
This work was partially funded by the General Electric Faculty for
the Future Program and NSF grants ASC-9201822 and CDA-
8922545-01.

Braid: Integrating Task and Data Parallelism

Emily A. West

Andrew S. Grimshaw

Department of Computer Science, University of Virginia

{west | grimshaw @virginia.edu}

Abstract
Archetype data parallel or task parallel applications are

well served by contemporary languages. However, for
applications containing a balance of task and data parallel-
ism the choice of language is less clear. While there are lan-
guages that enable both forms of parallelism, e.g., one can
write data parallel programs using a task parallel language,
there are few languages whichsupport both. We present a
set of data parallel extensions to the Mentat Programming
Language (MPL) which allow us to integrate task parallel-
ism, data parallelism, and nested task and data parallelism
within a single language on top of a single run time system.
The result is an object-oriented language, Braid, that sup-
ports both task and data parallelism on MIMD machines. In
addition, the data parallel extensions define a language in
and of itself which makes a number of contributions to the
data parallel programming style. These include subset-
level operations (a more general notion of element-level
operations), compiler provided iteration within a data par-
allel data set and the ability to define complex data parallel
operations.

1: Introduction

Many parallel languages have been introduced over the
past decade. Broadly speaking most can be categorized as
supporting either data parallelism or task parallelism (alter-
natively called control parallelism). Both task and data par-
allel languages have applications for which they are well
suited. For example, task parallel languages are well suited
for applications where there are multiple actions to be per-
formed, e.g., a pipeline, or different interacting entities to
be modeled. Similarly, data parallel languages are well
suited to applications where the same action is to be per-
formed on many different data items, for example image
convolution where each pixel can be processed in parallel.

On the other hand, applications exist which contain a
mix of the two types of parallelism. These applications

force the designer to make a choice. If one type of parallel-
ism dominates the computation, then a language to exploit
that parallelism is called for and the other type can be
ignored. However, for applications containing a balance of
task and data parallelism the choice of language is less
clear.

As an example, global climate modeling [18] involves
the interaction of distinct oceanic and atmospheric weather
models. The two resulting PDEs can be individually solved
in a data parallel fashion by superimposing a grid upon the
space to be modeled. Each grid location is then an item in
a data set. Because the interactions between neighboring
grid points along the borders of the oceanic and atmo-
spheric models are quite different from the interactions
between grid points internal to either model, a distinction is
made between the oceanic and atmospheric portions of the
computation. This calls for the use of task parallel con-
structs to govern inter-model interactions.

Global climate modeling is readily identifiable as an
application which would benefit from a language support-
ing both task and data parallelism. However, one must ask
if this example is unique, or whether there exists a group of
applications for which a mixed language is the solution.
Multi-disciplinary optimization problems contain data par-
allelism within a larger problem. For example, DNA pro-
tein sequence comparison [8] contains this type of
parallelism. These examples are by no means exhaustive -
merely representative. One difficulty with identifying
applications is that the tools available influence how, and
which, applications are coded. Recent activity in the field
of combined task and data parallel language design [3, 5, 7,
22] is further evidence of the importance of the problem.

We have designed a set of data parallel extensions to the
Mentat Programming Language (MPL) which allow us to
integrate task parallelism, data parallelism, and nested task
and data parallelism within a single language on top of a
single run time system. The result is an object-oriented lan-
guage, Braid, that supports both task and data parallelism
on MIMD machines. The data parallel extensions include
both element-centered operations as well as a more general
notion of subset-centered operations which has not been

To appear: Frontiers 95 - The Fifth Symposium on the Frontiers of Massively Parallel Computation, Feb. 6 - 9, 1995,
McLean, Virginia.

Available as: University of Virginia Department of Computer Science Technical Report CS-94-45.

defined previously. These operations permit member func-
tions to be defined and executed in parallel on structured
subsets of the data. Based on programmer annotations, iter-
ation constructs are automatically generated by the com-
piler. Data parallel operations are not limited to standard
array or pre-defined operations. Rather the programmer is
allowed to define complex data parallel operations for a
data set.

In this paper we focus on the language design. Complete
language details and a description of the translations from
the source language to the target task parallel run-time sys-
tem can be found in [27]. We begin with background mate-
rial on data parallel computation and Mentat to set the
context for this work. The extensions are then presented,
followed by examples that illustrate the integration of task
and data parallelism. We conclude with related work, a
summary, and the status of the project.

