
Key Generation Preliminary Draft May 15, 1996 10:28 am

(C) Copyright 1995, University of Virginia Board of Visitors, All Rights Reserved 1

A Distributed Key Generation Technique

Chenxi Wang
William A. Wulf

{cw2e | wulf @ virginia.edu }
URL: http://www.cs.virginia.edu/~cw2e/kgen.ps

Abstract

In a public key cryptographic system, the uniqueness and authenticity of the keys are essential to
the success of the system. Traditionally, a single, centralized key distribution/certification server
has been used to generate and distribute keys. This approach requires a distinguished trusted
entity which could potentially become a single point of failure or penetration in a distributed envi-
ronment. We present in this paper a new, simple way to handle distributed key generation. We
assign a unique range of m-bit numbers to each key generator in the system. As a result, the
lower-order m bits of the keys generated is a unique number in the assigned range. Our scheme
not only provides a way to generate globally unique keys in an independent, distributed fashion, it
also enhances the security of public-key cryptosystems by eliminating the mapping between keys
and entity names.

1 Introduction

The authors are participating in a project construct a large distributed computing environment
called Legion. The details of this system are mostly irrelevant to the content of this paper, except
that three aspects of it provide the motivation for the problem of a distributed, unique key genera-
tion system.

First, Legion is intended to be large, literally involving millions of computers distributed across
the world. Thus all techniques used in its construction must be “scalable” -- that is, we cannot tol-
erate situations in which a small finite number of resources or servers could be either bottlenecks
or points of failure.

Second, Legion is an object-oriented system; all resources are conceptually modeled as objects
whose methods provide services. Among other things, this implies that every object must have a
globally-unique name. Mindful of the first point above, that means we need a means of scalable,
distributed unique name generation.

Finally, security is a principal design goal of Legion. The details of the Legion security model are
irrelevant here, but they include the absolute necessity of authentication. Before any security deci-
sion can be made we must be sure of who is requesting what service on which object. We have
decided to base our authentication on the use of public key cryptography.

With these attributes in mind we made another critical decision -- namely to make the name of an
object be its public key! That is, the bit string that is the globally unique name is also the bit string
that is its public key!

This decision eliminates one potential bottleneck and source of security concern, namely the need
for a trusted server that provides/certifies the mapping from name to key. Alas, it creates another

Key Generation Preliminary Draft May 15, 1996 10:28 am

(C) Copyright 1995, University of Virginia Board of Visitors, All Rights Reserved 2

problem, namely the topic of this paper -- the need for scalable, distributed unique key generation.

Without this decision there would still be the need for unique name generation, but there would
have been no need for the name to be a suitable key. Similarly, we would have still needed a dis-
tributed key generator, but the keys would not have had to be unique -- a sufficiently low proba-
bility of two keys being the same would have been good enough.

2 Background

In this section we review the basic concepts of public-key cryptography and RSA algorithm
which we will need at our fingertips for later discussion.

2.1 Public-key Cryptography

In a public-key cryptosystem, each principle has a pair of public/private keys. The public key of a
principle is made known to the world while he/she keeps the corresponding private key secret. A
public-key cryptosystem has the following properties (E stands for the encryption procedure and
D stands for the decryption procedure):

• Deciphering the enciphered form of a message M yields M. Formally

D(E(M)) = M

• Both E and D are easy to compute

• By publicly revealing E the agent does not reveal an easy way to compute D.

• If a message M is first deciphered and then enciphered, M is the result. Formally,

E(D(M)) = M

When a principle publishes his public key, he reveals no easy way of computing the correspond-
ing private key. The security of a public-key cryptosystem rests both on the difficulty of recover-
ing the private key from its public counterpart and the difficulty of deducing the plaintext from the
ciphertext.

2.2 RSA

In 1978, R. Rivest, A. Shamir, and L. Adleman proposed the first full-fledged public-key algo-
rithm[2]. Now known as RSA, it is one of the few proposed public-key algorithms that are both
secure and practical. Capable for both encryption and digital signatures, RSA is the best-known
and most widely-used public-key algorithm.

RSA relies its security on the difficulty of factoring large numbers. The public and private keys
are functions of a pair of large prime numbers. It is conjectured that recovering the private key or
the plaintext of any encrypted message is equivalent to factoring the product of the two primes.

The first step to generate RSA keys is to randomly choose two large prime numbers, p and q.
Compute the product:

N is called the modulus. Next is to generate the encryption keye and decryption keyd. e is a ran-
domly selected number such thate and are relatively prime:

N p q•=

p 1–() q 1–()⋅

Key Generation Preliminary Draft May 15, 1996 10:28 am

(C) Copyright 1995, University of Virginia Board of Visitors, All Rights Reserved 3

The decryption key d is then computed as e’s inverse modulo (p-1)(q-1):

The public key is the pair of numbers — (N, e). d is the private key. The two prime numbersp and
q are no longer needed. They should be discarded, but never revealed.

