
Access Ordering Algorithms for a Single Module Memory

Steven A. Moyer

IPC-TR-92-002

Revised: December 18, 1992



Access Ordering Algorithms for a Single Module Memory

Steven A. Moyer

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, Virginia 22903

(sam2y@virginia.edu)

Superscalar processors are well suited for meeting the demands of scientific computing, given suf-
ficient memory bandwidth. A number of compiler algorithms have been developed that schedule loop
accesses so as to overlap memory latency with computation, reducing load/store interlock delay. However,
none of these algorithms address the memory bandwidth issue directly. Access ordering is a compilation
technique presented here that addresses the memory bandwidth problem in the context of scientific comput-
ing. Access ordering algorithms are derived for a single module memory architecture.

The author wishes to gratefully acknowledge the work of the WM Architecture Group at
the University of Virginia, the UVA Academic Enhancement Program, NASA grant NAG-
1-242, and NSF grants MIP-9114110 and CDA-8922545-01.



i

Table of Contents

1 Introduction..............................................................................................................1
1.1 General System Model.........................................................................................................2

1.2 Access Ordering Observation ..............................................................................................3

1.3 Computation Domain...........................................................................................................5

1.4 Memory Device Types.........................................................................................................6

1.5 Performance Modeling ........................................................................................................7

2 Previous Work..........................................................................................................7
2.1 Stream Detection..................................................................................................................7

2.2 Access Scheduling Techniques ............................................................................................8

3 Model Access Pattern ..............................................................................................9
3.1 MAP Notation......................................................................................................................9

3.2 Definitions and Assumptions .............................................................................................10

3.3 Wide Word Restrictions .....................................................................................................11

3.4 Stream Interaction Restriction ...........................................................................................12

3.5 MAP Dependence Relations..............................................................................................13
3.5.1 Output and Input Dependence .............................................................................14
3.5.2 Antidependence ...................................................................................................14
3.5.3 Data Dependence.................................................................................................14
3.5.4 Dependence Rules ...............................................................................................15
3.5.5 Other Dependencies.............................................................................................15

4 Single Module Architecture Analysis....................................................................16
4.1 Minimizing Page Overhead ...............................................................................................16

4.1.1 Intermixing ..........................................................................................................18
4.1.1.1 Intermix Factor......................................................................................19

4.1.2 Wrap-around Adjacency......................................................................................20

4.2 Single Module of Uniform-access Components................................................................21
4.2.1 Performance Predictor .........................................................................................22

4.3 Single Module of Page-mode Components .......................................................................23
4.3.1 Example Problem ................................................................................................24
4.3.2 Performance Predictor .........................................................................................25

5 Simulation Results .................................................................................................27

6 Implementation Issues ...........................................................................................29
6.1 Relieving Register Pressure ...............................................................................................30

6.2 Pipelined Processors and Bus Bandwidth..........................................................................31

6.3 Combining Caching and Non-Caching Memory Access...................................................33

6.4 Relaxation of the Stream Interaction Restriction...............................................................35
6.4.1 Self-Antidependence Cycles ...............................................................................35
6.4.2 Overlapping Read Address Spaces......................................................................36
6.4.3 Access Ordering and Vectorizable Computations...............................................36

7 Conclusions............................................................................................................36

Appendix A........................................................................................................................38

Bibliography ......................................................................................................................42



ii

List of Symbols

Memory system parameters:

word size

page size

page-hit read cycle time

page-hit write cycle time

page-miss overhead

uniform-access read cycle time

uniform-access write cycle time

Stream parameters:

stream start address (vector accessed)

stride of access

data size

mode of access

number of data items referenced per functional iteration

MAP notation:

access to the next element of stream

 access from  for a given access sequence iteration

set of all streams in a given MAP

number of streams in

number of different vectors referenced by streams in

depth of loop unrolling

Performance measures:

average time per access

processor-memory bandwidth

w

p

Tp/ r

Tp/ w

Tp/ m

Tu/ r

Tu/ w

v

s

d

m

σ

ai ti

ai
k kth ti

S

N S

V S

b

Tavg

BW



iii

General properties of stream :

number of accesses per loop iteration

intermix factor

Modeling functions:

average number of data items per word

average number of data items per page

average per iteration page miss count

average per iteration page miss count for intermixed write stream

average per iteration page miss count for wrap-around adjacent read stream

effect of intermixing on average page miss count of write stream

effect of wrap-around adjacency on page miss count of read stream

ti

εi

θi

γ s d,( )

φ s d,( )

η s d c V, , ,( )

hρ s d c, ,( )

ω s d c, ,( )

imix s d c h V, , , ,( )

wadj s d c V, , ,( )



1

1  Introduction
Scientific computing, the application of computers to the solution of science and engineer-

ing problems, has traditionally been one of computing’s most demanding fields. Until

recently, special high-speed vector computers provided the only means for solving most

scientific problems at acceptable computation rates. However, advances in VLSI technol-

ogy have allowed manufacturers to produce superscalar pipelined microprocessors with

sufficient peak performance to make them viable alternatives to traditional vector proces-

sors, singly or as components of parallel machines.

Superscalar1 processors are characterized by multiple functional units that can be initiated

simultaneously to exploit instruction level parallelism. For scientific codes their perfor-

mance depends heavily on processor-memory bandwidth. To achieve peak processor rate,

data must be supplied to the arithmetic units at the peak aggregate rate of consumption.

Extensive tests of systems constructed from one such processor, Intel’s i860, show that as

a result of insufficient bandwidth, the average performance of hand optimized scientific

kernels is only 1/5 peak processor rate; for compiler generated code average performance

is an order of magnitude below peak performance [Lee90, Moye91]. The majority of

improvement in hand-coded routines over compiler generated code results from tailoring

accesses to memory system performance characteristics.

In general purpose scalar computing, the addition of cache memory is often a sufficient

solution to the memory latency and bandwidth problems given the spatial and temporal

locality of reference exhibited by most codes. For scientific computations, vectors are nor-

mally too large to cache. Iteration space tiling [CaKe89, Wolf89] can partition problems

into cache-size blocks, however tiling often creates cache conflicts [LaRW91] and the

technique is difficult to automate. Furthermore, only a subset of the vectors accessed will

generally be reused and hence benefit from caching. Finally, caching may actually reduce

the effective memory bandwidth achieved by a computation by fetching extraneous data

1.  Both superscalar and VLIW architectures incorporate concurrent functional units and thus place similar
demands on the memory system.
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for non-unit strides. Thus, as noted by Lamet al [LaRW91], ‘while data caches have been

demonstrated to be effective for general-purpose applications..., their effectiveness for

numerical code has not been established’.

Access ordering [Moye92] is a compiler technology that addresses the memory bandwidth

problem for scalar processors executing scientific codes. Access ordering is a loop optimi-

zation that reorders non-caching accesses to better utilize memory system resources. For a

given computation, memory architecture, and memory device type, an access ordering

algorithm determines a well-defined interleaving of vector references that maximizes

effective bandwidth. Consequently, analytic models of performance can also be derived.

