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Abstract

A key driver of software obsolescence is change in hard-
ware and system software standards. In the area of
software tools, there is now great pressure to host on
Intel /Windows platforms tool functions that in the past
were typically found in Unix or mainframe environ-
ments. In such cases; there can be value in reusing core
parts of such legacy systems. Two standard methods for
doing this are reengineering and wrapping. Reengineer-
ing, being unrestricted in the changes allowed, permits
the removal of obsolete parts of a system but creates
the risk that changes will break the complex and brittle
reused code. Wrapping involves the reuse of existing
code without change, but at the cost of including obso-
lete elements into the new environment. In this paper
we propose unwrapping as a new synthesis of these two
approaches. To unwrap is to remove unwanted design
elements, but with a strong emphasis on leaving core
code unchanged. We discuss our preliminary use of this
approach to reuse core elements of two Unix-based re-
liability engineering tools in a modern tool based on
package-oriented programming.

1 Introduction

Existing software systems often represent major capital
investments. Unfortunately, even well designed soft-
ware systems tend to depreciate over time, creating an

increasing incentive to be able to reuse the still-valuable
core functions in new contexts. There are two tradi-
tional approaches to the exploitation of code embed-
ded in depreciating systems. The first is reengineering,
which Chikovsky and Cross define as “the examination
and alteration of a subject system to reconstitute it in
a new form and the subsequent implementation of the
new form [10].” The second is wrapping [1, 33], in which
an existing system is wholly incorporated into a new one
behind an information hiding interface.

A strength and weakness of reengineering is that
it tacitly sanctions arbitrary changes to existing code.
The benefit is that suboptimal elements can be removed
and beneficial architectures can be imposed. On the
other hand, complex legacy codes that have stabilized
over a long time are brittle and often poorly under-
stood. Reimplementing them can be very costly, and
changing them can create significant risks. A key bene-
fit of the wrapping approach is that it avoids the cost of
reimplementation and the risk of breakage involved in
changing such code. However, it incurs the cost of in-
corporating what can be significantly suboptimal design
elements of the old system into the new environment.
For example, wrapping a Unix-based tool to implement
a Windows-based tool would involve the need to main-
tain the whole legacy Unix infrastructure in order to
host the now wrapped legacy tool, which would typi-
cally be invoked over a network. That 1s clearly not
what most users of a Windows-based tool want or ex-
pect.

In this paper, we contribute unwrapping as a new
strategy for legacy integration that promises to reap
many of the benefits of each of these approaches without
incurring all of their disadvantages. Our approach can
achieve much of the elimination of unwanted code, as is
possible with general re-engineering. But like wrapping,
unwrapping acknowledges the delicacy of legacy code,
and so emphasizes the need for no disruption of exist-
ing code, with the possible exception of changes whose



correctness is easily verified.

1.1 The Basic Strategy

Unwrapping is the removal of unwanted code by iden-
tifying an interface that partitions a system into a core
providing the desired functionality of a system and a
superstructure containing unwanted elements. Unwrap-
ping involves the discarding of superstructure elements
surrounding valuable code. It is often complicated by
the complex and poorly understood coupling between
the two. Thus, in general, the first step in unwrap-
ping is to analyze the structure of the system in or-
der to identify an interface — though not necessarily
a “clean” one — at which the cleaving off of the su-
perstructure will occur. In some cases unwrapping is
partial, with unwanted but hard to remove old code
carried into the new system, e.g., to avoid the need to
disrupt brittle core code. We call such unwanted code
elements “warts.”
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Figure 1: The reuse of a system using unwrapping.

Figure 1 illustrates the idea. Figure la depicts valu-
able core code embedded in the legacy superstructure
hosted on a legacy platform. It also depicts dependen-
cies of the core code on the legacy superstructure, and
of the superstructure on the core. Figure 1b depicts
the partially unwrapped core, with warts and now un-
resolved dependencies included. Figure lc depicts the
integration of the unwrapped core into a new system.
Instead of the entire old system, only the unwrapped
code, along with any unremoved warts, is wrapped for
integration into the new system. The new wrapper re-
solves the dependencies required for the core to operate,
and provides an interface to the core for use by the new
system.

