structured Petri net models can be created automatically from PFG
structures, we can model the concurrency constructs in programming languages with the
unified PFG notation rather than forming the individual components of the software sys-
tem model in an ad hoc fashion. A software 100} can then perform the translation from
the PFG to the HG software system model prior to analysis. To illustrate the flexibility
of the PFG, we describe in the following sections several well known control constructs
from existing programming languages, as well as some that are not available in languages.
Included are the sequential selection, the process spawn, the fork-and-join, the multi-way

- cobegin, the pipeline, and barrier synchronization.

4.3.1. Seguential selection

As a reference point we include in this discussion the standard seléction structure, as
might be represented by a two-way conditional statement (if-then-else) or a multi-way

branch (case) in an imperative programming language. Figure 4.10 illustrates the PFG

§i

e ——
hecoecnenneand

Figure 4.10 Sequential selection. multiple choices
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representation and the Petri net structure formed from the PFG. The branch node creates
in the Petri net a place with multiple output transitions, but the unique arc labeling indi-
cates that only one of the transitions will ever fire at a time, so no concurrency is created.

Hence no joining is required at the block that closes the selection structure.

4.3.2. Spawn processes

A basic construct for creating.concurrent control paths in a computation is the pro-
cess spawn, a facility in which several concurrent processes are started and the spawning
agent continues its execution without waiting for them to complete. The UNIX operating
system [59] offers the process spawn as its major means of creating concurrency. The
PFG representation of such a structure is pictured in Figure 4.11 along with the Petri net
structure that is produced from the PFG. In a sense, this structure is similar to the selec-
tion structure. but there is only one alternative to choose. That alternative then creates
multiple control paths. Notice that the P/T pairs for the spawned processes have no arcs

leaving their transitions. After the tokens age fully and the transitions fire, the indivi-

Figure 4.11 Spawn Processes
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dual control paths expire, indicating that the termination of a spawned process does not
trigger any further activity. There is no synchronization of any of the actions in this

Structure.

4.3.3. Fork and join

The fork-and-join structure is present in several languages. Gypsy [24] has such a
feature, where it is termed a cobegin. This construct is similar 10 the process spawn
structure, with the addition of synchronization. Several concurrent process executions
are created, but eventually the individual control paths must merge back to a single path.

Figure 4.12 illustrates this construct. Notice the inclusion of the join node to force syn-

Figure 4.12 Fork and join ( cobegin )
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chronization of the separate process executions and to merge the multiple control paths

back to the single path of the spawning agent.

4.3.4. Multi-way cobegin

Figure 4.13 shows a generalization of the fork-and-join that is easily expressed in
the PFG notation. Different groups of concurrent processes may be initiated depending on
the atom selected by the expression controlling the branching. In a sense this is also a
generalization of the selection structure, in which one of several alternatives is chosen.
but each aiternative here may involve creation of concurrent control paths. Each alterna-

tive presents a complete cobegin structure in that the parallel paths are synchronized and
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Figure 4.13 Multi-way cobegin
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merged before continuing on to the block following the structure.

4.3.5. Process pipeline

Another common concurrency construct is the pipelined computatiox;, shown in Fig-
ure 4.14. A branch node creates several concurrent control paths. Rather than run them
to a join node (as in the cobegin), which coalesces into a single path,.the concurrent execu-
tions are fed into a sequence of basic blocks. All paths continue to exist separately, but

they now include some common blocks of procedure calls. Moreover, the semantics of

Figure 4.14 Pipelined computation
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the Petri net execution rule force the multiple instances of these common blocks to be
executed one-at-a-time rather than simultaneously. As execution on one of the control
paths finishes the first pipeline block aﬁd moves on to the second. another execution of the
first block will begin on one of the remaining control paths waiting at the head of the
pipe. In the Petri net each control path is represented by a token. which must wait at the
place representing the first basic block in the pipe until earlier iokens have moved on.
Eventually each concurrent path will execute all blocks in the pipe with the indicated
sequencing. At the end of the pipeline shown is a branch node to separate the control

paths leaving the common blocks back into a fully concurrent structure.

4.3.6. Arbitrary structures

Figure 4.15 shows an example of the arbitrary control structures that can be con-
structed and studied using the PFG notation. the goal being to identify novel and useful
control structures that can then be given a syntax and incorporated into a language

design. The one pictured incorporates elements of a multi-way process spawn and a pipe-

Figure 4.15 An arbitrary control structure
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line. Some of the potential concurrent control paths expire; some pass on into the follow-

ing block of procedure calls without being joined.

4.3.7. Barrier synchronization

Synchronization of concurrent tasks at a barrier is shown in Figure 4.16. The struc-

ture allows two independent tasks to synchronize their executions prior to a single
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Figure 4.16 Barrier synchronization
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instance of each block in the barrier being executed. After completion of the barrier, the
synchronized control paths resume their original independent and concurrent executions.
Forms of this structure appear in various existing languages. e.g.. Jordan’s macro exten-
sions to HEP Fortran [33] and the version of Pascal used on the Finite Flement
Machine [32,16]. Though the rendezvous in Ada [2] is a barrier synchronization in terms
of its control flow, the HG system mode! is insufficient to adequately model the full
semantics of this form of 1ask interaction. A barrier synchronization can only occur com-
pletely within a single PFG. This represents a single procedure. with a local data state
shared by the concurrent blocks in the procedure. The rendezvous, however, allows no

shared data other than the arguments passed during the interaction.

4.4. Modeling concurrent access to data in a PFG

The HG software system model offers two views of data: the distributed, global
view of the system as a wkole, and the shared, local view of each procedure. A system is
a hierarchy of procedure calls. starting with the main procedure. There is a single data
stéte for the main procedure, which is in a sense the giobal state for the system. Each
procedure call causes the creation of a separate, local data area for execution of the called
procedure. Argument values from the calling state are copied into the called local state
on invocation. and values from the local state are copied back to the higher level state on
termination of the call. In this sense. every procedure call is independent of all others.
From a global perspective, the system is a completely distributed network of local data
areas, each suitable for execution on a separate processing element with communication

via message passing (of arguments and results).

From the point of view of an individual procedure, the local data area is being acted
upon by potentially many concurrent actors. At each state change in a computation,
several control paths may be active. Basic blocks execute concurrently as indicated by

concurrently existing tokens in the Petri net. and selectors are evaluated at branch points,
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Figure 4.17 Partitioning of a procedure data state

‘possibly several at once. Th_e procedure calls in a basic block are invoked in sequence, but
an individual call in one block may be executing concurrently with a call in another
block. Though individual procedure calls do not interfere with one another during their
executions, when results are transmitted back to the calling environment they create

potentially simultaneous reads and writes to locations in the local data state of the caliing

procedure. If two calls have any argument or result selectors in common, then they share

iocal data. On this level, the HG model is 2 shared memory model.

A software modeler can exploit this duality when creating the local data area for a
procedure. The selectors in a procedure model are either used completely within the
blocks on one control path (task). or they are shared among two or more potentially con-
current tasks. The data stale h-graph can be viewed as being partitioned into sub-h-
graphs according to the usage of selectors by the concurrent tasks in a procedure, as
shown in Figure 4.17. Each unshared partition is accessed by h-graph selectors having a
common graph selector prefix. These selectors should appear only in one task of the pro-

cedure, meaning that they are not shared. For example, in the h-graph of Figure 4.17,
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selectors beginning with the graph selector "/p1” will only access data in this sub-h-graph:

[ [ # ]
~a~> [ 48 ]
~b-> [ 1.75 ]
-c-> [ [ % ]
~t1-> [ blue ]
: -t2-> [ red 1]
]

The shared selectors also bave a common prefix, since all shared locations lie in a single
data partition. These selectors may appear scattered throughout maﬁy different con-
current tasks, indicating that they designate shared data. For example, again considering
the h-graph in Figure 4.17, h-graph selectors having the graph selector "/shared” as prefix

- will select nodes in this sub-h-graph:

[ [ # ]
-08-> [ unix ]
~pi-> [ 3.14 ]
~resl-> [ open ]

Such a data state organization lends itself to at least partial implementation of the model

on a distributed, or other non-shared memory. architecture.

Note that these comments are organizational suggestions and not requirements of the
modeling theory. A system designer is always free 1o treat the entire data state of a prO-
cedure as shared. or to employ an organization scheme that falls between the two

exiremes.
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. 4,5. An extended example

As an illustration of the expressive capabilities of PFGs, an extended example is
presented here and continued in subsequent chapters as analysis techniques are developed.
Consider a software system to perform the three parallel tasks of continuously obtaining
input data from an environment, solving a set of equations to produce some results, and
iransmitting the resuit§ back to the environment. An applicable scenario is obtaining

coefficients for the quadratic formula from a producer, calculating the roots of the

[ 4 1
-const-> [ [ % 1]
~t-> [ true ]
-f-> [ false ]
-0-> [ 0.0 1}
-2-> [ 2.0 }
~-4-> [ 4.0 1

]
-ghared-> [ [ % ]
~-cbuff-> [ [ # ]

]
-rhuff-> [ [ # ]
-rl-> [ 0.0 ]
: -r2-> [ 0.0 ]
J -quit-> [ false I
~taskl-> [ [ # ] :
—-ibuff-> [ [ # ]
~a~-> [ 1.0 1
~b-> [ 0.0 1}
} ~a-> [ 0.0 }
]
-task2-> [ [ # ]
-tl-> [ 0.0 ]
-t2-> [ 0.0 ]
-t3-> [ 0.0 1
-t4-> [ 0.0 1

]

Figure 4.18 Initial data state h-graph for main procedure QUAD
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guadratic formula using the most recently produced set of coefficients, and displaying the
sclution on a graphics device, again using only the most recently calculated data. A simi-
lar problem is presented by Bernstein [12] as being unsolvable in CSP without an exten-

sion to allow guarded output commands.

The software system model contains three procedure models: quad (the main pro-

cedure), acquire, and display. The procedures acquire and display represent the operation

* /
# #
Block QUAD.2 Block QUAD. 3 Block QUAD.7
# # #
y y
/shared /quit /shared /quit /shared /quit
true true
false
falise
false
Block QUAD . 4 true
#
\
Y

Figure 4.19 PFG structure for procedure QUAD
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Block QUAD.2

ftask 1/ibuff /a, /task L/ibuff /b, /task 1/ibuff /c = acguire()
/shared fquit = eq(/task 1/ibuff /a, /const /0)

Block QUAD.4

[shared /cbuff /a, /shared /cbuff /b, [shared /cbuff /¢
= xfer (/task 1/ibuff /a, /task 1/ibuff /b, /task 1/ibuff /c)

Block QUAD.S

ftask 2/t 1 = mult (/const /4. /shared /chuff /a)

Jtask 2/t 1 = madt (frask 2/t 1. /shared [chuff /c)

/task 2/t 2 = sgr{/shared /cbuff /b)

ftask 2/t 3 = neg{/shared /cbuff /b)

Jtask 2/t 4 = mult {/const /2, /shared /cbuff /a)

ftask 2/t 2 = subt(ftask 2/t2, ftask 2/t 1)

Jtask2/t2 = sqre{/task 2/t2)

/shared /rbuff /r 1 := add (ftask 2/t 3, /task2/t2)
/shared /rbuff /r2 = subt(/task 2/t 3, /task 2/t 2)
/shared /rbuff /r 1 = div(/shared /rbuff /r 1, /task 2/t 4)
/shared /rbuff /r2 := div(/shared [rbuff /r2. /task 2/t 4}

Block QUAD.7

Ishared fréuff /r 1, [shared /rbuff /2
= display (/shared /rbuff /r 1. /shared /rbuff /r2)

Figure 4,20 Basic blocks in PFG for QUAD
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. ftask2/11 = mult{/const/4, /shared/chuff/z)
/task2/12 ;= sqr(/shared/cbutf/b) task2/t] 1= mult{/task2/t1, /shared/couff/c)

/

/task2/13 = neg(/shared/cbuff/b) Y /task2/t4 = muit(/const/2, /shared/cbuif/a)

#

/1ask2/12 := subt{/task2/12, /task2/t1)
/task2/t2 = sqri(/task2/12)

#
Y
#*
/
/
/shared/rbuff /vl 1= add{/task2/13, /task2/12} fshared/rbuff/r2 = subt(/task2/13, /task2/12)
/shared/rbuff/11 := div(/shared/rbuff/rl. /task2/14) /shared/rbuff/r2 1= div{/shared/rbuff/r2, /[task2/t4)
Y

Figure 4.21 PFG structure for parallel form of block QUAD.5
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3

Figure 4.22 Timed Petri net for main procedure QUAD
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place B o T Ho
. e i e

P1 Block NIL / I} (L
2 Block QUAD.?2 / 1 | {0.0)
P Block NIL [shared /quit 1 {0,0}
Pa - Block QUAD.4 / 1 {0,0)
s Block QUAD. S / 1 | (0.0
Dé Block NIL /shared /quit 1 (0,0}
P Block QUAD.7 / 1} {0,0)
Ps Block NIL /shared /quit 1 (0,0}
2o Block NIL / 1| {0.0)
Pio Block NIL / 1 (0,0}

place atom P

23! # {z,}

P2 # {2, 1

Pa falge { Iy }

Pa true {ts}

Pa # {5}

?s # {261

Pe false { i }

Ps true { ty }

P # {20}

Ps irue { ti0 }

Ps false {231}

Po # 1 {132}

Fio # {1y}

Pn # {12}

Figure 4.23 Functions in control flow model for QUAD

of a coefficient generator and an output device. respectively. Only the procedure quad is

illustrated in detail here.

In addition to the procedure models, the system has several primitive procedures,

some representing hardware instructions in an execution host: ident. neg, sqr, sqrt, mult,
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subt, add, and div. The procedure ident is a operation that simply returns its arguments
as results. The others are standard arithmetic operations. Calls to these primitive pro-

cedures appear in the static program model for procedure quad.

- 'The procedure guad is the main procedure for the system. The initial data state for
quad is the h-graph shown in Figure 4.18. The structure of the PFG representing the
computation of quad is shown in Figure 4.19. For simplicity of presentation. the indivi-
dual prbcedure call nodes are not shown,; the call sequence nodes resulting from the for-
mation of basic blocks are pictured instead. Figure 4.20 shows the procedure calls
comprising these call sequence nodes. The primitive procedures called in these blocks
have no modeled structure in the system, but their effects on the data state are known.
Note that in block QUAD.7, the assignment:  to n;)des /shared /rbuff/r1 and
/shared /rbuff/r2 is not necessary, but is included to make the conflict detection pro-
cedures in the next chapter more illustrative. The procedure display otherwise needs no

result arguments.

Figure 4.21 presents an alternative structure for the procedure call sequence in block
QUAD.5. The single block can be replaced by the portion of a PFG shown. In contrast
with the macroscopic view of concurrency offered by the top level system PFG, this
second formulation illustrates the fine-grained parallelism which is also achievable with
- the HG system model. In it, evaluation of the quadratic formula proceeds along several
concurrent paths, one for each independent sub-expression. Paths are joined as dictated
by the dala dependencies of the formula, and the final 1wo roots are computed con-
currently. Since the numeric results are the same either way. for simplicity of presenta-

tion we develop the example using the single block form of QUAD.5 from Figure 4.20.

The control flow model for procedure guad consists of the timed Petri net shown in

Figure 4.22 along with the functions shown in figure 4.23.
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4.6. Summary

A graphical algorithm notation termed parallel flow graphs (PFGs) is introduced as a
method of conveniently expressing a broad class of concurrent computations. A sing}e
PFG is meant to express the structure and potential behavior of a collection of con-
currently executing blocks of procedure calls operating on a shared data space. A transla-
tion procedure is described from PFGs to the HG model formalism. HG models produced
from PFGs offer a simpler structure for analysis than those produced in an ad hoc

fashion, in that free choice Petri nets rather than general Petri nets are produced from

PFGs.

Several well-known concurrent control structures from existing programming
languages are expressed in the PFG notation to demonstrate the utility and generality of
these modeling techniques. The structure of the data state for an HG system and an indi-
vidual procedure model is discussed. An extended example is introduced that will carry

over to subsequent chapters.



Chapter 5

" CONFLICT RESOLUTION IN THE CONCURRENCY MODEL

We turn now to the problem of detecting and correcting conflicts among the basic
blocks of procedure calls that may execute concurrently. The control flow model dictates
the order and groupings in which basic blocks execute. If the control flow model calls for
several blocks to be active simultaneously, we need to be sure that the concurrently exe-
cuting instructions do not interfere with each other, for example by one block writing a
variable between two successiye reads of the variable in the second block. Should some
of the concurrent blocks of a model be found to have conflicts, we then need a technique
-by which the blocks can bé subdivided into smaller blocks such that the conflicts are
eliminated and the computation may proceed in parallel with the correct mutual exclu- -

sion.

