
ABSTRACT
Many large information systems have evolved to a point
where the normal activities of society depend upon their
continued operation. Significant concerns have been raised
about the possible effects of failure in these systems.

In this paper we discuss architectural approaches to improv-
ing the survivability of critical information systems and
present a candidate architecture. The key features of the
architecture are the use of a variety of shell structures
(sometimes also known as wrappers) and the use of a net-
work-wide approach to recovery and continued service.
We discuss the design, implementation, and verification
issues raised by the use of shells in complex distributed sys-
tems and introduce three types of shell: protection, enhance-
ment, and correction. Combinations of these shells are used
to ensure that the critical information system is protected
against a wide variety of hazards ranging from software
defects to malicious attacks.

The implementation of shells is discussed and it is shown
that the desirable characteristic of transparent imple-
mentation cannot generally be achieved, and that ensuring
the correct operation of the shells is itself a significant issue.
A demonstration system being developed for evaluation of
the architectural concepts is presented.

Keywords
Survivability, critical infrastructure applications

1 INTRODUCTION
Many large information systems have evolved to a point
where organizations rely heavily upon them. In some cases,
such systems are so widespread and so important that the
normal activities of society depend upon their continued
operation; management of transportation systems such as air
traffic control, telecommunications, nationwide control of

power distribution, and the financial system are examples.
We refer to such systems as critical information systems.

Societal dependence on these systems is growing and will
continue to do so for the foreseeable future as large amounts
of inexpensive computing and network hardware become
available. This new hardware, particularly the communica-
tions capability that it provides, offers the opportunity to
enhance existing applications in innovative ways and
develop new applications. We note, however, that new
applications are usually constructed in part from existing
components and are frequently required to inter-operate
with existing applications.

Complicating the situation is the interdependence of some
of these applications. For example, although limited protec-
tion against loss of power is afforded for some information
systems, service following a power loss is usually severely
reduced. Thus, for example, management of transportation
systems will be affected significantly if there is a wide-
spread loss of power. Similarly, loss of communication ser-
vice will disrupt many other information systems such as
finance, electronic commerce, and transportation.

The dependability requirements that arise with many critical
information systems are quite extraordinary. For example,
many current systems and others that are being planned are
required to operate on networks that are distributed nation-
ally (sometimes globally) and require twenty-four-hour-per-
day, seven-day-per-week operation. In addition, these sys-
tems have to support combinations of dependability require-
ments. For example, they have to maintain very high levels
of availability whilst also ensuring network-wide security.

The loss of the services that these systems provide could be
very serious. Some of the consequences of failure are fairly
obvious—the failure of part of the air traffic control system
has manifest implications. Other consequences of failure are
less obvious. The failure of certain parts of the banking sys-
tem, for example, can have widespread negative impact and
do so very quickly. A number of failures have already been
reported [14].

Architectural Approaches to Information Survivability

John C. Knight
Dept. of Comp. Sci.

University of Virginia
Charlottesville

VA 22903, USA
+1 804 982-2216

knight@virginia.edu

John McHugh
Dept. of Comp. Sci.
Portland State Univ.

Portland
OR, USA

+1 503 725-5842
mchugh@cs.pdx.edu

Ray W. Lubinsky
Dept. of Comp. Sci.

University of Virginia
Charlottesville

VA 22903, USA
+1 804 982-2258
rwl@virginia.edu

Kevin J. Sullivan
Dept. of Comp. Sci.

University of Virginia
Charlottesville

VA 22903, USA
+1 804 982-2206

sullivan@virginia.edu

2

Although modern information systems provide excellent
service for the most part, concerns have been raised about
the possible effects of failure in critical information
systems [1, 3, 8]. These concerns have been heightened by
the growing societal dependence on these systems, and by
their increasing number and complexity.

Dealing with the effects of faults in information systems
leads to the notion of survivability. Informally, by surviv-
ability we mean the ability of the system to continue to pro-
vide service (possibly degraded) when various changes
occur in the operating environment. For example, when
events such as hardware failure, software failure, operator
error, or malicious attack occur, a critical subset of normal
functionality or some alternative functionality might be
needed to mitigate the consequences of the event.

There is a need to improve the survivability of critical infor-
mation systems given the increasing dependence on them,
the serious consequences of their failure, and their demon-
strated fragility and vulnerability [1, 8]. However, the
approaches that can be followed to achieve this goal are lim-
ited. For example, there is little point in considering com-
pletely rewriting the software for the systems because they
are just too large. Similarly, it is not possible to make dras-
tic changes to the present system architectures. Computers
and network links are performing various application func-
tions, and this fabric is determined largely by the applica-
tion itself. It is not subject to change, at least not in anything
but the very long term.