2: Background

2.1: Data Parallelism

A data parallel computation is characterized by a partic-
ular data set whose elements have the same basic proper-

ties2. For example, a 1024x1024 image will have
approximately a million elements, each of which has the
same representation (say, an integer). Computations which
manipulate this data set involve the simultaneous applica-
tion of an operation to the elements of the data set.

In order to clarify the notion of a data parallel operation,
we present some specific examples and order them by
increasing complexity.
1. Scalar Operations: A scalar addition is performed on

every element of the data set.
2. Neighbor Operations: A neighbor operation involves

updating each element of the data set using its
neighboring values, e.g., image convolution and
iterative PDE solvers. Synchronization issues are
important for these operations to produce
deterministic results.

3. Simple Array Operations: A simple element to
element predefined operation (addition) between two
data sets. The complexity arises due to the use of data
parallel objects that may not be correctly aligned with
each other or properly distributed among processing
resources.

4. Complex Array Operations: In matrix multiplication,
each element of the result data set is the dot product of
a row of one matrix and a column of another. Each of

2. This characterization has been true in the past, however, the
emergence of nested data parallelism may cause a realignment of
this view. Here we will assume that all elements of a data set are
structurally equivalent.

the dot products is independent of the others, and can
be performed in parallel.

5. Non-traditional Data Parallel Operations: The data
parallel style can also be applied in other domains
such as gene sequence comparison. In this case, each
element (gene sequence) is a string of characters.
These elements form a data set (sequence library) and
each element is compared against a single unknown
element (gene sequence) using heuristic methods.

All of these examples are amenable to data parallel
solutions because the same operations are performed on
each element of the data set. Note that the operations range
from simple scalar addition, to regular but computationally
expensive dot products, to complex heuristics.

Specifying a data parallel computation in terms of a sin-
gle element is the approach we have used in creating our
data parallel extensions. We call this approachelement-
centered. Fundamentally, this concept is not new to data
parallel languages [2, 4, 6, 13, 15, 16, 17, 20, 21]. However,
we have extended the notion to encompasssubset level data
parallelism. By subset level data parallelism we mean
allowing the definition of operations in which subsets (as
opposed to elements) are the data granules, e.g., a row or a
column. This is not the same as applying an element-cen-
tered operation to a subset of the elements as in enhancing
a portion of an image. Subset-level data parallelism sub-
sumes traditional element-level data parallelism as a spe-
cial case and is essential in allowing for arbitrary, user-
defined data parallel operations. We give an example in
Section 3.3.

2.2: The Mentat Programming Language

Mentat is an object-oriented parallel processing system
designed to provide: 1) easy-to-use parallelism, 2) high
performance via parallel execution, and 3) applications
portability across a wide range of platforms. Mentat has
been ported to a variety of MIMD platforms and has been
used to implement real-world applications in industry, gov-
ernment, and academia.

The Mentat Programming Language (MPL) [19] is a
task parallel language based on C++ [23]. The Mentat
approach exploits the object-oriented paradigm to provide
high-level abstractions that mask the complex aspects of
parallel programming, communication, synchronization,
and scheduling from the programmer. The programmer
uses application domain knowledge to specify those object
classes that are of sufficient computational complexity to
warrant parallel execution. Objects (tasks) may be created
dynamically, and communication is implicit across method
boundaries. The granule of computation is the Mentat class
member function. A Mentat class is specified by using the
keyword “mentat” as a prefix to class definitions. Member
function invocation on Mentat objects is syntactically the

same as for C++ objects. Exploiting opportunities for par-
allelism, communication, synchronization, and scheduling
are all handled by Mentat.

The features of the MPL support a task parallel pro-
gramming model in very natural way. Data parallel compu-
tations can be relatively easily mapped by hand onto the
medium grain task parallel model supported by Mentat.
However, the burden of managing the distribution of data
rests with the programmer, as does the generation of itera-
tion code to loop over contained elements, and other mind-
numbing details. Our data parallel extensions are designed
to relieve the programmer of these details. The resulting
language supports both task and data parallelism.

3: Data Parallel Extensions to the Mentat
Programming Language

3.1: Data Parallel Class Definition

The definition of adata parallel mentat class is the pri-
mary means by which the programmer specifies the domain
of data parallel computation. Figure 1 illustrates a simple
example of a data parallel class and conveys the idea of an
element-level approach to data parallel class definition.
Data parallel mentat classes are designated by pre-pending
the keywordsdataparallel mentat in front of the C++
keywordclass. The structure of the data parallel class is
similar to a C++ class in that member variables describe the
data managed by the member functions of the class.