The parallel flow graph was introduced in the previous chapter as 2 unified represen-
tation of a static program model and a control flow model. In the ensuing discussion we
will refer to a PFG ¢ and its representation as component HG models interchangeably,
using the notation ¢ = {g V.7 = (SP CF.. In this chapter, then, we restrict the universe
of static program models and control flow models under consideration to those that are
produced from parallel flow graphs rather than formed in an ad hoc fashion. We further
restrict the control fiow models for which this conflict analysis iy applicable 10 ones in
which timing is not a consideration. For a control low model CF=(TP,B8.0,p) in which
TP;=(P.T 1,0, o, 7), this restriction is formally stated as

Vper[ r(p)=1]

and says that all places, and hence basic blocks, have an execution duration of unity.

93
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This restriction is tantamount to ignoring the timing information in the model. The
assumption is that at each state change we choose a set of basic blocks and concurrently
execute each to completion before continuing with the next state change. In a sense, this
treats a basic block as an atomic operation, which is not actually true to the system being
modeled. The assumption is made to simplify the analysis. An extension to consideration

of basic blocks overlapping in time is described in the following chapter.

5.1. Potential interference and concurrent conflict

The work of Bernstein [13] provides a starting point. His analysis enables one to
discover when two blocks of code, one following the other in sequence, may be executed
concurrently without risk of conflict. Our requirements are somewhat different. The
two blocks of code in our analysis are originally to run in parallel, not in sequence. We
need to discover the conflicts in data references, if aﬁy. that would prohibit this con-
currency. and in the presence of such, to subdivide the blocks so that some portion of

each may execute in lieu of the entire block.

The analysis is further complicated by the need 10 identify read/write conflicts not
just on simple variables but on structured data as well. The discussion is motivated by
the observation that if one procedure changes a field in, say. a record and another pro-
cedure changes the entire record as a unit, then _the two are in conflict on shared data,

even though textually the references 1o the data items are different.

In the HG model. the textual form of an b-graph selector gives an indication of the
siructure of the data involved with the function represented by the selector. If an h-
graph selector 5 is composed of a single graph selector (i.e.. it has only a single. leading
*/", as in "/a.b.c"), then it accesses one graph, and it designates one node within that graph
by following various arcs (indicated by the "." notation in the graph selector). We con-
sider this analogous to using a simple variable. treating the single involved gréph as thé

collective local data state for a procedure model containing 5. If an h-graph selector is
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composed of multiple graph selectors (e.g.. "/a.b/c"), then it involves more than one
graph. This is analogous to accessing a structure within the local data state. The textual
form of two selectors s; and s5; can be used to detect any potential overlap of the nodes
designated by {[s; ] and [[5; I. The concept of a selector prefix, as found in [64], provides

the formal basis for texiual reasoning about such conflicts.

Definition 5-1: Prefix of an h-graph selector
Given two selectors s,5' € §, ' is said to be a prefix of s, written prefix(s'.s).
if 5" is of the form s'y - --s', with each 5';€Gsel, and 5 is of the form
$'yr 58y 5, with m 20 and each 5; €Gsel. When m >0, s is said to be
a proper prefix of 5, written proprefix(s'.s).

Definition 5-2: Selector overlap and selector conflict
Two selectors s;,5; are said to overlap, written overlap(s;,s } ), if
35‘. [orefix(s',s;) A prefix(s',s;)]
They are further said to conflict, written conflict (s;.5;), if 5'=s; or 5s'=5;.
It is triviaily the case that Vs €S [ conflict (s,5) 1.

If two selectors have a common prefix, then they specify accéss paths in an h-graph that
require taking the value of one of more common nodes. Selecting through a node is a read
data access, but when a node is the final selection of a selector it is potentiaily writable.
A potential conflict, then, only arises if one of these common nodes is the final selection of

one or both of the two selectors, i.e., if conflier(s;,s;).

Recall that the definition of a procedure call in the previous chapter restricts the
actual parameter selectors of a procedure call to selecting only atoms, not graphs. This
prevents the creation of pointers that would allow access in one procedure to the data
state in another procedure. In addition to this restriction, the analyses presented in this
chapter assume that for each procedure in an HG software system model no selector is
aliased with any other in the initial data state h-graph. The non-aliased assumption

means that given two h-graph selectors s5;,5; and an initial h-graph &,

Us; Kn)={ls; ) if s =5,

The selectors designate different nodes unless they are textually identical.
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For an initial data state free of aliases, :nhe following lemmas and theorem ensure
that execution of a procedure call will not introduce any aliases. The first lemma applies
to a data state with no aliased nodes. It states that if an assignment is performed on a
selected node. then every other selector designates the same node after the agsignment as
prior 1o it {except for those having the original selector as a proper prefix, which become

undefined):

Lemma 5-1:
Given: R €T, S an alias-free set of selectors on &, 5 and s'€S (s & s'), g €A,
and A'=alh,s(h)a)= L.
Then: either
(1) proprefix(s,s") As'(h) =L, or
(2) s"(h)=5s'(R").

Proof:
(1) Consider the case in which proprefix (s,s"). Then:
5" = 55" for some 5" €8, by Definition 5~1, the meaning of a selector
prefix;
s'(r)=5"(V(s(h))) by Definition 3-8.a (the meaning of an h-graph selec-
tor);
s'(h")=5"(a), by Definition 3-10.a (the value function produced by as-
signment); but since a is an atom, s“(a)= 1L;
s'(h')= L, by substitution. ‘
(2) For the case of = proprefix(s.s'). let s'=5"s' -+ - 5',. By Definition 3-8
{the meaning of an h-graph selector applied to an h-graph),

s'h) =55 (Vs (V- (VR -+ ).

Since the selectors are assumed non-aliased, and since s is assumed not a
prefix of s', none of the nodes s';( - - ) has its value changed by the as-
signment creating A'. Thus foreach i, V(s (- )) = V{s';( - )) where
h=(G.V.r)and h'={G,V'r). Then,

s =5, (VG (VC - (VG R - ) = s (R,
(]

The next lemma states that no aliases can be created in a data state by an assignment to a

node of that state, that is, s and s’ are aliases in k' after an assignment only if s and s
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are aliases in h, prior to an assignment.

Lemma 5-2;
Given: b, h'.and § as in Lemma 5-1, with 5,5' €5, and s(h ) =s"(R").
Then: s(h)=s'(h). ]

Proof: By Lemma 5-1, we know that s cannot be a proper prefix of s’. or the
two cannot be aliases as is assumed. Therefore, by Lemma 5-1 we know that
s'(h)=s'(h"). Combining this with the assumption gives s(h')=5s'(h). By the
definition of the meaning of assignment, s (k') =s(k), so combining again gives
s(h)=5'(h).

-l

The following theorem attests that the action of a procedure call on a data state does not
create aliases:
Theorem 5-1:
Given: an b-graph h, a set of selectors § which is alias-free on k. and a pro-

cedure call w such that A'=w(h).
Then: 5 is alias-freeon h'.

Proof: By contradiction. Assume that § is not alias-free in A’. By Definition
3-12.b, execution of w in h defines the sequence of assignments
olh;, (ki) v;) = hiyy. where h =h, and k' =h,,,. By Lemma 5-2, the ex-
istence of aliases in h'=h,,, implies the existence of aliases in h,. In general,
the existence of aliases in h;4, implies the existence of aliases in A;. This in
wurn implies that S is not alias-free on h; =4, contradicting a premise. There-
fore, the assumption that § is not alias-free on A’ is false.

O

Theorem 5-1 says that we need only verify that the initial data state for a procedure is
alias free in order to guarantee that all data states produced during execution are also
alias-free and so suitable for the analyses we describe below. Most programming
languages require alias-free initial data states. The problems of program verification in

the presence of aliased h-graph structures are discussed in Wilson's thesis [64).
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Two forms of read/write conflict can arise between two concurrent basic blocks.
We offer a condition on the selectors in the blocks for each type of conflict. Given a basic
block b; and a set S; of h-graph selectors appearing in the procedure calls of b;, consider

the following sets:

o S is the set of all selectors s €S; that designate nodes which have their values
~ assigned during the execution of b;.

o S =8 US!™, where S is the set of all selectors s'€S; that designate
nodes which have their vaiues assighed and then read one or more times with
no intervening assignments during the execution of 4;. and where S} is the
set of selectors {s"|s'€S}” A proprefix(s“.5")), the proper prefixes of the
written-then-read selectors. :

¢ SJ7 =S USI™, where S is the set of all selectors s'€S; that designate nodes
which have their values read twice or more with no prior or intervening
writes during the execution of &;, and where ST is the set of selectors
{s"|s'€S]" A proprefix(s",s")), the proper prefixes of the read-then-read-
again selectors.

'

To maintain the integrity of the computation being performed by & ;. & node selected by a
selector s must have the same value each time it is accessed between writes or block -
boundaries. This may not happen if b, is writing to 5 as well. depending on the relative
order of the operations in the two blocks. A potential conflict is also created if b, writes
to the node designated by any prefix of 5. This action could change from a graph to an
atom the value of a node in the path by which 5 determines its selected node, causing 5 1o

become undefined.

Definition 5-3: Potential inlerference
We say that b, potentially interferes with b;, written interfere (b, .b; ), if these
conditions are met:
LS NS =@
b, assigns to a node that either is one which b; has assigned for later
reference, or one which is in the access path to such a "scratchpad”
node, or
Sy NS =o
b; alters the value that b; gets on two or more successive reads from a
node m, or it assigns to any node in the access path to m.
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We must also check for b; potentially interfering with &, to detect all possible conflicts

between the two basic blocks.

Definition §5-4: Conflict between basic blocks
Two basic blocks ; and b, are in conflict, written conflict (b;.5, ), if
interfere(b; b, ) V interfere(b, .b;).

Note that no pair of basic blocks needs be checked in which the pair is split across two
different procedure models (two different PFGs). The semantics of ‘the software system
model are that each procedure call executes a procedure with its own separate. local data
area. Argument values are copied in at initiation and copied back at termination. The
system is a hierarchy of independent storage areas. so read/write conflicts cannot occur
except within a single procedure. Thus we consider a set B of basic blocks, all from the

~ static program model of a single procedure.

From B, we then seek to identify all pairs of blocks that can possibly execuie con-
currently according to the structure of the timed Petri net alone. To determine this, no
consideration is given to the data state and the effect it has on branching during actual
modei execution. We assume that if a path exists in the Petri net structure then there is
some execution seguence that goes down that path. This simplification is justified by the
observation that if conflicts are discovered and corrected in blocks that never actually
execute concurrently (due to the dictates of the data state sequence), no harm is done to
the computaticn. For a static program model SP={§ NP .B; and a control flow model
CF=(TP,B,c,p), define the set of possibly concurrent blocks as

Co=1{{b;.0;} | b,.b;,€B. Blpi=b,, Blp)=b;,

and p, p' are marked in some reachable marking u of I'P}.

The concept of reachable marking is taken up in the next section. This restriction to a
reachable marking is a weak condition, in that some block pairs may be identified as pos-

sibly concurrent that will never be actually concurrent when the data state sequence
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guides model execution. Formally. for a reachable marking u of TP indicating that a pair
{b;.b;) is possibly concurrent, there may not exist a computation {o.¢;, - - - £ of
CF in which {'=(u.h). However, no block pairs that can achieve concurrent execution

are overlooked by this definition of Cg.

Definition 5-5: Concurrent conflict between basic blocks
Two basic blocks b; and b; are in concurrent conflict, written weonflict (b; .6, ),
if
conflict (b; b, ) A (b; . b,) €C,.

Given these definitions, the problems we seek to solve may be phrased this way:

1. Given a PFG ¢=(SP,CF) where SP=(S,NP,B), construct the set Cy. and then
identify a set C4'CCy such that weonflic? (b;.b, ) for each (b;,b, ) €C,".

2. Given a particular pair of basic blocks {b;.b, ) €Cy, construct a corresponding
pair of basic block sets (B;.B:}, and make appropriate changes to the control
flow model, such that -

a. B;, B, model the same computation as b, ,5; ., and

b. for each b; €B; and b; €B;, = weonflict(b;.b,).

5.2. Identifying concurrently executable basic blocks

We look first at methods of solution for the first of the two problems. In the PFG
for a single procedure, only the pairs of blocks that can execute in parallel (according to
the control flow alone) need be checked for interference. Given a PEG ¢ and its HG mode!
components (SP,CF), consider the set C4 of all pairs of basic blocks from SP that can
possibly execute concurrently according to the execution structure defined by the Petri
net in CF. We wish 1o determine if {(b;.5;)>€Cy for any arbitrary pair of basic blocks b,
and b, € B.

Definition 5-6: CONBLOCKS: The Concurrent Blocks Problem
Given a PFG ¢ and two basic blocks b;,b; in ¢, is (b; b €CY?

For a general parallel flow graph, one way to systematically identify concurrent conflicts

is 10 assume that all pairs of blocks can possibly execute concurrently and check pairwise
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the entire set B. Since this solution could be excessively time consuming and could find
textual confiicts that, due to sequential execution, are not truly problematical, we would

like to find an alternative method.

We can completely solve CONBLOCKS by reducing it to another problem that has a
known solution. Recall that we are considering here only Petri nets in which each place
has a duration of one time unit, so that only the number of tokens at each place is
significant state information. A marking u, then, of a Petri net with places P, | P |=n,
can be written as an n -tuple of non-negative integers, as in regular Petri net theory. We

say that a marking &' covers a marking u, written u' 2 u, if VpeP[ w'(p)2ulp) 1.

Definition 5-7: COVER: The coverability problem for general Petri nets
- Given a Petri net N, an initial marking . and a second marking g', is there a
reachable third marking u” such that u" 2 u'?

Theorem 5-2:
CONBLOCKS = COVER.

Proof: We show that every instance of the concurrent blocks problem can be
polynomially transformed inte an instance of the coverablhty problem by
* describing the construction.

An instance of CONBLOCKS is a PFG ¢={SP.CF ). where SP={S_.NP,B), and
two basic blocks b;,b; € B. The component CF of ¢ contains a marked timed
Petri net TP, =(N g, ftog. To) Where Ny={Py, T4, 1,04

An instance of COVER is a Petri net structure N=(P,7.J,0 . an initial mark-
ing i, and another marking u'.

Construct N =N, and construct 4 = gog.

To construct 4’ we need the following observations:

i. A block & can possibly execute in a configuration {={u,h} of CF if, for
some p € Py where B(p)=b and ¢t €0(p), all x; 21 for p, €/(¢). This
says that a block may execute if one of the places that maps to that
block is an input to a fully enabled transition.

ii. The techniques used to build the Petri net from the PFG guarantee that
each block is associated with a different Petri net component. The
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structure of all components is such that, for all p € P, :
»if 10(p)|>1, then Ve €0(p), I(¢)={p} (a P/nT component)
o if {O(p)|=1, then
either | 7{O(p))|=1 (a P/T component)
or Vp; €1(0(p)). O(p;)=0(p) (an nP/T component)
This says that a block b is either the image (under the basic block
selection function 8) of a single place that alone enables at least one
transition, or it is the image of each of several piaces, all of whlch are
inputs to a single transition.
Thus a block b may execute in a configuration { if each of the one or more
places that are images of & under B contains one or more tokens. A marking
which has these places marked for both of two basic blocks, then, would indi-
cate a configuration in which both are executing.

Construet u' so that
1 if py €P} or p, €P
K& =10 otherwise

where Py ={p € Py | B(p)=b;}, and P} ={p €P,| B(p)=b;}.

The Petri net construction techniques that generate the PFG ¢ guarantee that
an instance of CONBLOCKS is answered "yes" if and only if that instance
transformed to COVER is answered "yes".

O

Note that the zheoreﬁx only holds for a static program and control flow model pair con-
structed from a parallel flow graph. Models constructed ad hoc may noi have the regular
structure relied upon in the proof. In particular, the basic block selection function 8 in
an arbitrary model is not constrained to either map a single place into a block or to map a

~group of places, all inputs to a single transition, each into a single biock.

Since COVER is at least as hard as CONBLOCKS, we can solve each instance of
CONBLOCKS by solving the equivalent instance transformed to COVER. The solution to
COVER is obtained by computing the {finite) reachability tree for the Petri net in the

problem instance. then searching it for a state satisfying the coverability conditions.
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Figure 5.1 Simple Petri net

5.2.1. The Petri net reachability tree

The reachability tree for a normal Petri net with an initial marking is a grapkical
representation of the reachability ser, that is the set of all markings (states) of the Petri
net that can be reached from the initial marking (initial state) by successive applications
of the execution rule. Ea-ch node in the iree represents a particular state, and an arc leav-
ing a node is labeled with the transition that produces the state that the following node
represents. From any given node (current state) in the tree. there are as many arcs to fol-
low to a next node {next state} as there are elements in the set of enabled transitions for

the current state.

