173

[YUGD91] Yu, M. L., Ghosh, S. and DeBenedictis, E., Proceedings of the SCS
Multiconference on Advances in Parallel and Distributed Smulation,
Anaheim, California, pp. 39-43, (January 1991).

[SCHW80]

[SoBWSS]

[SRIN92Z]

[SRIN93]

[SRRE93]

[SRRE93D]

[STON9O]

[TANES9]

[THIN9Z]

[TOGA93]

[TUXU92]

[WALAB9]

172

Schwartz, J. T “Ultracomputers”, ACM Transactions on Rrgramming
Languages and Systenw®l. 2, No. 4, pp. 484-521, (October 1980).

Sokol, L. M., Briscoe, D..Pand Weland, A. P, “MTW: A Strategy for
Scheduling Discrete Simulation Events for Concurrent Execution”,
Proceedings of the SCS Multicorgiece on Distributed SimulatipiSan
Diego, California, pp. 34-42, (February 1988).

Srinivasan, S., “Modeling a Framework for Parallel Simulations”, Ma&ster
Thesis, School of Engineering and Applied Science, Universityrginia,
Charlottesville, Mginia, May 1992.

Srinivasan, S., “Adaptive Synchronization Algorithms for Parallel Discrete
Event Simulation”, A Research Proposal, Department of Computer Science,
University of Mrginia, Charlottesville, Wginia, November 1993.

Srinivasan, S. and Reynolds, R F, “Hardware Support for Aggressive
Parallel Discrete Event Simulation”, Computer Science Report No. TR-93-
07, Department of Computer Science, University oirgiia,
Charlottesville, Wfginia, January 1993.

Srinivasan, S. and Reynolds, B F,”"Non-interfering GVT Computation
Via Asynchronous Global Reductiond®roceedings of the 1993imér
Simulation Confeance Los Angeles, California, pp. 740-749, (December
1993).

Stone, H. S.High-Performance Computer émitectue, Addison-\V\ésley
Publishing CompanyReading, Massachusetts, 1990.

Tanenbaum, A. SGomputer Networks - Second Editi®nentice-Hall Inc.,
Englewood Clifs, New Jersey1989.

Thinking Machines Corporatioithe Connection Machine CM-&dhnical
Summary Thinking Machines Corporation, Cambridge, Massachusetts,
January 1992.

Tomlinson, A. I. and Gar, V. K., “An Algorithm for Minimally Latent
Global Mrtual Time”, Proceedings of the 1993d¥shop on Parallel and
Distributed SimulationSan Diego, California, pp. 35-42, (May 1993).

Turner S. and Xu, M., “Performance Evaluation of the Boundetearp
Algorithm”, Proceedings of the 19928atern Simulation MultiConfence
on Parallel and Distributed SimulatiprNewport Beach, California, pp.
117-126, (January 1992).

Wagner D. B. and Lazowska, E. D., “Parallel Simulation of Queueing
Networks: Limitations and PotentialsRroceedings of the 1989 ACM
SIGMETRICS and PERFORMANCE ‘89: International Ccariee on
Measuement and Modeling of Computer Syste®eskeley California, pp.
146-155, (May 1989).

[REMMS8S]

[REPAO2]

[REPS92]

[REPS93]

[REWWS8O]

[REWW92]

[REYN82]

[REYN88]

[REYN9I1]

[REYN9Z2]

[SAMA 85]

[SBUS90]

171

Reed, D. A., MalonyA. D., and McCredie, B. D., “Parallel Discrete Event
Simulation Using Shared MemorylEEE Transactions on Softwar
Engineering Vol. 14, No. 4, pp. 541-553, (April 1988).

Reynolds Jr P F and Pancerella, C. M., “Hardware Support for Parallel
Discrete Event Simulations”, Computer Science Report No. TR-92-08,
Department of Computer Science, University afgihia, Charlottesville,
Virginia, April 1992.

Reynolds Jr P F, Pancerella, C. M. and Srinivasan, S., “Making Parallel
Simulations Go Fast”,Proceedings of the 1992 imMéer Simulation
Confeence Alexandria, ginia, pp. 646-655, (December 1992).

Reynolds Jr P F, Pancerella, C. M. and Srinivasan, S., “Design and
Performance Analysis of Hardware Support for Parallel Simulations”, in a
special issue afournal of Parallel and Distributed Computirmp Parallel
and Distributed Simulation,dV. 18, No. 4, pp. 435-453, (August 1993).

Reynolds Jr P F, Williams, C. and Vegner R. R., “Parallel Operations”,
Computer Science Report No. TR-89-16, Department of Computer Science,
University of Mrginia, Charlottesville, Wginia, December 1992.

Reynolds Jdr P F, Williams, C. and VEgner R. R., “Empirical Analysis of
Isotach Networks”, Computer Science Report No. TR-92-19, Department
of Computer Science, University ofrginia, Charlottesville, Wginia, June
1992.

Reynolds Jr P F, “A Shared Resource Algorithm for Distributed
Simulation”, Proceedings of the 9th Annual Symposium on Computer
Architectue, Austin, Texas, pp. 259-266, (April 1982).

Reynolds Jr P F, “A Spectrum of Options for Parallel Simulations”,
Proceedings of the 1988 imer Simulation Confence San Diego,
California, pp. 167-174, (January 1991).

Reynolds Jr P E,”An Efficient Framework for Parallel Simulations”,
Proceedings of the SCS Multicordece on Advances in Parallel and
Distributed SimulationAnaheim, California, pp. 167-174, (January 1991).

Reynolds Jr P E,”An Efficient Framework for Parallel Simulations”,
International Journal in Computer Simulatiovl. 2, No. 4, (1992).

Samadi, B., “Distributed Simulation, Algorithms, and Performance
Analysis”, PhD Thesis, Computer Science Department, University of
California at Los Angeles, Los Angeles, California, January 1985.

Sun Microsystems,SBus Specification B.0Sun Microsystems, Inc.,
Mountain Miew, California, 1990.

[N1c0o90]

[NICo91]

[N1C093]

[NIFU92]

[NIRE84]

[OWGRT76]

[PANCI2]

[PAREQ3]

[PEWM79]

[PEWM 79b]

[PFBGSS]

[RABJSS]

170

Nicol, D. M., “The Cost of Conservative Synchronization in Parallel
Discrete Event Simulations’, NASA Contractor Report 182034, Institute
for Computer Applications in Science and Engineering, NASA Langley,
Hampton, Virginia, May 1990.

Nicol, D. M., “Performance Bounds on Parallel Self-Initiating Discrete-
Event Simulations’, ACM Transactions on Modeling and Computer
Smulation, Vol. 1, No. 1, pp. 24-50, (January 1991).

Nicol, D. M., “The Cost of Conservative Synchronization in Parallel
Discrete Event Simulations’, Journal of the ACM, Vol. 40, No. 2, pp. 304-
333, (April 1993).

Nicol, D. and Fujimoto, R., “Paralel Simulation Today”, to appear in The
Annals of Operations Research.

Nicol, D. M. and Reynolds Jr., P. F., “Problem Oriented Protocol Design”,
Proceedings of the 1984 Winter Smulation Conference, Dallas, Texas, pp.
471-474, (December 1984).

Owicki, S. and Gries, D., “An Axiomatic Proof Technique for Paralel
Programs|”, Acta Informatica, Vol. 6, pp. 319-340, 1976.

Pancerella, C. M., “Improving the Efficiency of a Framework for Parallel
Simulations”, Proceedings of the 1992 Western S mulation MultiConference
on Parallel and Distributed Smulation, Newport Beach, California, pp. 22-
29, (January 1992).

Pancerella, C. M. and Reynolds Jr., P. F., “Disseminating Critical Target-
gpecific Synchronization Information in Paralel Discrete Event
Simulations”, Proceedings of the 1993 Wobrkshop on Parallel and
Distributed Smulation, San Diego, California, pp. 52-59, (May 1993).

Peacock, J. K., Wong, J. W. and Manning, E., “ Distributed Simulation Using
aNetwork of Processors’, Computer Networ ks 3, North-Holland Publishing
Company, pp. 44-56, 1979.

Peacock, J. K., Wong, J. W. and Manning, E., “A Distributed Approach to
Queueing Network Simulation”, Proceedings of the 1979 Winter Smulation
Conference, pp. 399-406, (December 1979).

Pfister, G. ., Brantley, W. C., George, D. A., et. al., “The IBM Research
Parallel Prototype (RP3): Introduction and Architecture”, Proceedings of
the 1985 International Conference on Parallel Processing, St. Charles,
[llinais, pp. 764-771, (August 1985).

Ranade, A. G., Bhatt, S. N. and Johnsson, S. L., “The Fluent Abstract
Machine”, YALEU/Department of Computer Science/Technical Report-
573, Department of Computer Science, Yale University, New Haven,
Connecticut, January 1988.

[LIMAS85]

[LITROO]

[LOCUSS]

[LUBABS]

[LUBAB9]

[LUSW89]

[MCGRO3]

[MISR36]

[MIMI184]

[N1C084]

[N1C088]

[N1C0o88b]

169

Livny, M. and ManberUJ. “Distributed Computation i Active Messages”,
IEEE Transactions on Computersvol. C-34, No. 12, ppl85-1190,
(December 1985).

Liu, L. Z. and Topper C., “Local Deadlock Detection in Distributed
Simulations”, Proceedings of the SCS Multicordece on Distributed
Simulation San Diego, California, pp. 64-69, (January 1990).

Lomow, G., Cleary J., UngerB., et. al, “A Performance Study ofie
Warp”, Proceedings of the SCS Multicorgece on Distributed Simulatipn
San Diego, California, pp. 50-55, (February 1988).

LubachevskyB. D., “Bounded Lag Distributed Discrete Event Simulation”,
Proceedings of the SCS Multicorgiece on Distributed SimulatipiSan
Diego, California, pp. 183-191, (February 1988).

Lubachevsky B. D., “Efficient Distributed Event-Driven Simulations of
Multiple-Loop Networks” Communications of the ACMol. 32, No. 1, pp.
111-123, (January 1989).

LubachevskyB., Shwartz, A. and ¥iss, A. “Rollback Sometimes dks
... If Filtered”, Proceedings of the 1989imér Simulation Confence
Washington, DC, pp. 630-639, (December 1989).

McGraw R. M., “The Design andekt of Hardware Support for a Parallel
Reduction Network”, Mastés Thesis, School of Engineering and Applied
Science, University of ivginia, Charlottesville, Wginia, 1993.

Misra, J., “Distributed Discrete-Event SimulationACM Computing
Surveys\ol. 18, No. 1, pp. 39-65, (March 1986).

Mitra, D. and Mitrani, 1. “Analysis and Optimum Performance ofoT
Message-Passing Parallel Processors Synchronized by Rollback”,
PERFORMANCE ‘84Elsevier Science Pub (North Holland), pp. 35-51,
1984.

Nicol, D. M., “Synchronizing Network Performance”, MasteiThesis,
School of Engineering and Applied Science, University afgiia,
Charlottesville, Mginia, January 1984.

Nicol, D. M., “High Performance Parallelized Discrete Event Simulation of
Stochastic Queueing Networks™Proceedings of the 1988 iNter
Simulation Confeance San Diego, California, pp. 306-314, (December
1988).

Nicol, D. M., “Parallel Discrete-Event Simulation of FCFS Stochastic
Queueing Networks"Proceedings of the ACM SIGPLAN Symposium on
Parallel Programming: Experience with Applications, Languages, and
Systemspp. 124-137, (1988).

[KEND92]

[KIRK92]

[LAMP79]

[LEAD92]

[LIAK93]

[LILA8Y]

[LILA8BOD]

[LILA8OC]

[LILA8Od]

[LILA89¢]

[LILASO]

[LILASOD]

168

Kendall Square Research Corporation, KSR Parallel Pogramming
Kendall Square Research Corporation, Waltham, Massachusetts, 1992.

Kirks, D. J,, “A New Approach to Load Sharing”, A Research Proposal,
Department of Computer Science, University of Virginia, Charlottesville,
Virginia, September 1992.

Lamport, L., “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocessor Programs’, IEEE Transactions on Computers
Vol. C-28, No. 9, pp.690-691, (September 1979).

Leiserson, C. E., Abuhamdeh, Z. S., Douglas, D. C., et. al, “The Network
Architecture of the Connection Machine CM-5", Proceedings of the
Symposium on Parallel and Distributed Algorithms ,‘®an Diego,
California, (June 1992).

Lindon, L. F. and Akl, S. G., “An Optimal Implementation of Broadcasting
with Selective Reduction”, IEEE Transactions on Parallel and Distributed
Systemsvoal. 4, No. 3, pp. 256- 269, (March 1993).