In this report, access ordering algorithms and performance models are derived for a single

module memory system. Future reports will present ordering algorithms for parallel mem-

ory systems.

The following sections introduce access ordering and define the scope of the work pre-

sented here.

1.1  General System Model

Access ordering algorithms developed in this report presume a general system model in

which a single scalar processor drives a dedicated memory system, as depicted in

Figure1. The memory system is dedicated in that only one processor is serviced, implying

that memory state is dependent on a single reference sequence. This general system model

is representative of uniprocessor systems and single-processor nodes of distributed mem-

ory parallel machines.

The processor is presumed to implement a non-caching load instruction, ala Intel’s i860

[Inte89], allowing the sequence of requests observed by the memory system to be con-

trolled via software. For access ordering, all memory references are assumed to be non-

caching. Combining caching and non-caching accesses is discussed with other implemen-

tation issues in section 6.
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1.2  Access Ordering Observation

Access ordering formalizes the notion of reordering non-caching accesses to exploit mem-

ory system resources. To illustrate this concept, a simple example is presented below.

Consider a single module memory system constructed frompage-mode DRAMs. Page-

mode DRAMs operate as if implemented with a single on-chip cache line, referred to as a

page1. An access that does not fall within the address range of the current DRAM page

forces a new page to be accessed, requiring significantly more time to service than an

access that ‘hits’ the cached page. Thus, the effective bandwidth is sensitive to the

sequence of requests. Nearly all DRAMs currently manufactured implement a form of

page-mode operation [Quin91].

Figure2(a) illustrates the ‘natural’ reference sequence for a straight-forward translation of

thevaxpy, vector axpy, computation

For modest size vectors, elements, , and  are likely to reside in different pages, so

that alternating accesses to each incurs the page miss overhead; memory references likely

to page miss are highlighted in Figure2.

1.  Note that a DRAM page should not be confused with a virtual memory page; this is an unfortunate over-
loading of terms.
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In the loop of Figure 2(a), 3 page misses occur for every 4 references; a different ordering

can result in every reference generating a page miss. By unrolling the loop and grouping

accesses to the same vector, as demonstrated in Figure 2(b), page miss cost is amortized

over a number of accesses; in this case 3 misses occur for every 8 references. In reducing

page miss count, processor-memory bandwidth is increased significantly.

Figure 3 depicts the effective memory bandwidth, in megabytes per second, versus depth

of loop unrolling for the vaxpy computation, given page miss and hit access times of 160

and 40 nanoseconds respectively. For the curve labeled ‘Natural’ the loop body of

Figure 2(a) is essentially replicated the appropriate number of times, as is standard prac-

tice. For the curve labeled ‘Ordered’, accesses have been arranged as per Figure 2(b); in

doing so a performance gain of nearly 110% is realized at a depth of 4.

As noted above, access ordering employs loop unrolling to increase the number of

accesses within a given loop that can be reordered. However, loop unrolling creates regis-

ter pressure and has traditionally been limited by register resources. Techniques that uti-

lize cache memory to mimic vector registers, thereby relieving processor register pressure

and effectively increasing register set size, are discussed in section 6.

loop: loop:

load a load a

load x load a

load y load x

stor y load x

jump loop load y

load y

stor y

stor y

jump loop

(a) (b)

Figure 2  Vaxpy Code
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1.3  Computation Domain

The problem domain to which access ordering is applicable is the class of stream-oriented

computations. A stream-oriented computation interleaves references to some number of

streams, where a stream is defined as a linear sequence of accesses to a given vector of

fixed sized elements, beginning at a known address, and proceeding at a constant stride.

Stream access results in a predictable reference pattern that can be exploited. Processor

instructions and scalar constants are assumed to be cached or held in registers, as appropri-

ate.

For example, a scalar processor performing the well known axpy operation:

is assumed to generate three distinguishable access streams, one load stream to each of the

vectors  and , and one store stream back to the vector .

In this report, the computation domain for which access ordering algorithms are developed

is further restricted to the class of vectorizable loops. Since vectorizable loops contain no

loop-carried dependencies, excepting ignorable input dependence and self-antidependence

cycles [Wolf89], reordering accesses within an unrolled loop is simplified. Note that recur-

rence relations can often be eliminated through streaming optimizations [BeDa91], so that

algorithms developed here are actually applicable to a superset of the vectorizable loops.

Figure 3  Vaxpy Performance
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1.4  Memory Device Types

For stream-oriented computations, access ordering reorders references within an unrolled

loop to exploit features of the underlying memory system. Thus, a different access order-

ing algorithm must be derived for each target memory architecture and device type. For

the single module architecture depicted in Figure1, ordering algorithms are derived for

each of the two major memory component types: uniform-access and page-mode.

Uniform-access components are insensitive to the reference sequence, so that the time to

service a given access is not dependent on previous requests; SRAMs are the common

example of this device type. The performance of uniform-access components is parame-

terized by

• , the read cycle time, and

• , the write cycle time.

Page-mode components operate as if implemented with a single on-chip cache line, as dis-

cussed in section 1.2; static-column and fast page-mode DRAMs are the common exam-

ples of this device type. The performance of page-mode components is parameterized by

• p, the page size,

• , the page-hit read cycle time,

• , the page-hit write cycle time, and

• , the additional page access overhead incurred by a page miss; thus, the page-miss

read and write cycle times are  and , respectively.

The system word size is defined byw. For systems constructed from page-mode compo-

nents, page size is a multiple of word size; i.e.w | p. Note that for all system parameters,

sizes are in bytes and times are in nanoseconds.

Tu/ r

Tu/ w

Tp/ r

Tp/ w

Tp/ m

Tp/ r Tp/ m+ Tp/ w Tp/ m+
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1.5  Performance Modeling

For a given computation, access ordering results in code that generates a well-defined

sequence of vector references. Consequently, for each access ordering algorithm, an ana-

lytic model of effective memory bandwidth can be derived.

Models of memory system performance have traditionally been based on the assumption

that individual modules are insensitive to the sequence of access requests. For modern

page-mode DRAM components, this assumption is not correct. Furthermore, memory per-

formance models generally assume a stochastic sequence of references. For stream-ori-

ented computations, this is not the case.

Developing an access ordering algorithm for a given memory architecture and device type

provides a unique opportunity to derive a precise analytic model of memory system per-

formance for a large and important class of computations. In developing such models for a

single module architecture, it is assumed that the processor is sufficiently fast so that per-

formance is limited by the memory system. Thus performance models represent maximum

effective bandwidth.

2  Previous Work
Access ordering spans a number of interrelated topics from compiler optimizations to per-

formance modeling. The following sections provide the minimal level of context neces-

sary to characterize the contributions of this work; a more complete survey of all relevant

topics can be found in [Moye92].