For many Petri nets. the reachability tree is infinite. This occurs when at least one
transition sequence produced by execution of a Petri net is infinite. Consider the Petri net

shown in Figure 5.1. Its reachability tree is pictured in Figure 5.2, and can be seen to
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Figure 5.2 Reachability tree for net in Fig. 5.1

contain several infinite paths, represented by the elided nodes. The underscored nodes

represent states that are duplicates of states found elsewhere in the treel. Notice that as
certain sequences of transitions are repeated, the number of tokens is increasing regularly
" in some places of the markings on the infinite paths. A finite form of the reachability iree
can be produced in which collapsed single states are created from these groups of states
that are equivalent except for an arbitrarily large number of tokens in some of the places.
The special symbol w is used in the distinguished states to represent the arbitrarily large

number of tokens in a place. If the state sequence from some state u in the tree back to

These duplicate nodes mean that we are actually representing a reachability graph with cyeles, but the
designation of free is retained to refer to the structure as constructed here,
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the root contains a state u'# u such that Vi ,u.(ps)?,u.'(p,-)]. then each u;>u’; can be
replaced by an w. The algebra of w is given by

wxc=w

wZc

_ w 2w
where ¢ is any arbitrary constant. The resuiting tree has leaf nodes which are either ter-
minal states of the net, ie.. no transitions are enabled, or states which are duplicates of
ones found elsewhere in the tree. Peterson gives an algorithm and a proof of termination
in [51] for constructing a finite representation of the reachability tree for a Petri net
which is executed under the normal, one-at-a-time transition firing rule. Figure 5.3

shows a finite form of the reachability tree from Figure 5.2.

(1.0.0)
Ly
(0.1.1)
/t‘/r3 &
(1.0.w) (0.1.0) (1,0.0)
L 13 \4 Iy ¢ to
(0.1.w) (1,0.0) (&,0.0) (1,000 (OD.awl) (0,0.0)

(1,0.w) (0.1.0) (w.0.0)(w.ww){e0.0) (000 (wew) (0.00)(1.00) wee)wwd)

(w.w ) {wwo)lewe) (woe) (w.0,0)

Figure 5.3 Finite form of the reachability tree in Fig. 5.2
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Some information is lost in the transformation from a full reachability tree to a
finite form; specifically, the lengths of the transition sequences between speécific instances
of the w states cannot be determined. The finite form of a reachability tree is not unigue
in structure; for instance, generating the tree breadth-first for a particular net gives a
different placement of the duplicate nodes than if the same Petri net were used with the
tree nodes generated depth-first. The different representations, however, are collectively
unique in thal one contains the same useful information as another about the generating
Petri net. The finite tree is sufficient to solve some analysis problems. most notably (for
our purposes} the coverability problem. Given the finite reachability tree for a Petri net,
an instance of COVER can be solved simply by searching all the nodes of the tree to find
a marking which covers the target marking u'. In the remaiﬂing discussion we shall refer
to a finite form of the reachability tree for a Petri net as simply the reachability tree,

unless otherwise indicated.

5.2.2. The concurrent reachability tree

We cannot employ the reachability tree directly as Peterson describes it. Since the
tree is a representation of all possible state sequences, its structure is dependent on the
execution rule. Our concurrent firing rule excludes some of the states that can be
obtained under the normal rule, so we must alter the tree;' construction to reflect this pro-
.perty.

An example will illustrate this point. Consider again the timed Petri net shown in
Figure 5.1. and its reachability iree under the normal firing rule in Figure 5.2. Under the
concurrent execution rule we have adopted for Petri nets. the reachability tree generated
is the one in Figure 5.4. Though the tree is infinite as before, notice the lack of state prol-
iferation caused by delaying enabled transitions from firing under the normal execution
rule. We can see that the reachability tree for a normal Petri net contains some branches

(and so introduces some computational complexity) which, under our interpretation, are
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Figure 5.4 Concurrent reachability tree for net in Fig. 5.1

not due to the algorithm, but rather to the execution host. We eliminate those branches
in the concurrent reachability tree. and so deal only with alternatives dictated by the
algorithm. The effect is that the concurrent reachability tree of a Petri net under the
maximal execution rule represents the maximum possible concurrency--the ideal against

which implemented systems can be compared.

Now consider creating w states in this concurrent reachability tree. If we apply the
algorithm Peterson describes for the sequential execution rule, the tree pictured in Figure
5.5 is obtained. The state marked' * in this tree implies that concurrent execution should
be able 10 generate a state p such that u(p))23, u(p2)=0, u(pi)=0. Looking at the full

tree in Figure 5.4 we see that such a state is in fact not obtainable. Thus the algorithm
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Figure 5.5 Incorrect finite representation of tree in Fig. 5.4

for creating w states under the sequential firing rule is not sufficient for the concurrent -

firing rule.

The reason the symbol w can be freely inserted into a net marking when construct-
ing a sequential reachability tree is begduse the one-at-a-time firing rule allows exact
reproduction of the transition firing sequence that leads from a marking u to another one
#' where u'2 u. Hence the notion of "pumping” a place or places with 1okens is an achiev-
able execution phenomenon. Under a concurrent firing rule, pumping may not be possi-
ble. Transitions may be enabled in &' that were not enabled in u, and their firing cannot
be denied (as they may under the normal firing rule) in order 1o exactly repeat the
sequence of transition set firings that led to &' from u. Thus the conditions for inseriing
@ markings must be strengthened in order 1o build a finite representation of the reachabil-

ity tree under the concurrent firing rule.
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Figure 5.6 Correct finite form of the reachability tree in Fig. 54

Given a current marking u, consider another marking #' on the path back to the root
from w. Simply checking to see if pZp' is not enough, for 4 may create some enabled
transitions that are not enabled in u'. Firing the net, then, in state u may. through these
extra transitions, have an eventual effect other than to pump tokens into some places.
Extra enabled transitions can occur in x4 when a place p; goes from having no tokens to
having one (or more) tokens. This means that if u'(p;,)=0 and u{p; )21 we cannot expect
that the same transitions will necessarily fire from u as from g'. Furthermore, if
#'(p;}=1 and u(p;)22, then we still cannot add the w symbol for p;. This situation

implies that in the state following u there may be transitions enabled by the token left in
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pi that could not have been enabled in the state following u'. where the number of tokens
in p; will have dropped 10 0. We need to consider not only the firing possibilities in the
current state g, but the ones that may result in the states immediately following u as
well. In terms of being able to repeat the exact transition-set firing sequence leading from
' to u, a steady state at place p; is onﬁy possible if p; contains 2 or more tokens in the
earlier state &'. Then the token count cannot drop to zero in the state following u', as it

also cannot in the state following .

Pumping tokens, then, into a place p; is only possible if the current marking pu is
across-the-board nondecreasing with respect to some previous marking u', and p; has at
least 2 tokens in u'. When constructing the concurrent reachability tree, then, @ symbols

can be added to a state u at place p; if

Bp'«":;-b fI I ka

ploe P 2ulp Y| A wp)>u(ey A p(pl>1

where = means "precedes in some state sequence from the initial state." Note that the
stronger conditions employed to construct the concurrent reachability tree will also pro-
duce an acceptable tree for a sequential execution rule. Because of the delay in detecting
pumping of a place until two or more tokens are present, the resulting tree may simply
have more nodes in it than one constructed via Peterson’s rules. Figure 5.6 illustrates the
concurreni reachability tree obtained from the sirengthened algorithm for the example

Petri net in Figure 5.1.

One final alieration we apply to Peterson’s tree-generating aigorithrﬁ is that the
nodes are required 1o be generated in a breadth-first fashion. This feature is employed
later in arguing aboﬁt the distance that a duplicating node is from the root of a tree in
relation 10 the node it duplicates. Algorithm 5.1 presents a formal summary of the

altered concurrent reachability tree construction procedure.

As with Peterson’s algorithm, the algorithm to construct the concurrent reachability

tree terminates. The proof follows the main lines of Peterson’s previously mentioned
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algorithm build_reachability_tree

— The reachability tree is constructed in much the same way as described in Peterson,
— p. 95, with the addition of stricter conditions for inserting w symbols in a net state
— f{tree node). The extra conditions are a reflection of the net behavior under the

— concurrent transition firing rule used in net execution.

— This version assumes no times on the places of the Petri net, that is, a marking p of a
— net is defined solely in terms of the number of tokens at each place.

~ The choice of which frontier node to process next must be made in a manner that
- generates the tree breadth-first. This organization is assumed in the arguments
- abowt path length and duplicate nodes.

Foot & Wo
nodetype ( root ) + frontier
while x st. nodetype { x ) = frontier
if 3 y sz nodetype ( y ) # frontier and ., = u,
| nodetype ( x ) « duplicate
eise if T, =0 for u,
| nodetype ( x ) « terminal
else — x is not duplicate, and there are transitions enabled
| nodetype ( x ) + interior
for each maximal firableset 7' C 7T
create a new node z
nodetype ( z ) « frontier
M, = execute 7,'in u,
for each place p;
ifay on the path from root 10 x
st Mz /#’s Md #.. (p:)>)u'v(.P1) and }u'y(Pl)>1
e (i)

“end build_reachability_tree

Algorithm 5.1 Constructing a Petiri net concurrent reachability tree

proof. with an additional argument about markings in which some places have two or
more lokens. We include two of Peterson's supporting lemmas for ease of argument, and
refer the reader to his text [51] for their proofs.

Lemma 5-3:

In any infinite directed tree in which each node has only a finite number of
directed successors, there is an infinite path leading from the root.
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Proof: Peterson [51], page 97 top.
[

The concurrent reachability tree bas at each node a bounded number of direct suCCessors.
Since a successor is obtained by firing some subset of the enabled transitions, in the case

of the most general execution rule the bound is given by 2!7.

Lemma 5-4:
Every infinite sequence of n-vectors over the nonnegative integers plus the w
symbol contains an infinite nondecreasing subsequence.

Proof: Peterson [51], page 98 top.
3

With these lemmas we can prove that the construction algorithm terminates.

Theorem 5-3:
The concurrent reachability tree of a Petri net is finite.

Proof: By contradiction.

Postulate an infinite concurrent reachability tree. By lemma 5-3, then, there
exists an infinite sequence of markings (n-vectors) uq. u’ 42, -+ from the
root of the tree. By lemma 5-4 this sequence contains an infinite nondecreasing

subseguence ;.e Su g £ <+ +. In this subsequence there cannot exist two
! M q

markings such that u s "-",u . since by the construction algorithm one would be
a duplicate of the other and the sequence would terminate. Thus the infinite

subsequence is strictly increasing, ,u b ,u. L

Consider all n-vectors over {0.1,2}. There are 3" {a finite number) unique » -
Vectors over thzs set, so eventually we must find two markings in the sequence
such that g <w™* and for a place p,, "(p,;)?fi when u J(pf)>2 Bv construc-
tion, ,u."(p,) becomes w, and the argument now is applied to vectors of length

n—1. Eventually a state ©'™ is encountered in which V ;{,u”"( p;j)=w]. There

can be no ,u””‘> 4™, so the assumption of an infinite concurrent reachability
tree is false.

G
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5.2.3. The concurrency matrix

Given a PFG ¢ representing the static program and control flow models of a
software system, the CONBLOCKS problem for each pair of basic blocks can be com-
pletely solved as the concurrent reachability tree for the Petri net is constructed. A
square boolean matrix MC,. termed the concurrency marrix, is generated that is of size
iB|. the meaning of which being that if MCyli,j} is true (and symmetrically

MCylj.i]). then (b;,b;)€C,.
The elements of the matrix are filled in by first starting with
V1<€i,j €|B| | MCyli.j]= false | As each state u is generated during construction of

the reachability tree for the Petri net, the marking is scanned for marked places, ie.
places for which up)2>1. Each distinct pair of such places causes an element of MCy to

- be set to true . Formally, this is stated

VISi jSIBl|p21Ap; Z21Ai%) => b, =B(p;)Ab =B(p;) AMCyk.l]= true |.
Figure 5.7 illustrates the difference the firing rule makes in determining the size of C4. A
"8 in the diagram indicates the potential concurrency of the pair of blocks given by the
row and column it occupies; a blank indicates no potential concurrency, and a "O" marks
the diagonal elements as ignored. In this example,-the basic blocks represented in the
matrices are associated with places having the same subscript. ie.. 8(p;)=b;. The two
concurrency matrices describe the potential behavior of the Petri net pictured when exe-
cuted under each of the respective transition firing rules. A comparison of the shaded
cells in each shows the exciusion under the concurrent rule of blocks that are potentially
parallel under the sequential rule only as a result of unnecessary delays {(e.g.. due to the

unavailability of processors).
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Figure 5.7 The concurrency matrix
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5.2.4. Identifying conflicts among members of C

Given that C4 identifies basic block pairs that are possibly paraliel in their execu-
tion, for each block iaair {b;.b;) € Cy the conditions for determining conﬁic,;t (6;.b,) are
applied. Recall that Definition 5-4 states these conditions as one block potentially inter-
féres with the other, and that Definition 5-3 identifies b, as potentially interfering with
b; if either

LSPNST=@, or

S NST=e
for the sets of selectors S}’, S;”, and S§;”. By application of these conditions to all
members of Cg, a set C & CCgy is created which is used in the conflict resolution procedure

described in the following sections.

5.3. Concurrent conflict resolution

We now look at solving thé second of the two problems mentioned earlier in this
chapter. After following the procedure described above, a model may be found to contain
several pairs of concurrently conflicting basic blocks. These conflicts must be resolved in
order for the model to be considered to represent a valid concurrent computation. If a
pair is found to coniict, .each is subdivided, if possible, in such a way as to allow the
greatest possible overlapping of execution and the minimum amount of enforced sequen-
tial execution. Given that the two blocks in concurrent conflict are b;, b, € C,', there are

three main steps in this resolution:

1. Identify criticai regions in &; and b, that are associated with each contest-
ed selector; _

2. Partition b; and b, into a set of smaller basic blocks based on the critical
regions;

3. Generate new portions of the Petri net model of the PFG to reflect the new
basic block structure and to force the isolated critical regions to execute
in mutual exclusion.
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This solution provides enforced sequential execution of the conﬂ_icting sections of code,
but the sequencing only goes into effect if the potential concurrency turns out to be actual
concurrency during execution. The conflicting procedure calls may, due to the execution
times of their respective preceding blocks, never actually attempt to run in parallel. The
concurrency identification procedure we have discussed simply specifies blocks that,
according to the structure of the PFG alone, could perkaps run concurrently. We now

look at these steps in more detail.

Step 1.

Identification of the critical regions in the two basic blocks can be accomplished by
examining more closely the potential interference conditions (i) and (ii), presented in
Definition 5-3 and restated above. Each condition is an intersection of two sets: a set of
selectors from the first block for nodes that are assigned values during execution; & set of
selectors from the second block, the union of selectors for nodes whose values are
required-in execution and the proper prefixes of those selectors. If a condition is violated,
then the intersection is non-null. The selectors that are members of an intersection, then,
designate the nodes involved in a read/write conflict of the type represented by the par-
ticular condition. Given these candidate locations, we search the argiiment lisis of the
_procedure calls from each basic block to determine which ones use the coniested storage.

The critical regions are constructed for one contested selector at a time.

Given a location s, the write-read conflict identified by condition (1) produces one or
more critical regions in each basic block. The ones in &; each extend across all procedure
calls from a write to s up to and including the last read of s before another write to s
(or before the end of the block). The ones in b; are each a single procedure call which

writes to location 5.

The read-read conflict identified by condition (2) above is slightly different. so

correspondingly different critical regions are created when it is violated. Only one region
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is created in b;. It extends across all the procedure calls from the first read of 5 to the
last read of s before the first write to 5 or the end of the block. As before, the regions

created in b; are each a single procedure call which writes to location s.

Iterate this process over all the selectors in the conflict intersections, and all
confiicting critical regions that violate the corresponding condition will have been
identified, each associated with a variable. Do this for each of conditions (i) and (ii), and
all critical regions involved in &; interfering with 5; will have been found. Repeat the

entire procedure for &; interfering with b, to get all conflicting critical regions from b;

and bk .
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Figure 5.8 Isolation of conflicting critical regions
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Step 2.

Once the critical regions of interest have been found, we must coalesce overlapping |
ones and isolate each of the resulting larger critical regions in its own basic block. Since
each procedure call may use several selectors, it may be located in several critical regions,
each dealing with a different storage location. For each of b; and b, the overlaps are
identified and the individual critical regions are merged by taking the union of the pro-
cedure calls in each as the new critical region. The larger region now involves several
variables rather than one. The result is that each of the original basic blocks is parti-

tioned into one or more non-overlapping sections of procedure calls.