1.2 The Objective

The goal in unwrapping is to maximize the value added
through the reuse of core code. The value added in a
particular case depends on several factors: the value of
the core code isolated for reuse; the cost of isolating the
core code; the cost of unwrapping and then wrapping
the code; the cost of any disruption of the old core code;

and the short and long term cost of integrating warts
into the new system.

Various tradeoffs are possible along an unwrapping
design spectrum. For example, time-to-market might
be improved at the expense of long term evolution costs
by wrapping more of the existing system. The chal-
lenge to the designer, then, is to pick a point along
this spectrum that maximizes value added at a partic-
ular point in time in light of available resources, toler-
ance for risk, uncertainties, time-to-market constraints,
etc. One consulting company has noted that, “Pick-
ing the right application system layer and product is
critical... Wrapping large scale, monolithic applications
rarely makes economic or technical sense [31].” At one
end of our spectrum, then, we have complete reuse of
the old core code with no unwrapping. At the other
end is unconstrained reengineering, in which the desired
functionality is re-constituted, possibly from scratch.

1.3 Application to Tools

In this paper, we focus on the specific domain of soft-
ware tools for engineering modeling and analysis. This
domain is broad enough to be interesting as a subject of
software engineering research, and it is one of consider-
able practical importance; but it is also narrow enough
to be characterized by certain common structures. In
particular, we claim that many engineering modeling
and analysis tools are organized roughly as computa-
tional cores surrounded by what we call superstructures
for input, output, graphics, and so on.

Many existing tools were designed to operate on
Unix or mainframe platforms. These tools are now
losing significant value because of the heavy premium
now placed on tools that run on personal computers.
We are exploring an approach to modernizing these ex-
isting tools by integrating their computational cores
into new superstructures built from multiple shrink-
wrapped software packages [28].

In the next section we make the idea of unwrap-
ping concrete by discussing the integration of legacy
tool code into our fault tree analysis tool called Galileo.
Galileo is an engineering tool into which we have inte-
grated computational cores from two Unix-based legacy
fault tree analysis tools: DIFTree [18] and MCI-HARP
[4]. Next, Sections 3 and 4 present details of the un-
wrapping of the legacy cores. Section 5 presents our
evaluation of the unwrapping concept based on work
done to date. Section 6 discusses research related to
unwrapping. Section 7 concludes with a discussion of
options for future work.
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Figure 2: Screen shot of Galileo.

2 Case Study: Galileo

The concept of unwrapping evolved during our work
on the Galileo project [29], an experiment in the use of
package-oriented programming (POP) techniques in the
development of software tools. Package-oriented pro-
gramming i1s an approach to software development in
which multiple shrink-wrapped packages, used as large-
scale components, are integrated into systems.

Galileo is a tool for reliability engineers that pro-
vides the ability to edit, store, and solve fault trees [32].
See Figure 2. Fault trees are models of system failure,
where the top-level event represents the failure of the
whole system. The failure of the system is dependent
on some combination of subsystems, which themselves
can be broken down into subsystems until the “basic
events” of the system are reached, whose failure char-
acteristics are specified. Our original hope was to be
able to quickly design and implement the editing and
storage capabilities using POP, and then to be able to
“Just plug-in” different computational cores from exist-
ing systems [30].

Unfortunately we found the core elements of the ex-
isting systems to be complex and brittle. The com-
plexity made us wary of rewriting the code (or even of
changing it) for fear of getting a new implementation
wrong or of breaking the existing one. Nor did we want
to commit to investing the time and resources necessary
to reverse engineer and then reimplement the existing
code given the uncertainty and risk that there would be
insufficient demand for our tool. Moreover, the useful
parts of the systems were embedded in complex, legacy
superstructures. For example, the core of the DIF Tree
tool (which we discuss next) was hosted in an implemen-
tation of graphical and textual manipulation functions

that were tied closely to Unix and its pipe-and-filter
programming model.