Lin, Y. B. and Lazowska, E. D., “Exploiting Lookahead in a Parallel
Simulation”, Technical Report 89-10-06, Department of Computer Science,
University of Washington, Seattle, Washington, October 1989.

Lin, Y. B. and Lazowska, E. D., “Determining the Global Virtual Timeina
Distributed Simulation”, Technical Report 90-01-02, Department of
Computer Science, University of Washington, Sesitle, Washington,
December 1989.

Lin, Y. B. and Lazowska, E. D., “Optimality Considerations for “Time
Warp” Paralel Simulation”, Technical Report 89-07-05, Department of
Computer Science, University of Washington, Seattle, Washington, July
1989.

Lin, Y. B. and Lazowska, E. D., “A Study of Time Warp Rollback
Mechanisms’, Technical Report 89-09-07, Department of Computer
Science, University of Washington, Seattle, Washington, November 1989.

Lin, Y. B. and Lazowska, E. D., “ The Optimal Checkpoint Interval in Time
Warp Parallel Simulation”, Technical Report 89-09-04, Department of
Computer Science, University of Washington, Seattle, Washington, 1989.

Lin, Y. B. and Lazowska, E. D., “Optimality Considerations for Time Warp
Parallel Simulation”, Proceedings of the SCS Multicordece on
Distributed SimulationSan Diego, California, pp. 29-34, (January 1990).

Lin, Y. B. and Lazowska, E. D., “Reducing the State Saving Overhead for
Time Warp Parallel Simulation”, Technical Report 90-02-03, Department of
Computer Science, University of Washington, Seattle, Washington, 1990.

[FUTG92]

[GAFNSS]

[GILM 88]

[GIRY88]

[HOSH35]

[INTE89]

[INTE9Q3]

[I VERG2]

[JEBH85]

[JEFF85]

[JEFFO0]

[JESO85]

[JOSc79]

167

Fujimoto, R. M., Bai, J. J. and Gopalakrishnan, G.C., “Design and
Evaluation of the Rollback Chip: Special Purpose Hardware iime T
Warp”, IEEE Transactions on Computers/ol. 41, No. 1, pp. 68-82,
(January 1992).

Gafni, A., “Rollback Mechanisms for Optimistic Distributed Simulation
Systems”, Proceedings of the SCS Multicordece on Distributed
Simulation San Diego, California, pp. 61-67, (February 1988).

Gilmer, J. B., “An Assessment of ifhe Warp’ Parallel Discrete Event
Simulation Algorithm Performance”, Proceedings of the SCS
Multiconfelence on Distributed Simulatipan Diego, California, pp. 45-
49, (February 1988).

Gibbons, A. and ®&ter, W., Efficient Parallel Algorithms Cambridge
University Press, Cambridge, Great Britain, 1988.

Hoshino, T, PAX Computer: High-Speed Paralleld®essing and Scientific
Computing Addison-Wesley Publishing Company Reading,
Massachusetts, 1985.

Intel CorporationjPSC2 Pogrammeis Refeence Manualintel Scientific
Computers, Beaverton, Oregon, October 1989.

Intel Corporation,Paragon Users Guide Intel Supercomputer Systems
Division, Beaverton, Oregon, October 1993.

Ilverson, K. E. A Programming Languagehiley, New York, New York,
1962.

Jeferson, D., Beckman, B., Hughes, &, al, “Implementation of ime
Warp on the Caltech HypercubeProceedings of the Confarce on
Distributed SimulationSan Diego, California, (January 1985).

Jeferson, D. R., “WMtual Time”, ACM Transactions on Rigramming
Languages and Systenwl. 7, No. 3, pp. 404-425, (July 1985).

Jeferson, D. R., “Wtual Time II: Storage Management in Distributed
Simulation”, Proceedings of the Ninth Annual Symposium on Principles of
Distributed ComputingQuebec CityQuebec, Canada, pp. 75-89, (August
1990).

Jeferson, D. and Sowizral, H., “Fast Concurrent Simulation Usingithe T
Warp Mechanism”, Proceedings of the Confmice on Distributed
Simulation San Diego, California, pp. 63-69, (January 1985).

Jordan, H. F Scalabrin, M. and Calvert, WA Comparison of Threeypes
of Multiprocessor Algorithms”,Proceedings of the 1979 International
Confeence on Parallel Ricessingpp. 231-238, (August 1979).

[FEKL92]

[FEKL92b]

[FIGP91]

[FoJoss]

[FRWWS4]

[FUa87]

[FuJ88]

[FuUJ89]

[FUJI89Db]

[FUJ90]

[FUJI90Db]

166

No. TR-92-18, Department of Computer Science, University of Virginia,
Charlottesville, Virginia, June 1992.

Felderman, R. and Kleinrock, L., “Two Processor Time Warp Analysis:
Capturing the Effects of Message Queueing and Rollback/State Saving
Costs’, Technical Report 920035, Computer Science Department,
University of Californiaat Los Angeles, Los Angeles, California, 1992.

Felderman, R. and Kleinrock, L., “ Two Processor Conservative Simulation
Analysis’, Proceedings of the 1992 Western S mulation MultiConference on
Parallel and Distributed Smulation, Newport Beach, California, pp. 169-
177, (January 1992).

Filogue, J. M., Gautrin, E. and Pottier, B., “Efficient Global Computations
on a Processors Network with Programmable Logic”, Report 1374, Institut
National de Recherche en Informatique et en Anutomatique, France,
January 1991.

Fox, G., Johnson, M., Lyzenga, G., €t. al., Solving Problems on Concurrent
Processors, Volume 1, Prentice-Hall Inc., Englewood Cliffs, New Jersey,
1988.

Franklin, M. A., Wann, D. F. and Wong, K. F., “Parallel Machines and
Algorithms for Discrete-Event Simulation”, Proceedings of the 1984
International Conference on Parallel Processing, pp. 449-458, (August
1984).

Fujimoto, R. M., “Performance Measurements of Distributed Simulation
Strategies’, Technica Report No. UUCS-87-026a, Computer Science
Department, University of Utah, Salt Lake City, Utah, November 1987.

Fujimoto, R. M., “Lookahead in Parallel Discrete Event Simulation”,
Proceedings of the 1988 International Conference on Parallel Processing,
University Park, Pennsylvania, pp. 34-41, (August 1988).

Fujimoto, R. M., “The Virtual Time Machine’, Proceedings of the 1989
ACM Symposium on Parallel Algorithms and Architectures, Santa Fe, New
Mexico, pp. 199-208, (June 1989).

Fujimoto, R. M., “Time Warp on a Shared Memory Multiprocessor”,
Proceedings of the 1989 International Conference on Parallel Processing,
University Park, Pennsylvania, pp. 242-249, (August 1989).

Fujimoto, R. M., “Parallel Discrete Event Simulation”, Communications of
the ACM, Vol. 33, No. 10, pp. 30-53, (October 1990).

Fujimoto, R. M., “Performance of Time Warp Under Synthetic Workloads”,
Proceedings of the SCS Multiconference on Distributed Smulation, San
Diego, Cdlifornia, pp. 23-28, (January 1990).

[BRYAT7T]

[BURO9Q]

[CHIEY]
[CHLABY]

[CHMI79]

[CHMI81]

[CHMI87]

[CHSHSY]

[COKEO1]

[DAFU93]

[DEGY 91]

[DICK93]

[DIRE9Z]

165

Bryant, R. E., “Simulation of Packet Communications Architecture
Computer Systems’, MIT-LCS-TR-188, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1977.

Buzzell, C. A. and Robb, M. J., “Modular VME Rollback Hardware for
Time Warp”, Proceedings of the SCS Multiconference on Distributed
Smulation, San Diego, California, pp. 153-156, (January 1990).

Chien, A., Personal Communication, May 1, 1994.

Chandy, K. M. and Lamport, L., “Distributed Snapshots. Determining
Globa States of Distributed Systems’, ACM Transactions on Computer
Systems, Vol. 3, No. 1, pp.63-75, (February 1985).

Chandy, K. M. and Misra, J., “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs’, IEEE Transactions on
Software Engineering, Vol. SE-5, No. 5, pp. 440-452, (September 1979).

Chandy, K. M. and Misra, J., “Asynchronous Distributed Simulation via a
Sequence of Parallel Computations’, Communications of the ACM, Vol. 24,
No. 11, pp. 198-206, (April 1981).

Chandy, K. M. and Misra, J.,, “Conditional Knowledge as a Basis for
Distributed Simulation”, Technical Report 5251: TR:87, Computer Science
Department, Californialnstitute of Technology, Pasadena, California, 1987.

Chandy, K. M. and Sherman, R., “The Conditional Event Approach to
Distributed Simulation”, Proceedings of the SCS Multiconference on
Distributed Smulation, Tampa, Florida, pp. 93-99, (March 1989).

Concepcion, A. I. and Kélly, S. G., “Computing Global Virtual Time Using
the Multi-Level Token Passing Algorithm”, Proceedings of the SCS
Multiconference on Advances in Parallel and Distributed Smulation,
Anaheim, California, pp. 63-68, (January 1991).

Das, S. R. and Fujimoto, R. M., “A Performance Study of the Cancelback
Protocol for Time Warp”, Proceedings of the 1993 Workshop on Parallel
and Distributed Smulation, San Diego, California, pp. 135-142, (May
1993).

DeBenedictis, E. and Ghosh, S., “A Novel Algorithm for Discrete-Event
Simulation”, |IEEE Computer, Vol. 24, No. 6, pp. 21-33, (June 1991).

Dickens, P. M.,“ Analysis of the Aggressive Globa Windowing Algorithm”,
PhD Thesis, School of Engineering and Applied Science, University of
Virginia, Charlottesville, Virginia, January 1993.

Dickens, P. M. and Reynolds Jr., P. F., “ State Saving and Rollback Costsfor
an Aggressive Global Windowing Algorithm”, Computer Science Report

Bibliography

[ABRI91]

[AJKS83]

[AKSTY]

[AYANS9]

[BATC68]

[BELL9OQ]

[BERR86]

[BLEL89]

[BLEL9Q]

[BROWI3]

Abrams, M. and Richardson, D., “Implementing a Global Termination
Condition and Collecting Output Measures in Parallel Simulation”,
Proceedings of the SCS Multiconference on Advances in Parallel and
Distributed Smulation, Anaheim, California, pp. 86-91, (January 1991).

Ajtai, M., Komlos, J. and Szemeredi, E., “An O(n(log(n)) Sorting
Network”, Proceedings of the 15th Annual Symposium on Theory of
Computing, Boston, Massachusetts, pp. 1-9, (1983).

Akl, S. G. and Stojmenovic, 1., “Multiple CriteriaBSR: An Implementation
and Applications to Computational Geometry Problems’, Proceedings of
HICSS, January 1994.

Ayani, R., “A Parallel Simulation Scheme Based on Distances Between
Objects’, Proceedings of the SCS Multiconference on Distributed
Smulation, Tampa, Florida, pp. 113-118, (March 1989).

Batcher, K. E., “ Sorting Networks and Their Applications’, Proceedings of
the AFIPS 1968 Joint Computing Conference, Atlantic City, New Jersey, pp.
307-314, (April 1968).

Bellenot, S., “Global Virtual Time Algorithms’, Proceedings of the SCS
Multiconference on Distributed Smulation, San Diego, California, pp. 122-
127, (January 1990).

Berry, O. “Performance Evaluation of the Time Warp Distributed
Simulation Mechanism”, PhD Thesis, University of Southern California,
Los Angeles, California, May 1986.

Blelloch, G. E., “Scans as Primitive Parallel Operations’, |IEEE
Transactions on Computers, Vol. 38, No. 11, pp.1526-1538, (November
1989).

Blelloch, G. E., “Prefix Sums and Their Applications’, CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, November 1990.

Brown, M. S.,, “The Hardware Design and Implementation of a Parallel
Reduction Network”, Master’s Thesis, School of Engineering and Applied
Science, University of Virginia, Charlottesville, Virginia, 1993.

164

163

non-aggressive protocols. Our framework clearly determines the direction of the
development of such protocols because it reduces the associated costs of deadlock
detection, state saving, and synchronization. In sum, the work presented here has forever
changed the course of research in parallel simulation protocols in a very favorable

direction.

162

target-specific reductions in parallel simulations. Approaches to exploring this include the
generation of alarge set of random directed acyclic graphs (DAG’s) which represent PDES
communication topol ogies. One could then perform several topological sortson each DAG,
and analyze the DAG with respect to the dissemination of both parallel prefix and interval
parallel prefix target-specific reductions. An analysis would include a sensitivity analysis

to different topological sorts.