In this paper we discuss architectural approaches to the pro-
vision of survivability with particular emphasis on dealing
with software and security problems. We introduce a novel
architecture that permits individual nodes to be strengthened
without disrupting the application design. A key feature of
the architecture is the provision of facilities to manage net-
work-wide error detection and recovery algorithms.

2 THREATS AND VULNERABILITIES
Large information systems fail for many reasons. Thus, in
order for a critical information system to survive, there is a
wide variety of faults whose effects have to be dealt with
explicitly when they occur, i.e., faults that have to be toler-
ated. They include the following:

• hardware degradation faults,

• hardware design faults,

• software faults,

• faults in operational procedures,

• faulty actions by operators,

• changes in physical environmental conditions, and

• malicious attacks.

Techniques exist for dealing with many of these types of
faults. Redundant components, for example, can be config-
ured to deal acceptably with hardware degradation faults,

and geographic diversity of replicated entities can cope with
many changes in environmental conditions.

Of particular concern on this list are software faults and
malicious attacks. Software dependability remains problem-
atic and production software continues to be a weak link in
computer systems. Similarly, malicious attacks are a con-
cern because attacks against critical information systems
have occurred and are expected to increase [8].

The need for increased survivability that stimulated this
research project derives largely from concerns about soft-
ware faults and security attacks, and it is these fault types
that are the focus of the remainder of this paper.

2.1 Software Faults
The software that implements critical information systems
is large, complex, and difficult to build. Many such systems
involve tens of millions of lines of source text, and experi-
ence defect rates that are typical of large-scale software
development [13, 15].

A common source of failure in information systems is the
transition to operational status of a new version of a system.
System upgrade, as this is called frequently, often leads to
unanticipated difficulty even though the new version of the
system might have been tested or otherwise checked. Mak-
ing matters worse in many cases is that withdrawal of the
new system and reversion to the old is difficult. This is
because data formats and file contents have changed and
production files contain updates resulting from temporary
operation with the new system.

In practice, much of the effort expended during software
development is in the form of fault avoidance and fault
elimination, i.e., techniques that try to prevent software
faults from being present in deployed systems. Despite care-
ful attention to software fault avoidance and removal, pro-
duction software tends to be the least dependable
component in computer systems.

Various techniques have been developed that are designed
to permit software to tolerate residual faults at execution
time [5, 17]. These general approaches are derived from
similar techniques that have been applied in hardware
design to cope with hardware degradation faults. Such tech-
niques attempt to detect and in some cases mask any error
that arises in a software system thereby producing a general
increase in dependability.

These methods have not proven very successful largely
because the assumptions that hold under the use of fault tol-
erance in hardware do not generally hold for software.

The situation with large software systems remains therefore
one in which high levels of dependability for critical sys-
tems, including critical information systems, is very hard to
achieve and even harder to demonstrate.

3

2.2 Malicious Attacks
Although weaknesses have been demonstrated in some
security techniques (encryption, protocols, mobile code
such as Java1, etc.), current security technology is quite
strong in many areas. Despite this, information security has
proved difficult to achieve in large modern information sys-
tems. Many problems have been reported in which suppos-
edly secure systems have been penetrated and in some cases
significant damage done. In other cases, denial of service
have been brought about without penetration just by abusing
the normal user interface.

In practice, it appears that many (perhaps even the majority)
of serious security failures are attributable to software engi-
neering defects in the systems experiencing the failure.
Many systems have been penetrated, for example, by abus-
ing the size limitations of a buffer to which an external
agent has access. Such a penetration, referred to as a buffer-
overrun attack, is possible because of an assumption that is
not valid. The assumption is that no write would be
attempted outside the storage allocated for the buffer, and it
is made by the individual responsible for the implementa-
tion of the buffer. Sometimes the assumption is made
implicitly.

It is inappropriate to refer to a successful buffer-overrun
attack as a failure of security technology, although it is rea-
sonable to think of it as a failure of security. It is not hard to
check memory accesses during buffer accesses and ensure
thereby that information outside the buffer is unaffected by
buffer operations. The issue here is not security technol-
ogy—the issue is the provision of systems that do not
bypass otherwise effective security technology by
extremely naive mistakes that provide access for those with
malicious intent.