We wanted to reuse the core code without change,
and without being tied to a Unix environment, which
would have been wholly inconsistent with our goal of
providing a PC-based tool. We also wished to remove
the the original DIFTree editing and storage capabili-
ties, which were already provided by the Galileo tool.
We now discuss the process of unwrapping that allowed
us to meet our objectives.

3 Unwrapping DIFTree

The goal of the Galileo project was to provide a tool
supporting the same function as DIFTree. DIFTree
solves fault trees with static and dynamic elements by
splitting these trees into static and dynamic subtrees,
which are passed to engines that use different solution
algorithms. The technical details are irrelevant here.

3.1 DIFTree’s Original Implementation

The design and implementation of DIFTree, comprising
32,159 lines of C++, C, Perl, Tecl/Tk, and Python, mir-
rors an earlier Fortran system. It was not well modular-
ized to begin with, and its structure was further com-
promised by the loosely coordinated modifications made
by four graduate students over several years. The sys-
tem has degraded structurally, is not well documented,
and is hard to understand. Developed for use on Unix, it
is structured as several applications that communicate
with each other, with the user, and with the operating
system through a variety of interfaces, as illustrated in
Figure 3.

The rectangles in the middle of the figure represent
the different Unix programs constituting the tool. The
arcs represent data flows between these programs and
their supporting environment. The outer oval shape is
meant to suggest that the central computational ele-
ments of the tool are embedded in and to some extent
intertwined with a superstructure consisting of a graphi-
cal front-end and the Unix operating system: its console
interface; file system; and command shell, as invoked by
system (program invocation) calls. The shapes in the
lower oval represent aspects of Unix that the tool uses.
For example, the tool maintains a cache of partial re-
sults within the file system.

The user creates fault trees with the graphical front-
end implemented in Python and Tel/Tk. When the
analysis is begun, the front-end outputs the fault tree
to a file using a text-based representation, and invokes
SplitTrees. The user then enters analysis parameters
through the SplitTrees console interface. SplitTrees
reads the fault tree file and partitions it into subtrees
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Figure 3: File system and console usage in DIFTree.

that are output as text files for use by DynaSolver
and Dredd. SplitTrees generates control files contain-
ing simulated user input for Dysol.pl and Stsol.pl (Perl
programs), which are invoked with Unix system calls.

Dysol.pl and Stsol.pl consult the file-system-based
cache of results of previous computations. If a cached
file matching the current inputs is found, Dysol.pl or
Stsol.pl copies the cached data to make it appear as the
expected result. In case of a cache miss, Dysol.pl or
Stsol.pl generates another control file containing simu-
lated user input to drive either DynaSolver or Dredd.
Dysol.pl and Stsol.pl capture and cache the output files
generated by DynaSolver and Dredd and then return
the results and control to SplitTrees.

As an added complication, DynaSolver uses the file
system internally to store temporary values involved in
producing the matrices that are ultimately passed to
the mathematical library. This kind of implementation
detail, which results in embedded dependencies on the
legacy environment, complicates the process of legacy
code reuse. A key part of the unwrapping approach is to
locate and then to “rebind” these kinds of dependencies.
By rebind we mean to identify and create surrogate im-
plementations to replace functionality not provided by
the new environment.

3.2 Unwrapping the DIF Tree Computational Engine
We now describe the unwrapping process and its appli-
cation to DIF Tree.

3.2.1 Find a Suitable Internal Interface

The first step in unwrapping a legacy system is to iden-
tify an interface that separates the core from the super-
structure, consistent with value maximizing tradeoffs

under uncertainty and limited resources. For example,
the best interface might be at the outermost boundary
of the entire system. That is, a traditional wrapping ap-
proach might be best, in which one communicates via
remote procedure call to a legacy application hosted
on obsolete hardware. Examples of factors to consider
while choosing a suitable interface are: the time avail-
able; the labor required in removing the superstructure
at that interface; the engineer’s knowledge of the sys-
tem; the warts that will remain after unwrapping is
finished; and the superstructure dependencies that will
have to be reimplemented in the new environment.