Each critical region so identified is then represented in the static program model as a
separate new basic block. An example will best explain this procedure. For b; consisting
of eight procedure calls in sequence and b, consisting of six procedure calls. consider a
partition in which the critical regions are:

i d w2 (w3 s S (b T B
(witowih (whwiw?) (whwl wh
and

<Wk1: sz- Wf- Wk") ; (Wks- Wk6>o

Replace b; by b} containing procedure calls w/} and “,;jz from &;, followed by b7 contain-
ing w?,wi, and w?, followed by b} r.;ontaining wb w, and w? These three new blocks
are connected in sequence so that the order of execution of the component procedure calls
remains as in &,. Replace in the same manner b, by b containing the first four procedure
calls from b, followed by b2 containing the last two calls. This construction is illus-

trated by Figure 5.8.

Step 3.

The final step involves regeneration of a part of the Petri net contained in the con-

trol flow model of the computation. Since we have increased the number of basic blocks
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Figure 5.9 Petri net representation of conflicting critical regions

in the static program model, we must add corresponding P/T components to the Petri net.
However, we must also add some synchronization structures 1o ensure that the new basic
blocks which conflict never are allowed to execute simultaneously. We wish them all to
execute in pairwise mutual exclusion, as in a critical region. The Petri net component.
then, that represents a basic block in potential conflict is somewhat different from the

simple P/T component that we introduced in the previous chapter.

Each basic block representing a critical region produces two P/T pairs in the Petri
net; for reference designate them pyci /¢ siock and Psync/Lsyne. As in the earlier P/T pairs,

an arc is directed from each place to its corresponding transition. In addition. an arc runs
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from £ gync 10 Paiack 10 join the two pairs. The basic block representing the critical region is
associated by the altered function 8 With pye; a hewiy synthesized block, either null or
containing instructions to perform synchronization, is associated with Psync. The other
new basic blocks resulting from the fragmentation of the two original ones are each
represented by a single P/T net component as before. The Petri net components are con-
nected together by arcs between them just as the arcs in the PFG connect the basic blocks

they represent.

Pairs of the new basic blocks must now be mutually exciuded. The pairs of interest
are determined by the conflicts that were originally identified. For each original conflict,
representing a read-read or write-read interference on one variable common to both b,
and b, each of the new basic blocks which contains a corresponding critical region of b;
must be mutﬁally excluded from each of the new blocks containing a corresponding criti-
cal region from b;. Any pair of blocks is excluded at most once, no matter how many

individual variable interferences it may represent.

For each pair of blocks that must be mutually excluded. a single extra place. p uex.
is created to serve as the mutual exclusion sentinel over the conflicting blocks. An arc is
directed from p,ue. 10 the Lopne Tor each of the two conflicting blocks, and another arc is
directed from each fp,.; back 10 Proyer A single token is placed in p ... to become part
of the initial configuration of the Petri net model: A newly syntbesized basic block,
either null or containing instructions for performing synchronization. is associated by 8

With pu.,. Figure 5.9 shows this conversion to Petri net components.

The timing of the original basic blocks must be aliered for the new structure. The
newly created basic blocks must be assigned execution times that are some proportion of
the block from which they were made. These figures can be obtained from the execution
times of the procedure calls contained in them. For a block that does not contain the

conflicting procedure calls, the total execution time is ascribed to the place in iis
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corresponding P/T Petri net component. For a basic block that contains one of the
conflicting procedure calls, the place in the second P/T pair, that i§ py, is ascribed the
block execution time; the other places. Psync 80d Pruvey. are given times determined by the

instructions necessary to perform the synchronization.

5.3.1. Extension to sets of conflicting blocks

The analysis as presented applies to a single pair of basic blocks. If a basic block is
in concurrent conflict with several other blocks, the resolution procedure must be
extended to produce a correctly synchronized_model. One obvious method is to avoid the
added complications and treat each basic block involved in a multiple conflict as a single
critical region, and mutually exclude all of it rather than trying to subdivide it into new
blocks. Though this method is easy to implement, it forces sequential execution on sec-

_tions of the blocks that may safely proceed in parallel.

To avoid unnecessary sequencing, a more complicated procedﬁre is required. When a
basic block &; is in conflict with more than one other block. several of the elements in
row j of MCy wiil be true . For each row j of MCy, identify the critical regions (as in
step 1 above) for each pair (b, bk> where MCylj.k]= true . Do not coalesce regions at
each step, but collect them into a set of critical regions defined by all the blocks in conflict
with b;. After all critical regions have been found. then coalesce those that overlap, and
keep with each critical region a list of the selectors involved in a conflict in that region.
Apply step 2 above to the final set of critical regions to get a partition of new basic blocks
in the static program model. The corresponding pair of P/T components for each new
block‘can be added to the Petri net as well, but no mutual exclusion places and arcs are

added at this point.

After all rows of MC4 have been processed, go back through the matrix row-by-row
a second time to add mutual exclusion to the Petri net in the control flow model. Within

each row ;. consider each pair {b,.5;} in conflict. Consider all pairs of new blocks. one
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from each partition formed from b; and &,. Intersect the critical selector lists, and if the
intersection is not empty add a mutual exclusion place, token, and arcs to the appropriate
P/T pairs. as described in step 3 above. Repeat this for each conflicting b, in row j. and

repeat the entire procedure for each row j in MC.

5.4. An extended example (continued)

Continuing the example started in Chapter 4, we consider the model for the main
procedure quad. Let the timing function 7 map each place p; in the Petri net for quad into
the integer 1. The concurrent reachability tree can thén be constructed for the this net,
and is shown in Figure 5.10. Because it has 62 nodes, the tree is presented in a textual

form rather than a graphical form.

The concurrency matrix derived from this reachability tree is shown in Figure 5.11.
As used earlier in Figure 5.7, a "W" in the diagram indicates the potential concurrency of
the pair of blocks given by the row and column it occupies: a blank indicates no potential

concurrency. and a "O" marks the diagonal elements as ignored. For this example there

2
are -11—2—1—1« =35 unique pairs of basic blocks. Of these pairs, 31 are potentially con-

current and 24 are not. Notice that in the state represented by node 26 in the reachability
tree above. places 3, 8, and 10 are marked. As the concurrency matrix is being éon-
structed, when state 26 is scanned the elements (3,8), (3,10), (8.10). and symmetrically
(8.3), (10.3), (10.8). are all marked (if they are not marked already) to indicate that the

basic blocks corresponding te these pairs of places are active in state 26.

From the elements marked in the concurrency matrix, pairs of blocks thal share
data in a possibly compromising way are identified. Because of the structure of the data
state. a pair need only be considered if either block accesses a selector with the prefix
/shared. All pairs involving the blocks corresponding to places 1, 3, 6, 8, 9, 10, and 11

are eliminated from consideration by this condition. Only the pairs (2.5), (2.7), (4.5),
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51:(10000000000) is interior
-=}--> 52
52:(01001010000) is interior
—-2-6-9.-2> 53
53:(00100101000) is interior
-+4-8-11--> s4
--4-8-10--> 59
e Te11--> 510
T3 0--> 519
-—-3-8-11--> 520
--3-8-10--> 837
-3-7-11--> 538
--3-7-10--> 562
s4:(00000010110) is interior
--9--> 55
55:(00000001110) is interior
wdlec> 56
walQua > §7
56:(00000010110) duplicates s4
s7:(0D000000111) is interior
-«12.-> 58
58:(00000000000) is terminal
59:(00000000111) duplicates s7
s10:{000010101 007 is interior
vl G > 511
511:{00000101100) is interior
wn8-11-2> 512
~-8-10--> 513
“wf-11-> 514
--7-10--> 515
s12:400000010110} duplicates s4
$13:(00000000111) duplicates s7
514:(00001010100} duplicates 510
515:(00001000101} is interior
--6--> 516
516:(00000100101) is interior
8-> 517
mF--> 518
517:{00000000111) duplicates s7
s18:{00001000101) duplicates s15
$19:(00001000101) duplicates s135

§20:(00010010010) is interior
--5.9--> 521
$21:(01000001010) is interior
--2-11--> 522
wade10--> 536
522:(00100010010) is interior
—4-9--> 523
~3-9..> 524
523:(00000001110) duplicates 55
524:(00010001010) is interior
—-5-}1--> s25
--5-10--> 35
525:(01000010010} is interior
—~2-9--> 826 _
526:(00100001010) is interior
wndw} > 827
wolfn] Que > 28
wa3udlen> 529
ww3eQu-> 530
527:(00000010110) duplicates s4
$28:(00000000111) duplicates s7
529:(00010010010) duplicates 520
530:(000100Q0011) is interior
wnBew > 831
$31:(01000000011) is interior
e D > 832
532:(00100000011) is interior
- > 833
wwden > 534
533:(000000001113 duplicates s7
534:(0001 0000011 duplicates s30
$35:(0100000001 1) duplicates s31
$36:(00100000011) duplicates s32
$37:(0001 0000011} duplicates 530
538:(00011010000} is interior
--5-6-9--> 539
539:(01000101000} is interior
--2-8-11--> s40
--2-8-10--> s4]
--2-7-11--> 542
--2-7-10--> s61

540:{00100010010) duplicates 522
541:(00100000011) duplicates $32
s42400101010000) is interior

-—4-6-9--> 543

~-3-6-9--> 544
543:(00000101100) duplicates sl
544:{00010101000) is interior

--5-8-11--> 545

--5-8-10--> 546

-—5-7-11.~> 347

< 5-7-10--> s48
545:(01000010010) duplicates 5§25
546:(01000000011) duplicates s31
547:(01001010000) dupiicates s2
s48:(01001000001) is interior

e > 549
s49:(00100100001) is interior
e8> 550

4T > 851

—-3-8..> 52

--3-7-> s53
550:(00000000111) duplicates 57
$51:(00001000101) duplicates 515
552:{00010000011) duplicates 530
553:(00011000001) is interior

- S5uBen > 554
554:(01000100001) is interior

28> 555

T > 856
555:(00100000011) duplicates s32
556:(00101000001) is interior

> 557

--3-6--> 58
157:(00000100101) duplicates 516
$58:(00010100001) is interior

--5-8--> 59

--53-7--> 560
559:(01000000011) duplicates 531
s60:{01001000001) duplicates 548
s61:{003101000001) duplicates 556
§62:{00011000001} duplicates 553

Numbers on an arrow indicate transitions that fire 1o cause a change from the state
(marking) above the arrow to the state number following the arrow. Multiple arrows
below a state indicate alternative sets of transitions that may fire from that state.

Figure 5.10 Concurrent reachability tree for extended example
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Figure §.11 Concurrency matrix from reachability tree in Figﬁre 5.10

(4.7), and (5,7) then remain to be checked.

The selector sets to be intersected are calculated for blocks 2. 4, 5, and 7 in quad
(refer to Figure 4.20). Since the only possible common selectors must have the /shared
prefix, they are the only members shown from the interference sets. The important

members of these sets, then, are:

S5 = /shared /quit }

Si ={/shared /cbuff /a. /shared /cbuff /b, /shared /cbuff /c }
SY¥ ={/shared /rbuff /r 1. /shared /rbuff /r2}

8% ={/shared frbuff /r 1. /shared /rbuff [r2}

ST =

={/shared /cbuff /a, /shared /chuff /b . /shared Irbuff } U {/shared , /shared febuff |
ST =@

S5
54 =

{/shared frbuff /r 1, /shared /rbuff /r2} U | /shared , /shared /rbuff }
57 =

Given these, the only non-nuil interference intersections are:

S5 (VST = {/shared /chuff /a, /shared /chuff /b }
SY NV SY = {/shared /rbuff /r1, /shared frbuff /r2}
S% N S¥ = {/shared /rbuff /r 1, /shared /rbuff /r2 }
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Critical regions in blocks 4, 5, and 7 are identified based on the selectors in the
interference intersections. Blocks 4 and 7 each contain a single procedure call, so the
entire block in each case is the critical region. Block 5 is more complicated. The selectors
in rr conflict between blocks 4 and § are /shared /cbuff /a and /shared /cbuff /b. Two rr
critical regions are therefore defined in block 5 for the basic block pair (4,5). The critical
region on /shared /cbuff /a goes from the first assignment to the fifth. The critical region
on /shared /cbuff /b encompasses the third and fourth assignments.. Since these regions
overlap, they are coalesced into a single region. Note that the critical region associated

with /shared /cbuff /b is completely contained in the one associated with /shared /cbuff /a .

Block QUAD.S.1

ftask 2/t 1 = mult (/const /4, /shared /cbuff /a)
ftask 2/t 1 = mult (Jtask 2/t 1, /shared /chuff /c )
/task 2/t 2 := sqr{/shared /cbuff /b)

ftask 2/¢3 = neg(/shared /chuff /b)

ftask 2/t 4 = mudt (/const /2, /shared /cbuff /a)

Block QUAD.5.2

— -

ftask 2/t 2 = subt (Jtask 2/t 2, /task 2/t 1)
ftask 2/t2 = sgrt(/task2/t2)

Block QUAD.S.3

/shared /rbuff /r 1 = add (/task 2/t 3, /task 2/t 2)
/shared /rbuff /r2 = subt{/task 2/t 3, /task2/t2)
/shared /rbuff /r 1 = div(/shared /rbuff /r 1, /task 2/t 4)
/shared /rbuff /r 2 = div(/shared /rbuff /r2, /task 2/t 4)

Figure 5.12 New basic blocks formed from QUAD.5
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so the coalesced critical region is exactly the greater one.

The selectors in rr conflict between blocks 5 and 7 are /sharedlfrbujf /r1 and
/shared /rbuff /r2. Two rr critical regions are therefore defined in block 5 that are to be
excluded with block 7. The critical region associated with /shared /rbuff /r1 goes from
the eighth assignment through the eleventh. The critical region on /shared Jebuff /b
encompasses the ninth through the twelfth assignments. These two regions also overlap
and must be coalesced. Neither completely contains the other, so their union is larger
than either individual region. The coalesced critical region encompassing assignments

eight through twelve is the section that must be excluded with basic block 7.

The final intersection is a wr type between blocks 5 and 7, and the intersection set
of selectors is the same as in the previous conflict. The critical regions defined by these
selectors also happen to be the same, though this is only a coincidence of this particular

example. No further subdivision of basic block 5 is therefore reguired.

Three new basic blocks. then, are formed from block 5 in guad from these critical
regions. The new structure is shown in Figure 5.12. Of these new blocks. along with the
remaining originals from Figure 4.20, block QUAD.4 must be mutuaiiy excluded with
block QUAD.5.1, and block QUAD.7 must be excluded with block QUAD.5.3. The new
Petri net structure is shown in Figure 5.13. It is formed from the net in Figure 4.22,
lwith appropriate new places and transitions added to provide mutual exclusion between
the critical regions. The updated functions in the control flow model are shown in Figure
5.14. Note that the two mutual exclusion places, p,; and Pm2. are associated by the path
selection function p with transition sets containing more than a single element. Svn-
chronization is encapsulated by the fact that only one transition from such a set can fire
at any state change. Also note that the Petri net representing the control flow for guad is

no longer in the free choice class.



127

true fal se

(OHOHEOECOHFOmRE
nOnii®

Pe

fal se Lr ue

P P} iPnu
#\ # #

Figure 5.13 Petri net structure with mutual exclusion
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place L L o]
P1 Block NIL / 1} (1.1
P2 Block QUAD.2A / 1 {0,0)
D3 Block NIL /shared /quit 1 (0.0}
Pas Block NIL / 1 {0,0)
P Block QUAD. 4 / 1 (0,0}
Psi Block QUAD.5.1 / 1 (0,0}
Ps2 Block QUAD.5.2 / 1 | (0,0
Ps.3s Block NIL / 1 (0.0}
Psa Block QUAD.5.3 / 1 | (0,0
Ds Block NIL /shared /quit 1 (0,0)
P1s Block NIL / 1 {0.0)
P Block QUAD.7 / 1 {0.0)
s Block NIL /shared /quit 1 {0.0)
Po Block NIL / 1 {(0.0)
P1o Block NIL / 1 {0,0)
P Block NIL / 1 (0,0
Pm1 Block NIL / 1 (1,1
Pm2 Block NIL / 1 (1.1}

Pt # {ty}
P2 # {t2}
P false {£3]}
P3 true {ta}
FPas # { Iss }
Pa # fesi
Psis # {t61: }
Psai # {26,
Ps.z2 # Loz
Ps.3s # {2635 }
Ps3 # {263
Pe falge i Iq }
P true {tg}
P # { Loy }
P # {20}
Ps true { f]_o }
Ps false { {1 }
P # { I ]
Pio # {212}
P11 # {212}
P 1 # { Lss.l6as }
Pm2 # Le3s.Tos |

Figure 5.14 Updated functions in the control flow model




129

5.5. Summary

Given the HG model of a software system described in the previous chapter, we
present 2 method of identifying pairs of basic blocks that have the potential\ 1o executie
concurrently. The solution involves calculation of a different form of reachability tree
for the Petri net in the control flow model, one in which concurrent firing of transitions
creates a singie state c¢hange rather than the more commonly used sequence of state
changes. The pairs of blocks that could execute concurrently (if the data state sequence
of a computation were to select appropriate paths during execution) are identified from
the states of this reachability tree. We then outline an algorithm which will determine,
for a given concurrently executable pair of blocks, if they use shared data in a way that
will compromise the integrity of the data state produced by their computation. If
conflicts are found, critical regions are located in the blocks and alterations to the control
flow mode] are made to force the critical regions to execute in mutual exc}usion. The
analysis is intended to be performed on untimed models. ie.. models in which
VpeP[7(p)=1] The following chapter discusses the use of timing in analysis of a

software system model.