Having established the keys, encryption is accomplished by raising the message blockM to itse-
th power and performing a moduloN operation on the exponentiation result:

mod N, whereC is the ciphertext block

Message M is recovered by applying a similar operation to the cyphertext block, this time is with
the decryption keyd, again moduloN.

mod N

Reversing the above steps provides the signing and verification of digital signatures.

3 The proposed key generation technique

We introduce in this section a distributed key generation scheme in a RSA cryptosystem, as well
as some mathematical background to support this work

3.1 Number Theory Theorems

Consider a general linear congruence

 mod c

Theorem 1: Let (k, c) = d, the linear congruence is solvable if and only if. It has then infi-
nitely many solutions but only d incongruent solutions.

The proof of this theorem is out of the scope of this paper. Readers should refer to Hardy &.
Wright [1] or J. Strayer[2]

Theorem 2: Given an m-bit number R, and an odd m-bit number p, there exists an unique m-bit
integer q, also odd, such that,

 (mod)

Proof: Proof of this theorem follows directly from Theorem 1.

d = (p,) = 1, therefore d | R. The linear congruence is solvable. Although there are infinitely
many solutions to the congruence modulo , there is exactly one incongruent solution q such
that 0 < q < .

Solving this linear congruence requires the use of Euler’s Theorem. The solutions can be
expressed in the following form:

 mod .

e p 1–() q 1–()⋅,() 1=

ed 1 mod p 1–() q 1–()()≡

C E M() M
e

==

M D C() C
d

= =

k x l≡⋅
d l

p q⋅ R≡ 2
m

2
m

2
m

2
m

q R p
φ 2

m() 1–⋅

≡ 2
m

Key Generation Preliminary Draft May 15, 1996 10:28 am

(C) Copyright 1995, University of Virginia Board of Visitors, All Rights Reserved 4

3.2 Generating Keys

Our goal is to design a key generation scheme that generates globally unique keys in a completely
independent and distributed fashion. The merit to distributed key generation is self-manifest: No
distinguished trusted entity is required. However, how to generate UNIQUE keys poses a chal-
lenging problem. The emphasis is on “unique” because it is absolutely crucial that the same keys
never be generated twice; each must be unique! Therefore, we first need to devise a way to ensure
the uniqueness of the keys.

Our approach to the problem is to assign each key generator a unique range of m-bit numbers. In
Legion, these numbers contain the object’s class identifier and instance identifier. The purpose is
to have some property of the keys generated fall in the assigned range of their generators. To be
more specific, assume that the i-th key generator is assigned the range [Li, Ui], inclusive, the task
of the key generation is to generate keys whose lowest m bits fall in the assigned range. More for-
mally,

, , where K is the key

Equally important is the distinction that no single key generator is assumed trusted by everyone.
Each is trusted by some users but not necessarily by others.

Without loss of security, we assume that, in a RSA cryptosystem, the encryption keye is common
for every entity in the system whileN is unique. Therefore only the modulus part of the public
keys need to be generated. In the rest of the text, we will refer to the public modulus as the public
key.

3.2.1 The Key Generation Algorithm

This subsection presents an algorithm that implements the above idea. The algorithm itself is very
simple and straightforward: At each run of the algorithm, a seed numberR is selected from its
assigned range and targeted as the resulting public key’s lowest m bits. In other words,

N (mod) = R

The keys generated must satisfy the constraints of the RSA algorithm. That is, the public key must
be the product of two prime numbers. Note that both public and private keys are functions of the
two primes. Our main task thus is to find two suitable prime numbersp andq whose product has
R as its targeted lowest m bits:

 (mod) = R

Supposing n is the bit length of the public key, p, q are both n/2 bits long and the seed number R is
m bits long. The results of theorem1 and theorem 2 tell us that when m is exactly n/2, we can
uniquely determine q based on p and R such that

 mod = R

Now we can detail out the actual algorithm:

1. Select a seed number R from the assigned range

2. if m < n/2, generate a random number R’ of (n/2 - m) bits long. Assign (+ R to R.

Li K mod2
m

Ui≤ ≤

2
m

p q⋅ 2
m

N p q⋅=() 2
m

R′ 2
m⋅

Key Generation Preliminary Draft May 15, 1996 10:28 am

(C) Copyright 1995, University of Virginia Board of Visitors, All Rights Reserved 5

3. Randomly select a prime number p of n/2 bits

4. Compute mod

5. Run primality test on q. If q is prime, then we are done. Otherwise repeat steps 3 - 5 until a pair
of suitable prime numbers, p and q, are found.

4 Analysis

In this section we will discuss the complexity of our algorithm and cryptographic strength of the
keys generated using this new method. We then compare our scheme with the conventional meth-
ods and discuss the advantages of this new scheme.

4.1 Mathematical analysis

The method we proposed is a probablistically unbiased process for generating p, q based on the
targeted m-bit number. Admittedly, this scheme is more complex and takes longer to execute than
the regular RSA key generation algorithm, but we believe that the ability of doing distributed,
unique key generation far outweighs the increased complexity.

The prime number theorem says: The number of prime numbers less or equal to any number x is
asymptotically close to

, (see Harvy & Wright [7])

So, on average, one could expect to search approximately ln(x) numbers before a prime number
less or equal to x is found.