That many security failures are attributable to software
engineering defects should not come as a surprise. In a large
system, to avoid unintentional defects that can be exploited
to defeat security requires (to a first approximation) that
such defects be absent from large parts of the system. It is
difficult to pinpoint the parts of a software system that
might be exploited by an attacker, and so the problem we
face is to build either:

• a system known to be free of defects throughout, or

• a system known to be free of defects in selected areas
together with a rigorous argument (or proof) that the
selected areas are the only ones in the system that might
be vulnerable to attack.

This is a significant problem even for systems that might be
described as “simple”. Modern information systems are not
simple in any sense, however, because they are typically
very large, often distributed, must maintain high availabil-
ity, frequently run in real time or close to it, and so on.

1.See, for example, McGraw and Felten [12]

In summary, we conclude that software defects are impor-
tant in their own right and they are the root cause of many
security issues in information systems. A significant
improvement in survivability, therefore, requires
approaches that can help reduce the effects of software
defects.

3 INFORMATION SYSTEMS CHARACTERISTICS
In this section we discuss several aspects of critical informa-
tion systems that influence the approaches to software archi-
tecture that can be pursued in order to improve survivability.
We begin by examining the system architecture that is at the
heart of many of these systems. We then discuss the role of
legacy software and COTS components.

3.1 System Architecture
From the users’ perspective, a critical information system is
a single application despite the fact that the application is
implemented on a large distributed system. In banking, for
example, a large network exists to provide (among other
things) a set of financial services for retail customers. The
retail customer (i.e., the user) sees an interface that permits
checks to be deposited, funds to be moved or withdrawn,
and so on. To provide these services, each customer must be
able to refer to any other customer’s account no matter
where it is located within the system, i.e., within a large
number of banks, so that funds transfers between customers
can take place.

The various nodes in an information system cooperate in
order to achieve the desired service goal, and different
nodes maintain the data they need to perform their role.
Cooperation usually involves nodes processing transactions
such that the combination of transactions completes the ser-
vice. In current implementations, it is very often the case
that a small number (sometimes just one) of prescribed
nodes have to carry out some of the transactions needed for
certain user service requests. In terms of survivability, this
immediately determines a single point of failure in the sys-
tem.

Again, using retail banking as an example (and ignoring the
many other services banks provide), there are thousands of
leaf nodes in the network that provide customer access.
They are connected in various ways to a much smaller num-
ber of intermediate nodes that provide regional service or
centralized service associated with a specific commercial
bank. Finally, those nodes are connected to a few nodes that
provide communication for value transfer between separate
commercial entities.

To illustrate application-domain characteristics in more
depth, we use the actions required in clearing a check as an
example. Check clearing is a complicated procedure that
can be performed in a number of ways [7, 9]. We present a
brief summary of only one of the ways in which checks are
cleared—there are several variations.

4

The recipient of a check presents the check for collection at
a branch of the bank holding his or her account (i.e., a net-
work leaf node). The check is scanned, the essential detail
recorded (amount, payee, etc.) in electronic form, and then
the paper check is often destroyed. The electronic form of
the check is then forwarded to a regional processing center
(i.e., a network intermediate node) where details are
recorded in a database. The check is then forwarded to a
clearing house or the Federal Reserve (i.e., a root node)
where accumulation data describing what one retail bank
owes or is owed by other retail banks is computed. Periodi-
cally this data is used to move funds between master
accounts that the retail banks maintain. Finally, transactions
flow back down through the system finally authorizing the
recording of the deposit to one customer’s account and a
debit from another (although the funds will already have
moved).

The general organization of many critical information sys-
tems is shown in Fig. 1. Note that this figure is hypothetical
and shows far fewer nodes than are likely to be present in
deployed systems. The connectivity of the network ends up
having a hierarchic structure that is dictated by the commu-
nications needs of the transactions that are combined to pro-
vide the requisite service. It is important to note that
alternative structures could be used but the hierarchic struc-
ture is the current form established in many domains
(including retail banking services).

The hierarchic structure leads to critical vulnerabilities in
information systems. The loss of a root node will stop ser-
vice completely in a network where there is just one and
reduce capacity severely in a network with more than one.
Similarly, a common defect in the implementation of the

leaf nodes (which are, to all intents and purposes, equiva-
lent) will stop service. Finally, such vulnerabilities offer
clear opportunity for malicious attack.

In summary, critical information systems tend to have the
following characteristics:

• The provision of application-level service, i.e., as seen by
the user of the service, depends upon the correct opera-
tion of several nodes and several network links.

• The degree of replication of nodes implementing the vari-
ous application sub-function varies widely within the
application.