The member variables of the class definition represent a
single element of the data set. This “logical” element is a
template for the aggregate elements of the data set. In our

example an element has two components, an integer value
(pixel) and a floating point value (another_pixel).
Any primitive or user defined type is allowable as a mem-
ber variable of an element. Note that the programmer does
not specify the size of the data set in the data parallel men-
tat class definition. When an instance of the class is instan-
tiated the actual number of elements is specified. Once
created, the elements can be referred to individually, in sub-
sets, or as a whole.

The method definitions differ from those of C++ classes.
The member functions of a data parallel class are annotated
as shown in Figure 1 to convey information to the compiler.
Three types of member functions may be defined for Braid
data parallel classes:overlay functions, which are used to
initialize the data parallel object,aggregate functions,
which are applied to all elements (or subsets) of the data
parallel object, andreduction functions, which allow the
programmer to distill certain information from the values
of the data set. The types are distinguished by the annota-
tions OVR, AGG andRED respectively. All types of data
parallel methods may have local variables and arguments

of primitive or user defined types3. These variables are
used in the same manner as C++ arguments and local vari-
ables. As with regular C++ classes, data parallel member
functions are defined within the class definition as shown in
Figure 1, lines 7-9. Figure 2 gives a brief grammar that
defines the annotation syntax for each type. Because of

3. Currently, we do not allow data parallel objects as local variables
for data parallel methods or as member variables of the elements.
Doing so will be one step in supporting nested data parallelism.

1: dataparallel mentat class image{
2: //private member variables - “single element”.
3: int pixel;
4: f loat another_pixel;
5: public:
6: // public member functions - data parallel methods.
7: void AGG scale ELEMENT (int value);
8: void OVR overlay_pixel (RMAJ int *pixel_data);
9: int RED min_elem();
10: };
11:
12: void AGG image::scale ELEMENT (int value){
13: pixel = pixel * value;
14: }
15:
16: int *value;
17:
18: my_image.scale(10); /* Invocation on a array */
19: my_image[1][].scale(10); /* Invocation on a row */
20: my_image[][1].scale(5); /* Invocation on a col */
21: my_image[4][4].scale(10); /* Invocation on an element */

 Figure 1 Data parallel class and method definition. The keywordsAGG, OVR, andRED specify the type
of member function.ELEMENT specifies the subset type. Other subset types includeROW andCOL .

space limitations we will confine our discussion here to the
more interesting aggregate operation.

3.2: Simple Aggregate Methods

An aggregate function is applied to every element (or
subset) of the data set. The simplest kind of data parallel
operation, of whichscale() (line 7 of Figure 1) is a good
example, is one in which each individual element receives
the same “treatment”. However, there are often cases in
which the programmer may wish to apply an operation to
every row instead of every element, i.e. the operation only
has meaning when applied to a row. In this case, the data
must be split into subsets and each subset is then treated as
a unit during the operation. This is the essence of subset
level data parallelism and is achieved in Braid by defining
data parallel methods which express operations on subsets
as opposed to simply elements. (Obviously, elements are
the base case.)

There are two steps required to define a data parallel
operation within a data parallel class. First, the function
must be annotated to indicate the type of the data parallel
operation and the subset size to be used as the unit of oper-
ation. Second, the function must be written in a “location
independant” manner.

The first production of the <dp_mbrfcn> non-terminal
in Figure 2 shows the grammar for annotating this type of
function. In this case, thescale() function is an aggregate
function as designated by the annotationAGG. The
<subset_specifier> annotation (shown in the gram-
mar), in combination with the instructions of the actual
function, allows the programmer to make this distinction.
The annotationELEMENT for scale() indicates that the
method should be applied to each element of the data set
and that our subset size is a single element. Similarly, a
ROW annotation would imply application to each row of
the data set.

In our approach, the body of the member function must
be written as if the operation is being performed upon a sin-

gle subset. In order to write subset-level operations, the
programmer is responsible for providing any iteration
required within the subset while the compiler provides iter-
ation across the subsets. For example, aROW specifier
denotes that the programmer will specify the iteration
within a row of the data parallel object, while the compiler
will specify the iteration across rows of the data parallel
object. ForELEMENT annotations iteration specification is
not required of the programmer.

Current data parallel languages allow the programmer to
invoke array operations without requiring the programmer
to supply iteration control. However, for a complex array
operation other than a language defined primitive, the bur-
den is on the programmer to provide all iteration control
within the data set. Our annotations allow the programmer
to concentrate on higher level aspects of program develop-
ment and shift much of the responsibility for iteration con-
trol to the compiler for primitive and complex data parallel
operations.