Armed with the result of this theorem, we estimate the probability of q, once p and R are deter-
mined, being prime is approximately (note that we only consider odd numbers) where m the bit
length of q. Assuming p and q are of equal length, we can now estimate the complexity of our
algorithm — on average, numbers are searched before a pair of p and q are found.

This estimate is only a rough measure of the algorithm complexity because it is reached under the
assumption that p and q are picked independently while in our algorithm the value of q is deter-
mined by p and R. Table 2 gives sample measures of the speed of our algorithm. The speed is
measured in the numbers of primality testings(PTs) needed before a pair of good primes, p and q,
are found. Figure 2 gives a comparison between the estimate and the sampling results in Table 2.

An interesting question to ask is whether such a pair of primes p and q always exists for any given
R. To answer this, we have the following yet to be proven conjecture:

Conjecture 1: For any given seed number R of n/2 bits long, there always exists at least one pair
of primes p and q such that mod .where p and q are both of n/2 bits long.

q R p
φ 2

m() 1–⋅

= 2
m

x
x()ln

2
m

m
2

4

p q⋅ R≡ 2
m

Key Generation Preliminary Draft May 15, 1996 10:28 am

(C) Copyright 1995, University of Virginia Board of Visitors, All Rights Reserved 6

64-bit key 128-bit key 256-bit key 512-bit key
1024-bit

key

R1 525 PTs 1576 PTs 5154 PTs 21629 PTs 98353 PTs

R2 365 PTs 1666 PTs 4915 PTs 23865 PTs 50954 PTs

R3 463 PTs 1476 PTs 4900 PTs 19994 PTs 62848 PTs

R4 388 PTs 1794 PTs 4994 PTs 16000 PTs 88310 PTs

R5 553 PTs 1428 PTs 4438 PTs 18026 PTs 63320 PTs

R6 463 PTs 1306 PTs 6134 PTs 18604 PTs 69335 PTs

R7 363 PTs 1320 PTs 5467 PTs 19564 PTs 71230 PTs

R8 426 PTs 1582 PTs 6242 PTs 26395 PTs 65569 PTs

Average 443 PTs 1518 PTs 5280 PTs 20142 PTs 71239 PTs

Table 1: Sample Running Results

200 400 600 800 1000

Key Length (bits)

20000

40000

60000

N
um

be
r

of
 P

ri
m

al
it

y
T

es
ts

Figure 2

estimate
Average Testing Results

Key Generation Preliminary Draft May 15, 1996 10:28 am

(C) Copyright 1995, University of Virginia Board of Visitors, All Rights Reserved 7

4.2 Security Analysis

The next logical question is the cryptographic strength of the keys. We have an intuitive argument
in which we conjecture that the keys generated by our method is at least as strong as the keys of
the same length generated by a regular RSA key generation algorithm.

The argument is rather simple: In comparison to RSA, we added one more constraint to the key
generation process. That is, the lower m bits of the resulting keys lie in some known range. This
constraint reveals no useful information that an adversary can utilize to factor N. Once the public
key (N, e) is publicized, everyone knows the lowest m bits of N. And everyone knows the fact that
the two secret primes p and q, when multiplied, must produce these lowest m bits. The adversary
simply cannot use this fact to his advantage. Breaking the keys still requires solving of the factor-
ing problem. The keys generated using our algorithm is, cryptographically speaking, as strong as
the regular RSA keys.

5 Conclusion

Conventional public-key cryptosystems often rely on a centralized key distribution/certification
server. Use of such centralized components in distributed systems does not scale well. The poten-
tial size and scope of today’s large networking systems suggest that we simply could not have dis-
tinguished “trusted” entities that could become a single point of failure or a system bottleneck.

We presented in this paper a distributed key generation technique that handles key distribution in a
completely distributed and independent manner. The proposed method requires no centralized
entity and enables individual key generators to generate globally unique keys without consulting a
central authority or each other. We then demonstrated an implementation of the algorithm based
on RSA. Finally, we analyzed the complexity and security implication of this new method.

Comparing with conventional key generation methods, our scheme enables distributed generation
of globally unique keys. It scales well in the context of large distributed systems. Our initial moti-
vation for this work is to eliminate centralized components in Legion. In the future, we plan to
develop similar schemes in other cryptosystems to achieve a broader level of applicability.

6 Reference

1. [Diff76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory IT-22, 6
Nov. 1976, 644-654
2. [RSA78] R. L. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining digital Signatures and Public-
key Cryptosystems, Communication of ACM, Vol 21, No. 2, 1978
3. [RSA95] RSA laboratories Seminar, RSA Key Generation and Strong Primes, June 1995
4. [FACT] David M. Bressoud, Factorization and Primality Testing, Springer-Verlag
5. [CRYP96] Bruce Schneier, Applied Cryptography, John Wiley & Sons, Inc.
6. [PRIM] Evangelos Kranakis, Primality and Cryptography, Wiley-Teubner Series in Computer Science
7. [HARVY68] G. H. Hardy, E. M. Wright, The Theory of Numbers, Oxford at the clarendon Press, 1968