Oncethe analysisis complete, one could simulate parallel simulations with perfect
target-specific information versus approximate target-specific information (computed with
both parallel prefix and interval parallel prefix) and report on these results. Both parallel
prefix and interval parallel prefix can be computed with O(n) componentsin O(log n) time.
This empirical result would enable the comparison of the dissemination of approximate
target-specific reductions at a low cost with the dissemination of perfect target-specific
reductions at a higher cost. If the dissemination of approximate target-specific reductions
proves promising, a parallel prefix network or other prefix networks are low-cost
approximate target-specific reduction networks. Furthermore, current network designs can

be used to implement approximate target-specific reductions. (See Chapter 2.)

7.4. Concluding Remarks

In this thesis we have demonstrated the importance of the efficient computation of
reduction operations to parallel discrete event simulations. We have shown how the
efficient computation and dissemination of reduction operations enhances existing parallel
discrete event simulation synchronization protocols. The computation of target-specific
reductions within our framework allows new parallel discrete event simulation protocols
which are characterized by adaptive aggressive event processing to be developed. It is our
belief that the future direction of parallel discrete event simulation synchronization

protocols is the development of protocols that combine properties of both aggressive and

161

simulation synchronization protocols, where aggressive processing can be throttled without

the risk of the simulation deadlocking.

7.3. Future Research

Although we have developed a PDES framework and demonstrated its utility and

feasibility, work remains.

We have implemented two different message acknowledgment algorithms on our
prototype hardware. Based on performance results, we have concluded that the two-phase
acknowledgment is better. This conclusion is not drawn from alarge simulation, however.
Simulations [SRIN92] have demonstrated the scalability of the two-phase acknowledgment
to simulations of size 32. It is open question how the two message acknowledgment

algorithms will compare when the number of processorsisincreased.

The empirical results presented in Chapter 6 are encouraging results for small
simulations. Whether these results are scalable to large and interesting PDES
communication topologies is still an open question. We believe that the benefits of target-
specific reductionswill continue on larger graphs, especially on large graphsthat are sparse,

i.e., alarge number of LP’'s each with a small number of immediate predecessors.

Probably the most important research to continue is our work with the target-
specific reduction problem. Our current best case parallel target-specific reduction network
has time complexity of O(log n) at the cost of O(n?) switches in the network. We believe
that this network complexity is not scalable to thousands of processors. Our goal isto find
a scalable and efficient network topology to compute and disseminate target-specific

reduced values.

In lieu of a scalable and efficient solution to computing and disseminating perfect

target-specific reductions, there is the computation and dissemination of approximate

160

granules of both event message processing times and host network communication
latencies. We have implemented both the two-phase acknowledgment (TPA) and the single
phase acknowledgment (SPA) on our four-node prototype framework hardware. TPA
performs aswell as SPA with respect to the execution time of the simulation. Furthermore,
the combined sizes of the message lists on any given auxiliary processor issignificantly less
for the two-phase acknowledgment. We therefore advocate using TPA to acknowledge

messages in a PDES implemented on our framework hardware.

Fifth, we have derived and presented best known results for computing and
disseminating target-specific reduced values. We have presented two sequential algorithms
which solve the target-specific dissemination problem in the general case. The algorithms
demonstrate a trade-off between time and space complexity. Both algorithms are
encouraging because they show an attainable sub-quadratic time complexity. We have
made progress in determining the cost of computing target-specific reductions in parallel.
We intend to continue on this course to develop efficient algorithms and networks to

compute target-specific reductions or approximations of target-specific reductions.

Finally, we have demonstrated the utility of target-specific reductions to both
conservative and optimistic parallel simulation protocols. Target-specific reductions
provide near-perfect state information to parallel simulation protocols. As a result, the
finishing times of conservative protocols can be reduced greatly by allowing more safe
events to be executed concurrently. Similarly, the total average state space of optimistic
protocols is reduced significantly. The reduction of state space is encouraging for both
hardware and software memory management support for Time Warp, such as the rollback
chip and the cancelback protocol. These conclusions were drawn empirically using
simulations. We believe that the efficient dissemination of near-perfect state information in

the form of target-specific reductions will be beneficial to adaptive aggressive parallel

159

processing, i.e., the computation of reduced val ues, from the execution of logical processes,
i.e., event processing and event message transmission and receipt. This abstract model is
realizable by many hardware implementations. At the functional level, we have devel oped
a hardware description which employs separate processors in a processor pair for the
execution of a logical process and the execution of the synchronization algorithms to
support the PDES protocol. Our functional design also employs separate networksfor event
message transmission and reduction operations. This design offers minimal interaction
between the two processors in the processor pair and enhances the efficiency of the
simulation. Finally, we have described a detailed design of each component in the
functional design. The detailed design includes interfaces between the host and auxiliary
processors and between the auxiliary processors and the reduction network. These
interfaces preserve the correctness criteriaand at the same time minimize the contention at

the interface.

Fourth, we have presented several algorithms for acknowledging messages in a
reduction network in support of computing global virtual time (and target-specific virtual
time) as reductions. In particular, two of the proposed a gorithms correctly acknowledge
messages in a reduction network where output state vector loss is a property of the
hardware: a two phase acknowledgment and a single phase acknowledgment. These two
algorithms are correct when the reductions are computed asynchronously with the
execution of the simulation. The correctness of the single phase acknowledgment was
proveninthisthesis. Our presentation of acknowledgment algorithmsincluded discussions
and observations on the performance of the simulations executing in conjunction with each
algorithm. We have devel oped the batched acknowledgment enhancement as a method of
acknowledging several messages in a single reduced value. Simulations [SRIN92] have

shown that batched acknowledgments allow our framework hardware to support smaller

158

unreceived message time in the system. This reduced value is one of two reductions
necessary to compute global virtual time in an aggressive PDES. The event message
acknowledgment algorithms are correct when reductions are being computed
asynchronously with the execution of the simulation and with the assumption of state
vector loss on the output side of the reduction network. The algorithms guarantee that every
message i s acknowledged and that the computed global virtual time tracksthe actual global

virtual time.

7.2. Contributions

This dissertation makes contributions in six important areas for using a reduction-
based framework for parallel discrete event ssimulations. First we have demonstrated the
applicability of both global reductions and target-specific reductions to a wide range of
parallel discrete event simulations. The characterization of PDES synchronization
protocols utilizing reduced values is a new approach to making current parallel ssmulation
synchronization protocols efficient and to developing new synchronization protocols.
Protocols that employ the efficient computation of reductions have the potential to be very
efficient. Our framework is the first to demonstrate that reduced values can be computed

with near-zero overhead to the ssmulation.

Second, we have provided sound correctness criteria for this framework. The
correctness criteria define the computation and dissemination of multiple reduced valuesin
aPDES, where LP's are executing asynchronously, and the computation of reduced values

proceeds asynchronously with the execution of the simulation.

Third, we have made significant contributions to the hardware component of the
framework at three levels. Each level adheres to the established correctness criteria. At the

highest level, we have developed a computation model that decoupl es the synchronization

157

synchronization protocols. 8\have introduced tget-specific reductions as an integral part
of the next design of the framework hardwaree Wave made substantial progress in
determining the cost of computing dat-specific reductions and in developing a scalable

design for a parallel tget-specific reduction network.

As presented in Chapter 3, we have developed the framework hardware design at
three levels: an abstract computation model, a functional design, and a detailed design. W
have met our goals, presented in Chapter 1, for the design at each level of the framework
hardware:

» Speed— The hardware is designed to compute and disseminate global
synchronization information very rapidly (on the order of hundreds of
nanoseconds per reduction operation).

» Scalability — The processing time of the hardware to compute global
reductions increases logarithmically with the number of processors while the
number of components in the hardware increases linddrgyprocessing time
of the parallel taget-specific reduction network shown in Figure 5.9 increases
logarithmically It is a topic of future research to determine if we can reduce the
complexity of the number of components.

» Adaptability— The design of the interface to the host computing system (See
Section3.5.3.) isolates the design of the rest of the framework hardware from
the host computing system. Our prototype systegPF93] assumes a Sun
SBus interface to a Sparc cluster (a network of Spags):1his design is easily
adapted to other host systems.

» Generality— The framework hardware contains programmable Alwhich
allow it to be used to support a wide variety of applications. Furthermore, the
hardware design allows the selection of two to eighteidint reduction
operations to be computed in support of the application.

* Low cost— A prototype system for four processors has been built for twenty
thousand dollars. Wexpect a production system to cost much less.

We believe these qualities will enable the hardware to support synchronization in general

parallel computations as well as parallel simulations.

We have developed algorithms which use a reduction network to acknowledge

event messages in support of the computation of a reduced value for the minimum

V4 Conclusions

The results presented in this dissertation include the successful achievement of
several of our objections and significant progress toward the achievement of others. We

summarize our contributions and discuss avenues of future research.

7.1. Summary of Work

The framework for parallél discrete event simulations [REYN91] was advanced in
this thesis, is a novel and efficient combination of both hardware and software to rapidly
compute and disseminate reduced valuesin support of a spectrum of PDES synchronization
protocols. It isthefirst significant research in the computation and dissemination of reduced
values to support parallel simulations. As hardware technology progresses and parallel

simulation protocols advance, this framework will remain fundamental.

The framework has three major components. 1) small sets of reduced values that
describe the state of a parallel simulation, 2) hardware, consisting of a reduction network
and general-purpose auxiliary processors, to rapidly compute and disseminate these val ues,
and 3) algorithms that execute on the auxiliary processors so that the reduced values are
computed correctly in the reduction network and the parallel simulation executes correctly
on the host processors. In this dissertation we have completed research in each of these

three areas. We summarize the work in each area now.

As discussed in Section 3.1. and Section 5.1., a set of reduced values to support a
parallel simulation can consist of both globally reduced values and target-specific reduced
values. We have demonstrated the applicability of both to parallel simulation

156

155

protocol [DAFU93], as discussed in Section 5.1.2. It is a topic of future research to

investigate both larger systems and a broader class of protocols.

We have concluded that target-specific synchronization information offers
significant benefits to conservative PDES's. In a conservative parallel simulation, target-
specific synchronization information reduces the finishing time of the simulation. This
result isintuitive: near-perfect state information — information that comes close to the true
state when the near-perfect information isreceived — eliminates artificial dependenciesand

provides more parallelism in a PDES.

We have also concluded that the dissemination of target-specific synchronization
information is beneficial to Time Warp-like PDES's. The dissemination of target-specific
critical state information allows GV T to be computed on alocal basis. We have introduced
alocal GVT, target-specific virtual time or TSVT;, as the smallest possible time to which
LP, canroll back. Any fossils with timestamps earlier than TSVT; can be collected by LP,,
and TSVT, isamore accurate commitment horizon for LP; than GVT. Since TSVT is based
only on information relevant to the target L P, thus, in a sense, making it more accurate than

GVT, fossils (state information that precedesa TSV T) will be reduced.

In [SRIN93], it was proposed that effective PDES protocols will be those that do
adaptive aggressive processing, characterized by controlled aggressiveness, where the
benefits of aggressiveness are maximized and its costs are minimized. The impact on state
saving is clearly evident. We believe that target-specific virtual time and other target-
specific information that can be derived through reduction network techniques will be

beneficial to aggressive adaptive algorithms.

154

30.6
30__
|:| Globally reduced information
|:| TS reduced information
o)
c 20
g A
Py
£
c
O
5 10 [
3
i
2.5

Figure 6.20 Results of Fan-in/ Fan-out Topology of 32 LP's.

6.5. Summary and Conclusions

We have presented a short study of the effects of target-specific synchronization
information on both optimistic and conservative PDES synchronization protocols. These
empirical results demonstrate the utility of target-specific reductions to both conservative
and optimistic PDES protocols. First, the finishing time of conservative PDES's was
reduced substantially, in al cases, since the target-specific information about event times
of predecessors eliminated artificial dependenciesamong LP's. Second, the amount of state
gpace in optimistic PDES's was reduced when TSVT was used in fossil collections. The

efficient computation of TSVT will support the rollback chip [FUTG92] and the cancelback

153

w297

|:| Globally reduced information
|:| TS reduced information

o)

c 20

g A

Py

£

c

O

5 10 [

3

i

2.5

Figure 6.19 Results of Fan-in Topology of 32 LP's.

Finally in Figure 6.16 we see the results of a 32 LP communication topology that
combines fan-in and fan-out properties such that no two LP's have the same predecessor
set. In this case the execution time of a conservative PDES executing on top of the

reduction network that computes target-specific reduced values is reduced by a factor of

over twelve.