2.1  Stream Detection

Access ordering algorithms derived in this report presuppose the existence of compiler

techniques to detect stream-oriented computations. Benitez and Davidson [BeDa91]

describe a technique for detecting streaming opportunities, including those in recurrence

relations. Callahan et al [CaCK90] present a technique called scalar replacement that

detects redundant accesses to subscripted variables in a loop, often transforming a more
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complex sequence of references to a vector into a single access stream. Finally, as stream-

oriented computations reference vector operands, well known vectorization techniques are

applicable, such as those described by Wolfe [Wolf89].

2.2  Access Scheduling Techniques

Access ordering is a compilation technique for maximizing effective memory bandwidth.

Previous work has focused on reducing load/store interlock delay by overlapping compu-

tation with memory latency, referred to here as access scheduling. Essentially, access

scheduling techniques attempt to separate the execution of a load/store instruction from

the execution of the instruction which consumes/produces its operand, reducing the time

the processor spends delayed on memory requests.

Bernstein and Rodeh [BeRo91] present an algorithm for scheduling intra-loop instructions

on superscalar architectures that accommodates load delay. Lam [Lam88] presents a tech-

nique referred to as software pipelining that structures code such that a given loop iteration

loads the data for a later iteration, stores results from a previous iteration, and performs

computation for the current iteration. Weiss and Smith [WeSm90] present a comprehen-

sive study in which they classify and evaluate software pipelining techniques imple-

mented in conjunction with loop unrolling. Klaiber and Levy [KlLe91] and Callahan et al

[CaKP91] propose the use of fetch instructions to preload data into cache; compiler tech-

niques are developed for inserting fetch instructions into the normal instruction stream.

Access ordering and access scheduling are fundamentally different. Access scheduling

techniques allow load/store architectures to better tolerate memory latency; however, the

effective memory bandwidth is not considered. Note that access ordering and access

scheduling are complementary. Access ordering can first be applied to a computational

kernel to obtain an ordering of load/store instructions that maximizes effective bandwidth.

Access scheduling can then be applied to reduce interlock delay while maintaining the

specified load/store instruction order.
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3  Model Access Pattern
For deriving access ordering algorithms and performance models, it is useful to define a

notation for expressing sequences of requests generated by stream-oriented computations.

The Model Access Pattern notation used to denote specific reference sequences is defined

below, along with a set of general definitions and assumptions applicable to all computa-

tions. Access ordering in the presence of wide words is also discussed. Finally, a restric-

tion is placed on stream interaction to simplify optimality results.

3.1  MAP Notation

Two characteristics define the Model Access Pattern (MAP) for a stream-oriented compu-

tation: a set of access streams to individual vectors, and an interleaving of stream refer-

ences into a merged access sequence.

An access stream is defined by the tuple  where

An access sequence describes the interleaving of stream accesses within a loop and is

defined recursively as follows:

let  denote access to the ‘next’ element of the stream , then

1.  is an access sequence.

2.  is an access sequence where  are access sequences;

are performed left to right with all accesses in  initiated prior to the initiation of

accesses in .

3.  is an access sequence where A is an access sequence and c is a positive integer;

A is repeated c consecutive times.

ti v s d m, , ,( ) : σ=

v = vector to be accessed = stream starting address

s = stride of access

d = data type size

m = access mode, read(r) or write(w)

σ = number of data items accessed in a single functional iteration

ai ti

ai{ }

A1 … An, ,{ } A1 … An, , A1 … An, ,

Aj

Aj 1+

A: c{ }
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In discussing a particular MAP

• stream parameters are referred to by dot notation, e.g.  is stride, and

•  refers to the  access from  for a given access sequence iteration.

For visual clarity,  and extraneous brackets are omitted when the mean-

ing is unambiguous. When the access mode is known, an access is denoted as  or  for

 or , respectively.

To illustrate, the MAP notation is applied to the axpy operation

Three access streams are generated defined by the tuples ,

, and . The ‘natural’ access sequence imple-

menting the axpy computation is: , specifying one read from each of  and

, followed by one write from , per loop iteration.

3.2  Definitions and Assumptions

The following definitions complement the MAP notation:

• S = {  |  defines an access stream for a given computation}, i.e. S is the set of all

access streams for a given MAP,

• N = , i.e. for a given MAP the total number of access streams is N, and

• V = number of unique  such that , i.e. for a given MAP the number of vectors

accessed is V.

For the set of streams S of a given MAP, it is assumed that for all

•  | w, i.e. for all streams in S word size is a multiple of the data size,

• access stream  begins at an address divisible by , i.e. data is aligned, and

• stride of access  is positive; the stream interaction restriction defined below allows

this assumption without loss of generality.

ti. s

ai
k kth ti

ai{ } : c ai: c{ }≡

ri wi

ti. m r= ti. m w=

i∀ yi axi yi+←

tx x sx dx r, , ,( ) :1=

tyr
y sy dy r, , ,( ) :1= tyw

y sy dy w, , ,( ) :1=

rx ryr
wyw

, ,{ } tx

tyr
tyw

ti ti

S

ti. v ti S∈

ti S∈

ti. d

ti ti. d

ti. s
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3.3  Wide Word Restrictions

For completeness, it is desirable to accommodate wide word access in ordering algorithms

and performance models; a typical example being a 32-bit value referenced from a 64-bit

word. To fully utilize wide words, and simplify modeling, several minor restrictions are

placed on stream parameters and code generation for a computation. Prior to presenting

these restrictions, the following definition is made:

For access stream  with  and , the average number of data items per

word is

Then for the set of streams S of a given MAP, it is assumed that for all

• access stream  begins at an address divisible by w, i.e. streams are word aligned, and

• the average number of data items per word  is an integer, implying that each

word accessed contains exactly the same number of data items.

Access ordering employs loop unrolling to increase the number of stream accesses within

a loop that can be reordered, as discussed in section 1.2; b is defined to be the depth of

unrolling. To maximize wide word utilization, an access ordering algorithm must insure

that for a given computation, the depth of loop unrolling is such that the number of data

items referenced from each stream per iteration is a multiple of the number of data items

per word; i.e. for stream  with , .

Then for stream , b must be a multiple of the least common multiple of the number of

data items referenced per computation iteration and the number of data items per word

divided by the number of data items per computation iteration, i.e.

ti s ti. s= d ti. d=

γ s d,( )
1 when

w
sd

1≤

w
sd

when
w
sd

1>






=

ti S∈

ti

γ s d,( )

ti σ ti. σ= γ s d,( ) �|� bσ

ti

b k'
lcm σ γ s d,( ),( )

σ( )= k' Z+∈
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So, for the set of N streams S of a given MAP, the depth of loop unrolling is restricted such

that

Note that in the most common case of one data item per word per stream, b can be any

positive integer.

Given the above restrictions, each access to stream  references exactly  data

items, with the number of accesses per loop iteration defined by

Wide word access is accommodated in a natural, intuitive, and optimal fashion. Each

stream access is guaranteed to reference a different word, and the number of data items per

word is constant.