Location independence is the second requirement for
the definition of data parallel operations. This characteristic
requires that the body of the function be written without
reference to anyspecific element. Inscale() the member
variablepixel is assigned its value multiplied by the argu-
mentvalue. No reference is made by the programmer to a
particular element such asobject[5][10].pixel. The
compiler will use the information contained in the annota-
tions and the invocation of the method to index into the data
set properly.

Mechanism is provided to allow the programmer to ref-
erence other elements of the data set in a relative fashion.
The starting point is the element to which the operation is
being applied, and the relative addresses are resolved at
run-time. For example,W()->pixel, or W()->S()-

>pixel. The programmer may also specify boundary con-
ditions as well. These mechanisms are similar to [21].

Invocation of an aggregate operation is shown on lines
18-21 of Figure 1. Assume that a data parallel object iden-

<dp_mbrfcn>: <return_type>AGG <fcn_name> <subset_specifier> ([<arg> | <agg_arg>], <arg>*); |

void OVR <fcn_name> ([<arg> | <ovr_arg>]*); |

<return_type> RED <fcn_name> (<arg>*);

<arg>: any C++ expression

<agg_arg>: <subset_specifier> <combination_rule> <dp_operand_type> <dp_operand_name>

<ovr_arg>: <major_order_ind> <operand_type> <operand_name>

<subset_specifier>: ELEMENT | ROW | COLUMN

<combination_rule>: 1x1 | 1xN | Nx1

<major_order_ind>: RMAJ | CMAJ

 Figure 2 Grammar for data parallel object methods.

tified my_image has been declared as a two dimensional
data parallel object of type image. The invocation syntax
is exactly the same as the C++ invocation of a member
function. The compiler ensures that the iteration within the
operation is restricted to the elements indicated by the
invocation. Therefore, the invocation on line 18 will result
in an application of scale() to every element of
my_image; each element of the second row of my_image
will be operated upon as a result of the invocation on line
19; finally, the fifth element of the fifth row will be the only
element of my_image to be scaled as a result of the invoca-
tion on line 21.

A primitive or user defined type may serve as the return
type of a data parallel class member function. Currently,
data parallel objects are not allowed as return values.
Again, the notion of an element-level operation comes into
play. Since the programmer is specifying the action of the
operation in terms of one element (or subset), then the log-
ical return result will be a single result per element (or sub-
set). The actual number of results returned is specified
completely by the annotations and the invocation which
indicate the number of subsets in the invoked object. The
compiler arranges for the allocation of the proper amount
of space given the number of actual results to be returned.
For example, suppose that our scale() method returned
an integer. Then the invocation on line 18 would cause
space for k integers to be allocated, where k = n x m, the
dimensions of the invoked object. The variable to which
the result of the function is to be assigned then points to this
newly allocated space.

3.3: Complex Aggregate Methods

A data parallel object may also serve as a parameter to
an aggregate operation. Data parallel arguments require
two annotations which indicate the subset size and the
manner in which subsets of the argument object and subsets
of the invoked object will be combined. Note the syntax in
Figure 2 and the dot product example in Figure 3. The first
of these annotations is identical in form and meaning to the
<subset_specifier> annotation described above for
invoked objects. The annotation is associated with the data
parallel object listed as the actual parameter, and indicates
the portion of the argument object for which the program-
mer will provide iteration. Again, this portion must be
treated in a “location independent” manner within the data
parallel function body.

The second annotation, a <combination_rule>, indi-
cates how the subsets of the operand will be combined with
the subsets of the invoked object. By combined we mean
the subsets are operands for a particular operation and are
“combined” to form a result. For instance, the programmer
may want to have each subset of the invoked object com-
bined with a corresponding subset of the argument object.
Matrix addition is an example of this type of combination,
and is indicated with a 1x1 <combination_rule>

annotation. Alternatively, the desired functionality may be
to combine one subset from the invoked object with every
subset of the argument object, or vice versa. These options
may be indicated with the 1xN and Nx1 annotations
respectively. An intuitive example of this type of combina-
tion is a dot product where every row of one matrix is com-