• Different network nodes maintain different databases.
These databases are essential to system operation.

3.2 Legacy Software
Legacy software is an essential part of most critical infor-
mation systems. As these systems have been developed,
existing software is often included as subsystems, and the
size of the systems is such that there is a strong financial
incentive to proceed in this way.

The inclusion of legacy components in critical information
systems raises serious concerns about whether they will
detract unacceptably from the required dependability. Leg-
acy software is likely to have been in use for a long time and
might have a satisfactory operational record in its current
environment. But it is also likely that such software has a
marginal (at best) maintenance record and might be the sub-
ject of concern about the success of future enhancements.
Legacy software might not have certain basic functionality
that is considered essential in critical information systems
(encryption, data replication, and automated recovery, for
example).

Fig. 1 - Hierarchic structure of critical information systems.

User Access To Services

Regional
Processing

Centralized
Processing

Transactions

Transactions

5

3.3 Commercial-Off-The-Shelf Components
Just as legacy systems are used in critical information sys-
tems, so are commercial-off-the-shelf (COTS) components,
and for the same reasons. COTS components cannot neces-
sarily be expected to address the reliability, availability,
safety, or security needs of information systems (they
almost certainly will not). The volume pricing and extensive
functionality available with COTS software systems makes
them very attractive in many instances, but their unproven
dependability performance frequently deters and sometimes
prohibits their use.

COTS systems are unknown quantities. It is unlikely that
the manufacturer will make the source code for the system
available to a customer, and, even if the source code were
available, it would be very difficult to make necessary
dependability assessments for such components if they are
to be included in critical information systems. There is an
important trade-off here. COTS provide tremendous func-
tionality at low cost but very little essential development
and assessment data usually comes along with the compo-
nents.

4 APPLICATION COMPLEXITY
In practice, any significant property of a large software sys-
tem is difficult to obtain. Reliability, availability, and secu-
rity for example, all require that defects which defeat the
provision of the property not be present. Availability is
quickly compromised, for example, if a loss of service
occurs because of a software defect and the system state
cannot be re-established quickly. This will occur, for exam-
ple, if a software defect leads to the corruption of data that is
then propagated system-wide.

The situation with software contrasts with the provision of
availability in the face of hardware failures attributable to
degradation faults. Degradation faults have characteristics
that permit useful assumptions to be made about the state of
the system after failure and the failure interface that the
device presents. This is why hardware replication is effec-
tive.

In order to try to establish significant properties of a large
software system, it is tempting to turn to better software-
engineering techniques. It might be argued, for example,
that legacy and COTS components should not be used in
critical information systems, and that, where such systems
are to be deployed, they should be developed “from
scratch”.

We claim that “from-scratch” systems would still not meet
the dependability requirements because rebuilding would
not yield systems that are sufficiently better than those we
build now. Even if we were to rewrite from scratch the
information systems upon which we depend (an economic
impossibility), the result would be systems with significant
numbers of faults, and these faults would detract from all

areas of dependability. That we cannot engineer systems
from scratch without defects is demonstrated every day.

The problem is that current and planned critical information
systems contain so much software that, with the present
state of the art, there is almost certainly no prospect of
building software systems that can meet the dependability
requirements that are beginning to appear. This is true no
matter whether they are built from scratch, built with COTS
components, built with legacy components, or any combina-
tion. The observed behavior of large software systems in the
field shows dependability that is modest at best.

Thus, it is not merely COTS or legacy systems that fail to
achieve or demonstrate dependability. Irrespective of the
origin of the components, the complexity of large informa-
tion systems is such that achieving high levels of depend-
ability in any area varies from extremely difficult to
essentially impossible. It is quite unrealistic to expect that a
multi-million-line software system, no matter how carefully
built, will be able to achieve the requisite levels of depend-
ability if the complete system or a significant fraction of it
has to be analyzed.

5 SHELLS
Given that current (or foreseeable) software technology
offers no hope of assuring the dependability of the needed
information system as a whole, the approach we are pursu-
ing is to contain the problem in such a way that the neces-
sary analysis can be performed.

What this means is that we have to develop systems in
which only essential properties have to be established and in
which those properties do not depend on the entire system
for their demonstration. More specifically, it is necessary to:

• limit the dependability requirements, and

• limit the amount of software that has to be analyzed.

If these limitations diminish complexity to a point where an
implementation with demonstrated dependability becomes
feasible, there is some hope of building a survivable infor-
mation system.