A common tradeoff, in our experience, is the speed
of integration versus the number of warts remaining
in the unwrapped core. An unwrapping approach us-
ing an external interface may realize short-term gains
more quickly, while incurring higher long-term costs,
performance degradation, and possibly externally visi-
ble architectural incoherence. On the other hand, an
approach that utilizes an internal interface that bounds
the desired core code tightly may result in a cleaner
integration, but requires a higher up-front investment.

Our requirements made the option of wrapping
DIFTree in its entirety unattractive. One alternative
that we considered briefly was to unwrap it to enough
to make it independent of the Unix operating system,
but to leave it structured as a set of separate processes.
We discarded this alternative because it required the
use of Perl and yielded a poorly structured design that
would have been costly to manage, even in the short
term. Instead, we decided to unwrap more aggressively,
so that the core code would be integrated into Galileo as
a statically linked library. That degree of unwrapping
exposed several dependencies that we had to rebind, in-
cluding on the console. Concern regarding performance



also led us to cleave off the Unix file system.

3.2.2 Identify Dependencies

The next step in unwrapping is to identify dependen-
cies of the core on parts of the superstructure being
removed. In some sense the consideration of depen-
dencies plays a role during the selection of a suitable
unwrapping interface, since tight coupling increases the
cost of separation. Likewise, the difficulty of resolving
dependencies between the core and its new environment
can affect the location of the unwrapping interface.

In addition to the file system and console depen-
dencies mentioned earlier, DIFTree relied upon other
aspects of its environment. The simplest case was a
system call within SplitTrees to the Unix date pro-
gram, which, on the Windows operating system sets
the date instead of prints it. In invoking Dysol.pl and
Stsol.pl, DIFTree depended on the availability of Perl,
and on the meaning of shell redirection. DIFTree also
depended on the Gnu C++ library [20], since it relied on
particular definitions and on a memory allocation com-
ponent called Obstack. Furthermore, the code assumed
a specific version of the compiler that allowed the use of
constructs that later versions did not. Lastly, DIFTree
assumed the the console to be a part of the user inter-
face, an incorrect assumption for the Windows-based

Galileo.

3.2.3 Physically Extract the Core

The source files we removed entirely were those related
to the graphical front-end and the parsing of the tex-
tual representation of a fault tree, as well as Dysol.pl
and Stsol.pl. During the removal of the superstructure
code, we realized that we had a second objective: the
backward compatibility of the newly unwrapped code
with the Unix operating system. We therefore decided
to enable compilation in either environment by separat-
ing the remaining, shared, source files using conditional
compilation, a change that was easy to reason about.

A particularly difficult aspect of the legacy environ-
ment was Obstack, a memory management class, from
the Gnu library mentioned earlier. At first we intended
to simply remove the dependence on this component,
but our lack of understanding of its precise behavior
and its widespread use in the desired core code sug-
gested that this would be risky. Rather than change
the core so that it was not used, we decided to port it
— as a wart — to the new environment.

3.2.4 Rebind Dependencies and Wrap Interface

After core code has been unwrapped, exposed depen-
dencies must be rebound. A wrapper around the ex-

tracted core can serve this purpose as well as to provide
a better interface for use by the new host environment.
Warts from the legacy system become part of the core’s
wrapper, as does any necessary functionality that must
be reimplemented as a result of being removed during
the unwrapping process.

For example, we rebound DIFTree’s use of the Unix
date program to standard date routines in the C++
library, and we ported Obstack from the Gnu libraries.
Similarly, the wrapper implemented a graphical window
consistent with the user interface of the Galileo tool,
and redefined the C4++ cout and cin within the core
to use it instead of the Unix console.