Chapter 6

TIMING OF AN HG SOFTWARE SYSTEM MODEL

In Chapter 5, the analyses applied 1o the HG model of a software system assumed
that the times on the places were all unity. We now consider the more general problem
of analysis in the case of non-unity timings. In this chapter we first present a general
overview of the information that is represented in the Petri net timing for each type of
PFG node. An extension to the concurrent reachability tree is then described which
allows concurrent conflict detection and correction to be performed on systems with basic
block times greater than one. The final sections discuss a method for generating a con-
sistent set of timing figures for the procedures in an HG software system model. Using
the extended concurrent reachability tree. we describe a technique for determining
minimum and maximum execution durations for a procedure, and we give an example of

how these can be used to verify the compliance of a system with time constraints.

6.1. Constructing the timing function 7

The designer of a software system (and hence its model) must ascribe durations to
the various activities in the system. For some activilies this is a straight-forward
endeavor. but for others a bit of calculation musf be performed. Some computation
activities are not easily timed at all; rather, the best one can do is to provide maximum or
minimum times that such an activity is expected to require. Such computations might
involve an access 10 the external environment of an executing process, such as receive
message, await signal, or get input. Much of our analysis, then, is for software with

instructions that can be ascribed a fixed duration, but we must also consider instructions

for which no exact timing is available.
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The elements of the timing function in a timed Petri net are obtained according to
the imerpretc"ztion we apply to the various types of PFG node. Each place in the Petri net
is ascribed a duration based on which PFG structure gives rise to the net component con-
taining i1, and the which activities in the modeled software are being represented. The

following sections discuss system activities associated with each type of PFG node:

¢ branch nodes
The duration of a branch node is the time required to reference the selector that is the
value of the node, plus the time required to spawn any concurrent activity to follow.
The exact figures naturally depend on the hardware (and software) that is to execute
the system. The value arrived at in this way is ascribed to the place in the control

flow model Petri net that corresponds to the particular branch node being timed.

@ procedure éall nodes
The duration of a procedure call node is calculated to be the time that the procedure -
may take to execute. This value. for example, might be obtained from the PFG model-
ing the procedure by searching the gré;:h for the longes‘t path, and summing the times
associated with the nodes along the path. Alternately, the time for a procedure call
can simply be assigned rather than calculated. When a procedure call represents some
atomic action, such as .a machine instruction, the procedure is simply represented as a
function with no internal structure. The time, then, is assigned according to some
other informazibn (e.g.. from the specifications in a hardware manual). A place
corresponding to a basic bioc‘k formed from a sequence of procedure call nodes is given
al time in the Petri net that is the sum of the durations for the individual procedure
calls.

¢ join nodes
A join node behaves differently from the two other types of PFG node. The duration

of a place in a join Petri net structure is set to the time required to execute code that
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determines if control has reached all incoming arcs at the join.lplus the time required
to execute the code needed to remove a concurrent process from activity. Some place
in a join \irill likely receive a token before the others do. The token will age for the
duration 7 ascribes to that place, but then will continue to age beyond 0 into negative
values unti} all places in the join have fully aged tokens. The greatest negative token
age in a join place will then indicate the length of the delay which resulted from the

synchronization of concurrent control paths.

6.2. The concurrent reachability tree for timed Petri nets

As We. mentioned in the Chapter 3 discussion of the control flow model, the execu-
tion rule for timed Petri nets is a generalization of the rule for normal Petri nets. At each
state, a set (possibly null) of enabled transitions is identified and some subset of those is
chosen to fire. The simultaneous firings determine the next state. In the special case res-
tricting the cardinality of the subset to one transition, we have the execution rule of nor-
mal Petri nets. If we further restrict all place durations in the model to one time unit.
the notion of a token aging before it enables any transition is nullified and the model

becomes identical to normal Petri nets.

As in the special case of normal Petri nets, the reachability iree for timed nets
graphically represents the reachability set. But since the state of a timed net contains
more information than the state of a normal net, the reachability tree becomes more com-
plex. Each arc in a reachability tree is labeled with the subset of transitions that fire in
the state change represented by the two nodes connected by the arc. A state change in a
timed net may nol entail any transition firings., however; if none are enabled, then the
tokens in the places simply age one time unit. This passage of time is recorded in the new
state, but no transitions have fired. Thus. some arcs in the reachability tree may be
labeled with the null ser, @. Uhder the concurrent form of firing rule, the tree will have

leaving each node either a single null labeled arc, or as many arcs as there are maximal
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subsets of T,, the enabled transitions. Maximal in this context means that, according to
the semantics of net execution, as many of the enabled transitions as possible are chosen
to fire. Not all enabled transitions may necessarily fire in one state change, due 1o

conflicts over shared input places, and possible exclusion by the data state.

Since the structure and execution of normal Petri nets are special cases of the struc-
ture and execution of the timed Petri nets. we would expect the reachability trees for
timed Petri nets to be a generalization of the trees for the normal nets. To see that this is
indeed the case, consider the restrictions stated above that make timed nets equivalent to
normal nets. If the cardinality of the set of enabled transitions chosen to fire is limited to
uni.ty. then each arc leaving a node in the tree is labeled with a set containing the single
transition that produces a following state. At each node thefe are as many arcs leaving as
there are subsets of single elements, as is the case in reachability trees for normal nets. If
in addition the duration of each place is limited to one time unit. then no token is forced
to sit at a place without enabling the transitions that may follow. There wiil then be no
states at which a state change is possible but no transitions fire; hence there are no arcs in
the tree labeled with the null set. So under these two restrictions. every arc in the
reachability tree is labeled with one and only one transition, indicating that that transi-

tion was fired to create the represented state change.

Choosing one transition 10 fire (as in the normal net execution rule) seems appropri-
ate for modeling a system when time is no factor. When execution time is t0 be modeled
as well. however, choosing one transition is only aciequap_e for a uniprocessor sysiem; true
concurrency in real-time must be represented by allowing simultaneous transition firings
in one state change as in our timed Petri net model. The size of the subset chosen from
the enabled transitions is ﬁhus a parameter of the model. One reasonable interpretation
for this parameter is to let the maximum size of the subset chosen correspond to the

number of physical processing units available in the host machine when the state change
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is taking place. For example, choosing to fire one transition per state change models a
uniprocessor system. We have selected the opposite case for the analysis in this report by
considering only the execution rule that chooses as many as possible of the enabled transi-
tions to fire. This can be viéwed as assuming that the number of available processing
units always exceeds the number of basic blocks that need to execute. such as in the para-
computer described by Schwartz [60]. Since all timed Petri nets have a finite number of
nodes. and since a software system model is composed of a finite number of procedure
models, we are not assuming an infinite number of processors--simply more than a pro-
gram can possibly need at any point in execution. The final chapter on further research
diécussés the ramifications of an execution model in between these two extremes, where
the assuniption is that some blocks may be executable but no hardware is available to

execute them.

With the fire-them-all execution rule, no delays are introduced into a computation -
sequence that are not prescribed by the inherent synchronization of the algorithm. When
a reachability tree is generated from a tirhed Petri net under this execution rule, its struc-
ture has a unique feature: there are no branches in the tree (i.e., nodes with two or more
out-arcs) unless they are a result either of a data-based decision in the algorithm (e.g., at
a branch node), or of a synchronization decision {e.g.. at a mutual exclusion place added
by the conflict resolution procedure). No branches are introduced as in normal net trees
from having to arbitrarily choose some transitions to fire and some to delay. The com-
plexity of the tree is reduced from the potentially exponential growth suggested by
choosing all subsets of a sel as arcs at each node. Instead. often only one arc leaves a
node: when more leave, the branching represents true decision making in the algorithm
and not an implementation-dependent choice of which procedures get processor time and

which others must wait.
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6.2.1. Constructing the timed reachability tree

A node in a timed concurrent reachability tree is, as before. a marking of the Petri
net. A timed marking is an extension of an untimed one: instead of an n-tuple of non-
negative integers for a net with n places, we use an n-tuple of pairs, each pair being a
non-negative integer u! (the number of tokens at a place) and another (possibly negativé)
integer u (the age of the least recently arriving token). The timed, concurrent reachabil-
ity tree is generated by much the same algorithm as for the untimed tree in Chapter 5.
Some modifications are necessary, however, to properly insert @ symbols into the timed

States:

e an o symbol can only be inserted into a state at place p; if u'=7(p;). which is to
say a token in the place is just beginning to age;

e  symbols are only used for the g{ components of each pair, not for the age com-
ponents u];

"¢ When a duplicate state ' is being sought for a state u, the age components u/ of
the places in each state are compared along with the number of tokens, unless the
age is €0, in which case i1 is considered to match any non-positive age; a non-

- positive token age is a sign of waiting, and should be treated as a reproducible
condition.

e If astate is encountered in which no transitions are enabled. but tokens are still in
the net, all with zero or negative ages, then such a state is termed a deadlock and
is handled in the tree as a terminal state is, having no successor nodes.

The possible next states are generated from each current state in the tree by apply-
ing the concurrent execution rule for the control fiow model. still with the restriction that
the data state is not consulted to determine eligible transitions to fire. States are gen-
erated from the Petri net structure alone. and the age component of each place marking is
handled as described in the contro! flow model. As states change, the token age of each
place is decremented by unity until il reaches one. At this point it can either contribute
to enabling a transition or it can continue to age below zero, indicating synchronization

delay.

The conditions for inserting an @ symbol into p/ for a place p; then becomes
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(1:2,0:0,0:0)
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(1:1,0:0,0:0)
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Figure 6.1 Timed concurrent reachability tree for net in Fig. 5.1
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where => means 'precedes in some state sequence from the initial state.”

Note that

though the time components of a state are consuited 10 determine whether w symbols

should replace the token numbers, no @ symbols are ever inserted into the time



137

components., Figure 6.1 shows the timed concurrent reachability tree for the simple Petri

net structure from Figure 5.1, with the timing function 7=(2,1,2).

As with the algorithm for the untimed tree, the algorithm to produce the timed

reachability tree can be shown to terminate:

Theorem 6-1:
The timed concurrent reachability tree is finite.

Proof: Proof by contradiction.

If the reachability tree were infinite, then since there are a bounded number of
arcs leaving each node there would have 1o be some infinite path in the tree.
Assume the existence of such a path. Since it contains no duplicate nodes, each

_ state must be unique. A state has a finite number n of component pairs (token
number and age), so an infinite number of unique states is only possible if ei-
ther the token numbers grow without bound, or if the ages decrease without
bound. Whenever all token ages fall below 0 the algorithm terminates a path
with a deadlock, so the second alternative cannot create the infinite path.

Consider, then, all states in which the token numbers u} £ 2. There are only a
finite number of such states in which the ages are also greater than 0. Eventu-
ally the infinite path must contain a state in which some token number is 3 or
greater, and it covers an earlier state. At this point the algorithm inserts an w
for the token number. The argument is now applied to states of size n—1.
Eventually a state will be encountered in which all token numbers are w. By
definition of the algebra of w, some following state will be a duplicate of the
all-w state. and the path will terminate. But this coniradicts the assumption
that the path is infinite, so the timed concurrent reachability tree must be
finite.

|
Given the timed concurrent reachability tree for a Petri net, we can calculate certain

execution times for the net by examining paths in the tree. The following lemma estab-

lishes the necessity and sufficiency of terminal leaves in the reachability tree for deter-
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mining finite execution sequences in the Petri net.

Lemma 6-1:
Given a marked timed Petri net 7P and its timed concurrent reachability tree
R, there exists a path from the root of R to a terminal leaf if there exists a
corresponding finite execution state sequence for 72 from the initial state to a
terminal state.

Proof: By construction. the paths of the reachability tree represent all possible
state sequences obtained in the Petri net. A terminal state u of the conirol flow
model is stated in Definition 3-19 to be a marking in which no places are ac-
tive, that is, in which no tokens are in the net. This implies that no transitions
are enabled to fire in u#. No arcs can leave such a state in the reachability tree,
making all such markings u terminal leaves of the reachability tree. Thus a
net execution sequence ending in a terminal state will produce a terminal leaf
in the reachability tree.

.

- Using this result, the following dargument relates the length of a path in the reachability

tree to the execution time required by the computation represented by the path:

Theorem 6-2:
Given a marked, timed Petri net 7P, and given the reachability tree R of TP,

Lmin ‘<"- Emin

where L, is the length of the shortest path from the root to a terminal node
in R and E o, is the shortest possible execution time of T'2.

Proof: Each arc in R represents a state change in the execution of TP. In the
execution rule for marked timed Petri nets (in Definition 3-19). a siate change
occurs for the passing of a time unit; the next state is derived from the current
one by first decrementing the age of each active token by one. Thus. each arc
in K--each path of length one--represents an execution sequence with a dura-
tion of one time unit. By induction on the path length, a path of length of n
represents an execution sequence of duration n time units. From this, with
Lemma 6-1, the shortest path from the root of R to a terminal leaf represents
a possible execution sequence of minimum duration. If there is an initial data
state that allows this execution sequence to be realized, then L 5, =F min. Oth-
erwise, the minimum execution time is at least as long as L .

O
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This result obviously applies only to trees which have at least one terminal node. If no
terminal nodes exist, then a finite minimum execution time may not be determinable from

the paths in the tree.

When seeking the minimum execution time of a procedure, it is sufficient to search
only paths in the tree from the root to a terminal node, ignoring all duplicate nodes and w
nodes. Since the tree is generated breadth-first, no duplicate node can be on the shortest
path. This is seen from the fact that if a marking ¢’ is found in the tree, for which the
current marking u is & duplicate, then p must be at least as far from the root as u'

(which is generated earlier).

Further, no terminal markings can be reached from a marking containing an @ syxﬁ-
bol. The w represenis a potentially infinite sequence of states, able to generate any
number of tokens in a place. Thus, transitions will be enabled from any w state, and
hence none will be terminal. In addition, the algebra of w dictates that @2 w: once an w is
in a marking, 1t cannot be removed. Therefore, no marking leading from an w state will

be terminal.

A complementary result holds for reachability trées in which all leaves are terminal
(i.e., no nodes are duplicates or w states). For a computation represented by such a tree.
Lmax ; Emax
where [ max is the length of the longest path in the tree and £, is the longest possible
execution time of the procedure. As with the minimum-time case, the ineguality results
from the fact that the longest path in the tree may represent a computation that is
unrealizable under system execution, due to data-dependent decisions. In the presence of

one or more non-terminal leaves, the maximum ezecution time may be infinite.

With the timed concurrent reachability tree, the same conflict detection and correc-
- tion analysis as presented for untimed nets can be performed for timed nets. Some

modification to the concurrency identification conditions is required: two blocks b; and b s
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are considered potentially concurrent if in any marking u their associated places Pi and p;
contain at least one token each. and the age of both current tokens is greater than 0. For-

mally stated, these conditions are

rE>0 A uf>0

Alwr>0 A ur>ol

Notice that the condition on the age components of a marking treats a block that is wait-
ing as not executing. The timing, then, provides an added analytic advantage: conflict
will only be detected in the timed nets if two blocks lie on potentially parallel paths, and
if the execution durations cause the blocks to overlap in time. The aﬁalysis on untimed
nets could make use only of potentially parailel paths in deciding whether two blocks

were potentially concurrent.

6.3. Using dual timed models for constraint analysis

We turn now to the task of employing the timing information in the system model
to solve problems related to real-time execution restrictions. We have assumed up 1o
now that the net timing function 7 was available for each modeled procedure in an HG
system. These timings must be constructed so that the figures given as basic block dura-
tions in one procedure model make sense in terms of the computations represented by the
procedures called in that basic block. Even though we are to analyze a procedure
independently of the others, the reliability of the analysis naturally depends on how well

the figures given in the timing correspond to the actual behavior of the rest of the system.