The dependability requirements have to be limited to those
that are absolutely crucial. In a critical information system,
for example, it is not possible to ensure that the system pro-
vides correct functionality. But it might be possible to
ensure that certain minimal functions are performed even if
faults in the system manifest themselves. Similarly, it might
be possible to ensure that a system does no harm when a
fault is manifested even though it fails to provide service.
We note the analogy with fail-stop processors [18].

The amount of software that has to be analyzed can be lim-
ited by localization. For example, the localization of secu-
rity concerns into a firewall [6] though imperfect in many
senses is a strategy in which analysis can be largely local-
ized.

6

Shells are the generalization of this localization idea. A shell
in the sense used here is a layer of software that logically
surrounds1 a software artifact and either enforces some use-
ful predicate on the state of system of which the artifact is a
component or supplements the functionality of the artifact
in some crucial way. We refer to this predicate as a
policy [11]. The artifacts that would be surrounded in the
distributed systems of interest here would be the software
running on the nodes, i.e., the software on each node would
be surrounded by its own shell structure.

Shells require information in order to be able to achieve
their goals. Thus, typically they will include mechanisms to
intercept and examine application communication.

Critically, however, shells permit the localization of
dependability enforcement to a point where properties of
interest in a number of areas are concentrated into a rela-
tively small part of the software. Thus, provided the local-
ization mechanism can be shown to be effective (a
considerable issue, we admit), only the shells themselves
need significant verification efforts.

In part, the role of a shell can be thought of as protecting an
application element from a dangerous world (e.g., protec-
tion of an application from a security threat) and protecting
a vulnerable world from a dangerous application (e.g., pro-
tection of the remainder of a system and its context from an
application element that has been penetrated by an attacker).

A limited version of the shell notion has been demonstrated
with security kernels and guards [2] and, more recently,
with enforcement safety kernels [4, 10, 16]. Enforcement
safety kernels illustrate the shell concept since they are
designed to provide assurance that certain safety policies are
enforced irrespective of the actions of the remainder of the
software system. Thus, defects in what amounts to a very
large software system cannot compromise the safety of the
system since the safety kernel will enforce needed safety
policies. The analysis process could thus be limited to the
safety kernel to a large extent.

An important notion introduced with enforcement safety
kernels was that of the weakened policy [10]. Many policies
have to be stated in terms that related to the application in
such a way that implementation of policy enforcement soft-
ware becomes unwieldy and this defeats the object of the
kernel. The solution is to use a weakened policy in which an
extension has to be made to the application so that it does
the bulk of the computation associated with the policy. The
weakened policy implemented by the kernel is then a check
that the application does the policy computation correctly.2

A technology known as “ wrappers” has been pursued in a

1.Hence the origin of the term shell.
2.This is a necessarily brief and incomplete review of these

ideas. For a more thorough discussion see Knight and
Wika [10].

number of contexts and wrappers share some commonalities
with shells. Wrappers however, have been developed prima-
rily to supplement deficient existing applications in some
specific way or to permit integration of otherwise incompat-
ible components. Thus, for example, an existing application
that lacks encryption on a critical data link might be
“ wrapped’ with the encryption being implement in the
wrapper in a manner that is transparent to the application.

The critical conceptual difference between wrappers and
shells is that shells are used because they provide the local-
ization property rather than because they permit a software
artifact to be enhanced without change. In other words, we
might choose a shell architecture for a system from the out-
set and build the system around this notion. Thus, a shell
architecture is quite appropriate as the basic structure of a
new system being developed. In that case the artifacts being
surrounded by a shell are being developed with the knowl-
edge that a shell will be present. In addition, an existing sys-
tem might be enhanced to include shells in order to achieve
certain dependability goals.

5.1 Types of Shell
There are three types of properties that shells can implement
and this leads to three types of shell— protection, enhance-
ment, and correction:

• Protection Shell.
The notion of a protection shell derives from earlier work
on security and safety kernels. In the overall survivability
architecture, the role of a protection shell is to enforce a
predicate irrespective of what the remainder of the soft-
ware does.

• Enhancement Shell.
An enhancement shell provides essential enhancement
functions to an application. In particular, it implements
the application supplements necessitated by weakened
policies, although the policies themselves are imple-
mented by the protection shell.

• Correction Shell.
A correction shell’ s role is to correct known but uncor-
rected or suspected defects in an application. An example
of a known defect is a system that is susceptible to buffer-
overrun attacks but where the buffer-management soft-
ware has not been corrected.

The logical structure of an application supplemented with
all three types of shell is shown in Fig. 2. All three types of
shell have access to application communication but each
provides the specific service for which it was designed.