3.4  Stream Interaction Restriction

Recall that for a memory module constructed from page-mode components, the time to

complete a given access depends on whether or not the page referenced is the same as that

of the immediately preceding access. If two consecutive accesses are from different

streams, the impact of the first on the one that follows is difficult to capture analytically as

they may or may not reference the same page. To simplify analysis, the following restric-

tion is placed on the streams of a given computation:

• stream interaction restriction - for any two access streams ,  implies

that the streams have non-intersecting address spaces; in particular, streams reference

no pages in common. When  stream parameters are identical except in

mode, where by definition .

The stream interaction restriction results in stream accesses that interact with memory

architecture features in a well defined manner. To illustrate, when two streams have differ-

b k lcm
lcm t1. σ γ t1. s t1. d,( ),( )

t1. σ …
lcm tN. σ γ tN. s tN. d,( ),( )

tN. σ, ,( )
 
 = k Z+∈

ti γ s d,( )

εi

bσ
γ s d,( )=

ti tj, S∈ ti. v tj. v≠

ti. v tj. v=

ti. m tj. m≠
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ent start addresses, i.e. , the stream interaction restriction states that the streams

reference no pages in common. Thus it is known that an access from stream preceded by

an access from stream will cause a page miss. When two streams have the same start

address, i.e. , the stream interaction restriction states that the stream parameters

are identical except in access mode, accommodating read-modify-write operations. Thus,

within a given loop iteration, the  accesses from each of and  reference the same

data item and hence the same page.

Strict adherence to the stream interaction restriction limits the applicability of access

ordering algorithms. However, this limited problem domain is still large and encompasses

many interesting computations. Furthermore, under the stream interaction restriction, opti-

mality results are obtained for single module access. Relaxation of this restriction for

applying ordering algorithms to the set of vectorizable loops is discussed in section 6.

Many loops can be transformed to adhere to the stream interaction restriction, if optimal

ordering is desired. A number of these transformations are discussed in [Moye92].

3.5  MAP Dependence Relations

Access ordering alters the sequence of instructions that access memory. In performing this

reordering, dependence relations must be maintained. As discussed below, the stream

interaction restriction limits the types of dependencies that can exist between accesses

from different streams. Rules are derived for maintaining dependencies during access

ordering.

Briefly, output andinput dependence results when two write or two read accesses, respec-

tively, reference the same data item.Antidependence occurs when a read from a data item

must precede a write to that datum. Finally, data dependence occurs when a write to a data

item must precede a read from the same. A dependence relation between two accesses

from the same instance of a loop iteration is said to beloop-independent, while a depen-

dence between accesses from different instances is said to beloop-carried. A detailed

treatment of dependence analysis can be found in [Wolf89].

ti.v tj.v≠

ti

tj

ti.v tj.v=

kth ti tj
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3.5.1  Output and Input Dependence

Output and input dependence can not exist as a result of the stream interaction restriction;

two streams of the same mode have a non-intersecting address space. Therefore, depen-

dence relations of this type need not be considered.

3.5.2  Antidependence

The stream interaction restriction states that two streams referencing the same vector do so

with stream parameters that differ only in access mode. Thus, antidependence is limited to

loop-independent antidependence between corresponding components of a read stream

and write stream  implementing a read-modify-write. So, if , then  is anti-

dependent on ; notationally .

Simply specifying  and  such that  is assumed to imply antidependence; the

only alternative, a loop-independent data dependence, is redundant and the read stream

unnecessary. Compilation is assumed to remove extraneous access streams.

3.5.3  Data Dependence

Data dependence does not exist between access streams in the usual sense that a memory

location is written and later read during the execution of a loop. Loop-independent data

dependence implies an extraneous read stream, as discussed above. Loop-carried data

dependence can not exist as a result of the stream interaction restriction.

Though data dependence does not exist in the usual context, it is present in the data flow

sense; that is, as right-hand-side values required in performing a computation. A write

operation represents the assignment of a computation result and as such usually requires

that some set of read operations precede it. In this sense, a write operation is data

dependent on a read operation if  defines a value used in the computation of the result

assigned by ; notationally, .

ti

tj ti.v tj.v= wj
k

ri
k ri

k� δ� wj
k

ti tj ti.v tj.v=

wj
k

ri
q ri

q

wj
k ri

q� δ� wj
k
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3.5.4  Dependence Rules

Summarizing the above, dependence between accesses belonging to different streams is

limited to two types under the stream interaction restriction: loop-independent antidepen-

dence between a read and write streams that access the same vector, and data dependence

in the data flow sense. This observation leads to the following two rules necessary for

maintaining data dependence in access ordering algorithms.

For read stream and write stream , an access sequence maintains all dependencies if

1.  precedes  when , i.e. a read precedes its corresponding write in a read-

modify-write operation, and

2.  precedes  when , i.e. a read operation that defines a value used in the

computation of a result precedes the write of that result.

Dependence information is derived from context. As discussed in section 2.1, it is

assumed that stream information has been provided for the access ordering algorithm; it is

assumed that dependence information is provided as well.

3.5.5  Other Dependencies

The above discussion completely characterizes the dependence that can exist between

accesses belonging to different streams under the stream interaction restriction. However,

two other types of dependence may exist: loop-carried input dependence within a single

read stream, and control dependence.

Loop-carried input dependence can result from the transformation of a more complex

sequence of read accesses to a single read stream. Consider the finite difference approxi-

mation to the first derivative

Analysis techniques [BeDa91, CaCK90] can transform the ‘natural’ pattern of access to

vector  to a simple stream requiring one access per iteration; two values of are pre-

loaded prior to entering the loop, and each successive value accessed is carried in a regis-
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ter for two iterations. The loop-carried input dependence created in the transformation has

no affect on the ordering of memory access instructions.

Control dependence results from branch statements within a loop. When control depen-

dence is present, access ordering can still be applied by considering each path through the

loop body independently. Ordering and code generation is performed for each path, with

the code segment to be executed on each iteration determined dynamically. For the

remainder of this discussion, loops are assumed free of control dependence.

4  Single Module Architecture Analysis
Access ordering algorithms and performance predictors are now derived for a single mod-

ule memory architecture. Systems constructed from both uniform-access and page-mode

components are considered. Optimal effective memory bandwidth is achieved in both

cases.

Techniques for minimizing page overhead are first developed. Ordering algorithms and

performance models are then derived for systems of uniform-access and page-mode com-

ponents, respectively.

4.1  Minimizing Page Overhead

Consider a single module of page-mode components. For access ordering to generate a

reference sequence for a given computation that achieves optimal effective memory band-

width, page overhead resulting from accesses that page miss must be minimized. Given a

stream not involved in a read-modify-write, minimizing page overhead is trivial. For

streams implementing this operation, page overhead is minimized via intermixing and

wrap-around adjacency.

Given stream  such that  does not participate in a read-modify-write, i.e.

for all , minimum page overhead is achieved by performing a sequence of accesses

 without an intervening access to a second vector . This follows from the observation

that  only results in a page miss if it does not reference the same page as ; an inter-

ti S∈ ti ti. v tj. v≠

tj S∈

ai aj

ai
k 1+ ai
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vening access  is guaranteed to generate a page miss by the stream interaction restric-

tion.