152

unreceived message times are computed. The effect of the target-specific information is

once again more significant in the 32 L P fan-out topol ogy than the 16 L P fan-out topol ogy.

- 285
|:| Globally reduced information
|:| TS reduced information
o)
c 20
g A
Py
£
c
O
5 10 [
3
i
1.8

Figure 6.18 Results of Fan-out Topology of Sixteen LP's.

Figure 6.15 shows the results of a fan-in topology of 32 LP’s. The execution time
of the conservative PDES is reduced by a factor of approximately twelve. Recall that the

improvement in execution time was a factor of eight for the fan-in of 16 LP's.

151

We find again that the execution time of a conservative PDES with 32 LP's is greatly

reduced with the availability of target-specific reductions.

In Figure 6.13 we present the results of 32 LP's in alinear topology executing a
conservative PDES on top of both a globa reduction network and a target-specific
reduction network. The speedup measured isafactor of 11.5. Thisisagreater performance

improvement than the sixteen LP linear topology.

31.2
30__
|:| Globally reduced information
|:| TS reduced information
o)
c 20
g A
Py
£
c
O
5 10 [
3
i
2.7

Figure 6.17 Results of Linear Topology of 32 LP's.

Figure 6.14 shows a bar graph for the conservative PDES's of a 32 LP fan-out
topology executing on top of the two reduction networks. In this case the execution time of

the simulation is reduced by afactor of 15.5 when the target-specific next event times and

150

In other words, each L P has a unique set on which target-specific reductions are computed.

The results of the simulations with this topology can be found in Figure 6.16.

25T
21.5 |:| Globally reduced information

o0+ |:| TS reduced information
w
g
c
O -
Qi 15
°
E
5
o
n

51

2.5

Figure 6.16Results of Fan-in/ Fan-out Topology of Sixteen LP's.

6.4.5. Results of Simulations with Thirty-two LPs

We simulated conservative PDES of size thirty-two LP's operating on top of both a
reduction network computing globally reduced values and a reduction network computing

target-specific reductions.

We simulated the same four different topologies of 32 LP'saswedid with 16 LP's:
alinear topology, a fan-out topology (similar to Figure 6.3), a fan-in topology (similar to

Figure 6.4), and a topology with both fan-in and fan-out properties (similar to Figure 6.5).

149

20.7
20 _
|:| Globally reduced information
|:| TS reduced information
o 151
g
c
:
g 10l
=
2
5
o)
m 54
2.5

Figure 6.15 Results of Fan-in Topology of Sixteen LP's.

The final topology of sixteen LP's that we simulated of sixteen LP's that has very
similar communication properties to Figure 6.5. This communication topology is

characterized by the property that no two LP's have the same immediate predecessor set.

148

that target-specific reductions could have more benefits to a conservative PDES as the

number of LP'sincreases.

19.7
20 _
|:| Globally reduced information
|:| TS reduced information
o 151
o
c
:
2 10|
=
=
5
o
g s+
19

Figure 6.14 Results of Fan-out Topology of Sixteen LP's.

Figure 6.15 showsthe results of afan-in topology of sixteen LP's. In this case there
isareduction in the finishing time of the conservative PDES by afactor of eight. Again this

isan increase in the performance from the eight L P fan-in topology.

147

Figure 6.13 shows the results of the linear topology of sixteen LP's. The total
execution time of the conservative PDES is reduced by more than a factor of eight when
target-specific reductions, instead of global reductions, are computed and disseminated in

support of the simulation.

25T
22.2
|:| Globally reduced information

o0+ |:| TS reduced information
)
e,
c
O -
Qi 157]
@
£
5
o
n

54

2.7

Figure 6.13 Results of Linear Topology of Sixteen LP's.

Figure 6.14 shows the results of a fan-out topology of sixteen LP's. The total
execution time of the smulation is reduced by a factor of over 10.5. We observe a greater

improvement in the fan-out topology with sixteen LP’sthan with eight LP's. This suggests

146

target-specific hardware differ by a factor of 2. The additional dependencies require more

state to be saved, in the average case, by L Pg.

oo 3205
|:| Globally reduced information
|:| TS reduced information
15
) 13.3
1y o)
CIEJ 10 ® 160+
= 1]
c ©
(@) =
51
n
25 41.5

Figure 6.12Results of Topology of Eight LP'sin Figure 6.7.

6.4.4. Results of Simulations with Sixteen LB’

We simulated conservative PDES of size sixteen LP’'s operating on top of both a
reduction network computing globally reduced values and a reduction network computing
target-specific reductions. We did not have the resources to run an optimistic PDES for

topologies of larger size than eight.

We simulated four different topologies of 16 LP's. a linear topology, a fan-out
topology (similar to Figure 6.3), afan-in topology (similar to Figure 6.4), and a topology

with both fan-in and fan-out properties (similar to Figure 6.5). Our results follow.

145

300.— 2993

|:| Globally reduced information

|:| TS reduced information

15
o) 13.6
c
:
~ 3
o 10 1504
E 5
S 3
.% 7
3 Ju
3T =

2.4
19.9

Figure 6.11 Results of Topology With Eight LP'sin Figure 6.6.

Finally, Figure 6.12 is a bar graph of the results of the Figure 6.7, the augmented
topology of Figure 6.6 with additional directed arcs into LPg. The reduction to the
execution time in the conservative PDES is afactor of 5; thisis essentially the same asthe
results without the additional arcs. On the other hand, the results of the optimistic
simulations for the same graph differ. In the optimistic PDES, the reduction to the state
spaceisafactor of 7.7. Notice that the total average states saved in the PDES in Figure 6.7
sitting on top of the target-specific hardware and that in the PDES in Figure 6.6 using the

144

Figure 6.10 is a bar graph showing the results of the first combination graph, i.e.,
with both fan-in and fan-out properties. In this conservative PDES with eight LP's the
finishing time was reduced by afactor of 5. The dissemination of TSVT had amuch greater
effect on thistopology than either the fan-in graph (Figure 6.9) or the fan-out graph (Figure

6.8); the amount of state space needed was reduced by a factor of over 6.

|:| Globally reduced information
|:| TS reduced information

o 1322

> T 1309
ie]
5
8 3
o 101
E 8 o
S 5

2.7 21.6

Figure 6.10 Results of Topology With Eight LP'sin Figure 6.5.

Figure 6.11 isabar graph showing simulation results for the topology in Figure 6.6.
In the conservative parallel ssimulation, the finishing time was reduced by a factor of 5.7,
the effect is dightly greater than that reported in Figure 6.10. The total amount of state
space needed in the optimistic parallel simulation was reduced by a factor of 15. Thisisa

significant reduction to the total average state space required to run the simulation.

143

approximately 7.5 times, with the benefit of target-specific synchronization information on

which to base processing decisions.

Figure 6.9 shows the results of the PDES fan-in communication topology in Figure
6.4. Thefinishing timefor the conservative PDES was reduced by afactor of 5when target-

specific state information was computed and disseminated.

|:| Globally reduced information
|:| TS reduced information

s 100, 96.7
7z | 13.8
©
5
8 3
£ ﬁ
+ o
é ?@ 50|

27 20.3

Figure 6.9 Results of Fan-in Topology With Eight LP's.

Dueto the communication topology, fewer average states are saved in the optimistic
fan-in topology (Figure 6.9) than in the optimistic fan-out topology (Figure 6.8). Thisis
because there are more source LP's, and source LP's do not need to save state at all.
However, the total amount of memory needed to save state in the simulations of the fan-in
topology was still reduced by a factor of 4.75 when target-specific reductions were

computed and disseminated.

142

6.4.3. Results of Simulations with Eight LPs

All of the simulations which were run for eight LP’'s executed until GV T exceeded
20,000. In other words, the termination condition for the simulations of eight LP'swasthat

GVT was greater than 20,000 units.

Figure 6.8 is a bar graph showing the results of the PDES fan-out communication
topology in Figure 6.3. We note that the finishing times of the optimistic simulations were
essentially the same. The benefit of providing hardware support for target-specific virtual
timeisthat theamount of saved state over time decreases. In the optimistic simulationswith
eight LP'sin thisfan-out topology, the total state space required was cut by afactor of 4.5.

As expected, the finishing time of the conservative PDES was reduced significantly,

|:| Globally reduced information
|:| TS reduced information

15 100 —
2 13.7 87.0
=
8 5
20T 5
+ [¢D]
é g 50
g .| Jo
0 " 10.8
18

Figure 6.8Results of Fan-out Topology With Eight LP's.

141

Figure 6.6 shows avery regular graph with asingle source and asingle sink. Three

independent paths exist from the source node LP; to the sink LPs.

Figure 6.6 A Fan-in/ Fan-out Topology With Eight LP's.

Figure 6.7 adds two additional communication channels to Figure 6.6. Hence, LPg
is now dependent on both LP, and LP,. The additional dependencies will change the

necessary target-specific reductions which will be computed to support this topol ogy.

Figure 6.7 A Fan-in/ Fan-out Topology With Eight LP's.

140

Figure 6.4 A Fan-In Topology With Eight LP's.

3 G
—O—OB——C

o

Figure 6.5 A Fan-in/ Fan-out Topology With Eight LP's.

139

is the single source. LR =1, 2,..., n, needs tayet-specific information from all LB’on

the path from the source to it.

Figure 6.3 A Fan-out Dpology Wth Eight LP5.

Figure 6.4 depicts a communication topology which we refer to as a fan-in graph.
A fan-in graph has a single sink LiR this case LE such that every other LP in the system

is a predecessor to that sink. The sink needs global synchronization information.

Finally, Figure 6.5, Figure 6.6, and Figure 6.7 illustrate both fan-in properties and
fan-out properties in a communication topology for a PDES with eiglst BHach of these

topologies has a ddrent dissemination pattern fordgat-specific information.

Figure 6.5 is a topology where no two EPlave the same immediate predecessor
set. & believe this type of graph represents a class of graphs for which it mafdost dif

to provide taget-specific information in a general interconnection network.

138

(There are some areas where computed TSV T might be beneficial to reducing the execution
time of the simulation. This is to be explored.) The total amount of state space in the
simulation is reduced by afactor of 3.6. The total amount of state spaceis computed for all
LP's, in this case for four LP’'s, and not on a per LP basis. If the state space were limited,

asitisin Fujimoto’s high-speed rollback chip [FUTG92], this can be a significant savings.

|:| Globally reduced information
|:| TS reduced information

100

8 90.8
3
:
g 5.42 B
£ %
é Al § 50
3 g

l_
n 168 24.6

Figure 6.2 Results of Linear Topology with Four LP's.

6.4.2. Topologies of Eight L ogical Processes

For the simulations of size eight, we used more interesting topologies. All
topologies are acyclic graphs because a cyclic subgraph can be reduced to a single node
requiring the same target-specific information that each of its components requires. Figure
6.3 depi cts acommuni cation topology which werefer to asafan-out graph. A fan-out graph

has one LP that is apredecessor of every other LP in the system; thisLP, LP; in Figure 6.3,

137

messages sent the message will arrive in 500 microseconds. We believe that
these times are representative of current technology and message traffic
patterns.

6.4.1. Topology of Four Logical Processes

A linear topology such asin Figure 6.1 was used in the simulations with four LP's.
These simulations were run until GVT was greater than 15,000, i.e. the termination
condition was GV T exceeding 15,000 units. (Approximately 12,000 to 20,000 total events

were executed.)

Figure 6.1 Linear Topology With Four LP's.

For each simulation, we report our results using bar graphs. The left bar graph in
each figure shows the simulation results of the conservative PDES:. one bar indicates the
execution time of a conservative PDES operating on top of a reduction network which
computes globally reduced values and the second bar indicates the execution time of the
same conservative PDES operating on top of a reduction network which computes target-
specific reduced values. Likewise, the bar graph for the optimistic simulations show the
difference in the total amount of state space in the simulation, when the same simulation

has globally reduced values and target-specific reduced values.

Figure 6.2 showsthe simulation results of thisfour LP linear topology. As expected,
the target-specific dissemination of synchronization information reduced the finishing time
of the conservative PDES by afactor greater than 3. We note that the finishing times of the

optimistic PDES's were not affected by the dissemination of target-specific reductions.

136

» The taget-specific reduction network can compute reductions with the same
speed as the global PRN.

» The wallclock time to execute an event is a parameter consisting of a
distribution and a mean. The distribution can be exponential or uniform random.

* The logical time to execute an event is also a parameter consisting of a
distribution and a mean. The distribution can be either exponential or uniform
random.