There are several ways to ascribe durations to procedure calls. Timing ﬁgures'for
each procedure call could simply be produced with no reference to the internal structure
of the procedures being timed. The choice could be arbitrary, selecting different values
for blocks to test the response characteristics for the structure of an algorithm under
different timings. This approach is experimental--useful if a system is under develop-~
ment and is open to alterations. Time—critic‘al code sections could be identified and system

behavior experimented with until acceptable limits are discovered. The code in the basic
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blocks could then be written to fit the limits. Alternatively, timing figures can be chosen
based on desired behavior—say, chosen from a distribution describing the projected aver-
age activity of the target system. The figures are still deterministic, however. Each basic

block &=B(p;) always requires exactly 7; units of time to execute.

As another aitern_ative, an existing system can be modeled and measured to deter-
mine if established time limits are realizable. Timing figures under this scenario cannot
be arbitrarily chosen. They must be selected based on the behavior of the existing struc-
ture. The static program and control flow models for each procedure can be consulted
and the timing figure for a procedure derived by a summation of the timings for the
lower level calls in the basic blocks. We wish the timings ascribed to the various pro-
cedures to be consistent in the following sense:

Definition 6-1: Timing of a set of named procedures
Let F be a set of named procedures. A timing for F is a function

rp: F-{1,2, - - ). If f€F, then 7z(f ) represents the number of time units
f takes to execute.

Definition 6-2: Consistent procedure timing
Given a procedure model 7=(f.D.SP.CF). in which SP=(S.F.B).
CF=(TP.B.o.p). TP={P.T.I.0 1y 7;, and given a timing 7z for F, then 7
is said to have a timing consistent with Tp if .
Vp€pP: if B(p)=b€RB, where b={wy.wy ---.w,) and w,={f,,A;, R},

then T{p}=££7}.~(f,-).

Definition 6-3: Consistent system timing
Given an HG software system model S§=(F,II, ), and given a timing 7 for
the set of procedures F =F U II, then SS has a timing consistent with Tp if
each procedure model 7 €11l has a timing consistent with 7p.
These definitions enable a modeler to decide when the individual system components
describe an integrated system that makes sense in 2 model of real-time. A procedure 7

with a consistent timing has duration figures ascribed to each basic block that agree with

the durations calculated from the other models describing the procedures called in the
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block. An inconsistent timing results if the durations of the procedure calls in a basic
block are calculated and summed from the other control flow models in the system, giv-
ing a figure in conflict with the duration ascribed that particular block in the control flow
_model for procedure 7. Such an inconsistency says that the higher-level, more abstract
view of the procedure (given by ) does not present the same computation as the cumula-
tive view from one level down (as given by the calculations from the other co'mponen't

models),

Real software procedures rarely exhibit deterministic behavior in the durations of
their successive invocations. Data dependent decisions can shorten some executions and
lengthen 6thers. The HG model of a software system, however, uses deterministic tim~
ings; a basic block in a procedure model cannot be said to exhibit a range of durations.
One way to make sense of this restriction in analyzing software is to calculate two, dual
models from one software system: one model is a minimum-timed model. in which the
duration of each Petri net place represents the fastest possible execution of the associated
basic block: the dual model is a maximum-timed one, in which all place times represent
the slowest execution of their associated basic blocks. Any actual execution time of the
software system must fall in the range created by the upper and lower bounds offered by
the two models. The following sections discuss the ramifications of using these dual tlxm—

ings for a complete sofiware system model.

6.4. Timing basic components

As mentioned in the first section of this chapter. the basic compoenents of a PFG can
each be ascribed a duration based on the component’s type and the composition of the
component’s associated basic block. The duration of a basic block node sequence is found
by Zn,* 77{m), over all procedures 7 called in the block, with each 7 being called n,
times. Note that the procedures are timed, in that any one call to a procedure 7 is indis-

tinguishable from another. The duration of a branch node is the time required to access
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the data state at the node selected.‘and the time needed to create concurrent execution
paths, if any. The duration of each place in the net representation of a join node is the
time requ'ired to remove concurrent control paths. The basic blocks gssociated wit‘h these
nodes represent overhead computations; the durations are determined as for other basic

blocks.

6.5. Timing delays

In the context of a Petri net, waiting is defined to be the delay of a token from pro-
- gressing through the net. Waiting can occur for two reasons. A token may be delayed
because it arrives at a place which already contains another token. Under the execution
rule employed in the HG model, only one token at a time may age at a place because a
place represents a resource. When a second token arrives, the processing capacity modeled
by the place is occupied by the earlier token. This form of waiting is therefore termed
resource delay. The pipeline wait presents a form of resource delay and is discussed in

more detail below.

A token may also be delayed at a place after the associated basic block has executed.
This occurs when some, but not all, input places to a transition are marked, and the firing
of the transition is ;hereby beld up. This form of waiting is termed synchronization delay
because the control paths containing these input places are synchronized at the transition.
Join waiting and mutual exclusion waiting. two ways that synchronization delay can occur

in the HG model, are discussed in more detail below.

At any place p in a Petri net which is part of an HG system model, the following

formulae hold for the minimum and maximum times that 2 token may reside at p:

Thin = Efyin + R + Shin (1)

Thhax = Efax + Ripax + Shpax (2)

In these equations, T is the total residence duration of the token, E is the time required

for the execution of the basic block associated with p, R is the resource delay. and § is
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the synchronization delay. The figures for £ are obtained from the timing functions 7 for
the dual HG models (minimum-timed and maximum-timed) of a system. The delay
figures aré obtained as explained in the following discussion. In some situations, delay
time may be zero and not contribute to a token's residence time; in other situations, a

delay may be unbounded, denoted by co.

6.5.1. Rescurce delay

Resource delay cannot occur at any place p; in a net in which all markings in the
reachability tree have u/<€1. Conversely, if there exists a tree node such that #¥>1, then
resource delay might occur, depending on whether or not the data will allow the path
leading to that state to be executed. At a place p that can have resource delay, the

minimum waiting time a token can incur is given by

Rbin = [Bhin + St * (2 =1)
where nf,, is the smallest positive number of tokens that p may contain (obtained from

the states in the reachability tree). The maximum resource delay time for a token at 7 is

given by a similar equation,

R'fnax = {E'?na;c +Sﬁ'xax]* (nfnax'—l)

but with nf,, here being the largest number of tokens found for P in the reachability

tree nodes. If nf,, =w, then RE,, =oo.

6.5.2. Pipeline waiting

Pipeline waiting is an extension of resource delay to a series of place/iransition pairs,
termed a pipeline (see Figure 4.14). Each place in a pipeline, other than the head place p',
can have only a single input arc; transitions likewise have single input arcs. Tokens then
enter a pipeline at p', and filter down through it. eventually leaving via the firing of the
last transition in the pipe. Since no transition in a pipeline has more than one input place,

there can be no synchronization delay and the S terms are zero in the token residence
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time equations (1) and {(2). The maximum total resource delay that a token will incur.

then. in a pipeline is given by

R oy = 2 Efax * (nfnax—l)
pEpipe
where nf,, is the mazimum number of tokens that can be in place p. The total block

execution time for a token in the pipe is given by

Epax = z Efnax-
p& pipe
To get any analytical formulae for the total residence time extrema a token may
have in a pipeline, we define a simplified pipeline structure:
Definition 6-4: Normal pipeline
A normal pipeline is a pipeline Petri net structure in which

(e 2 7(p)
for the initial place p' and any other place p in the pipeline.

'In a normal pipeline, the execution time of the basic block associated with the first place
is at least as long as that of any other block represented in the pipel. All resource wait-
‘ing therefore occurs in a normal pipeline at the first place p’. Since places after p’ in the
pipe have delays that are no longer than the first, no tokens accumulate at these places
and no resource delay is created at them. As mentioned earlier, pipelines also have no
synchronization delay. Equation (1) for the minimum total token residence time reduces

to

T = Riyy + & Ebyy = Ehn* (g —1) + L Elyg
#E pipe € pipe
where nZ., is the minimum number of tokens that can concurrently reside at place p'.
obtained from the timed reachability tree. In a similar manner, the maximum total time

for a token to pass through a pipeline is obtained from the maximum resource delay and

the sum of the execution times. This is given by equation (2), which reduces to

1Though this may seem restrictive, note that any arbitrary pipeline can be treated as a sequence of normal
pipelines,
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e = RE.. 4 L Ebu = E‘g::ax * (nhpax—1) + Z Efvax
max max pépipe max max ? Epape .
where nf., is the maximum number of tokens that can concurrently reside at place p',

also obtained from the timed reachability tree.

6.5.3. Join waiting

Join waiting is a form of synchronization delay, though some reséurce delay can be
involved as well (as it can at any place). A token arriving al a place that is part of a join
component must wait until all the join places are marked and fully aged before a control
path may continue on. The length of this wait is variable. We wish to know T'f,y and
TP, the extrema in residence times for a token at a join place p. Formulae (1) and (2)
give these figures, though we are left with determining the right hand terms. The

resource delay time at p is the same as for any other place:

Rinin = [Efmn + 5% |* (n}?mn""l)

Ripax = EE'?nax + Sfhax|* (n‘?nax'"l)

where, as before, the respective execution times and token numbers come from the dual

HG sYstem models and their timed concurrent reachability trees. Combining these with

equations (1) and (2), we see that the total token residence times are given by

*
n'?nin

Thin = [Etin + 5o

- ] *
szvnax . [E‘?nax +S§nax

where now only the synchronization delays Sh,, and S4, remain 1o be determined.

T fnax

These delays are more difficult to obtain analytically. as they require knowledge of
events on control paths other than the cne containing place p. We therefore enﬁploy the
reachability tree to obtain the bounds on synchronization delay. During execution of the
Petri net. the age of a delayed token is decremented past zero and becomes increasingly
negative, thereby giving a measure of the number of state changes spent in a synchroniza-

tion delay. To find Sy, search the nodes of the tree for states which represent the final
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state in a waiting period at p. These are states in which p is marked, the token age is
zero or less, and in at least one of the following states the age is reset to either 7(p), or to
0 with no tokens remaining. indicating that the token has been consumed by a transition
firing. Let afy, be the numerically greatest u(p)” from these states such that u(p)"<1.
Then the minimum synchronization delay is given by

Shin = | afa=~11.

The maximum synchronization delay is likewise found by isolating the same final
delay states from the tree, and then choosing af,, to be the numerically smallest
#{p)Y €1. Then. the maximum synchronization delay is given by

Shax = | ofax—11.
Note that an exception to this exists. If the tree contains any deadlocked states in which
r is marked, then 8§54, =ca. Also, if thgre are no wait-ending states, so that no af,, can

be found, then §%,.y =oo.

6.5.4. Mutual exclusion waiting

Mutual exclusion waiting occurs at the mutual exclusion net structures created by
the procedure described in Chapter 5 for correction of conflicts on shared data. It is han-
dled in much the same way as join waiting, with the complication of potential starvation

. being introduced. Ag indicated in the earlier discussion, without mutual exclusion struc-
tures the Petri nets in an HG system model are free choice. No transitions in free choice
nets compete for input tokens unless they share a single place as their sole input. Mutual

exclusion structures change the nature of a net, and this is reflected in the timing analysis.

Consider 2 mutual exclusion net siructure consisting of rwo place/transition pairs,
p/t and p'/t', and an extra marked place pnue, Which is an input to both ¢ and ¢'. The

minimum time a token may reside at place p is the same as for the join wait, that is

* .
ninin

Thin = [Bfun + St
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where S$2iq = | ofun—1| and af, is the numerically greatest u(p)"<1 in the wait-ending
states of the reachability tree.

The maximum residence time for a token at p is likewise similar to join waiting,

and is given by

T = [Efm + Sk

where S5 = |af—~1| and af,y is the numerically least u(p)"<1 in the wait-ending

*
n'?nax

states of the reachability tree. Because execution of a mutual exclusion structure possibly
entails choosing one of two competing transitions to fire, net structures can be created
which have execution paths that never choose one of the iransitions, creating a partial
deadlock by starvation. In these cases, the maximum token residence time at each place
in the structure would be 7%, =co. The reachability tree can be used to detect such
. starvations. The algorithni for generating the timed tree treats all waiting as equivalent.
Thus. if a state is generated in which a token in place p has been delayed for. say, five
state changes (indicated by u(p)"=-4) then for the purposes of finding duplicate states -
already in the tree it will match with any siate having u(p)" £ 0. So, if one of the wait-
ending states for p found in the tree is'a duplicate state, then there exists a ¢ycle from
the earlier waiting state to the later one, along which the token is zilways delayed. The
fact that it is a cycle means that the waiting at p is endless on that particular execution

path.

6.6. Timing acyclic PFGs

An acyclic PFG is the analytically simplest form of computation representation.
Since there are no loops in the graph, the timed concurrent reachability tree for the Petri
net formed from it will have no duplicate nodes and no @ nodes. Essentially, the reacha-
bility tree will contain compiete information about the computation. The computations
represented by acyclic PFGs are probably not common in real systems, but they are the

only form of computation for which the actual minimum and maximum times are both
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always finite and can both always be found.

If there are no delays in an acyclic PFG, then the minimum and maximum times are
easily calculated from the shortest and longest paths in the reachability tree. In 'the pres-
ence of delays. the minimum and maxzimum execution times are still found from paths in
- the reachability tree. but the possibility of encountering deadlock states is introduced.
The tree generation‘algorithm detects and marks full deadlocks. | Partial deadlocks are

discovered as mentioned in the previous section on synchronization delay.

6.7. Timing loops

PFG's with cycles (loops) are somewhat harder to handle satisfactorily. In the most
general case. cyclic computations cannot be completely analyzed automatically in the HG
model theory, though some results caﬁ be obtained from the reachability tree in conjunc-

-tion with its generating Petri net. For example, consider the timed reachability tree
shown in Figure 6.1. Since it has no terminal state leaves, no finite minimum execution
time can be found (and hence no finite maximum either). The best that can be done with
such a situation is to try and bound a portion of the computation, sayrone loop execution.
Then. to establish any bounds on the total execution time it is necessary to have bounds a
priori on the number of traversals of each loop in the computation. These bounds may
come from language constructs, like for loops. The maximum execution time for such a
loop is given by

T max =ub * 7827
where 7% ig the maximum execution time of the loop body and ub is the maximum
number of traversals of the loop. Conversely, the minimum execution time is given by

T min =1b * T00%
where 7% is the minimum execution time of the loop body and /b is the minimum
number of traversals of the loop. The figures for % and 7% are obtained by the pre-

viously described procedures for determining time bounds for basic components, delays,
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and acyclic computations, along with this procedure for timing any interior loops.

It should be noted that timing loops requires information not necessarily found in
the reachability tree. The tree for a Petri net with cycles may contain duplicate nodes
and @ states. Associating paths and portions of paths in the reachability tree with cycles
and sections of cycles in the generating Petri net is not easily done. Some loops can be
identified in the reéchability tree by looking for marking and successive remarking of
places that are identified from the net as the heads of loops. The duration of such a loop's
body can then be determined from the path length between the states that represenf the
initial loop execution and the successive execution. It appears that further research in this

area would be fruitful.

Another attack to timing loops is to “unroll" the loops as far as the maximum
number of traversals (or minimum) and then generate the tree from the expanded net.
This approach. however, causes a potentially large increase in the number of places in the
net and a correspondingly large expansion of the state space represented by the reachabil-
ity tree. The thrust of the research to this point has been to keep the Petri net as small as

possible to prevent explosive state space growth.

6.8. Timing recursive calls

Recursive procedure calls violate the way in which we are using the HG system
modeling theory. We have assumed that consistent timings for each procedure model (in
the sense of Definition 6-2) can be developed only if the timings of lower level procedures
are known. This assumption gives rise to the dual model approach to developing
minimum and maximum time bounds on system execution. Since recursive procedure
calls take obviously differing amounts of time (less time for each successive recursion)
the existing model structure cannot deal with them. It is not obvious how to develop a
consistent timing for a procedure that calls itself, thereby requiring knowlédge of the

very duration being calculated. Recursion is therefore assumed to be absent from



151

software that is modeled with the HG formalism. Adapting the techniques described in

this report to recursion is a topic for future research.

6.9, Deadlock detection

A deadlock is a state of the Petri net in which at least one token exists but no transi-
tions are enabled, and in which no transitions will become enabled in the future. As
sta:ced in Definition 3-19. total deadlock exists when the set of active places, P,, is non-
empty, but the timing component ] of each active place p; is negative or zero; thus no
transitions are enabled. In this sitvation. the system will continue to age its tokens
indefinitely withk no firings. This form of deadlock is easily detected as the reachability
tree is constructed; when such a state is created it is left as a leaf in the tree and tagged a

deadlock.

A state u contains a partial deadlock if there exists a transition or set of transitions
with at least one input place marked?, but that will never be enabled in any state u' fol-
lowing ,u‘. Certain potential partial deadlocks can be identified from the reachability tree
by appealing to the semantics of the PFG nodes that give rise to some of the places in a
Petri net. Partial deadlock in the PFG can occur at join nodes, which give rise to Petri net
components in which several places serve as input to a single transition.. If control passes
‘down one of the arcs leading to a join node, but not eventually down all the others, the

computation is stalled at the synchronization point.