1: dataparallel mentat class matrix{
2: //private member variables that specify an element.
3: public:
4: // Member functions for matrix multiplication and +=
5: float AGG dot_product ROW (COL 1XN matrix& B);
6: void AGG operator+= ELEMENT (ELEMENT 1X1 matrix&B);
7: }
8: float AGG matrix::dot_product ROW (COL 1XN matrix B) {
9: float result;
10: for (int j = 0; j < this.num_cols(); j++)
11: result += this[j].value * B[j].value;
12: return(result);
13: }
14: main()
15: {
16: matrix *matrix_A, *matrix_B;
17: matrix_A = new (8, 8, 4PT, 2, matrix_B, dot_product()) matrix ();
18: matrix_A+=matrix_B;
19: float *c = matrix_A.dot_product(B);
20: }

 Figure 3 Data parallel object declaration, communication pattern specification, and complex
aggregate method declaration and use. Allocation and initialization of matrix_B is not shown.

bined with every column of another matrix. Figure 3 shows
the method definition for dot product and illustrates the use
of <subset_specifier> and <combination_rule>

annotations.

3.4: Object Creation and Distribution

Data parallel objects must be explicitly created using the
operatornew(). The programmer is required to specify the
size and dimensions of the data parallel object, and option-
ally to specify both local and non-local communication pat-
terns. This information is used by the run-time system to
allocate data items to processors in such a way that commu-
nication between processors is reduced. Line 17 of Figure
3 demonstrates the creation of a data parallel object.

The arguments used to overloadnew() fall into three
categories which we will refer to asdimensions, local com-
munication, andnon-local communication. Each category
encompasses two of the arguments tonew(). For the
dimension category, the first two arguments specify the size
of the data parallel object in the row and column dimen-
sions respectively, an 8x8 array in the example. The argu-
ment values may be expressions.

For the local communication category the third and
fourth arguments enumerate the type of communication
that will be dominant within the data parallel object. Local
communication occurs in terms of data parallel objects
rather than processors, an example is a neighbor averaging
function. Types of local communication that may be indi-
cated by the programmer areNONE, PRED-SUCC, NS, EW,
4PT, and8PT. PRED-SUCC applies to vectors whileNS,
EW, 4PT, and8PT apply to two dimensional arrays.NONE
applies to both vectors and two dimensional arrays. The
local communication characteristic is conveyed in the first
argument of the second set. The radius argument is the sec-
ond argument in the set, and simply specifies the radius of
the local communication (the value must be nonnegative).
Examples of local communication patterns with a radius
greater than one are shown in Figure 4.

The final category, non-local communication, provides
information about interactions between the data parallel
object being created and other data parallel objects of the
application. The fifth argument to thenew() operation

c)a) b)
 Figure 4 Three types of local communication pattern each
with a radius of two.The darkly shaded element is the element
to which the neighboring values are “communicated”. a) EW
pattern. b) 4PT pattern. c) 8PT pattern.

indicates the class which is most often used as the actual
argument to the method specified by the sixth argument.
The sixth argument to thenew() operation specifies the
dominant function of the data parallel object being created.
This information serves to identify the dominant method of
the object, and thus where the majority of time is spent dur-
ing execution. The distribution and alignments of the
objects are made with this information in mind. Once the
proper amount of space is determined, the compiler estab-
lishes a distribution pattern for the elements across the pro-
cessors. This is accomplished in the body of the overloaded
new() operation.

A number of methods may be defined for the data paral-
lel class, and all methods may not exhibit the same local or
non-local communication pattern. Thus, in order to achieve
the best performance, the programmer should indicate the
pattern and methods that will be used most often by the
object.

The compiler passes the information concerning the
number and distribution of elements to be allocated for the
object being created to the run-time system. These hints
indicate the general form of the decomposition, alignment,
and distribution of the data among processors. Joint
research is now being conducted within the Mentat group
to allow the run-time system to combine the compiler gen-
erated information with information about the current
machine architecture. The run-time system will employ
heuristic algorithms to automatically handle the decompo-
sition, distribution and alignment of the data parallel object
[25, 26]. Cooperating with the run-time system in this man-
ner allows us to divorce ourselves from the underlying
machine architecture. This flexibility is critical in order to
exploit a heterogeneous system architecture.

We believe that decomposition, distribution and align-
ment as described in Fortran-D and other data parallel lan-
guages are equivalent to our mechanisms of specifying the
communication patterns. These languages work best when
the programmer to knows the topology of the underlying
processors and interconnection network in advance. In con-
trast, our extensions allow the programmer to simply indi-
cate which method will dominate the computation. This
serves to remove not only the job of data placement from
the programmer, but to also alleviate the need for the pro-
grammer to explicitly reference off-host data.