* An antimessage will cause an event to be interrupted.

* Antimessages are cancelled aggressively in batches if possible. A batch
antimessage is a group of antimessages sent through the host network in one
physical message.

* Fossil collection is uniform randomly distributed to be performed after every 2-
5 events.

» State saving is performed after each event.

» There is no cost associated with state saving or fossil collection. There is an
unbounded amount of state saving mematys is a reasonable assumption,
assuming the rollback chip of FujimotoJFG92].

 States are counted each time fossil collection occurs. A state is either a snapshot
of the current state or a message in the output message list, which is used to
determine where to send antimessages.

The topologies of the graphs we studied were varied to reflect certain degrees of
fan-in, fan-out and combinations of the twoe @hose to work with relatively small (4 and
8-node) graphs in order to guarantee reasonable execution times forgthesdarof

experiments we ran. &\expect to see trends are we increase the size of graphs.

6.4. Simulation Results

The following parameters were used in every simulation:

» The wallclock time to execute an event was uniform randomly distributed
between 0 and 2 milliseconds with a mean of 1 millisecond.

» The simulation time to execute an event was uniform randomly distributed
between 0 and 20 units with a mean of 10 units.

» The wallclock time to send a message takes at least 100 microseconds. In 85%
of all messages sent, the message will arrive in 200 microseconds. In 6% of all
messages sent the message will arrive in 200 microseconds. In 4% of all
messages sent the message will arrive in 300 microseconds. In 3% of all
messages sent the message will arrive in 400 microseconds., kin2dy of all

135

A reduction network which computes and disseminates target-specific reductionsin

O(log n) timeis certainly feasible. (See Chapter 5.)

6.3. Simulation Assumptions

We have made certain assumptions with respect to our simulations. We believe

them to be realistic with respect to current technology and parallel ssmulations in general.

Assumptions about the reduction network and all interfaces are based on the prototype

design of our four-processor global reduction network [REPS93].

Each logical process LP: in the parallel ssimulation executes on a dedicated
physical host processor HP..

There are two times represented in this simulation. Logical time refers to the
logical time of the PDES being simulated. Wallclock time refers to the
simulated time of physical events, where a physical event can be amessage sent
through the host communication network, an event being executed, or a
reduction operation being performed.

The communication topology of the PDES is based on an input graph to the
simulator. An LP sends an event message with equal probability to any of its
immediate successors. Each event generates one new event message. Internal
eventsare generated by an L P so that the workload of all processorsisthe same.

LP's send event messages and antimessages through the host communication
network. The wallclock time to send a message is based on a probability
distribution and the distance between two processors in the physical system.
The physical distance or number of hops between processors is an input to the
simulations. All simulations presented in this chapter assume that the distance
between any two processorsis the same.

The reduction networks take 150 ns. per stage. It takes 90 ns. per 16-bit read or
writeintheauxiliary processor. It takes 100 ns. to read valuesfrom theinterface
to the PRN. Likewise it takes 100 ns. for values to propagate from the PRN to
the level of the interface readable by the AP,

Thewallclock timethat it takes for ahost processor to read values from the host
processor - auxiliary processor interface is 95 nanoseconds for a 32-bit read.

The AP executes all acknowledgment processes. Batched acknowledgments, as
described in Chapter 4, are implemented.

An HP will poll itsinterface to its AP at regular intervals, with no delay. This
suggeststhat GV T computed in the reduction network is as accurate as possible.

134

simulations also use two-phase acknowledgments of both messages and antimessages in

the reduction network in order to correctly maintain GVT

When the optimistic PDES is implemented on top of thgetaspecific reduction
network, a taget-specific virtual time (TSVT) is computed for all ER(See Section 5.1.2.)
Since TSVTis customized for each LP=1, 2,..., n, it more accurately reflects the state
information on which to base event processing decisions. Furthermore, fossil collection
should be done with more accurate information. This supports a better utilization of state

saving memory

6.2. Har dware Computation Model

A hardware computation model can be found in Figure 3.2. The host system is a
closely coupled network of high speed processors with its own network for interprocess
communication. Each host processor (HP) is paired with a dedicated auxiliary processor
(AP)which performs all synchronization activity and interfaces to the high speed reduction
network. The PDES synchronization protocol and all event processing occurs on the host
processors. Interfaces between a host processor and its corresponding auxiliary processor
and between an auxiliary processor and the reduction network are designed to permit the
correct execution of a PDES while allowing the host processors to operate asynchronously

with the auxiliary processors and reduction network. (See Chapter 3 for details.)

For our simulations we assume that all reductions in the reduction network are
computed inO(log n) time wheren is the number of processors in the host system. In a
reduction which computes globally reduced values, a binary tree-shaped reduction
network, as , can compute reductions with this time complexitsthermore, this same

network require©(n) components.

133

reduction network in order to correctly maintain the smallest unreceived message time. All

acknowledgments are batched in order to use the reduction network more efficiently.

When the conservative PDES is ssmulated on top of the target-specific reduction
network, two target-specific minimum operations are computed for each LP: a target-
specific minimum next time n’; and atarget-specific smallest unreceived messagetime v’; .
Each LP receives reduced information only from those LP's that can have an impact on its
performance, and LP's will receive more accurate state information. As described in
Chapter 5, target-specific primary acknowledgments have the same target as messages, and
consequently, target-specific handshake acknowledgments are computed using the inputs
from only immediate successors. Thus, from the perspective of a given LP, its target-
specific inputs and outputs depend on the operation being performed, and different LP's

will have different sources of inputs and different targets.

6.1.2. Optimistic Simulation Algorithms

The optimistic PDES implemented is a Time Warp simulation [JEFF85]. (See
Section 2.1.3. for details on Time Warp simulations.) In our simulations, antimessages are
cancelled aggressively, such that all events sent in the LP's future are cancelled at the time
of rollback. Furthermore, our simulations batch antimessages to each receiving LP so that
the total amount of message traffic in both the host communication network and our
synchronization network is reduced. A batch antimessage allows multiple antimessages to
be sent in one physical message, reducing the total number of outstanding messages in the
host network. Furthermore, the number of messages which must be acknowledged in the
reduction network is also reduced. GVT is computed in the reduction network as the
smallest time in the system: the minimum of the smallest logical clock time o' and

minimum unreceived message time v'. (See Section 3.1.2.) The optimistic parallel

132

We have also concluded that the dissemination of target-specific synchronization
information is beneficial to Time Warp-like PDES's. The dissemination of target-specific
critical state information allows GVT to be computed on a local basis — target-specific
virtual times (TSVT's). Since a TSVT is based only on information relevant to the target
LP, thus, in a sense, making it more accurate than GVT, fossils (state information that

precedesa TSVT) will be reduced.

In the first section we describe the algorithms used in the simulations. In
Section 6.2. we give a brief description of the hardware model used in the smulations. In
Section 6.3. we describe our simulation assumptions. In Section 6.4. we present the results

of our simulations. Finally, in Section 6.5. we discuss the implications of our results.

6.1. Simulation Algorithms

We simulated two different PDES's, a conservative parallel smulation and an
optimistic parallel ssmulation. Each PDES was simulated on top of the two hardware
configurations, each with the high-level configuration in Figure 3.2. The only difference
between the two configurations is the type of reductions computed in the reduction

network.

6.1.1. Conservative Simulation Algorithms

The conservative PDES is based on the synchronization algorithms in [REYN92]
(See Section 3.1.1.). LP'smaintain anext event time n, and asmallest unreceived message
time L, ; two globally reduced minimum operations are performed on these inputs, giving
n' and v', respectively. The LP with the smallest next event time, such that it is not larger
than the global minimum unreceived message time, can safely execute its event. Message

acknowledgments are performed with the two-phase protocol (See Section 4.3.) in the

© Performance of Global versus
Target-specific Reductions

In this chapter we present results of simulations that strongly suggest the need for a
next-generation reduction network to compute and disseminate results of target-specific
reductions to support both aggressive and non-aggressive paralel discrete event
simulations. Many of these ssimulation results were first presented in [PARE93]. As
established in previous chapters, target-specific reductions allow an LP to receive
synchronization information only from those logical processes which may have adirect or

indirect impact on its performance.

To determine the performance gains of areduction network which computes target-
specific reductions, we have smulated the two conditions: several PDES's operating on top
of a reduction network which computes globally reduced values and severa PDES's
operating on top of a reduction network which computes target-specific reduced values
across subsets of LP's (assuming one LP per processor). The goal of these simulations was

to demonstrate the utility and benefits of target-specific reduction networks.

We have concluded that target-specific synchronization information offers
significant benefits to conservative PDES's. In a conservative paralel simulation, target-
specific synchronization information reduces the finishing time of the simulation. This
result isintuitive: near-perfect state information — information that comes close to the true
state when the near-perfect information isreceived — eliminates artificial dependenciesand

enables more parallelism in a PDES.

131

130

In the next chapter we present simulation results which demonstrate the need for

hardware to compute target-specific reductions in support of paralel simulations.

129

5.7. Summary and Conclusions

In this chapter we have presented theoretical results on the cost of computing and
disseminating target-specific reductions. We have two contributionsin thisareaand several
observations. First, we have demonstrated the applicability of target-specific reductions to
a wide range of PDES synchronization protocols. In the next chapter we will present
simulation results that quantify the benefits of target-specific reductions over global

reductions to both conservative and optimistic protocols.

Second, we have shown two sequential algorithms which solve the target-specific
dissemination problem in the general case. The algorithms show a trade-off between the
time and space complexity. The first algorithm has a O(n log n) time complexity with the
associated cost a O(2™) space complexity in bits. The second solution is actually a family
of solutions, wherethe best time/space compl exity combination of solutions isO(nZ/Iog2 n)
time complexity and O(n4(log Iog2 n)/I 092 n) space complexity in bits. These are the best
known time/space complexity resultsfor this problem. They are encouraging because of the

sub-quadratic time complexity of the associated algorithms.

Also, we can make some observations regarding the computation of target-specific
valuesin parallel. We have presented a design of parallel target-specific reduction network
which computes n target-specific reductionsin O(log n) time with O(n2) components. This
isasmall contribution but it is worthy of note at this time because the product of the time
and space complexity is O(n2 log n), which is less than the product of the time and space
complexities of any of our sequential solutions. It also serves as a proof of concept. It is
also aninteresting observation that this parallel target-specific reduction network computes
all binary, associative operations and is not limited to the computation of minimum and

maximum values.

128

compute the reductions for each of the n outputs. The leaves of the broadcast trees are
preprogrammed to determine if its input must be sent to the corresponding reduction
computation; if aninput isnot sent to a reduction computation, the identity element for that
reduction is sent instead. Whether there exists a reduction network which computes target-
specific reductions for all communication topologies in O(log n) time with less than O(n2)
componentsis still an open research question. The complexity of the network in Figure 5.9
is equivalent to Akl’s best solution to compute the multiple criteria n-processor BSR, as

discussed in Section 2.2.3.

LP; LP,

LP, LP,

LP, LP, LP, LP,
Key

:I ALU switch

:I broadcast switch

Figure 5.9A Target-specific Parallel Reduction Network.

127

We discuss the selection loby presenting a table of results. Recall thean be
betweenl andn. Given this we have a family of solutions, depending on the valkie of

Table 5.1Family of Solutions.

k Time Complexity Space Complexity (in bits)
1 o(n) o(n)
logn O(n2/Iog n) O(n3(log log n)/log n)
log? n O(n%/log? n) O(n*(log log? n)/log? n)
n'/? on*?) o2~ (n*?) - (n*?)
(nlogn)1/2 o(n?/((nlog n)*/) o(n(log((n log)3/

(nlog n)l;%

n O(n%/log n) 0(2"?)

If k=(nlog n)1/2, the time complexity is minimized @(nzl((n log n)1/2)). If
k=lognork= Iog2 n, then the time complexity is sub-quadratic, and the space complexity

is polynomial in the number of bits.

5.6. A Physical Realization of a a&rget-specific Reduction Network

One way to compute tget-specific reductions for all possible communication
topologies inNO(log n) time is to construct a reduction network by essentially duplicating a
binary tree global reduction netwarnkimes, such that each of theeduction results is sent
to an LP executing on a tifent processor and a processor only contributes an input to a
reduction if its LP is a predecessor to the LP receiving the result. The drawback to this
approach is tha(D(nz) components (elements in the reduction network) are required. W
use this construction to show an implementation ofgetaspecific reduction network in
Figure 5.9. Each of tha inputs is broadcasted times in a binary tree of broadcast

switches, and then timé leaves of the trees are inputs toh@nary trees of ALUS which

126

5.5.4. A Family of Solutions

Next we explore divide-and-conquer techniques to reduce the space complexity of
the above problem. Assume that the sets are divided into n/k groups of k sets, where

1 < k< n. Then separately solve the problem for each of the groups.