The average page miss count for accesses grouped by stream is derived as follows. For

access stream  with  and , the average number of data items per page is

Then arranging accesses from  as , the average per iteration page miss

count is

That is, when the number of vectors referenced is one, i.e. , the average page miss

count for c consecutive accesses to  is the number of data items referenced divided by

the number of data items per page. For ,  is guaranteed to page miss, so that the

average page miss count is one plus the remaining data items to access, ,

divided by the number of data items per page.

Note that the average page miss count per access, , is either constant or

inversely proportional to c. In the later case, separating the c accesses must increase the

per reference page overhead. Consequently, minimum page overhead is achieved when

accesses are grouped by stream.

Theorem 1: Given stream  such that  does not participate in a read-modify-write,

i.e.  for all , minimum average page overhead is achieved by the access

sequence .

aj
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4.1.1  Intermixing

For read stream  and write stream  that implement a read-modify-write, i.e.

and , it is often possible to reduce the average page miss count of the write

stream below that achieved by the access sequence .

Consider the general intermix sequence

that generates the string of references

Since  and  refer to the same location,  will only page miss when referencing a

page different from that referenced by . Thus, the average page miss count for the read

stream is unchanged. However, the sequence of accesses  through ,

, suffers a page miss only when  and  reference a different page.

For write stream  with  and , the average page miss count in perform-

ing each set of c write accesses in the intermix sequence  is

derived in Appendix A.1 as

Thus, the total average page miss count in performing all  write operations for a given

iteration is . The general intermix sequence  is

optimal, as demonstrated in Appendix A.2.

Based on the preceding analysis, for a computation that references two or more vectors the

intermix sequence  results in a lower page overhead for write

operations than the sequence  if .
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Similarly, for a computation that references exactly one vector the intermix sequence

 results in a lower page overhead for write operations than the

sequence  if . Then for write stream , the

affect of intermixing on average per iteration page miss count is computed as

It can be shown algebraically that , i.e. intermixing reduces write

access page miss count, if  or . Therefore, when

 the average page miss count in performing each set of c write

accesses, , is directly proportional to c. Thus, choosing c as small as possible

minimizes write page overhead.

4.1.1.1  Intermix Factor

For the general intermix sequence, the values of the intermix parameters c and h that min-

imize page overhead for the write stream are a function of both the stream parameters and

data dependence information. Intuitively, the intermix parameter c is chosen to be the min-

imum value that preserves data dependence while efficiently utilizing wide word access,

when applicable. If write stream  is not data dependent on read stream , implying the

computation is not a strict read-modify-write, then . Otherwise, c is the minimum

number of accesses required to reference all data items for a number of computation itera-

tions such that all data items in the words accessed are consumed; this minimal value of c

is referred to as the intermix factor.

For write stream  with ,  and , the intermix factor is com-

puted as
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From the derivation of  in section 3.3, it can be seen that the number of accesses to

stream  per loop iteration is a multiple of the intermix factor ; i.e.  | . Thus, inter-

mix parameters  and  minimize page overhead if ;

otherwise, intermixing increases page overhead and is therefore not employed.

Theorem 2: For read stream  and write stream  that specify a read-modify-write, i.e.

 and , minimum average page overhead for write stream  is achieved

by the general intermix sequence  with  and

if . Page overhead for read stream  is unaffected by intermixing and

equivalent to that achieved by the access sequence .

Though intermixing minimizes page overhead, the resulting sequence may not be amena-

ble for execution on pipelined processors; alternating read and write accesses can force

scalar-mode (non-pipelined) arithmetic operations. However, intermixing is justified if the

additional access time resulting from a sub-optimal reference sequence exceeds the addi-

tional cost of performing scalar-mode computation. This is discussed in detail in section 6.

4.1.2  Wrap-around Adjacency

Given read stream  and write stream  that specify a read-modify-write, i.e.

and , it is often possible to reduce the average page miss count of the read

stream via wrap-around adjacency. Streams  and  are wrap-around adjacent if accesses

to each occur at the beginning and end of an access sequence, respectively; i.e.

Note that in the special case where  and  are the only streams in a computation, the

intermix sequence  also results in wrap-around adjacency.

Since  and  reference the same location, then for a given iteration  will only page

miss when referencing a page different from that referenced by  on the previous itera-

tion. In terms of page overhead the read stream proceeds as if no other vector is accessed,

so that page miss count is computed by  where .
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Then, for a wrap-around adjacent read stream with  and , the average

per iteration page miss count is

The affect of wrap-around adjacency on per iteration page miss count for read stream is

computed as

For a given read stream wrap-around adjacency results in minimum possible page over-

head, as the read stream proceeds without page thrashing.

Theorem 3: For read stream and write stream  that specify a read-modify-write, i.e.

 and , minimum average page overhead for read stream is achieved

via wrap-around adjacency.

4.2  Single Module of Uniform-access Components

Deriving an access ordering algorithm for a single module of uniform-access components

is trivial and presented here only for completeness. Since uniform-access components are

insensitive to the sequence of memory requests, any order that preserves dependencies

results in optimal effective memory bandwidth.

For streamsS, let  through  be read streams and  through  be write streams.

Then the MAP access sequence employed is

Recall that the stream interaction restriction limits dependencies to loop-independent anti-

dependence and data dependence in the data-flow sense, as discussed in section 3.5. Thus,

placing all reads prior to the first write maintains all dependencies.
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4.2.1  Performance Predictor

A performance predictor for a single module of uniform-access components is computed

below for the average time per access  and the effective processor-memory band-

width .

If  is a read stream, the time to complete all references to  for a given sequence iteration

is computed as the number of accesses  multiplied by the uniform-access read cycle time

; i.e. .

Then , the time to complete all read accesses for a given iteration, is computed as the

sum of the times to complete accesses for each individual read stream, so that

 is defined as the time to complete all write access for a given iteration and is computed

analogously to , so that

Then the average time per access  is the time to complete all accesses in a given itera-

tion divided by the number of data items referenced, resulting in
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The effective memory bandwidth  is the number of bytes of relevant data transferred

per iteration divided by the time to complete all access; i.e.

All times are in nanoseconds and sizes in bytes, with bandwidth measured in megabytes

per second.

4.3  Single Module of Page-mode Components

For a single module of page-mode components, an access ordering algorithm is derived

that achieves optimal effective memory bandwidth by minimizing page overhead for a

given computation while maintaining dependencies. Note that the reference sequence gen-

erated is ‘statistically optimal’ in that it results in on average best case performance, given

that stream alignment within a page is not restricted and therefore not known.

For streams not involved in a read-modify-write, grouping accesses by stream results in

minimum page overhead (Theorem 1). Given two streams that implement this operation,

further reduction in page overhead may be achieved for write and read accesses by inter-

mixing (Theorem 2) and wrap-around adjacency (Theorem 3), respectively.