Such a deadlock can be caused in several ways. One is that the failure to join is a
natural possibility given the structure of the computation. For instance, one of the arcs
entering the join is the exit from a loop, which may be non-terminating. Another way is
from an incorrectly written algorithm, one in which non-concurrent control paths are

accidentally joined. For example, consider a branch node having two out-arcs labeled

?For this analysis we ignore mutual exclusion piaces, as introduced in Chapter 5. The deadlock detection
is assumed to be performed on Petri nets before the shared data conflicts are identified and repaired.



152

with different atoms. Further down each path from the branch. a join node has both
alternative paths as in-arcs. In terms of net markings, a partial deadlock implies that a
state u exists in the reachability tree in which tokens reside at some of the places
representing the join. There exist, however, no paths from g in the tree along which a

state ' is found in which all the join places are marked.

It shoﬁld be noted that the reachability tree will indeed evidence all deadlocks that
exists in a computation, but at the expense of perhaps displaying some deadlocks that
may not actually be possible during system execution. The data state is consulted during
system execution to direct the selection of transitions to fire, but it is not employed in
generating the reachability tree. Any reachability tree may then contzin some execution
paths which are possible from the net structure alone, Sut are precluded by data-
dependent decisions during system execution. If a deadlock happens to be on such a path,

then it will appear from analysis of the reachability tree 1o be a problem when it is not.

6.10. Timing complete procedures and systems

Given an HG software system model, each procedure can be timed by applying the
individual methods described in the previous sections as the appropria.te structures are
encountered in the Petri net fof a procedure, using the timing figures previcusly obtained
for lower level procedures. We assume that timing figures exist a priori for some pro-
cedures, specifically the primitive procedures. These represent perhaps hardware instruc-
tions, for which manuals give the minimum and maximum execution durations. In the
assumed absence of recursion, the procedure calling structure is a tree. With timing
figures for the primitive procedures, the minimum and maximum times for the pro-

cedures which call the primitives can be calculated as follows.
Consider a procedure 7 which calls only procedures in F . the primitive procedures.
Consider also a timing 73 for F ., defined as 771 F ={1.2, - - }. Then a consistent timing

7' for the set of procedures F U{w} can be constructed by first constructing the net
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timing 7 for the Petri net representing the computation performed by . Each place in

the net is given a consistent duration as described in definition 6-2. The time for each p is

r
(p)= Zrp(f2)

where B(p)={(wyws - ,w,), and each w;=(f;, A;.R;). Then the timed concurrent

reachability tree is constructed for #, and from it a value 7;5'() is determined, depend-

ing on whether the system timing being generated is a minimum or a maximum. The pro-

cess is repeated for the remaining untimed procedures in the system, using 7 7 as the new

initial timing 75.

6.11. Extended example (continued)

We continue to consider the Petri net shown in Figure 4.22. but now with a timing
~function of 7=(1,2.1.3,5,1,2.1,1,1,1). The generating algorithm for the timed con-
current reéchability tree produces the tree of 79 states shown in Figure 6.2. The con-
currency matrix constructed from this tree is given in Figure 6.3. Notice how considering”
activity duration has eliminated some concurrent block pairs from the untimed example
of Figure 5.11 and has added others that were not previously overlapping. For example,
in the untimed net blocks 3 and 11 were potentially concurrent whereas they are not in
this particular timed net. Conversely, blocks 5 and 8 were not potentially concurrent in
the untimed system, whereas with the addition of durations they are seen to be overlap-
ping. |

Under this net timing 7 the same sharing conflicts exist as in the untimed example,
since biock.pairs (4,5) and (5.7) are still potentially concurrent. The Petri net structure
is altered as previously shown in Figure 5.13; the basi¢ biocks in the altered model are

therefore the same as in the untimed model.

A minimum execution time can be calculated for the procedure guad. but since

duplicate and @ nodes exist in the reachability tree, no absolute maximum time can be
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51(1:1 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0) inter
-1--> 352

£2(0:0 1:2 0:0 0:0 1:5 0:0 1:2 0:0 0:0 0:0 0:0) inter
—e--> 53

s3(0:0 1:1 0:0 0:0 1:4 0:0 1:1 0:0 0:0 0:0 0:0) inter
2G> 54

s4(0:0 0:0 1:1 0:0 1:3 0:0 0:0 131 0:0 0:0 0:0) inter
wadull--> 55
ahe]lGun > 534
311w 536
--3-10--> 578

55(0:0 0:0 0:0 0:0 1:2 0:0 1:2 0:0 1:1 0:0 0:0) inter
e 2> 56

s6(0:0 0:0 0:0 0:0 1:1 0:0 1:1 §:0 1:0 0:0 0:0) inter
wef-9--> 57

s7(0:0 020 030 020 G:0 1:1 €:0 1:1 1:-1 0:0 0:0) inter
--§-11--> 3§
--§-10--> 5135
--7-11--> 517
-=7-10--> 532 .

s8(0:0 0:0 0:0 0:0 0:0 0:0 1:2 0:0 1:-2 1:1 0:0) inter
--g--2> 59

59(0:0 0:0 0:0 0:0 0:0 0:0 1:1 0:0 1:-3 1:0 0:0) inter
-%--> 510

s1000:0 0:0 0:0 0:0 0:0 0:0 0:0 1:1 1:-41:41 0:0) inter
--11--> s5l1
--10--> 513

§11(0:0 0:0 0:0 0:0 0:0 0:0 1:2 0:0 1:-5 1:-2 0:0) inter
—-—-g--> 512

512000 0:0 0:0 (:0 0:0 0:0 1:1 0:0 1:-6 1:-3 0:0) dup s9

5130010 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:-5 1:-2 1:1) inter
—-12--> si4

s14(0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 O%:0 0:0) term

§15(0:0 0:0 0:0 0:0 0:0 0:0 0:0 0;0 1:-2 1:1 1:1) inter
~-12--> slé

516(0:0 0:0 0:0 0:0 0:0 0:0 ¢:0 0:0 0:0 0:0 0:0) term:

517(0:0 0:0 0:0 0:0 135 0:0 1:2 0:0 1:-2 0:0 0:0) inter
-—e--> s18

s18(0:0 0:0 0:0 0:0 1:4 0:0.1:1 0:0 1:-3 (:0 0:0) inter
-9.-> 519 ‘

s19(0:0 0:0 0:0 0:0 1:3 0:0 0:0 1:1 1:-4 0:0 0:0) inter
—~11--> 520
10— 522

$20{(Q:0 0:0 0:0 0:0 1:2 0:0 1:2 0:0 1:-5 0:0 0:0) inter
-2 521

§21(0:0 0:0 0:0 0:0 1:1 0:0 1:1 G:0 1:-6 0:0 0:0) dup s6

$22(0:0 0:0 0:0 0:0 1:2 0:0 0:0 0:0 1:-5 0:0 1:1) inter
o> $23

§23(0:0 0:0 0:0 0:0 1:1 0:0 0:0 0:0 1:-6 0:0 1:0) inter
o> 524

524(0:0 0:0 0:0 0:0 0:0 1:1 0:0 0:0 1:-7 0:0 1:-1) inter
8-> 25
Fm> 827

525(0:0 0:0 0:0 (:0 0:0 0:0 0:0 0:0 1:-8 1:1 1:-2) inter
--12--> 526

526(0:0 0:0 0:0 0:0 0:0 (:0 0':0.0:0 0:0 0:0 0:0) term

§27(0:0 0:0 0:0 0G:0 1:5 0:0 0:0 0:0 1:-8 0:0 1:-2) inter
e > $28

528(0:0 0:0 0:0 0:0 1:4 0:0 0:0 0:0 1:-9 0:0 1:-3) inter
> $29

$29(0:0 0:0 0:0 0:0 1:3 0:0 0:0 0:0 1:-10 0:0 1:-4) inter
g > §30

$30(0:0 0:0 0:0 0:0 1:2 0:0 0:0 0:0 1:-11 0:0 1:-5) inter
g > 831

$31(0:0 0:0 0:0 0:0 1:1 0:0 0:0 0:0 1:-12 0:0 1:-6) dup 523

532(0:0 0:0 0:0 0:0 1:5 0:0 0:0 0:0 1:-2 0:0 1:1) inter
—-e--> $33

$33(0:0 0:0 0:0 0:0 1:4 0:0 0:0 0:0 1:-3 0:0 1:0) dup 528

534(0:0 0:0 0:0 0:0 1:2 0:0 0:0 0:0 1:1 0:0 1:1) inter
—-e--> 535

535(0:0 0:0 0:0 0:0 1:1 0:0 0:0 0:0 1:0 0:0 1:0) dup s23 |

s36(0:0 0:0 0:0 1:3 1:2 0:0 1:2 0:0 0:0 0:0 0:0) inter
-—e--> $37

$3700:0 0:0 0:0 1:2 1:1 0:0 1:1 G:0 0:0 0:0 0:0) inter
--6-9--> 538 '

$38(0:0 0:0 0:0 1:1 0:0 1:1 0:0 1:1 0:0 0:0 0:0) inter
--5-8-11--> 539
«=5-8-10--> 3563
-85-7-11--> 65
n85.T-10--> 3566

$39(0:0 1:2 0:0 0:0 0:0 0:0 1:2 0:0 0:0 121 0:0) inter
> 540

s40(0:0 111 0:0 0:0 0:0 0:0 1:1 0:0 0:0 1:0 0:0) inter
~2-9..> 541

$4100:0 0:0 1:1 ©:0 0:0 0:0 0:0 1:1 0:0 1:-1 0:0) inter
~ef-11--> 542
] Oem > 544
w3-i1-w> 546
-=3-10--> 3561

$42(0:0 0:0 0:0 0:0 0:0 0:0 112 (20 1:1 1:-2 0:0) inter
g 543

$43(0:0 0:0 €:0 0:0 0:0 0:0 1:1 0:0 1:0 1:-3 0:0) dup 59

Figure 6.2: Concurrent reachability tree for example timed Petri net
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544(0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:1 1:-2 1:1) inter
12> 545

545(0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 :0} term

546{0:0 0:0 0:0 1:3 0:0 0:0 1:2 0:0 0:0 1:-2 0:0} inter
—e— 2> 547

$47(0:0 0:0 0:0 1:2 0:0 O:0 121 0:0 0:0 1:-3 0:0) inter
--8_-> 548 '

s48(0:0 0:0 0:0 1:1 0:0 0:0 0:0 1:1 00 1:-4 0:0) inter
-5.11--> 549
--5-10--> 351

549(0:0 1:2 0:0 0:0 0:0 0:0 1:2 0:0 0:0 1:-5 0:0) inter
--g--> 550

$50(0:0 1:1 0:0 0:0 0:0 0:0 1:1 0:0 0:0 1:-6 0:0) dup s40

$5100:0 1:2 0:0 0:0 0:0 (10 0:0 0:0 0:0 1:-5 1:1) inter
-—g-w 2> 552

§52(0:0 1:1 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1;-6 1:0) inter
-2-—-> 553

553(0:0 0:0 1:1 0:0 0:0 0:0 0:0 0:0 0:0 1:-7 1:-1) inter
-4~ 554
—3--> 556

554(0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:1 1:-8 1:.2) inter
12> 555 |

555(0:0 ¢:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0) term

$56{0:0 0:0 0:0 1:3 (:0 0:0 0:0 0:0 0:0 1:-8 1:-2) inter
-—e--> $57

s57(0:0 0:0 0:0 1:2 (:0 0:0 0:0 0:0 0:0 1:-9 1:-3) inter
—e--> 538

s58(0:0 0:0 0:0 1:1 0:0 0:0 0:0 0:0 0:0 1:-10 1:-4) inter
--5--> 559

s59(0:0 1:2 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:-11 1:-5) inter
ononm 2> 60

$60(0:0 1:1 0:0 00 0:0 0:0 0:0 (20 0:0 1:-12 1:-6) dup s52

$61(0:0 0:0 0:0 1:3 0:0 0:0 0:0 0:0 0:0 1:-2 1:1} inter
—e--> 562

562(0:0 0:0 0:0 1:2 0:0 0:0 0:0 0:0 0:0 1:-3 1:0) dup s57

$63(0:0 1:2 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:1 1:1) inter
--g-> 564

564(0:0 1:1 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 1:0) dup 552

$65(0:0 1:2 0:0 0:0 1:5 0:0 1:2 (=0 0:0 0:0 0:0) dup s2

566{0:0 1:2 0:0 0:0 1:5 0:0 0:0 0:0 0:0 0:0 1:1) inter
@ > 867

s67{0:0 1:1 0:0 0:0 1:4 0:0 0:0 0:0 O:0 0:0 1:0) inter
--2--> 568

s68(0:0 0:0 1:1 0:0 1:3 0:0 0:0 0:0 0:0 0:0 1:-1) inter
> 869
-~3—-> 571

$69(0:0 0:0 0:0 0:0 1:2 0:0 0:0 0:0 1:1 0:0 1:-2) inter
—t—-2> 570

s70(0:0 0:0 0:0 0:0 1:1 0:0 0:0 0:0 1:0 0:0 1:-3) dup s23

§7100:0 0:0 0:0 1:3 1:2 0:0 0:0 0:0 0:0 (:0 1:-2) inter
—e—-> §72

$72(0:0 0:0 0:0 1:2 1:1 0:0 0:0 0:0 0:0 0:0 1:-3) inter
—6--> §73

$73(0:0 0:0 0:0 1:1 0:0 1:1 0:0 0:0 0:0 0:0 1:-4) inter
--5-8--> 574
w5-T--> 576

sTA(0:0 1:2 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:1 1:-5) inter
> 575

$75(0:0 1:1 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 1:-6) dup 552

§76(0:0 1:2 0:0 0:0 1:5 0:0 0:0 0:0 0:0 0:0 1:-5) inter
> 577

§77(0:0 1:1 0:0 0:0 1:4 0:0 0:0 0:0 0:0 0:0 1:-6) dup s67

s7T8(0:0 0:0G 010 1:3 1:2 0:0 0:0 0:0 0:0 0:0 1:1) inter
——g-u > 579 .

579(0:0 0:0 0:0 1:2 1:1 0:0 0:0 020 0:0 0:0 1:0 ) dup s72

Numbers on an arrow indicate transitions that fire to cause a change from the state
(marking) above the arrow to the state number following the arrow. Multiple arrows
below a state indicate aliernative sets of transitions that may fire from that state.

Figure 6.2 Concurrent reachability tree for example timed Petri net {continued)
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Figure 6.3 Concurrency matrix for example timed Petri net

obtained. The terminal states in the reachability tree are s 14,5 16,526,545, and 5s55. All
represent the same net configuration, that of no tokens remaining in the net. The shortest
path to one of these terminal states is the state sequence
§1,52,53,54,55,56,57,515,516

which has length 8, representing an execution sequence requiring 8 time units. This exe-
cution sequence can be seen in the original Petri net as the one in which the decisions at
places 3 and 6 evaluate to true at their first encounter, whereas the decision at place 8
evaluates 1o false at first and then true on the second encounter. In state 515 immedi-
ately preceding the final state 516, the token in place 9 is shown to have an age of -2,
indicating that for this particular minimum execution sequence, the control path through
place 9 waits for 3 time units before transition 12 fires. ending the execution. The control
path through place 11 does not wait because the exira time is. consumed by the second

execution of the loop body forming the third task.

Note that this sequence is not the only minimum execution sequence. Another one is

found indirectly in the tree by going through a duplicate node. The sequence

51,52,53,54,534,535,524,525,526
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is also of minimum length 8. This sequence represents the execution in which all three
decisions evaluate to {rue at their first encounters, Essentially, no loops bodies are exe-

cuted more than once.