There will be n/k lattices, one for each group of sets. The latticeswill be initialized
asin Section 5.5.1. Oncethe sort of the n bucketsis completed, the assignment of minimum
values will take place by following the levels in every lattice. The algorithm is complete

when each |attice has been used to assign values to sets.

We discuss the space requirements in terms of bit complexity. The total number of
nodesin each latticeis 2X. For each node, there aretwo arrays. The pointer array P will have
k elements, each of sizek bits. The bucket array Awill have n elements, one for each bucket,
each with log k bits to refer to one of k sets. So, the total space requirement for each node
is 2k(k2 + nlog k). Sincethere are n/k nodes, the total space needed is O(2k(nk + (n2 log K)/
K)) bits.

Again, we consider the time to read values with size greater than log n. There are
two parts to the algorithm: the sort of the bucket values and the assignment of minimum
values to each set. It will take O(n log n) time to sort n buckets; this doesn’t change from
the original algorithm. The time to traverse each lattice and assign values to k sets will be
n + k(k/log n), where n is the time to read possibly n buckets, and k(k/log n) is the time to
read al pointers to traverse the lattice. Since there are n/k lattices, the time complexity to

assign valuesto all n setswill beO(nZ/k+ nk/log n).

125

inFigure 5.8, if b, isthe sorted minimum, then S; is assigned the minimum value of by, and
P[3] isfollowed to get to the next node in the lattice. The bucket reference b, will continue
to be the bucket reference into A until all sets with that minimum have been assigned its
value. Once this happens and an empty node in the A vector is found, then the next bucket

reference in the sorted permutation is used to index the A array.

5.5.2. Space Complexity Analysis

We analyze the space requirements with a bit analysis. The total number of nodes
inthe lattice is 2". For each node, there are 2 vectors: P and A, each with n elements. Each
pointer in P has n bits so that 2" unique nodes can be referenced. Each element in the A
vector has log n bits to reference n buckets. Therefore, the total number of bits is

2"(n? + nlog n), or O(n%2") bits.

5.5.3. Time Complexity Analysis

The time analysis will take into consideration that aword of size log n can be read
in constant time. There are two parts to the algorithm: the sort of the bucket values and the

assignment of minimum values to each set.

The sort will take O(n log n) time. Then the lattice will be used to assign minimum
values to each set. There are n levels in the lattice. At each level, at least one A vector
element will be read and one pointer P will be read. Each A vector element can beread in
constant time. Each pointer, however, will take n/log n time to read because of its size.
There are n levels of the lattice and at most n elements of vector A will be read at only one
level. Therefore, the assignment process will take O(n2/Iog n) time. Hence, the total time

complexity for thisalgorithmis O(n2/I og n).

124

it. For example, the node containing the set {S;, S, Sz} will point to the nodes {S;, Sy},
{S1, Sg}, and {S,,S3}. The pointer in vector location i points to the subset of the next
smaller size which does not contain element i; thus, P[2] of node {S;, S,, S5} contains the
pointer to node {S;, S3} . If anode does not contain the subset §, then P[i] in that node will
be anull pointer. The configuration of the pointer vector P will always be the samefor each

problem instance of the same size.

>l p]~

Ag o0l
o
%
AAd
%Y
&
A%y
v
%

P

Figure 5.8 Lattice Used to Store Preprocessed Subset | nformation.

The second vector, A, is the solution vector, or vector which assigns bucket
references to sets. This array is indexed by the bucket number. We have assumed the
following three subsets of three total buckets: S; = {by, b3}, S, = {bs}, and S3 = { b4, by}
for the assignment of valuesto the A vector in Figure 5.8. Once the bucket val ues are sorted,

the permutation of bucketsis used to traverse the lattice and find the solution. For example,

123

Figure 5.7After Minimum Value Assigned to Sé&;.

5.5.1. Solution Algorithm

We begin by discussing the necessary preprocessing and data structures in our
solution algorithm. Recall that the contents of each si#jset., S, are knowrapriori, So
this information can be used to initialize a data structure we batarchy or lattice, as
shown in Figure 5.8. The lattice is a partially ordered set containing the relationship
between the bucket contents and the subset references. Each node of the lattice represents
a set of the subsets, such that the first level of the lattice contains one node representing all
n sets, the second level containsodes representing all subsets of $ieé) sets, and so
on until the(n+21)st level contains an empty set. Each node has two vectors afi size
associated with it. One is a vector of pointers to the next level of the lattice. This pointer
arrayP, shown below each node in Figure 5.8, contains all pointers from that node to the

next level in the lattice; a node will point to all nodes on the next level which are subsets of

122

st e}

Figure 5.6 An Instance of the Minimum Valuein All Subsets Problem Assuming Pointers.

After the sort has compl eted, the second step isto select the minimum valuein each
set §, 1 <i<n,by finding the set §'s pointer which points to the smallest bucket valuein
the sorted list. The algorithm begins with the first bucket, that bucket with the smallest
value, and assigns the bucket value to the minimum values of all setswith apointer into the
bucket. Once a value has been assigned to m;, all pointers from the set, i.e., all pointers of
the set’s color, are removed from consideration. For example, assume the bucketsin Figure
5.6 have been sorted. The minimum value my of set S; will bethe valuein bucket b;. Figure
5.7 depicts the removal of set S; once the value of my has been resolved. The buckets are
followed in increasing order and minimum values are assigned in this way until all

minimum values have been assigned values.

We describe the algorithm, associated data structures, and necessary preprocessing

to accomplish this solution in sub-quadratic time in the following section.

121

entries. Each entry is an k-word solution vector. Each word in memory has awidth of log k
bits. There are (n/k)2 subproblems. Therefore, the total space complexity to solve all

subproblemsis O(k! ({n?/K)Ibg K) bits.

The selection of kiscritical to the time and space complexities of the algorithm. If
weassumethat k = n/log n, there arelog n groups of n/log n buckets by n/log n subsets. The

time complexity to solve the problem is O(n log n). This does not change.

The space complexity to solve the problem is O(n log n Llog(n/log n) L{n/log n)!)
bits. The dominating component of thiswill obviously be (n/log n)!. Sinceit iswell known
that n! < n", and both have the same order complexity, we make the observation that (n/
log n)! < nY199N Fyrthermore, n109n = (2109MM10gN = 2N Hence, the space complexity is

O(2" bits, a reduction from super-exponential space to exponential space.

We are optimistic about this result because of the O(nlogn) time complexity
though we are aware of the practical considerations of the exponential space requirements.
We next present a family of solutions to this problem. Several members of the family
reduce the space complexity to polynomia space with cost of the time complexity

increasing. We note, however, that the time complexity remains sub-quadratic.

5.5. A Family of Solutions to the &rget-specific Dissemination Roblem

We assume the same set theoretical MVAS problem for this family of solutions. In
order to facilitate our algorithm discussion, we view the sets as sets of pointers to the

buckets asin Figure 5.6.

Thefirst step of the solution isto once again sort the bucketsin nondecreasing order
of the bucket contents. During the execution of the sort, the pointers are dragged along as

the elements are put in place.

120

There are four stepsin the divide-and-conguer algorithm, where thefirst three steps
are similar to the larger problem solution and the final step resolves the solution of the
smaller subproblems to get a solution to the entire problem. The first step in the execution
of the algorithm isto sort each of the n/k groups of k buckets. Second, for each subproblem
of k subsets and k buckets, the permutation of the sorted k subsets is used as a k-word
address to access a solution vector of bucket references for the k subsets. Third, a partial
minimum value is assighed to each of the k subsets for that subproblem; this value is the
minimum value for that subset across k buckets. The final step in the algorithm is to
combine the partial minimum values of the subproblems to give a solution to the large
problem. So, for each of the n subsets, the minimum of its n/k partial minimums is

computed, one for each group of buckets.

It is possible to keep the time complexity of the divide-and-conquer solution at
O(nlogn) if k is selected carefully. We explain this now. The time to sort one group of k
buckets is O(k log k). Therefore, the time to sort n/k groups is n/k [k log k or O(n log K).
The time to address the solution vector of bucket references is O(k) for one subproblem,
since it takes unit time to read each word in the k-word address. Since there are (n/k)2
subproblems, the total time to address the solution vectors is O(n2/k). Similarly, the time
complexity to assign minimum valuesto each of k setsis O(k) for one subproblem since the
contents of abucket can be read in unit time; the time complexity to do the assignmentsfor
al (n/k)2 subproblemsis O(n2/k). Finally, the time to compute the minimums of n/k partial
valuesfor al n subsets will be O(n2/k). Therefore, the time complexity of the algorithm is
dominated by O(n2/k), so the total time complexity to solve the MVAS problem with a

divide-and-conguer algorithmis O(n2/k).

We analyze the total space needed to solve the problem using bit complexity. For

each subproblem of k buckets and k subsets, the table of possible solution vectors has k!

119

of k buckets. During the preprocessing, atable of the solution vectors of bucket references
of the k subsets is created for each of the k! permutations for one subproblem. Figure 5.5
shows how the problem is partitioned. We assume that each partial solution vector of bucket

references can be addressed by its permutation.

b1 bz bs bk b1 bz bs bk

NN N TN

up 1 &up n/k

s{ bubybs ...}
S{ by bsbs, . .. }

Group

sd bybs by ...}

Group SZ{ by, by, by, . . . }

{Sl{bl.bzbs}

sd by by by . ..}

Figure 5.5 Divide-and-Conquer Partitioning of MVAS Problem.

118

The third step of the algorithm is the use of the bucket reference vector to assign
actual values from the buckets to the vector of minimums. The result of this step of the

algorithm is a vector of n values, each is the minimum value in the respective set.

5.4.3. Time Complexity Analysis

We analyze each of the three steps in the algorithm. The time to sort the n buckets
isO(n log n). The time to address the solution vector of bucket referencesis O(n), since it
takesaunit timeto read each word in the n-word address. Finally, thetimeto assign avalue
to each set is O(n) since the contents of a bucket can be read in unit time, and there are n
bucket referencesin the solution vector. Therefore, the time complexity of the algorithmis
dominated by the sort, and the total time complexity to solve the MVAS problem is

O(nlog n).

5.4.4. Space Complexity Analysis

We analyze the total space needed to solve the problem using both word complexity
and bit complexity. The table of possible solution vectors hasn! entries. Each entry isan n-
word solution vector. So, the space complexity is O(n! Lh) words. Each word in memory
has width of log n bits. Therefore, the total space complexity in bitsis O(n! [d log n). We

recognize that thisis a super-exponential amount of space and unacceptable.

We now show how to reduce the space requirements of the algorithm, employing
well known divide and conquer techniques. We show that the space complexity can be
reduced to an exponentia space complexity instead of a super-exponentia space

complexity and the time complexity will remain O(n log n).

Assumethat both the sets and the buckets are partitioned into n/k groups of k subsets
by n/k groups of k buckets, where 1 < k< n. Thisgivesus (rVk)2 subproblemsto solve using

the same algorithm which was used to solve the large problem. There are k! permutations

117

not affect the runtime of the algorithm. In Section 5.4.4. we show that the memory can be
reduced to O(2"); however, for now we assume the entire permutation table to simplify our

description of this solution.

5.4.2. General Algorithm

Assume that an instance of the MVAS problem is viewed asin Figure 5.3. In other
words, the subsets are references to the buckets. The first step of the solution isto sort the

buckets in nondecreasing order using a computationally efficient sorting algorithm.

The second step is to use the sorted permutation as an address to find the solution
vector of bucket references in the table. Figure 5.4 shows how a memory hierarchy can
support an n-word address. Once the n-word address is referenced, a pre-stored solution

vector of bucket referencesis located.

n-word address:
I | | | | | e

\
N

/ memory level 2

/ memory level 3

memory level n

n-word solution vector of bucket references:

I | | | | | et L]

Figure 5.4 Memory Requirements of an O(n log n) Solution to the MVAS Problem.

116

Minimum Value in All Subsets (MVAS) Problem. Given a seB of bucketsB =
{bq, by, ..., by}, and n subsets of these bucke®;, S, ..., S, find the solution vectavl

={my, my, ..., my}, such thatm is the minimum value across all buckets in$et

The contents, or bucket references, of the subsets are known prior to the
computation of the minimums. Bucket references are static for each graph topology
Therefore, we allow preprocessing to be done to the subsets prior to the computation of the
minimums. The preprocessingist part of the execution time of the sequential algorithm.