Then for streams S with no pair of streams implementing a read-modify-write, ordering is

trivial. Let  through  be read streams and  through  be write streams. A MAP

access sequence that minimizes page overhead while preserving dependencies is

If S contains one or more pair of streams implementing a read-modify-write, then an opti-

mal MAP access sequence is defined by the following algorithm:

BW

BW
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Determine the total ordering of access sets , , that maximizes the reduc-

tion in page overhead achievable via intermixing and wrap-around adjacency and that

maintains the partial ordering of access sets defined by the dependence relations.

Reduction in page overhead for a particular ordering is calculated by the functions

 and  derived in sections 4.1.1 and 4.1.2, respec-

tively.

Determining the total ordering of access sets that maximizes the potential reduction in

page overhead is exponential in the number of streams in S. However, in practice, the

stream count N tends to be small and dependencies significantly reduce the number of

total orderings. Furthermore, page overhead is only affected by the relative position of

streams implementing read-modify-writes. Read and write access sets not involved in a

read-modify-write may be coalesced to a single read and write access set, respectively.

The result is an efficient algorithm.

4.3.1  Example Problem

The following example illustrates the application of the ordering algorithm defined above.

Consider the axpy operation

that generates three streams defined by , , and

.

Antidependence exists between corresponding elements of read stream  and write

stream , and data dependence exists between corresponding elements of  and , and

 and . In the notation presented in section 3.5, , , and  for

.

The access sets are , , and  for which two total orderings

maintain dependencies: ( , , ) and ( , ,

).
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Considering each total ordering in turn, ( , , ) presents the

opportunity for intermixing  and  and results in the MAP access

sequence

The gross reduction in page overhead achieved by the ordering above is calculated as

; intermix parameters are computed as discussed in 4.1.1.1.

The total ordering ( , , ) provides wrap-around adjacency

and results in the MAP access sequence

The gross reduction in page overhead is calculated as .

The access ordering algorithm determines the total ordering of access sets that maximizes

the reduction in page overhead. For the accesses sets of the axpy computation considered

above, if  then the access

sequence  results in optimal effective memory bandwidth, other-

wise the sequence  is optimal.

4.3.2  Performance Predictor

For a MAP consisting of a set of streams S and an access sequence defined by the algo-

rithm above, a performance predictor is derived for the average time per access  and

the effective processor-memory bandwidth .

Let P represent the access sequence over the set of streams S. Then P is composed of some

number of component sequences , where the subscript is defined to be that of the stream

referenced; for an intermix sequence the subscript is defined to be that of the read stream.

Each  must be in the form of
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• a read access set ,

• a write access set , or

• an intermix sequence .

If  then , the time to complete the sequence , is the sum of the

number of accesses to  multiplied by the page-hit read cycle time  and the average

page overhead multiplied by the page miss time ; i.e.

Similarly, if  then  is the sum of the number of accesses to  multi-

plied by the page-hit write cycle time  and the average page overhead multiplied by

the page miss time , so that

Finally, if  then  is the sum of the number of accesses to

stream  ( ) multiplied by the sum of the page-hit read and page-hit write cycle times and

the sum of the average page overheads for read and write operations multiplied by the

page miss time , so that

From the preceding analysis, the time to complete an iteration of the access sequence P is

the sum of the times required to complete each component sequence; i.e.
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Then the average time per access  is the time to complete all accesses in a given itera-

tion divided by the number of data items referenced, resulting in

The effective memory bandwidth , measured in megabytes per second, is the number

of bytes of relevant data transferred per iteration divided by the time to complete all

accesses; i.e.

5  Simulation Results
For a single module of page-mode components, access ordering can significantly increase

effective memory bandwidth over that achieved by the ‘natural’ sequence of references for

a given computation. In this context, the natural reference sequence is the sequence that

results from a straight-forward translation of the loop code. To illustrate the improvement

in performance achieved via access ordering, and to validate performance models, simula-

tion and analytic results are presented for a number of common scientific kernels.

Recall that for both modeling and simulation, the processor is assumed sufficiently fast so

that there is always an outstanding request. Thus, results represent maximum achievable

bandwidth.

The parameters of the single-module memory are defined in Table 1; sizes are in bytes and

times are in nanoseconds. These parameters are representative of the node memory system

for the Intel IPSC/860, as detailed in [Moye91].
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Table 2 presents simulation results comparing effective bandwidth achieved by the natural

versus ordered access sequence for a range of scientific kernels. For all computations, the

depth of loop unrolling is 4.

The daxpy computation is the double-precision version of the axpy computation discussed

earlier. Similarly dvaxpy is the double-precision version of the vaxpy (vector axpy) com-

putation

The remaining computations in Table 2 are selections from the Livermore Loops

[Mcma90], with all vectors defined as double-precision.

Access ordering improves performance over the natural access sequence for the given

computations from 102% to 149%. Note that for LL-24 only a single vector is referenced

so that no reordering is performed.

Table 3 compares performance of ordered accesses for the computations of Table 2 as cal-

culated analytically and measured via simulation; again, loops are unrolled to a depth of 4.

Note that in all cases analytic and simulation results differ by less than 1%, validating the

accuracy of the performance model.

Table 1  Module Parameters

Parameter Value
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6  Implementation Issues
Access ordering algorithms as derived are memory centric and do not reflect processor

constraints; in particular, register file size, pipelined functional units, and bus characteris-

tics are not considered. Furthermore, all memory references are assumed to be non-cach-

ing, even though many codes benefit from caching a subset of the vectors operands.

Finally, reference sequences are assumed to adhere to the stream interaction restriction,

thus limiting the applicable problem domain. Each of these implementation issues is

addressed below.

Table 2  Natural vs Ordered Performance

Computation
Natural Ordered

% Increase

daxpy 41.7 87.1 108.9

dvaxpy 38.8 85.1 119.3

LL-1 31.0 73.7 137.7

LL-3 32.0 79.8 149.4

LL-4 32.0 79.3 147.8

LL-5 31.0 73.7 137.7

LL-7 31.2 75.1 140.7

LL-11 30.5 70.9 132.5

LL-12 30.5 71.0 132.8

LL-20 31.3 75.6 141.5

LL-21 41.0 82.9 102.2

LL-22 30.8 72.6 135.7

LL-24 158.5 158.5 0.0

BW BW
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6.1  Relieving Register Pressure

Access ordering employs loop unrolling to increase the number of accesses within a given

loop that can be reordered, thus increasing the potential for minimizing page overhead and

fully utilizing wide words, as applicable. However, loop unrolling creates register pressure

and has traditionally been limited by register resources.