We used a variety of approaches to rebind depen-
dencies on the Unix file system. We removed the user
interfaces to DynaSolver and Dredd and replaced them
with direct function calls, passing simulated user input
contained in the control files as arguments. We replaced
the large complex data file used within DynaSolver to
store temporary values with a stream to memory by re-
binding the C++ ostream file interface to a strstream
memory-based one. In this case we we achieved sig-
nificant performance improvement by avoiding the file
system, even in the face of a tradeoff in which we sac-
rificed a possibly cleaner non-stream-based method of
communication. Since the semantics of ostream and
strstream were nearly identical, we were confident that
we did not adversely affect the code.

DIFTree uses three different fault tree file represen-
tations as input to SplitTrees, DynaSolver, and Dredd.
Unlike the large DynaSolver file, these files were eas-
ier to understand, which allowed us to identify syntac-
tic elements that corresponded to structures within the
Galileo abstract data type (i.e. object-oriented) repre-
sentation of a fault tree. Using this correspondence as
a guide, we took the opportunity to convert the non-
standard file communication into parameter passing of
a common Galileo fault tree representation. We accom-
plished this by unwrapping SplitTrees to remove its file
output, and then creating a wrapper that populated the
data structures of a Galileo fault tree object.

Since the input routines of SplitTrees and Dyna-
Solver used LEX and YACC [19, 21] we were able to
leverage the semantic action rules of the parsers to
determine how to populate the legacy data structures
based on a given Galileo fault tree object. For example,
when the original system parsed a basic event and its
parameters, the add_params() function in the legacy
core was called. Similarly, our wrapper acquires the
analogous parameters from the Galileo abstract data
type and calls the same function. Thus, we engaged
in a re-engineering task within the overall unwrapping
exercise.

Our approach to removing and rebinding the file



caching implemented by Dysol.pl and Stsol.pl was to
create a hash data structure in memory in which the
keys are the inputs to DynaSolver or Dredd and the val-
ues are the resulting outputs. Since the result returned
by the solvers is small in size, the amount of memory re-
quired to hold the hash values is correspondingly small
(about 6 bytes for each subtree solved). If the output
had been large or the output code not well encapsu-
lated, the stream-to-memory approach discussed earlier
could have been used.

3.2.5 Integrate Core Into New System

Once the core has been wrapped to resolve exposed de-
pendencies and to provide a suitable interface for use
by the new system, it is integrated into the new en-
vironment. (In fact, wrapping and integration occur
simultaneously to some extent.) The first milestone in
integrating DIFTree was the modernization of the code
to remove its dependence on the outdated Gnu com-
piler. The next was the removal of the dependencies
on Unix, followed by the verification that DynaSolver
could compile and run as a stand-alone application on
an Intel machine.

During integration, we found that unanticipated in-
teractions between the newly integrated core and the
new environment had to be resolved. In particular, at
the next milestone of integrating DIFTree as a statically
linked library, we found that DynaSolver and SplitTrees
referenced different global variables by the same name.
As a result, we had to encapsulate the two to scope the
variables correctly. Later, we found a more serious in-
tegration problem in that all of the legacy components
were designed to simply abort execution on detecting
an error. This approach was workable in the context of
loosely coupled Unix applications, but it was untenable
for tightly coupled components within a Windows-based
program. To resolve this issue, we modified Galileo to
validate the input before the core code was invoked in
order to ensure that none of these error conditions could
occur; and we provided error-handling code that would
gracefully exit Galileo in the case of catastrophic error.
In other words, we had to reverse engineer the core code
to derive preconditions strong enough to prevent that
code from reaching certain points.