To illustrate the utility of the model for verifying that a goftware system meets
specified timing constraints. let us consider the following question about the example sys-
tem: how fast can the first task (coefficient acquisition, the left-hand loop in Figure 4.22)
run without saturating the second task (root calculation. the center loop in Figure 4.22),
thereby overwriting and losing a previous, unused set of coefficients? To answer this
qﬁéstion, we must calculate the minimum execution time of the first task and the max-
imum execution time of the second to see if they possibly overlap. The coefficients are
written into the shared buffer by basic block QUAD.4, represented by place p4 in the
Petri net. The minimum time between successive token arrivals at P4 is then the
minimum duration of the acquisition task. The maximum duration of task 2 cannot be
greater than this or the tasks will collide. From the net structure (refer to Figure 4.22)
the maximum duration of task 2 is the maximum time between successive token arrivals
at place ps, which is given by the sum of the maximum durations for Ps and pg. For this
example, assume that the timing function 7 given above is a maximum timing for the sys-
tem. Then; the maximum duration of task 2 is

T(ps)+r(pel =5+1=6.
If task 1 can ever require fewer than 6 units of time to complete, then the gystem does
notl meet the requirement that no coordinate sets be lost. Given a minimum system tim-
ing 7', the minimum duration for task 1 would be
(P +7(p3)+1'(ps).
if we take the given timing function as also representing minimum durations. then this

sum is 6, indicating that the speeds of the tasks are such that no overlap will occur.
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One shortcoming of these analysis techniques can be illustrated by examining the
system deadlocks identified by the reachability tree. No full deadlock states exist, that is.
states with a positive number of tokens but all ages non-positive. Some partial
deadlocks, however, can be identified from the tree as described in a previous section.
One such partial deadlock exists in the state sequence

51,52,53,54,55,56,57,58,59,510,511,512,510,511,512, - - -
in which control paths wait at join places 9 and 10 while the third task loops endlessly
and never arrives at the join. Though this partial deadlock does indeed exist in the Petri
net structure and is readily found in the reachability tree, it is an example of a sequence
that could never be realized under model execution, due to data state consultation in
selecting transitions to fire. As can be seen from the basic blocks in Figure 4.20, all three
decisions (at places 3, 6, and 8) consult the same selector into the data state. The node
selected starts with the value false and is later assigned true by task 1. The partial
deadlock occurs only if the first and second tasks follow the true paths, but the third task
continues to follow the false path. Given the structure of the data. this is clearly impos-
sible. To repeat the conclusion of the deadlock detection section: all real deadlocks can be

identified from the reachability tree, but some false deadlocks can be identified as well.

6.12. Summary

We describe the types of operation that are assumed to coniribute 1o the duration of
the computation represented by a node in a PFG. A consistently timed system is defined
to be ﬁne in which the timings ascribed to each procedure call in a basic block agree with
the figures obtained by consulting the procedure model and calculating the duration from
the modeled structure. Consistency is necessary to analyze the procedure interactions in
an entire system; it may not bé necessary for analyzing a single procedure. depending on

the information being sought.
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The algorithm to generate the concurrent reachability tree introduced in the previous
chapter is extended to include an age for tokens in each place. The extended tree is then
used to conduct timing studies on real-time concurrent sysiems. Length of .a péth in the
tree is shown to be directly proportional to the duration of the represented computation.
We discuss methods of calculating from phe reachability tree minimum and maximum
durations for HG procedure models with various graph properties:‘ acyclic computations;
cyclic computarzions in which cycle traversals can be bounded: and indefinitely cyclic
computations. Exact results are obtained only for acyclic computations. For cyclic com-
putations some heuristics are described using the reachability tree and its generating Petri

net structure.

The final section discusses the detection of potential deadlock, full and partial, in a
procedure by searching the reachability tree of the timed Petri net. Deadlock states are
identified by certain forms of marking, based on the semantics of the PFG structures that"

give rise to the involved places in the Petri net.



Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

The preceding chapters present a formal model of concurrent hardware/software
systems and some analysis techniques for the model. In the following sections we first
summarize the main contributions of this work and the conclusions drawn from it, and

then discuss several related topics that merit further study.

7.1. Summary of results

The re';*iew in Chapter 2 of existing computation models reveals several features
- that are desirable in a modeling system: hierarchical decomposition; separation of data.
instruction segments, and control; and the passing of time as a measurable entity. A
model of concurreni computation is developed in Chépter 3 which combines these
features found in earlier models with some novel features. Termed the HG model of a
concurrent software system, it is based on an extended form of Peiri net. one in which
times are added to the places and the execution rule allows two or more transition firings
to create a single state change. The HG model has a mathematical basis in set theory and
graph theory, and is intended to serve as the central formalism for a programming
environment and tool ser thal supports development and analysis of complete real-time

sof tware systems.

A system is modeled as a collection of pfocedures, each of which is either & primitive
procedure, or a procedure model, along with a specially designated main procedure. Primi-
tive procedures have no modeled structure, but they do have a duration and a defined
transformation on a data state. They represent hardware instructions in a system's host

machine, or perhaps just a ievel in the hierarchy for which no deeper analysis is required.

160



161

Each procedure model is composed of three parts, termed model components. The data
model component is a set of possible h-graphs (data states) and an initialldata state. It
encompasses ;111 possible data states that can be obtained during execution. The static pro-
gram model component is a collection of sequential blocks of procedure calls drawn from
the text of a procedure, along with the data selectors and procedure names contained in
those blocks. It describes the portions of an algorithm which must execute in sequence.
The control flow model component describes the collections of blocks that can execute con-
cufrently. and in what possible orders. It contains a timed Petri net with a concurrent
traﬁsition firing rule, along with some functions to associate portions of the static pro~

gram model with portions of the net.

Execution of the system consists of executing in parallel the three model com-
ponents. The control flow model consults the data model for decision making at branch
points, selecting a set of basic blocks from the static program model that should alter the
data state. The rules of executing basic blocks are applied 1o the selected blocks to create
a new Aata state from the current one. Two sequences result from execution: the
sequence of control (Pezri net) states. and the sequence of associated data states. Taken as
a pair, a control state and a data state completely define a system configuration. and the

two execution sequences actually define a single sequence of system configurations.

Each Petri net place in the control flow mode] for a procedure represents a block of
contiguous procedure calls from the text of that procedure. The time 7 on the place in the
net represents the duration of the execution of those procedure calls, in that a token
arriving at a place must reside there for 7 state changes before it enables any following
transitions. Allowing multiple transition firings 10 create a single state change, and
equating a state change with one time unit, an execution sequence of a timed Petri net

presents a measurable notion of computation duration.
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Each procedure in an HG system model can be analyzed to the exclusion of the oth-
ers in the system. In addition, the structure of the Petri net describing the control flow of
a procedure allows any portion of the procedure--say, a loop body--to be extracted and
analyzed as if i{ were 2 separate procedure. Inclusion of the host machine for a system in
the model allows analysis of real-time computations by making available some fixed

points in the hierarchy where the execution durations are known.

In Chapter 4 an algorithm expression technique is introduced for creating HG models
that are well formed and easily analyzable. Termed parallel flow graphs { PFG ). the
syntax and semantics are expiained in terms of creation and deletion of different parallel
paths of control. Each control path effects changes to the shared data state through the
execution of basic blocks of procedure calls. Parallel flow graphs are shown to be capable
of expressing several well-known parallel control structures. A translation procedure
from PFGs to HG system models is also outlined. Models created from PFGs have Petri
nets in the free choice category, a class of nets with simpler structure than the general

Petri nets.

Chapter 5 contains an explanation of one analysis technique for HG system models,
that of detecting and correcting conflicts among parallel basic blocks on shared structures
in the data state. The detection is accomplished by the creation of a restricted form of
the Petri net reachability tree, termed the concurrent reachability tree. The simplified
approach in this chapter uses systems in which the time components of the Peiri nets are
assumed 10 be unity and are hence ignorable. The concurrent reachability tree represents
only the subset of the reachability set of a Petri net which is actually obtainable under
‘the concurrent transitioﬁ firing rule. From each state in the tree, pairs of possibly con-
current basic blocks are identified by the marking of the places representing these blocks.
We say possibly concurrent because the analysis is dependent only on the net structure

and does not employ in any way the information contained in the data state. A control
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path in the Petri net may never be truly executable if the data values preclude selection

of certain branches.

If a pair of blécks is found to be potentially concurrently executable, it is checked
for conflicts on shared data. Two forms of conflict are considered: one block writing to a
node which the other has written for later reference; and one block writing to a node
which the other needs to read two or more times in succession, with no intervening
writes. If conflicts are found between two blocks, then critical regions within the blocks
are identified and appropriate mutual exclusion structures are automatically added to the
Petri net in the control flow model to prevent the critical regions from actually executing

concurrently. An extension of this procedure to more than two blocks is also discussed.

Chapter 6 concludes the development of results with a discussion of using an HG
system model to answer questions about whether real-time constraints can be met by a
particular hardware/software system. An extension to the construction algorithm for the
concurrent reachability tree is presented which creates the tree for Petri nets with non- -
unity times. The extension allows for overlapping executions of basic blocks, that is.
blocks which begin execution in one system state but end in some later state. The ana-
lyses of Chapter 5 apply to the tree generated in this way, since again the tree represents

the obtainable states of the control flow model.

A meaning is given for the deterministic times on procedure call executions, and a
method is presented for ascribing a consistent set of these times to the places in the Petri
nets in a system model. With such a consistent set, algorithms are developed for deter-
mining the minimum and maximum execution durations for systems with varying
degrees of structural complexity. The minimum and maximum figures can be used to

determine satisfaction of time constraints for the modeled system.
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7.2. For further research

The following sections briefly discuss topics for further investigation, areas opened
by our work on the HG software system model. Several are concrete, experimental pro-

jects: others require additional theoretical development.

7.2.1. HG, dataflow, and other functional languages

The relationship between the imperative style of programmingland functional styles
needs to be examined for common properties and unifying principles. A unified model of
computation (concurrent by definition, with sequential as a special case) is a desirable
goal, one that would incorporate all the computation paradigms discussed in this report
and provide insight into new paradigms. We hope that the work on this project can make

a contribution toward achieving this larger goal.

7.2.2. Automated tools

A set of tools for software system developmert and analysis can be developed based
on the work in this report. The modeling theory can serve as a central mechanism, com-
mon 10 all tools in the set. Systems may be written in any of several source 1anguages,_
with tools 10 translate each into the HG modeling formalism. Analysis and transforma-
tion is then performed on the model itself, without regard to the original text. Finally,

code can be generated directly from the verified model for different target machines.

Numerous types of tool are conceivable based on the unifying HG formalism. The
translators from various source languages to the HG notation are basically compilér front
ends. An analysis tool is needed to perform the conflict detection and correction described
in Chapter 5. Another can perform the timing consistency checking and generation of the
dual time models described in Ckapter 6. Based on Wilson's work [64] a tool can be
developed 10 advise of possible aliasing situations in a sysiem. The generation of code

from the model requires several separate tools which are essentially compiler back ends.
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7.2.3. Scheduling and nondeterministic control flow models

As mentioned in Chapter 3, the HG model encapsulates the notion of scheduling in
two separate decisions, made in the course of determining which configuration follows the
current one during a computation. The choice technique is left unspecified, but it is
required to be deterministic to match the requirement that a procedure define a function.
A nondeterministic choice method could lead 1o several different outcomes resulting from
the computation of a procedure from a single initial state, which does not denote a func-
tion. An investigation is required of the ramifications of lifting the restriction on deter-
ministic choice, and letting a procedure represent mathematically a relation rather than a
function. We conjecture that the change from a deterministic to a nondeterministic con-

“trol flow model can be accomplished simply by allowing the two scheduling decisions 10
be nondetermiﬁisitically performed. Thus nondeterminism can be sﬁccinctly encapsulated

in the model at only two points.

Another interesting question is to discover the effect of reducing the granularity of
the interleaved sequential events. Currently, the interleaving takes place on the entire
procedure call level. each new system configuration is obtained from the last by combin-
ing all the concurrent basic blocks into a single, interleaved block of procedure calls. A
procedure call can be viewed as non-atomic, that is. as a sequence of events like copying
the argument values into the initial data state, executing the function, and then copying
out the result values. The interleaving can then take place with overlapped procedure

call executions. The effects of this on the data state are unclear.

7.2.4. Architecture design/description

If the hardware supporting a software system can be included in a2 mathematical
model of the entire structure, it seems reasonable that the analysis performed on the
model should suggest some hardware features that enhance the analysis and others that

inhibit it. An investigation can be made into the usefulness of the HG formalism for
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architecture design. A machine architecture can be described as if it were a software sys-
tem, with the machine instructions modeled as procedures (with the structure represent-
ing microcode) and the registers or other data structures described in the data model as

h-graphs.

7.2.5. Formal language aspects of the concurrent Petri nets

Peterson [51] describes sc-_zvera.l forms of formal language associated with a Petri net
structure, all assuming the single transition firing rule for execﬁtion. In its simplest
form. the language of a Petri net is the set of strings formed by the transition sequences
of all possible executions, where a symbol rom an alphabet is associated with each tran-
sition. The concurrent firing rule employed iﬁ the HG model creates a different language
due to firing sets of transitions. We propose to investigate the formal properties of this
language. It is obvious that the concurrent Petri net language is a subset of the normal

language, but the question of whether it is easier or more difficult to recognize is open.

7.2.6. Experiments with implemented systems

Much experimental work needs to be done to verify the utility of the theory
described in this report. Several questions remain unanswered at this point. Since most
of the Petri net analysis algorithms require time and/or space that is exponential in the
size of the nel. models of real systems may be too large to be practically analyzable. The
hope is that by baving a hierarchically decomposable formalism, and by Keeping pro-
cedures small, the analyses will be tractable. Another problem is that of incorporating
the communication and system synchronization overhead into the basic blocks in the
model. Detailed methods for doing this need to be developed through experimentation

with several different host machines.



167

7.2.7. Expanded timing resuits

Investigation of the use of the timing information in the HG system model is barely
started. The work in this report is the beginning of a larger effort to automate the detec-
tion and correction of synchronization difficulties based on the overlapping in time and
space of concurrent blocks. Whereas the current work treats each procedure call as hav-
ing either the minimum or maximum duration for all possible calls. a more thorough
treatment would attempt to employ the particular parameters in each call to get tighter
bou:r:;ds on its actual duration. Not only could the data state be used as an aid in this
investigation, but time bounds could be added for "overhead" events like parameter
transmission, which are ignoréd in the current work. An automated procedure might be
developed, as well, for specifying and timing sections of procedures (say. loop bodies) as

if they were separate entities.

Another area that was not explored in this initial investigation is the handling of
faults, either in the hardware processors or in the software being modeled. In terms of a
Petri net, a software fault would perhaps manifest itself as a token that "vanishes” from
the net without being consumed by a transition firing, representing a request for software
execution which was discarded from the system schedule for some reason. A hardware
fault might be manifest as a transition which is enabled and chosen, but does not ﬁre.
Such events are not handled by existing Petri net theory. New results for such expanded
execution rules must be developed before a notion of fault-tolerance can be effectively

integrated with the current HG modeling theory.

7.2.8. Describe syntax/language of PFG for modeling

We propose to develop a conventional language syntax and formal semantics for
PFGs, to facilitate their use as a programming notation. This skips the translation stage
described in the section on tools, and encourages direct programming in the HG language.

A control structure for expressing explicit nondeterminism is a possible addition to the
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PFG notation described in this report. Such a feature would allow modeling of control

constructs like the Ada select statement, and the CSP guarded command.

7.2.9. Extended firing rule for control flow models

The execution rule for the control ﬂow model employed in this report requires firing
as many transitions from the data-enabled set as possible at each state change. This
reflects a host architecture that always has enough processing elements to satisfy all
requests for block execution. A more realistic situation is to have a fixed number of pro-
cessors. It is very likely that at some po'mt' in & computation more blocks will be able to
execute than can be handled with the number of available processing units. To model
such a system, the firing rule must be altered to allow an arbitrary subset of the data
enabled transitions to fire. A mechanism must also be added to the formalism to allow
the choice of such a subset to be made. The card.inality of the subset would be limited to
the number of processors in the machine executing the system. We propose an investiga-

tion of the ramifications of this generalization.

7.3. Conclusion

This study of the HG model of concurrent software systems has provided an ingight
into the timing and verification of software systems for real-time applications. The for-
malism provides a vehicle for mathematically descriving in a hierarchical struc*;ture the
functional content of a collection of concurrent computations along with their interac-
tions, both in shared data spaces and in overlapping execution durations. Several aspects
of concurrent algorithm descriptions-~data, code blocks, block relationships--are modeled
as separate but interrelated components of a compuiation. This abstraction allows the
study of properties relating 1o each area without the obscuring hindrance of excessive
detail. For instance, the interconnection of concurrent modules can be anaiyzed without

knowing the particular procedure calls in the modules.
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Included in the model of a system is not only the software that executes but a
representation of the execution-time behavior of the hardware that hosts that software.
These machine-oriented portions of the model provide a low-level, accurately timed base
from which an estimate of execution time bounds for the higher levels can be calculated.
Though complete and exact timing results can now only be obtained for acyclic systems,
the model appears to provide a formal handle on cyclic systemé with which further

research can make some progress.

. Basing the concurrency structure of the HG theory on Petri nets provides a fairly
iarge body of analysis techniques and resuits that is immediately applicable to HG sys-
tems. Generalizing the execution rule of the nets, however, provides some new areas for
investigation, as in the extensions to the well-known reachability tree for representing
activity durétions. From the HG model of a system, several synchronization and data-
~ sharing problems in the system can be identified and corrected. The model can then serve -
either as a guide for generation of correct code. or as an execution vehicle in itself. The
HG system modeling theory is formal enﬁugb to be used as. the unifying basis of a tool set

and analysis package for 2 program development environment.
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