3.5: Deterministic Data Parallel Semantics

The main characteristic of data parallel computation is
that the operation being applied to the data set is applied
“logically simultaneously” to every element of the data set.
If there are enough physical processors to manage one ele-
ment per processor, then the operation will truly proceed in
parallel across the data set. In most cases though, each pro-
cessor will be responsible for managing a number of data

elements. When multiple data are assigned to a single pro-
cessor, the degree of parallelism decreases, and the poten-
tial for race conditions on member variables is introduced.
Consider for example, a neighbor averaging function. The
execution order of operations to the data items could affect
the outcome. We desire a deterministic semantics for our
extensions. Thus, the computation should proceedas if
there were as many processors as elements. To achieve this,
each processor must iterate through the data elements for
which it is responsible, applying the operation to each in
turn. To address these synchronization issues within a data
parallel object we have chosen a pre-copy deterministic
semantics. For these semantics, local updates of an element
are not visible to any other element in the data set until the
operation is complete.

With respect to operations invoked upon a data parallel
object, we base the implementation of data parallel objects
on thesequential persistent mentat class. This type of class
orders all invocations by a caller upon the invoked object.
Note that the MPL and the Mentat run-time system also
supportspersistent mentat classes with monitor-like prop-
erties which are especially useful for control parallelism.

4: Integration of Task and Data Parallelism

The integration of task and data parallelism is the pri-
mary motivation behind Braid. At the program level this
integration is seamless, task and data parallel objects are
invoked in the same manner as regular C++ objects. The
encapsulation properties of the object-oriented paradigm
allow the programmer to manipulate objects at the program
level without being concerned about the details of how par-
allelism is achieved within the object. Thus, the program-
mer may focus on higher level program design issues once
the data and task parallel classes have been constructed.

Parallelism encapsulation allows for two types of inte-
grated task and data parallelism. First, concurrent execu-

tion of task and data parallel objects, and second,
management of concurrent data parallel objects by a task

parallel “manager”.4 From an implementation perspective,
the Mentat Run-Time System monitors the use of results of
mentat object member function invocations of task and
data parallel objects and constructs medium grain program
graphs [11, 12].

We demonstrate the effect in Figure 5 and Figure 6. The
first example illustrates the use of encapsulated data paral-
lelism in which a task parallel object member function
invokes a data parallel object in the course of execution.
This “encapsulated” data parallelism is completely hidden
from the invoker. The results of the object member func-
tions arex, y, andz. The semantics allow the method calls
on lines 8-12 to be executed in parallel. On line 12, the
result of the data parallel method is used as an argument to
a task parallel method. Furthermore, the entire code block
itself could be a mentat object member function implemen-
tation executing concurrently with other mentat object
member functions. Figure 6 illustrates both task and data
parallel invocations within the same code fragment.

5: Related Work

In terms of purely data parallel languages, Dataparallel
C [13, 20, 21], pC++ [2, 16], C** [15], Fortran D [6], For-
tran 90 [1], and High Performance Fortran (HPF) [17] are
the languages from which are related to our work. C** and
pC++ are based on C++. Dataparallel C is based on C, but
uses some ideas from object-oriented language design.
HPF’s origin is Fortran. Our work differs from previous
work in methods for specifying data distributions, support-
ing subset data parallelism, and allowing arbitrary, user-

4. We believe that using task parallel objects as the “elements” of a
data parallel class is feasible as well, but must explore various
implementation issues first.

1: ...
2: float x, z;
3: int y;
4:
5: control_parallel_obj A, B,C, D, E;
6: // B.op1() internally uses dataparallel classes
7:
8: x = A.op2(4);
9: z = B.op1(x);
10: y = C.op2(x);
11: y = D.op2(y);
12: y = E.op3(y,z);

 Figure 5 A task parallel Mentat code fragment. The resulting macro-dataflow graph is shown on the right. The
implementation of B.op1() “manages” two dataparallel objects. The circles represent task parallel method invocations,
the hatched ovals represent data parallel computations, and the arcs represent data dependencies. The graph is constructed
at run-time using compiler generated information.

A

B
C

D

E

defined data parallel operations.
Currently, there are two groups which have reported

work on integrated task and data parallelism. Both are For-
tran based. Subhlok et al. [24] describe a parallelizing For-
tran 77 based compiler augmented with Fortran 90, Fortran
D and HPF constructs whose target is the iWarp system.
The motivation for the work is exploring the trade-off
between pure data parallelism and groups of pipelined data
parallel operations organized into tasks. Our language dif-
fers in that task parallel loops are not restricted to constant
bounds and communication is implicit. Further, our under-
lying model, MDF [11], supports both dynamic program
graphs and persistence rather than a static pure data mode.
In terms of data parallelism, our work differs as mentioned
above with respect to the various Fortran dialects. Finally,
Subhlok et al. are adding task parallel constructs to existing
data parallel language mechanisms. We begin with a task
parallel paradigm and incorporate data parallelism. Braid
also allows execution of task and data parallel components
at the same level, while Subhlok presents data parallelism
contained within task parallelism.