3.2.6 Results

The careful unwrapping and integration of DIF Tree into
the Galileo project resulted in the merger of a rich user
superstructure and a state-of-the-art analysis functions.
By making DIFTree available on the Windows operat-
ing system we have expanded the market for the tool,
so that over 230 people have downloaded it over a ten

month period. Our work also created a close collab-
oration with engineers at Lockheed-Martin, which has
helped in the development of both Galileo and DIFTree.
Having resolved the uncertainty over the demand for
our tool while hedging our risks on the cost front, we
are now undertaking a more costly and comprehensive
reengineering of the legacy core to resolve long term
maintenance and correctness problems.

Referring back to figure 3, the unwrapping interface
we chose included the core elements of SplitTrees, Dy-
naSolver, and Dredd, except for the textual fault tree
parsers, textual output routines, and system calls. Fig-
ure 4 shows the structure of the resulting implemen-
tation, where DIFTree’s core elements have been un-
wrapped, their legacy dependencies removed, and then
wrapped. We rebound dependencies on the file system
to memory-based methods, the console user interface to
a graphical one, and operating-specific system calls to
function calls. The Galileo fault tree objects are now
the common format exchanged between SplitTrees and
the subtree solvers, with object translators replacing
the parsers in the legacy system.

4 The MCI-HARP Case Study

Our second application of unwrapping was the integra-
tion, into Galileo, of another fault tree solving engine
called the Monte Carlo Integrated Hybrid Automated
Reliability Predictor (MCI-HARP) [4]. Using Monte
Carlo techniques, the program simulates stochastic fail-
ures of the basic elements of a fault tree to determine
what ratio lead to overall system failure. Unlike our
careful integration of DIFTree, our goal for MCI-HARP
was to produce a prototype integration quickly as a
proof-of-concept for purposes of demonstrating the po-
tential of package-oriented-programming to collabora-
tors at NASA. The tradeoffs made during the work de-
scribed in this section were in favor of time instead of
long-term system structure.

MCI-HARP has had a long history, beginning in
1981 as simply HARP, developed at Duke and Clemson
universities [14]. About seven years later HARP was
used in a Monte Carlo simulator (MCI-HARP) built at
Northwestern University [26]. For about the past five
years, the system has undergone several enhancements
at NASA and is now called MCI-HARP. All told, about
20 people at four institutions have worked on it.

Unlike DIFTree, MCI-HARP integrates computa-
tion and fault tree editing into one executable program.
Its console-based interface is menu-driven, and it uses
files as input and output and to store data between pro-
gram executions. At about 38,000 lines of Fortran code,
MCI-HARP is 18% larger than DIFTree, but is better
modularized.
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Figure 4: Reengineered DIFTree structure.

In contrast to the decision to remove dependencies
on the files system made in the DIFTree project, we
chose to retain the files used by MCI-HARP in order
to avoid the costs associated with removing them. Be-
cause of the modular nature of the code, the interface
to the computational core was easily 1dentified as a sim-
ple function call, two input files, and a report in a text
file for output. In choosing this interface, we excluded
MCI-HARP’s superstructure for editing of fault trees,
although we chose not to remove the “dead code” re-
sulting from our use of an internal interface.

Because MCI-HARP had been ported to several
platforms (including Intel-based computers), there were
no adverse dependencies upon the operating system,
and no compiler-specific constructs in the code. How-
ever, the computational core did rely upon the input
text files generated by the superstructure. We deter-
mined the extent of core’s dependence on the input files
by examining the contents of the files themselves and
referring to the software’s extensive documentation. We
determined the formats of the data in the files by talk-
ing to the original developers of the software at NASA
and the University of Virginia. This task was somewhat
more difficult than with DIFTree because the files did
not have an easily identified correspondence with the
Galileo fault tree representation.

There were two major issues during the rebinding
and wrapping phase. The first was the need to im-
plement a wrapper that fabricated MCI-HARP’s input
files from a Galileo fault tree object and which then
called the computation engine. This was straightfor-
ward given our previous reverse engineering of the file
formats. Similarly, we wrote a simple routine to read
the result of the computation from the output file and
return the desired value.

The second issue was the legacy console interface.