It is important that the implementation of the three shells
itself be survivable. In other words, the implementation
structure should facilitate demonstrating that the shell
implementations cannot be stopped by external software
defects or security attacks. We deal with these issues in sec-
tion 6.

7

5.2 Transparent and Opaque Shells
Most proposals for the use of wrappers assume that their
presence is transparent to the artifact being wrapped. In
other words, the artifact sees its operating environment as
unchanged and the artifact does not have to be modified in
order to permit it to be wrapped.

An important question that arises in the implementation of
wrappers is how to achieve this style of implementation.
This is an important question for shells also because they
will be used with COTS components for which modification
is probably not possible, and with legacy systems for which
modification is not desirable. We refer to an implementation
in which no application software is modified as transparent
and the implementation as opaque otherwise.

From the perspective of shell implementation, transparency
has significant advantages and disadvantages. The advan-
tages include:

• The application does not have to be changed and so sys-
tems are less affected by the introduction of a shell.

• Details of the application, such as the source code are not
needed.

• The majority of the shell implementation is application
independent so only one is needed for each operating sys-
tem as opposed to one for each application.

These are important advantages, but the disadvantages are
significant also:

• The shell implementation has to operate with no assis-
tance from any source. Thus, for example, to gain access
to the activities of an application, a shell has to intercept
some fraction (possibly a large fraction) of the application
communication without disturbing the application. This
leads to very difficult implementation strategies in which,
for example, all system calls have to be intercepted.

• The shell has to try to reconstruct what the application
was doing from the information that it intercepts. This
might involve rebuilding application data structures
(including files) and other state information. This tends to
make the shell unwieldy.

• A transparent implementation implies that shells operate
by examining only the information flowing between the
artifact that they surround and the environment in which
that artifact operates. In practice, even if this information
can be captured, it is often at such a low semantic level
that the shell cannot determine what the artifact was in
fact doing. Worse even than this is the fact that much of
the information that the shell needs to operate might not
even pass between the artifact and the environment.

• The transparent approach is one in which a certain
amount of programming gymnastics is required. This
does not seem like good engineering practice, and we sus-
pect that it might not be a source of confidence for engi-
neers building critical information systems. They are
likely to be more confident in a system with a comprehen-
sive engineering solution.

We conclude that true transparency is usually impractical
and requiring it could be an unnecessary restriction on an
otherwise useful idea. If a transparent implementation is
used in circumstances that are inappropriate, the result is
likely to be poor engineering that will likely lead to reduced
rather than improved dependability.

In the implementation that we are developing, transparency
is used where practical. In practice, however, we hypothe-
size that the engineers building critical information systems
will be quite amenable to making small changes to applica-
tion systems if they permit significant services to be
obtained from a shell architecture.

Fig. 2 - The logical organization of the three shell types and application software for a single network node.

Application
Communication

Application
Communication

Protection Shell

Enhancement Shell

Correction Shell

Application

Network Node

8

6 SHELL IMPLEMENTATION
The implementation of shells in general is far more difficult
that it appears from the simple statement of the idea. There
are two main areas of implementation difficulty. The first is
that any artifact that one wishes to surround with a shell is
almost certainly tightly integrated with many components of
an existing system. These components, the operating sys-
tem, perhaps a database system, and so on, have complex
interfaces, and the shell has to interact with the artifact of
interest and other components. This is a non-trivial under-
taking at best.

The second area of implementation difficulty is in shell pro-
tection. The shells must continue to operate when all around
them might be failing. In addition, the shells must be pro-
tected against malicious attack so that they do not represent
a new vulnerability that can be exploited.

We can only describe briefly the implementation strategy
that we are developing for nodes in the architectural
approach to survivability. It is summarized in Fig. 3. The
significant aspects of this implementation structure are the
following:

• The shells operate on different computers from those that
execute the node’s application element. This is to ensure
continued operation when the application fails and to
limit the means of communication between the applica-
tion and the shells. Were arbitrary communication possi-
ble (such as through memory accesses) a shell could be
disrupted by erroneous software or by an intruder.

An alternative implementation in which the shells operate
merely as separate processes might be considered if the
associated protection mechanisms could be shown to be
sufficiently strong.

• The correction shell operates in series with the applica-
tion communication. It is by this means that the correc-
tion shell ensures that all known and suspected
deficiencies in the application that might threaten the
security of the node are corrected.

• The protection shell receives the data that it needs for pol-
icy enforcement from a “ data capture” component that is
added to the application software. This component inter-
cepts application communication to the extent necessary
but it is also the primary interface used by the modifica-
tions introduced into the application to communicate with
the protection shell.