In the solutions in Sectidh4.and SectioB.5., preprocessing reduces the ultimate time
complexity of an algorithm to solve the M8 problem. In the next section we present a
solution to the tayet-specific reduction problem with the best time complexity we have

found.

5.4. A O(n log n) Time Solution

We present the necessary preprocessing ar@(alog n) time algorithm for the

MVAS problem.

5.4.1. Preprocessing

Our first observation is that there atepossible permutations, or sorted orders, of
the n buckets. For each permutation there is an associated solution vector toAlse MV

problem. This suggests that there are at mbgbssible solutions.

During preprocessing, each of thé solution vectors are stored in a table in
memory such that a solution vector can be addressed by its permutag@ssiime that a
permutation can be treated asraword address to the associated solution vedter
envision a memory hierarchgs depicted in Figure 5.4, such that each word in-therd
address refers to a thfent memory bank. The time complexity of the algorithm will take

at leastO(n - n!) since each memory location must be initialized. This preprocessing will

115

O(n log n) time solution to this particul ar problem. Before presenting our current solutions,

we give adetailed problem discussion.

5.3.2. An Equivalent Problem

In order to visualize the problem, consider the set of n numbersto be aset of bucket
references { by, by, ..., b}, such that each bucket contains a value. This adds a level of
indirect referencing to the n inputs; for example, the input value from LP; is aways
contained in bucket b,. There are n subsets of the bucket set, labeled S; through S,. Each
subset is essentially aset of referencesto the buckets. Aninstance of this problem is shown
pictorialy in Figure 5.3. To solve this problem the minimum bucket value in each set must
be computed. The solution is a vector of n numbers, where each number is a value

contained in a bucket.

s{ b.bub, ...}
S{ b, bsbs, . . . }

s bubsbs ...}

Figure 5.3 An Instance of the Minimum Valuein All Subsets Problem.

Therefore, an equivalent problem to the target-specific reduction problem can be

defined as follows:

114

5.3. Target-Specific Reduction Poblem Definition

Severa applications, including parallel discrete event simulation, require the
computation of n minimum (or maximum) values of any n subsets of n dynamically
changing numbers. In PDES, we view this problem as a graph theoretical one, since a
communication graph, as in Figure 5.1, shows the relationship of LP's. We redefine this

problem as a set theoretical one in order to describe our solution algorithms.

Problem Definition. Given a set of n numbers and n subsets of those n numbers,
the target-specific minimum values are computed as N minimum values, one minimum

value per set.

Each of the n numbers are input values to reduction operations (input values from
an LP to areduction), each subset represents the set of input values to one target-specific
reduction (atarget-specific reduction for one LP isbased on inputs from its predecessorsin
the directed graph), and the computed minimums are the results of the n target-specific

reductions (a computed output for each LP).

5.3.1. Upper Bound of the @rget-Specific Minimum Value Problem

Clearly, an upper bound on this problem is O(nz). A simple O(n2) algorithm to
compute the n target-specific minimum values examines each set, and for each set, it
compares the elements in that set to find the minimum value. Since there are n setswith at
most n elements each, then at most n? values need to be compared. Hence, the upper bound
time complexity is O(n2). Space complexity isalso O(n2) sinceit takes O(n2) spaceto store
the n sets. We note that a large number of graphs do not have this worst case complexity.
For example, if either the total number of arcsis O(nlog n) or the maximum number of
input arcsis limited to O(log n) per node, then the time complexity to compute n target-

specific values is O(nlog n). The O(n2) is simply worst case. Our goal was to find an

113

numerical computations, and parallel programming problems that require the computation
of binary, associative operations across irregular communication patterns. The impact of
the efficient computation target-specific reductions in parallel computations is a topic of

future research.

5.2. Problem Characteristics

All binary, associate operations (minimum, maximum, addition, logical OR, etc.)
do not have the same characteristics. We discuss differences which are pertinent to the

computation of target-specific reductions.

Both addition and multiplication have inver se operations; subtraction isthe inverse
operation to addition and division is the inverse operation to multiplication. Some binary
associative operations (minimum, maximum, logical OR, and logical AND, for example)
are persistent; in other words, an operand can be included in the operation one or more
times without changing the result of the operation. The operations of addition and

multiplication and the computation of logical XOR are not persistent.

A final characteristic of the binary, associative operations minimum and maximum
isthat they are comparison-based operations. This suggests that sorting algorithms may be

instrumental in algorithms which compute compari son-based target-specific reductions.

Thetheoretical resultswe present in the next sections assume that the target-specific
binary, associative operations are comparison-based. Therefore, we narrow the class of
reductionsto include only those which are comparison-based, i.e., minimum and maximum
operations. We are not concerned with this limitation because most of the computations
required in aparallel discrete event simulation are comparison-based: smallest outstanding
message time, minimum logical clock, and message acknowledgments all require the

computation of minimums.

112

to that LP, those LP's which send it messages. For example, in Figure 5.1, the only LP
whichisanimmediate predecessor to L P is L P;. Consequently, atarget-specific handshake
acknowledgment is computed using the inputs from only immediate successors. In the
same figure, LP,’'simmediate successor’s are L P; and L P,. Based on simulations presented
in Chapter 6, we have strong reason to believe that the performance of all acknowledgment
algorithms will improve if global reductions are replaced with target-specific reductions

because the acknowledgments are done on a per LP basis.

5.1.4. Other Target-specific Reductions in PDES

We expect the computation and dissemination of target-specific state information to
benefit other PDES synchronization protocols as well. For example, target-specific ceiling
or fault values can support windowing synchronization protocols. New windowing
protocols are likely to arise with the rapid and efficient computation of target-specific

reductions.

Finally, we expect the dissemination of near-perfect state information to support
adaptive PDES synchronization protocols, those that combine the strengths of both
aggressive and non-aggressive protocols while limiting the weaknesses. This is a topic of

current research [SRIN93].

If target-specific synchronization information is available to LP's in a PDES, all
LP sreceive more accurate state information and can process events accordingly. The final

result is aframework for PDES that efficiently supports a wide range of PDES's.

5.1.5. Target-Specific Reductions in Other Parallel Computing Applications

The benefits of the computation and dissemination of target-specific reduced values
are not limited to parallel discrete event simulations. We expect target-specific reductions

to enhance a range of parallel computing problems. load balancing [KIRK92], iterative

111

Ug =00

TSVT,=5

Figure 5.2An Instance of an Optimistic PDES.

The efficient computation of target-specific virtual times, i.e., in a high-speed
reduction network, can provide near-perfect state information at a low cost. This can be
important, for example, to the cancelback protocol of [JEFF90], a memory management
protocol for Time Warp, executing on a shared memory multiprocessor. Performance
studies [DAFU93] have shown that the global computation of GVT on the Kendall Square

Research Machine (KSR) [KEND92] in support of the cancelback protocol has a high cost.

5.1.3. Target-specific Acknowledgment of Messages in PDES’

In Chapter 4 we discussed how globally computed minimum operations support
message acknowledgments in a PDES. All reduced values and message acknowledgment
algorithms can be modified for target-specific message acknowledgments. Target-specific
acknowledgments have the same target as messages. a target-specific acknowledgment of

amessage for agiven LP is computed using the inputs from only immediate predecessors

110

5.1.2. Target-specific Reductions in Optimistic PDES

We introduce a new valuggrget-specific virtual time (TSVT) to be computed for
LP’s in an optimistic PDES.afget-specific virtual time is a relative value: TS\ the
minimum logical timestamp to which LP=1, 2,..., n, can roll back, and it is computed
from input values based on the transitive closure of the communication graph. If there are
n LP’s in a simulation, then separate TSVFE must be computed. The TSVT for two

separate LR’ will only be computed in the same way if both predecessor sets are identical.

Definition. Target-specific virtual time for LP TSVT,(t) at real timet, is the
minimum of the virtual times in (1) the logical clocks of predecessors;dfidded on the
transitive closure of the communication graph at tinaed (2) all messages that have been

sent by LPs predecessors but have not yet been processed by refl time

Figure 5.2 shows smallest unreceived message tiuptss,(local clocks<(ri ’s), and
computed TSVils at an instance of real time in a parallel simulation. The nodes in the

communication graph are shaded to show the nodes which have the same TSVT

Since TSVT is customized for each LPit more accurately reflects the state
information on which to base event processing decisions. It is more accurate than GVT
Therefore, fossil collection can be done with more accurate state knowledge. This can lead
to better utilization of state saving memdyee Chapter 6 for performance results on the
reduction in state space.) If the state space were limited, as it is in Fugirhigio’speed

rollback chip [fuTG92], this can be a significant benefit.

109

3 G
——OB—O—C

o

Figure 5.1 An Example PDES Communication Topol ogy.

Many PDES's exhibit static communication properties:. that is, the number of LP's
and the communication topology are known a priori. Furthermore, many have partialy
static topologies, where the sets of potential predecessorsto each LP are known apriori. A
conservative PDES with these properties shows significant runtime speedup if the rapid
dissemination of target-specific synchronization information is possible. (See Chapter 6.)
By providing the dissemination of target-specific next event times, target-specific
unreceived message times, and target-specific lookahead values to a conservative PDES,
decisions about safe processing will be based on more accurate information. These target-
specific values are computed from an LP's predecessors as determined by the transitive
closure of the static communication graph. By providing information specific to each LP's
requirements, the potential for increased parallelism and a resulting speedup is apparent.
We report on speedup potential in conservative PDES in Chapter 6.

108

5.1. Target-specific Reductions in Parallel Simulations

The dissemination of globa state information in the form of globally reduced
values means that each of the LP's in a parallel ssmulation receives information that is
derived from the whole group’s inputs. In atarget-specific reduction, each of the LP'sisan
individual target, such that it receives a particular reduced value computed from a subset
of the LP's on which it is logically dependent. In a system of n LP's, n target-specific
reductions must be computed for each operation. Each of the necessary reduction
operationsin a PDES may have different targets. Thus, from the perspective of agiven LP,
its target-specific inputs and outputs depend on the operation being performed. Also,

different LP's can have different sources of inputs and different targets, as we explore next.

5.1.1. Target-specific Reductions in Conservative PDES’

A conservative PDES synchronization protocol based on global state information
can introduce artificial dependenciesthat may not exist, causing potentially parallel events
to execute sequentialy. For example, assume the communication graph of LP's in Figure
5.1. LP; is not dependent on any LP's and should be able to advance its simulation clock
without blocking. LP, should receive synchronization information only from LP;, LPs
should only receive synchronization information from LP; and L P;, etc. In this case, target-
specific next event times and target-specific unreceived message times for LP, are
computed from those LP's that can have an impact on its performance, that is, all of LP’s

predecessors in the directed graph representing the communication topology of the PDES.

5 TheCogt of Doing Tar get-specific
Reductions

We have established that target-specific reductions can be critica to the
performance of both aggressive and non-aggressive paralel simulations [PARES3]. In this
chapter we present the best known theoretical results on the sequential computation of
target-specific binary, associative operations. Our theoretical contributions include the
establishment of specific time complexity and space complexity trade-offs. These
complexities are important to the computation of reduced values in a target-specific
reduction network because they can be used to estimate the cost of computing target-

specific reductions in parallel.

We begin this chapter by motivating the need for the computation of target-specific
reductionsin parallel discrete event simulations. We demonstrate the applicability of target-
specific reductions to a wide range of PDES synchronization protocols in Section 5.1. In
Section 5.2. we discuss characteristics of binary, associative operations that have an effect
on the computation of target-specific reductions. In Section 5.3. we present a problem
formulation and relate its graph theoretical representation to an equivalent set theoretic one.
In Sections 5.4 and 5.5 we present sequential solutions to this problem. These solutions
differ in time and space complexities and the obvious trade-offs between the two.
Intuitively, the best sequential solution to this problem has time complexity O(nz);
however, the results in this chapter show that a sub-quadratic solution is attainable. In

Section 5.6. we discuss the implementation of aparallel target-specific reduction network.

107

106

processor. We conclude that TPA performs aswell as SPA, and that memory utilization on

the auxiliary processorsis better.

The simulation performance studies presented in [SRIN92] and performance studies
presented in Section4.8. are encouraging. They show significant potential for
reduction-based acknowledgment algorithms. These experimental results, however,
assume that reductions are computed globally. In the next chapter we introduce
target-specific reductions to more accurately depict the state of a PDES. We believe the
performance of the message acknowledgment algorithms in this chapter can be improved
greatly since target-specific acknowledgments allow many acknowledgments to occur
concurrently. We expect the time lag between the sending of a message and its

acknowledgment to be reduced significantly.