Here we encountered a significant difference between
Fortran and C or C++4: the PRINT statement in For-
tran is part of the language and can not be redefined.
This forced us to modify the code at every output state-
ment. We wrote a small script that replaced each call
to PRINT with a call to an external C++ procedure that
we wrote. After rebinding the Fortran PRINT statement,
we were able to use the same technique that we used in
DIFTree to replace the standard cout with a GUI-based
implementation. Thus, in this unwrapping exercise, we
did change core code, but in a way that was easy to
understand and verify.

5 Evaluation

Naive wrapping of DIFTree in its entirety would have
saved us the trouble of having to modify the original
code, but 1t would have caused unacceptable problems:

1. inefficiencies of file-based communication

2. the need to implement a “screen scraper”, a wrap-
per that captures console output and presents the
data to an external program

3. the need to port part of the Unix operating system
or remain on Unix and communicate with Galileo
over a network

4. the need to distribute Galileo as multiple processes
dependent on Perl and Python

5. a poorly constructed component within the well-
structured Galileo system

Not including code generated by LEX and YACC,
the original DIFTree system contained 32,157 lines of
code, 16,415 of which was devoted entirely to a graph-
ical front-end written in Python. Of the original code,
19,095 lines were removed as superstructure, and our
wrapper code consisted of 1,428 lines.



Wrapping MCI-HARP without modification would
have required us to write a screen scraper to capture
console output, and to simulate extensive user inter-
action to create fault trees using its built-in support.
Furthermore, following this course would have incurred
extra overhead and redundant superstructure. Un-
wrapping MCI-HARP to remove its support for fault
tree creation simplified the functional interface substan-
tially.

As a prototype integration, we did not physically
remove MCI-HARP’s code resulting from unwrapping,
however we estimate that about 1,700 lines of code were
rendered unreachable by our modifications. The wrap-
per we constructed consisted of 283 lines of code, which
does not include the GUI code that we reused from
SplitTrees. In addition, 1283 lines of code were auto-
matically added by the transformation that rebound the
PRINT operation.

While it is not quite fair to compare across com-
puter architectures and operating systems, a DIFTree
solution that previously took about 45 seconds to com-
pute on an unloaded 167 Mhz UltraSparc 1 on a net-
work files system took only 6 seconds to compute on a
single-user 133 Mhz Pentium. Informal timing of the
original code using the Unix time command shows that
of the 45 seconds, about 36 seconds (80%) were spent
in a non-running state, most likely being I/O bound.

Using unwrapping followed by rebinding and wrap-
ping, we were able to integrate two legacy systems into a
modern application while simultaneously removing un-
desirable dependencies on the operating system, graph-
ical and console interfaces, and foreign language proces-
sors. Part of the success of these projects is because the
operating system and console interfaces represent levels
of functionality that are well defined, narrow, and usu-
ally easily accessible. For tools, the separation between
the core and superstructure appears likely to hold. It
is not yet clear how successful this technique would be
for other legacy systems.

6 Related Work

Our approach is clearly related to a great deal of
work on reverse and re-engineering in general, and on
reusable component extraction in particular. We also
address work on wrapping and repackaging, as well as
tool support.

6.1 Reusable Component Extraction

Much work has been done on the extraction of reusable
components from legacy source code. Space prevents
us from discussing many useful results. Our work could
use many of the tools and techniques that have been

developed. However, what is important is that, though
perhaps not obvious to the casual observer, our work
differs fundamentally from previous efforts in this area.

Previous work starts with the assumption that
legacy systems might contain code with reuse value.
The work seeks tools and techniques to identify and
then to extract candidate reusable code, which is then
evaluated and reengineered for purposes of populating
a reuse library. Etzkorn and Dawvis, for example, seek
natural-language and structure-analysis-based tools for
“identifying reusable subroutines or code fragments in
legacy systems [15].” Similarly, the reuse re-engineering
work of Cimitle, Canfora, et al. [7, 8, 9], is founded on
the basic notion of candidature, which involves the ap-
plication of code analysis, often using semantically pow-
erful tools, to identify potentially reusable elements in
poorly understood legacy code.