Since these modifications are present to gather informa-
tion about application actions at a higher semantic level
than is possible with external communications, they are
mostly limited to intercepting and thereby recording func-
tion calls in the application. This is a minor perturbation
for the most part.

An important aspect of the shell approach that we are devel-
oping is the use of direct synthesis of the protection and cor-
rection shell implementations from a set of policy
specifications. This technique has been demonstrated and
evaluated with the enforcement safety kernel implementa-
tion and found to be highly satisfactory. The synthesis
approach provides the following three benefits:

Fig. 3 - Node implementation structure for survivability architecture.

Application
Software

P
ro

te
ct

io
n

Sh
el

l

Correction Shell

Operating
System

Network
Interface

E
nh

an
ce

m
en

t S
he

ll

D
at

a
C

ap
tu

re
 a

nd
 A

pp
lic

at
io

n
C

on
tr

ol

Application
Communication

9

• It permits the development of application-specific shells
very rapidly.

• It allows for a shell to be revised very quickly (even in the
field) if the dependability requirements change or if the
initial set are found to be deficient.

• It permits a variety of different shells to be developed rap-
idly for the different needs that will arise inevitably in
distributed applications.

The first and third of these benefits ensure the practical via-
bility of the approach. The second benefit allows the
approach to be applied by “ trial and error” when, as fre-
quently occurs, the allowable behaviors are not known a pri-
ori. This second benefit also allows newly discovered
defects in the application that threaten the survivability
goals to be quickly dealt with by installing new policies in
the correction shells.

7 SURVIVABILITY ARCHITECTURES
Strengthening the nodes in a critical information system
using shells does not guarantee system-wide survivability
properties. Indeed, the very design of the shells as described
so far limits their attention to the node that they are sur-
rounding.

With shells in place, however, their existence can be
exploited to produce a comprehensive design that permits
significant system-wide dependability properties to be
established. These properties are established under impor-
tant but fairly reasonable assumptions by analyzing the
shells as individual entities together with the overall design.
We refer to the resulting system as a survivability architec-
ture. Since the shells combine to enforce predicates on the
system state, their combined action is to permit the enforce-
ment of a predicate (perhaps consisting of several con-
juncts) on the entire system state.

The exploitation of the shells to establish system-wide
dependability properties requires the implementation of an
additional mechanism— system-wide shell-to-shell commu-
nication. Only if shells can operate cooperatively to achieve
some goal can system-wide properties be established.

Consider, as an example, an information system in which
one of the nodes is a single-point of failure, i.e., it under-
takes to perform at least one transaction for every user ser-
vice request that is offered. The loss of this node is clearly
critical yet its loss in a network of possibly thousands of
other nodes will usually be manifested by a delay that will
look like a denial of service.

A far better strategy is to permit the remainder of the net-
work to undertake some alternative service algorithm while
the critical node is unavailable. In the banking example used
earlier, if a critical node was lost and funds transfers could
not be achieved as a result, a strategy in which all remaining
network nodes were appraised of the situation and were able
either to queue user service requests in an orderly manner or

provide some form of reduced service would be a reason-
able approach to survivability.

A second example can be seen in the provision of security
in critical information systems. Despite the use of a variety
of authentication mechanisms, penetrations do occur. To
deal with them, intrusion detection mechanisms are often
employed that raise an alarm if the signature of an intruder
is detected.

Despite (but not ignoring) the obvious opportunity for abuse
that an inter-shell communication mechanism provides, the
possibility exists if one is present for a network-wide
response to intrusion if a single node detects an intrusion.
Appraising the entire network of the situation would allow
more extreme security measures to be deployed quickly, the
signature of the intruder to be distributed, and so on.

8 CONCLUSION
There are many critical information systems that provide
services to society which are crucial, and keeping these sys-
tems operating satisfactorily is a significant challenge. Most
present systems provide good service but as the number of
such systems and society’s dependence on them increases,
the requirement for information system survivability will
increase correspondingly.

The types of failure to which an information system is sub-
ject are many but most can be dealt with by existing means.
Those that cannot tend to be either software or security
defects. However, observation suggests that the majority of
security incidents are in fact attributable to defective imple-
mentations, i.e., software defects, rather than failures of
security technology. We claim, therefore, that software
defects are the primary problem which have to be dealt with
in increasing survivability.

Critical information systems have a hierarchic structure and
this together with the fact that such systems incorporate
both COTS and legacy elements severely restricts the solu-
tion approaches that can be pursued.