Foster et al. [5] and Chandy et al. [3] describe an inter-
face for combining Fortran M and HPF to achieve the inte-
gration of task and data parallelism. Their approach differs
from our own and Subhlok’s in that the mechanism used is
actually two separate compilers, one task parallel and one
data parallel. Eventually they expect to produce a single
language and compiler. Again, our work differs in that for
task parallelism their communication is explicit while ours
is implicit and we allow the definition of arbitrary, user-
defined data parallel operations. Also, they assume pro-
grammer knowledge of machine architecture and the num-

ber of processors available to the application. Both
Subhlok and Foster and Chandy have produced prelimi-
nary performance data.

The overriding difference between our work and that
mentioned above is our basis in C++ and the object-ori-
ented approach. We are aware of efforts by Gannon [7] and
Quinn [22]. The base languages of these projects are C++
and C respectively, however, no results combining task and
data parallelism have been reported at the time of this writ-
ing.

6: Status and Future Work

Braid integrates both task and data parallelism into a
single language design. The language is intended to satisfy
the needs of applications requiring a mix of the two para-
digms. The integration was accomplished by extending an
existing task parallel language, the Mentat Programming
Language (MPL), to include data parallel mentat classes.
The use of data parallel mentat classes can be combined
with standard mentat classes to produce a mixed task par-
allel and data parallel application. Additionally, we have
introduced the idea of subset parallelism which allows the
user to define complex data parallel operations across sub-
sets of a data set.

In [27] the language is described in detail, as are the
translations of the data parallel extensions to the underlying
task parallel run-time system. The current version of the
MPL compiler is operational and has been used to develop
a number of real-world applications [8, 10]. While hand
translations have been performed for Braid’s language fea-
tures, the data parallel portion of the compiler is not yet
complete. We are working on the required compiler support

1: dataparallel mentat class data_parallel_obj {
2: // private member variables
3: public:
4: // public member functions
5: int AGG row_sums ROW ();
6: ...
7: }
8:
9: ...
10: float x, z;
11: int y;
12:
13: control_parallel_obj A, B;
14: data_parallel_obj my_image;
15:
16: x = A.op1();
17: y = my_image.row_sums();
18: z = B.op1(x,y);

 Figure 6 Control and data parallel method invocations in the same code block. The circles represent task parallel
method invocations, the hatched ovals represent data parallel computations, and the arcs represent data dependencies.

A

B

my_image

and on investigating the use of nested data parallelism. In
our current language model, the dominant data distribution
is specified upon creation of an object. We intend to allow
the programmer to redefine these dominant distributions at
run-time in future versions of the language. We anticipate
that an efficient implementation will be the most difficult
hurdle in providing this type of dynamic redistribution. We
also intend to explore the issues involved in moving
beyond traditional array data parallelism to supporting data
set organizations such as trees and unstructured groups.
Finally, we expect to evaluate the performance of mixed
parallelism applications developed using our approach.

7: References
[1] American National Standards Institute 1990. ANSI

X3J3/S8.115. Fortran 90.
[2] F. Bodin et al., “Distributed pC++: Basic Ideas for an

Object Parallel Language,” Proceedings Object-
Oriented Numerics Conference, April 25-27, 1993,
Sunriver, Oregon, pp. 1-24.

[3] K.M. Chandy et al., “Integrated Support for Task and
Data Parallelism”, Intl. J. of Supercomputer
Applications,8(2), 1994, pp. 80-98.

[4] B. Chapman, P. Mehrotra, and H. Zima, “Programming
in Vienna Fortran,” Scientific Programming, Vol. 1,
No. 1, Aug. 1992, pp. 31-50.

[5] I. Foster, M. Xu, B. Avalani, A. Choudhary, “A
Compilation System that Integrates High Performance
Fortran and Fortran M”, Proccedings of the 1994
Scalable High Performance Computing Conference.

[6] G.C. Fox et al., “Fortran D Language Specifications,”
Technical Report SCCS 42c, NPAC, Syracuse
University, Syracuse, NY.