Our work differs from these previous efforts in its
basic assumption: we know that our legacy system con-
tains code that we want to leverage. The difference is
basic but profound. Our problem is not to ascertain
the presence of potentially valuable code within legacy
systems, but to extract valuable code that we already
know 1is there, without breaking it. The concept of un-
wrapping appears to be a novel contribution to our set
of intellectual tools for dealing with the migration of
legacy systems.

There is little doubt that the use of code analy-
sis tools, whether semantically rich or not, could as-
sist in the unwrapping process. We have not used se-
mantically rich tools to date, owing to the real-world
messiness of our legacy systems, which are written in
multiple languages, which use Unix-based composition
mechanisms, and so forth. The use of semantically
light-weight approaches, such as reflexion model tech-
niques [22], promises to be especially valuable as an
ald in unwrapping. Automated approaches to user in-
terface reengineering such as that used by Csaba [12]
and ClaBen, et al. [11] might be used to help unwrap
and rebind complex text-based user interfaces utilizing
menus and windows. Tool support for automatically
identifying system dependencies, such as the work of
Baratta-Perez et al. [3], also offers a good first step in
separating core code from superstructure.

6.2 Wrapping

Unlike unwrapping, wrapping is now a widely known
approach to legacy code integration. Much work has
been done in this area. Much of the interest comes
from the business sector, where CORBA[23], OLE [5]
and similar developments enable encapsulation of legacy
systems behind distributed object-oriented interfaces.
The theory of wrapping was addressed by Parodi [24],



who identified four major types of wrappers, and Aron-
ica and Rimel [1] who examined implementation issues.

Wiederhold’s CHAIMS [25] defines a high-level lan-
guage for composing large modules, often wrapped ver-
sions of legacy systems running on legacy platforms and
invoked by remote procedure call. Baker described pro-
cedures for wrapping C-language libraries using C4++
[2], and Van Camp used wrappers to improve library
portability [6]. Flint [16] wrapped legacy COBOL ap-
plications using an object-oriented wrapper. Reznick
wrapped Unix applications to enhance their function-
ality [27]. The HP Encapsulator provides a wrapper-
based framework for integrating Unix tools into the HP
SoftBench environment [17]. Many of these techniques
might be useful in wrapping core code once unwrapped.

6.3 Repackaging

DeLine et al. describe lessons that they learned from
a case study in converting batch systems to support
interaction [13]. The conversion of the UNICON sys-
tem required them to “break open” the computation
to modify the original assumptions made by the system
with regard to partial processing, error prevention, con-
trol paradigm, etc. Our work differs from theirs in that
they explored the problems associated with modifying
the deep-cutting design decisions of a legacy system,
while we retain those design decisions that impact the
core in an effort to avoid the cost of comprehension and
to mitigate the risk of breaking the code.

7 Conclusion and Future Work

As a design technique, unwrapping represents a promis-
ing point in the design space of techniques for legacy
code integration. We have found that for two analy-
sis systems designed as pipe-and-filter systems, unwrap-
ping was a workable and successful approach.

It is our belief that in both projects the amount
of effort required to use the unwrapping approach dis-
cussed 1n this paper was less than what would have
been required had we simply wrapped the original sys-
tem whole with only slight modification. In both case
studies, the amount of code in the wrappers is far less
than the external superstructure that was removed, and
we believe that it was also less than what would have
been generated by wrapping alone.

Choosing the right level of abstraction at which to
intercept functionality is important. The engineer must
weigh the relative costs of the possible interfaces, choos-
ing one that achieves the desired functionality consis-
tent with the given constraints.

Future work includes tool support for discovering
levels of functionality within a legacy system. We also

believe that there may be some benefit in more rig-
orously specifying the iterative unwrapping process to
help reason about the cost of unwrapping at a particular
interface.
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