We conclude that an approach to survivability based on sys-
tem software architecture is a viable approach. We are
developing a survivability architecture for critical informa-
tion systems based on shells— layers of software that sur-
round an application and provide a variety of services.
These services include the enforcement of important appli-
cation policies, extension of the application to implement
essential supplementary functions, and the implementation
of corrections to known or suspected application defects.

Each node in the system is enhanced with shells that permit
various useful properties to be established about the node.
However, a key feature of the survivability architecture is
that the shells can communicate, and this mechanism is used
to permit system-wide error detection, recovery, and contin-
ued service. This permits a much faster reaction to problems

10

that threaten the network and ensures that optimal surviv-
ability strategies can be implemented where they exist.

An implementation of the survivability architecture based
on nodes using the Microsoft Windows NT operating sys-
tem is presently being developed.

ACKNOWLEDGMENTS
It is a pleasure to acknowledge the assistance we have
received in understanding the details of the financial infra-
structure from Bob Trent and Patrick Marx. This work was
funded in part by DARPA through Department of the Air
Force grant number F30602-96-1-0314 and in part by
NASA under grant number NAG-1-1123-FDP.

REFERENCES
1. President’s Commission on Critical Infrastructure Pro-

tection, Available at <http://www.pccip.gov/>

2. S. Ames, M. Gasser and R. Schell, Security kernel
design and implementation: An introduction, IEEE
Computer, 16: 14-22, (July 1983).

3. R.H. Anderson, A.C. Hearn, The day after in cyberspace
II, Rand Corporation Report Number MR-797-DARPA,
The Rand Corporation, Santa Monica, CA, March 1996.

4. A. Burns and A. Wellings, Safety kernels: specification
and implementation, Journal of High Integrity Systems:
1(3), 1995.

5. L. Chen and A. Avizienis, N-version programming: A
fault-tolerance approach to reliability of software opera-
tion, in Digest of Papers FTCS-8: Eighth Annual Inter-
national Conference on Fault Tolerant Computing,
pages 3-9, Toulouse, France, June 1978.

6. W. R. Cheswick, S. M. Bellovin, Firewalls and Internet
Security: Repelling the Wily Hacker, (Addison-Wesley
Professional Computing)

7. R. Clair, J. Kolson, K. Robinson, The Texas Banking
Crisis and the Payments System, Federal Reserve Bank
of Dallas: Economic Review 1st Qtr 1995, page 14.

8. Department of Defense, Report Of The Defense Science
Board Task Force On Information Warfare - Defense

(IW-D) November 1996 Office Of The Under Secretary
Of Defense For Acquisition & Technology Washington,
D.C. 20301-3140, Available at <http://www.jya.com/
iwd.htm>.

9. B. Geva, FedWire Transfer of Funds, Banking Law
Journal, 104(5), 423-424, Sep/Oct 1987.

10. J.C. Knight and K.G. Wika, On the Enforcement of Soft-
ware Safety Policies, Proc. COMPASS: Conference on
Computer Assurance, Gaithersburg, MD, June 1995.

11. D.A. Marriott, Management Policy Specification, Tech-
nical Report DoC 94-1, Department of Computing,
Imperial College of Science Technology and Medicine,
November 1993, Available at <ftp://dse.doc.ic.ac.uk/
dse-papers/management/policy_spec.ps.Z>

12. G. McGraw and E.W. Felten, Java Security, John Wiley
and Son, 1997.

13. M. Neil and N. Fenton, Predicting Software Quality
using Bayesian Belief Networks, In Proc. of 21st Annual
Software Engineering Workshop, pages 217-230,
NASA/Goddard Space Flight Center, Greenbelt, MD,
December 1996.

14. P. Neumann, Computer Related Risks, Addison Wesley,
New York, 1995.

15. S. Pfleeger and L. Hatton, Investigating the Influence of
Formal Methods, IEEE Computer, 30(2): 33-43, (Febru-
ary 1997).

16. J. Rushby, Kernels for Safety?, in Safe and Secure Com-
puting Systems, pages 210-220, T. Anderson Ed., Black-
well Scientific Publications, 1989.

17. B. Randell, System Structure for Software Fault Toler-
ance, IEEE Transactions on Software Engineering, SE-1
(2), pages 220-232 (June 1975).

18. R.D. Schlichting and F. B. Schneider, Fail-Stop Proces-
sors: An Approach To Designing Fault-Tolerant Com-
puting Systems, ACM Transactions On Computer
Systems, 1, pages 222-238, August 1983.