Lee [Lee91] presents a technique that employs cache memory to mimic a set of vector reg-

isters, effectively increasing register file size for vector computations. Storage is defined

for a set of vectors, each of which represents a pseudo register; vector length corresponds

Table 3  Analytic vs Simulation Results

Computation
Analysis Simulation

daxpy 91.9 87.1 91.9 87.1

dvaxpy 94.0 85.1 94.0 85.1

LL-1 108.6 73.7 108.6 73.7

LL-3 100.3 79.8 100.3 79.8

LL-4 100.9 79.3 100.8 79.3

LL-5 108.6 73.7 108.6 73.7

LL-7 106.5 75.1 106.5 75.1

LL-11 112.8 70.9 112.7 70.9

LL-12 112.8 70.9 112.8 71.0

LL-20 105.9 75.6 105.9 75.6

LL-21 96.6 82.9 96.6 82.9

LL-22 110.3 72.5 110.3 72.6

LL-24 50.4 158.8 50.5 158.5

Tavg BW Tavg BW
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to register size. For example, two 64-element ‘vector registers’ are defined in theC pro-

gramming language as

Prior to performing computations, each pseudo register element is referenced via a stan-

dard caching load instruction so that the vector register address space resides in cache

memory. Note that to insure pseudo vector register elements do not conflict in cache, vec-

tor storage must not exceed cache capacity for a direct-mapped cache or  cache

capacity for ann-way set-associative cache [LaRW91].

Within a loop, vector operands are loaded into the pseudo vector registers, arithmetic

operations are performed on vector register data, and vector register results are stored back

to the appropriate vector elements in memory. Vector registers are loaded by first loading

each vector element into a processor register via a non-caching access, and then storing

the value to the appropriate vector register location in cache.

By applying the above technique, processor register pressure is relieved and the effective

vector register space is limited only by the cache size.

6.2  Pipelined Processors and Bus Bandwidth

Recall that for a system constructed from page-mode components and a pair of streams

implementing a read-modify-write, interleaving references can reduce page overhead for

write operations. For example, given a single memory module, read stream, and write

stream , section 4.1.1 derives the general intermix sequence as

Though intermixing minimizes page overhead for the write stream, the resulting sequence

reduces data-bus bandwidth and may not be amenable for execution on a pipelined proces-

sor.

double VectorRegisters[2][64];

1 n⁄( ) th

ti

tj

… ri: c wj: c,{ } : h …, ,{ }



32

To illustrate, consider the vector scaling operation

that generates read stream  and write stream . The optimal access sequence resulting

in zero write stream page overhead is

Implementing this sequence requires reading an element of the vector , performing a

multiplication, then immediately storing the result. Thus multiplication must be performed

in a scalar (non-pipelined) rather than pipelined mode. Furthermore, the data-bus must

remain idle for one bus cycle between read and write operations to avoid interference

between outgoing write data and incoming read data. Thus alternating access modes

increases the number of idle cycles and hence reduces effective bus bandwidth.

If the stride of  is small then the non-interleaved sequence  results in a

negligible increase in average page overhead while maximizing bus bandwidth and allow-

ing multiplication operations to be pipelined. If the stride of  is large, e.g. 1 data-item per

DRAM page, then the additional overhead resulting from the non-interleaved reference

sequence may exceed the gains from pipelined arithmetic operations and increased bus

bandwidth.

Let  and  represent the times to complete one iteration of accesses for a read-mod-

ify-write operation with an interleaved and non-interleaved reference sequence, respec-

tively. Values for  and  are computed as the maximum of the bus transfer and

memory access times, where bus transfer time is processor dependent and memory access

time comes directly from performance models developed in section 4.3.2. Let  and

represent the times to complete one iteration of arithmetic operations for a read-modify-

write operation in scalar and pipelined modes, respectively. Values for  and  are pro-

cessor dependent.
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Then implementing scalar operations and an interleaved reference sequence achieves the

maximum computation rate if

Otherwise, maximum computation rate is obtained from pipelined arithmetic operations

and a non-interleaved sequence of references. Note that this formula assumes computation

is overlapped with memory latency.

6.3  Combining Caching and Non-Caching Memory Access

Access ordering algorithms presume the use of non-caching load instructions to control

via software the sequence of requests observed by the memory system and to avoid extra-

neous data references. However many codes generate multiple references to a subset of

vector operands and hence can benefit from caching, particularly when implemented using

strip-mining and tiling techniques [CaKe89, Wolf89]. Thus access ordering and caching

should be used together to complement one another, exploiting the full memory hierarchy

to maximize memory bandwidth.

Perhaps the simplest method for combining caching and non-caching access in a coherent

fashion is to preload the cache at the appropriate loop level and then apply access ordering

to the remaining non-caching loads. To illustrate, consider implementing the matrix-vector

multiply operation

where A and B are  matrices and  and  are vectors.

Figure 4(a) depicts code for a straight-forward implementation of the matrix-vector multi-

ply operation. Figure 4(b) strip-mines the computation to reuse elements of ; partition

size is dependent on cache size and structure [LaRW91]. Elements of  are preloaded into

cache memory at the appropriate loop level. Access ordering is then applied to the inner

loop as elements of A and B are not reused and hence referenced via non-caching loads.

The reference to  is a constant within the inner loop and is preloaded into a processor

register.

max TI TS,( ) max TNI TP,( )<

y A B+( ) x=

n m× y x

y

y

x
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If the pseudo vector register technique described in section 6.1 is used to relieve processor

register pressure for loop unrolling, care must be taken to insure that vector registers and

cached operands do not collide in cache memory; the same is true for multiple cached

operands. Lamet al [LaRW91] analyze a technique that eliminates cache conflicts by

copying data to be cached into a contiguous address space. Note that in applying this copy

optimization, non-unit stride vectors can be referenced via non-caching loads to reduce

extraneous data movement and wasted cache space.

By combining intelligent cache management with access ordering techniques, the full

memory hierarchy is exploited to maximize effective memory bandwidth.

(a) // Straight-forward implementation: y = (A + B)x

for j = 1 to m

for i = 1 to n

y[i] = y[i] + (A[i,j] + B[i,j]) * x[j];

(b) // Strip-mined implementation: y = (A + B)x

for IT = 1 to n by IS

{

preload y[IT] through y[min(n, IT + IS - 1)] into cache;

for j = 1 to m

{

preload x[j] into a processor register;

// Each element of A and B referenced exactly once via a

// non-caching load.

for i = IT to min(n, IT + IS - 1)

y[i] = y[i] + (A[i,j] + B[i,j]) * x[j];

}

}

Figure 4  Combining Caching and Non-Caching Access
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6.4  Relaxation of the Stream Interaction Restriction

Access ordering algorithms presume access streams adhere to the stream interaction

restriction, defined in section 3.4. Though analysis is simplified and optimal bandwidth is

obtained, dependence between accesses belonging to different streams is limited to two

types: loop-independent antidependence and data dependence in the data flow sense.

Minor relaxation of the stream interaction restriction significantly increases the scope of

computations to which the access ordering algorithms can be applied. Relaxation tech-

niques are considered below for two special cases: self-antidependence cycles and read

streams with overlapping address spaces.

6.4.1  Self-Antidependence Cycles

Some common computations exhibit a loop-carried antidependence of the form

Streams generated by this computation violate the stream interaction restriction by refer-

encing overlapping, rather than identical or non-intersecting, address spaces.