[7] D. Gannon, personal communications, 1993, 1994
[8] A.S. Grimshaw, E.A. West, W. Pearson, “No Pain and

Gain! - Experiences with Mentat on a Biological
Application,” Concurrency: Practice and Experience,
5(4), June 1993, pp. 309-328.

[9] A.S. Grimshaw, “Easy to Use Object-Oriented Parallel
Programming with Mentat,” IEEE Computer, May,
1993, pp. 39-51.

[10] A.S. Grimshaw, W.T. Strayer, and P. Narayan,
“Dynamic, Object-Oriented Parallel Processing,”
IEEE Parallel and Distributed Technology, 1(2), May
1993, pp. 33-47.

[11] A.S. Grimshaw, “The Mentat Computation Model -
Data-Driven Support for Dynamic Object-Oriented
Parallel Processing,” Technical Report CS-93-30,
University of Virginia, Computer Science Department,
Charlottesville, VA, 1993.

[12] A.S. Grimshaw, J.B. Weissman, and W.T. Strayer,
“Portable Run-Time Support for Dynamic Object-
Oriented Parallel Processing,” to appear ACM
Transactions on Computer Systems.

[13] P.J. Hatcher et al., “Compiling Data-Parallel Programs
for MIMD Architectures,” European Workshop on
Parallel Computing, March 1992, Barcelona, Spain.

[14] J.F. Karpovich et al., “A Parallel Object-Oriented
Framework for Stencil Algorithms,” Proceedings of
the Second Symposium on High-Performance
Distributed Computing, July, 1993, Spokane, WA, pp.

34-41.
[15] J.R. Larus, B. Richards, and G. Viswanathan, “C**: A

Large-Grain, Object-Oriented, Data-Parallel
Programming Language,” Technical Report 1126,
University of Wisconsin, Computer Science
Department, Madison, Wisconsin, 1992.

[16] J.K. Lee and D. Gannon, “Object Oriented Parallel
Programming Experiments and Results,” Proceedings
of Supercomputing ‘91, 1991, Albuquerque, NM, pp.
273-282.

[17] D.B. Loveman, “High Performance Fortran,” IEEE
Parallel & Distributed Technology: Systems &
Applications, Vol. 1, No. 1, Feb., 1993, pp. 25-42.

[18] C.R. Mechoso, J.D. Farrara, J.A. Spahr, “Running a
Climate Model in a Heterogeneous, Distributed
Computer Environment,” Proceedings of the Third
IEEE International Symposium on High Performance
Distributed Computing, April 2-5, 1994, San
Francisco, California, pp. 79-84.

[19] Mentat Research Group, “Mentat 2.5 Programming
Language Reference Manual,” Technical Report CS-
94-05, University of Virginia, Department of
Computer Science, Charlottesville, VA, 1994.

[20] N. Nedeljkovic and M.J. Quinn, “Data-Parallel
Programming on a Network of Heterogeneous
Workstations,” Concurrency: Practice and Experience,
5(4), June 1993, pp.257-268.

[21] M.J. Quinn and P.J. Hatcher, “Data-Parallel
Programming on Multicomputers,” IEEE Software,
Sept. 1990, pp. 69-76.

[22] M. J. Quinn, personal communication, 1992.
[23] B. Stroustrup, The C++ Programming Language, 2nd

ed. Addison-Wesley, Reading, Mass., 1991.
[24] J. Subhlok, J.M. Stichnoth, D.R. O’Hallaron, and T.

Gross, “Exploiting Task and Data Parallelism on a
Multicomputer,” Proceedings of the 4th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, May, 1993, San Diego, CA,
pp. 13-22.

[25] J.B. Weissman and A.S. Grimshaw, “Multigranular
Scheduling of Data Parallel Programs,” Technical
Report CS-93-38, University of Virginia, Department
of Computer Science, Charlottesville, VA, July, 1993.

[26] J.B. Weissman and A.S. Grimshaw, “Network
Partitioning of Data Parallel Computations,”
Proceedings of the Symposium on High-Performance
Distributed Computing (HPDC-3), August, 1994, San
Francisco, CA, pp. 149-156.

[27] E. A. West, “Combining Control and Data Parallelism:
Data Parallel Extensions to the Mentat Programming
Language,”, Technical Report CS-94-16, University of
Virginia, Department of Computer Science,
Charlottesville, VA, May, 1994.

Information regarding current work on Braid can be
found at http://uvacs.cs.virginia.edu/~eaw2t/Braid.html.
For information on Mentat and the Mentat Programming
Language see http://uvacs.cs.virginia.edu/~mentat/.