For the simple self-antidependence cycle demonstrated above, common access ordering

techniques, such as loop unrolling and grouping accesses by stream, can easily be applied.

However, modeling page overhead is more complex for streams involved in a loop-carried

antidependence than for streams implementing a strict read-modify-write.

Access ordering algorithms derived in preceding sections can accommodate streams gen-

erated by a self-antidependent computation in a suboptimal fashion by ordering accesses

from each stream independently and insuring that all reads are initiated prior to the first

write. A simple optimization places references from the read and write streams adjacent to

potentially reduce write access page overhead, when applicable; this technique is analo-

gous to intermixing for streams implementing a strict read-modify-write.

i∀ yi fn yi k+( )← k Z+∈
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6.4.2  Overlapping Read Address Spaces

The stream interaction restriction states that read streams must have non-intersecting

address spaces, suggesting that ordering algorithms are not applicable to common compu-

tations such as

However, access ordering algorithms can easily accommodate intersecting read streams in

a suboptimal fashion by ordering accesses from each stream independently. Read streams

with intersecting address spaces may exhibit input dependence, however this can be

ignored for non-volatile memory locations. A simple optimization places references from

intersecting read streams adjacent, potentially reducing page overhead when applicable.

6.4.3  Access Ordering and Vectorizable Computations

A vectorizable loop is one with no multi-statement dependence cycles and only self-

dependence cycles that are ignorable or represent known reduction or recurrence opera-

tions for which vector instructions exist; in testing if a loop is vectorizable, input depen-

dence is ignored for non-volatile memory locations [Wolf89].

Relaxing the stream interaction restriction as discussed above allows access ordering algo-

rithms to be applied to the class of vectorizable loops, an arguable large and interesting

problem domain.

7  Conclusions
Access ordering, a loop optimization that reorders accesses to better utilize memory sys-

tem resources, is a compiler technology developed in this report to address the memory

bandwidth problem for scalar processors executing scientific codes. For a single module

memory architecture, the access ordering algorithms developed here determine a well-

defined interleaving of vector references that maximizes effective bandwidth for a given

computation and memory device type. Consequently, analytic models of performance can

i∀ yi x3i x3i 1++←
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also be derived. Access ordering algorithms developed are applicable to a superset of the

class of vectorizable loops, an arguably large and interesting problem domain.

Simulation results demonstrate that for a given computation, access ordering can signifi-

cantly increase effective memory bandwidth over that achieved by the natural sequence of

references. Simulation results validate analytic models of performance as well.

Access ordering is fundamentally different from, though complementary to, access sched-

uling techniques that attempt to overlap computation with memory latency but do not con-

sider the performance of the resulting access sequence. Access ordering is also

complementary to caching, and is shown to work well with strip-mining and tiling tech-

niques.

Performance modeling based on access ordering has direct application in a number of

evaluation tools, in particular for

• system evaluation - to provide a benchmark both for cost-performance analysis of dif-

ferent memory systems and for matching memory performance to processor require-

ments, and

• algorithm evaluation - to provide a benchmark for algorithm selection based on effec-

tive bandwidth utilization for a given memory system.

Analytic results presented throughout this work provide a basic and extensible set of tools

for capturing memory system behavior and for understanding the interaction of reference

sequences with memory architecture and component characteristics. In particular, single

module results presented here are used as the basis for deriving access ordering algorithms

and performance predictors for parallel memory systems [Moye92].
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Appendix A

Intermix Sequences

A.1 Derivation of

The function  is the average page miss count in performing each set of c write

accesses in the intermix sequence , where  and  specify a

read-modify-write operation; i.e. .

Case:  (the number of data items per word is exactly one)

In deriving , the following observation is made: in accessing c data items the

address space spanned, in bytes, is .

Assume , then the address space spanned touches at most two pages. If

 is the probability that c accesses touch one page, and  is the probability that two

pages are touched, then

That is, for the access sequence , the write operations

 through , , suffer a page miss only when  and  ref-

erence a different page.

The number of d-aligned starting positions in a given page for the c read accesses is

The number of starting positions resulting in the c read accesses touching exactly one page

is

ρ s d c, ,( )

ρ s d c, ,( )

… ri: c wj: c,{ } : h …, ,{ } ti tj

ti. v tj. v=

γ s d,( ) 1=
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c 1−( ) sd d+

c 1−( ) sd d+ p≤

p1 p2

ρ s d c, ,( ) p1 0( ) p2 2( )+ 2p2= =

… ri: c wj: c,{ } : h …, ,{ }

wj
k 1−( ) c 1+ wj

kc 1 k h≤ ≤ ri
k 1−( ) c 1+ ri
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S
p
d

=

S1
p c 1−( ) sd d+( )−

d
1+=
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Then the probability that a set of c read accesses touch exactly one page is

and the probability that two pages are touched is

Thus, when , the average page miss count in performing each set of c

write accesses is

When , the address space spanned touches at least two pages, implying

that each sequence of c write accesses must begin with a page miss and page overhead is

modeled as

which is one plus the remaining data items to access, , divided by the number of data

items per page.

Combining the results derived above

p1

S1

S
1

c 1−( ) sd
p

−= =

p2 1 p1−
c 1−( ) sd

p
= =

c 1−( ) sd d+ p≤

ρ s d c, ,( ) 2p2
2 c 1−( ) sd

p
= =

c 1−( ) sd d+ p>

1
c 1−

φ s d,( )+

c 1−
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2 c 1−( ) sd
p

when c 1−( ) sd d p≤+

1
c 1−
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
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

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Case:  (the number of data items per word is greater than one)

Deriving  for this case is completely analogous to the previous case, with the

address space spanned being  and all accesses being word-aligned, so

that

The two cases derived above may be combined into the single modeling function

A.2 Proof of Optimal Intermix Pattern

Given: read stream  and write stream  specifying a read-modify-write, i.e. .

Prove: the intermix sequence  is the optimal interleave pattern.

Proof: Consider the general interleave case

where, by definition,  must proceed  and

γ s d,( ) 1>

ρ s d c, ,( )

cw cγ s d,( )sd=

ρ s d c, ,( )

2 c 1−( ) γ s d,( )sd
p
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1
c 1−( ) γ s d,( )
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




=
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2 c 1−( ) γ s d,( )sd
p

when c 1−( ) γ s d,( ) sd d p≤+

1
c 1−( ) γ s d,( )

φ s d,( )+ when c 1−( ) γ s d,( ) sd d+ p>



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=
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Then let

It is easily seen that for , . If there exists a  then there must exist at

least one u such that , in which case

let  and , then

• the page miss count in performing the read sequence  can be greater

than in the case where  since  may access a sequentially earlier page than

;

• similarly, the page miss count in performing the write sequence  can

be greater than in the case where  as  may access a sequentially earlier

page than .

Thus, the minimum page miss count is achieved when  for ; i.e. when

 for .

 is the optimal intermix pattern.

QED
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λ

∑ Sq λ= and kl
l 1=

λ
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