105

4.9. Summary and Conclusions

In this chapter we have presented several algorithmic variations on acknowledging

event messages in a reduction network. We have made several contributionsin this area.

First, we have demonstrated the feasibility of performing message
acknowledgments in the reduction network. The algorithms are instrumental in particular
to the computation of global virtual timein aggressive PDES synchronization protocolsand
minimum outstanding message times in other PDES synchronization protocols in the

reduction-based framework developed in Chapter 3.

Second, we have presented batching acknowledgments as a method of
acknowledging multiple messages in a single reduction, and this improvement has proven
to be robust and stable. With the batching of acknowledgments, the framework hardwareis
able to efficiently support smaller event granules. Throughout this chapter we have
discussed the fundamental issues involved with each alternative. We have included

discussions about implementation details and correctness i ssues.

Third, we have developed two a gorithms which correctly acknowledge messages
in a reduction network where output state vector loss is a property of the hardware: a
two-phase acknowledgment and a single phase acknowledgment. Furthermore, the
algorithms are correct when the reductions are being computed asynchronously with the
execution of the simulation. A correctness proof for TPA was presented in [SRRE93], and

correctness proofs for SPA were presented here.

Finally, we have implemented both the two-phase acknowledgment and the single
phase acknowledgment on our prototype framework hardware. We compared the two with

respect to execution time of the simulation and sizes of the message lists on auxiliary

104

7.0 - . : . . :
GC—OTwo-phase acknowledgment
6.0 VV—V Single phase acknowledgment
o I 1
v
c 50 B v\v -
O
o
o
E 40+ -
£
@
= 30t .
20 Q\%/Q ©]

1800 0010 0020 0030 0040
Mean Time Between Received Messages (seconds)

Figure 4.14 Effect of Load on Batch Size, where Number of Internal Events|s 2.

We conclude, based on our performance results, that TPA gives the same
performance as SPA, using less memory on the auxiliary processor. It is an open question
how each acknowledgment algorithm will perform in a larger system. The simulation
results in [SRIN92], however, indicate that TPA is scalable to up to 32 processors with

essentially no growth in the time required to acknowledge messages.

103

form. In most cases the sizes of the maximum batches are three times greater in SPA than

in TPA.

50 T T T T T T T T

G—OTwo-phase acknowledgment
VV—V Single phase acknowledgment

Maximum batch size

20 r -

.O | , | O\ o
1'Oo.o 0.2 0.4 0. 08 1.0

Mean Time Between Received Messages (seconds)

Figure 4.13 Effect of Load on Batch Size, where Number of Internal Events s 10.

102

3.0 - . : . . :
G—OUnacknowledged list - TPA
VV— Unacknowledged list - SPA
@ —® Outstanding list - TPA
V—V¥ Outstanding list - SPA
S
o) 20 a
12}
=
)
<
O
>
<
10+ a
08 s — 1 f\C .] O 1] O
.000 0.010 0.020 0.030 0.040

Mean Time Between Recelved M essages (seconds)

Figure 4.12 Effect of Load on Sizes of Lists, where Number of Internal Events|s 2.

The graphsin Figures 4.13 and 4.14 show the effect of load on the maximum batch
size of an acknowledgment in the reduction network. It comes as no surprise that the batch
sizesarelarger in SPA thanin TPA. In TPA, the maximum size of batchesislessthan three
in al cases and less than two in the case when the number of internal events is uniform
randomly distributed from 0-10 (Figure 4.13). SPA, however, alows a message to be
coalesced with a batched acknowledgment in progress, as long as the timestamp of the

message is less than that of the acknowledgment in progress. This allows larger batches to

101

time a message is sent through the host communication network until that message is

received and acknowledged.
15 - . : . . , :
G—O©Unacknowledged list - TPA
VV—V Unacknowledged list - SPA
®—® Outstanding list - TPA
V¥—V¥ Outstanding list - SPA
N 10 v v -
0]
v
—
)
ol
)
>
< 05} vy
a'aY W) 1 A LA A 1 A 1 & A
046502 0.4~ 0.6 08 1.0

Mean Time Between Recelved M essages (seconds)

Figure 4.11 Effect of Load on Sizes of Lists, where Number of Internal Events s 10.

In SPA the unacknowledged message list is smaller than the outstanding message
list. A message is removed from the outstanding message list when an acknowledgment is
received in the reduction network. A message is not removed from the unacknowledged
message list until global virtual time has increased to a time that is greater than the
message’s timestamp. In all cases, the total sizes of both the unacknowledged message list
and the outstanding message list in SPA are significantly greater than the sizes of the

corresponding listsin TPA. We explore the effects of load on the maximum batch size next.

100

20.0 - . : . . :
G—OTwo-phase acknowledgment

- VV—V Single phase acknowledgment
8
o
§§ 15.0 - .
@
£
=
=)
g

10.0 - .
n

58 L | L | L | L
.000 0.010 0.020 0.030 0.040

Mean Time Between Recelved Messages (seconds)

Figure 4.10 Effect of Load on Execution Time, where Number of Internal Events|s 2.

The graphsin Figures 4.11 and 4.12 show the effect of the auxiliary processor load
on both the size of the unacknowledged message list and the size of the outstanding
message list. The size of the unacknowledged message list in TPA isessentially zero at all
times. This suggests that when AP, receives an entry for a newly received message at its
host processor, that message will be submitted to the reduction network as P; immediately.
For a given LP in TPA, the size of its outstanding message list is larger than its

unacknowledged list because a message remains in the outstanding message list from the

99

communication network is saturated (message arrival rate = network message processing

rate).

100.0 - . - . : . : .

G—OTwo-phase acknowledgment
VV—V Single phase acknowledgment

80.0

(o))

o

o
T

40.0

Execution time (seconds)

20.0

00 02 04 06 08 10
Mean Time Between Recelved Messages (seconds)

Figure 4.9 Effect of Load on Execution Time, where Number of Internal Events s 10.

98

results on the size of the outstanding and unacknowledged message lists from each of the
four auxiliary processors twice.&\Waried the event delaghe delay to save state, and the

number of internal events generated per output event. Our results follow

4.8.3. Results of Experiments

We gathered the following statistics for each run:

* mean length of the unacknowledged message lists at an AP

* mean length of the outstanding message lists at an AP

* maximum sizes of batches of acknowledgments

» wallclock time to execute the simulation

* number of messages (event messages and antimessages) received by an LP

We estimated the mean time between received messages by dividing the wallclock
time of the simulation by the number of messages received at.ahhkPmean time
between received messages reflects that load on the auxiliary prosesseuse this time
as the independent variable to present our results graphicadlif graphs the results of
TPA studies are represented with circles on the curves, and the resuls stugiies are

represented with inverted triangles on the curves.

The graphs in Figures 4.9 and 4.10 show that the execution times of the simulations
are essentially the same for both acknowledgment algorithms. In Figure 4.9 the number of
internal events between output events (those that generate an event message) was uniform
randomly distributed between 0 and 10. In Figure 4.10 the number of internal events
between output events was uniform randomly distributed at 2. The general shape of the
curves is linegras expected. As the mean time between messages decreases, the execution
time of the simulation decreases. Note that as the mean time between messages decrease:
(causing the auxiliary processor load to increase), the execution time becomes asymptotic

to the cost of doing message transmission and processing. At this point the host

97

The prototype hardware limits state vectors to size eight; each of the eight
componentsis aregister pair, one 32-bit data register and one 32-hit tag register. For both
acknowledgment algorithms, we have programmed the reduction network to operate on

state vectors of size four. We discuss the implementation details next.

4.8.2. Implementation of Acknowledgment Algorithms

Both TPA and SPA were implemented. TPA was implemented exactly as discussed
in Section 4.3. In lieu of guaranteeing unigue timestamps in the implementation of SPA, we
used TPA as a simple and efficient way to break a deadlock situation as discussed in
Section 4.4.2. We assume the non-FIFO case for SPA, where messages at LP, are not

necessarily received in the order they were sent from LP,.

Time Warp was selected as the parallel simulation synchronization protocol. The
communication topology of the LP's was a fully connected graph, i.e., each LP sent a
message with equal probability to one of the three other LP’s. Prior to gathering results we
varied the global virtual time between 1000 and 20,000 to verify that the statistics would
be gathered during stable conditions in the simulation. In each result reported, the

termination condition was that global virtual time exceeded 20,000.

In SPA, we performed a sensitivity analysis to the variable Tgg, the number of
iterations that a round robin acknowledgment is submitted by AP, to the PRN as p;. We
observed little sensitivity to thisvariable. It is an open question whether larger ssimulations
aremore sensitiveto thisvalue. For SPA we selected Trg = 25 sincethisvalue gave dlightly

better timings.

Each point reported on a graph indicates the average of eight executions of a
simulation with the same event time, same delay to save state, and the same number of

internal events generated per output event (event resulting in amessage send). We gathered

96

All three of our proposed aternatives depend on a new globa synchronization
value p', which replaces the acknowledgment messages in Reynolds's framework
algorithms. All agorithms eliminate the potential race condition in Reynolds's algorithm,
although in the previous section we showed how to use the host network while eliminating
thisrace condition. Both the two-phase acknowledgment and the single phase (round robin)
acknowledgment guarantee the correctness of PDES synchronization algorithms even
when output values from the PRN are overwritten prior to being read. In the next section

we present our results on the performance of both TPA and SPA.

4.8. Performance Results

We have implemented both TPA and SPA on our four-processor prototype
framework hardware [REPS93]. We discuss the prototype system and execution parameters

prior to presenting our results.

4.8.1. Prototype Framework Hardware

The host systemisa Sparc cluster: four Sparc 2 equivalent processors with Ethernet
(TCP/IP) as the host communication network. The expected host communication latency

time is approximately two milliseconds.

Each auxiliary processor is a 25 MHz Motorola 68020 microprocessor with 256
Kbytes of RAM. The host-auxiliary processor interface isimplemented with a dual-ported
RAM, where a Sparc 2 accesses the dual-ported RAM through a Sun SBus interface
[SBUS9)].

The parallel reduction network consists of three ALU’s in a binary tree-shaped
network. The minor cycletimeis 150 nanoseconds. The pipelining in the reduction network

is performed synchronously.

95

communication network. This is essentially a handshake between the host processor and
auxiliary processor in order to eliminate the race condition. Therefore, the race conditionis
eliminated by submitting the T-values in the receiving L P to the reduction network prior to

sending an acknowledgment.

If this synchronization between the two processors is implemented, the host
communication network can be used to acknowledge some of the messages in the system.
A host processor can submit some acknowledgments to the reduction network and others
to the host communication network. Furthermore, if an HP employs piggybacking of
batched acknowledgments to event messages, no additional message traffic is generated in
the host network. Piggybacking can only be used if a pair of LP's have a bidirectional
communication, as in Figure 4.1. The performance of using both networks for message

acknowledgments is a topic of future research.

4.7. Discussion

Each of the algorithms, TPA and SPA, presented here requires each LP to maintain
two lists of outstanding messages; Reynolds's framework algorithms only required LP'sto
maintain a list of messages sent. The size of these data structures, i.e., the memory
requirement, is largely dependent on the properties of an LP, the PDES synchronization
protocol used, and the application. All lists are maintained on the auxiliary processor and
not the host processor. We expect the size of the unacknowledged message lists in the
non-FIFO SPA to grow faster than the unacknowledged message lists in TPA because
garbage collection will only occur with the advance of GVT.. In TPA messages are
removed from the unacknowledged list when a handshake completes. We present
performance results comparing these two algorithms with respect to memory requirements

in Section 4.8.

94

Lemma4.6

The transition from GVT acknowledgment mode to round robin acknowledgment
mode is non-interfering.

Pr oof

Consider the transition from GVT acknowledgment mode to round robin
acknowledgment mode.

Assume AP, isoperating in GV T acknowledgment mode at real timet.

Assume that at somereal timet,, t; > t, GVT(t) < GVT(t,). By P3 (periodic read)
and P9 (garbage collection) AP, will read a new state vector from the reduction
network and will process GVT(t;) by some real time t,, t, >t;. By P9 (garbage
collection) AP, will remove acknowledgmentswhich havetimeslessthan GV T(t,),
so that old acknowledgment values will not interfere with acknowledgments to be
performed in the future.

Furthermore, by P10 (GVT mode acknowledgment) AP, resumes round robin mode
when it determines it no longer needs to acknowledge the smallest message in the
system. Hence, the transition from GVT acknowledgment mode to round robin
acknowledgment mode does not prevent future messages from being

acknowledged.

Therefore, the transition from GVT acknowledgment mode to round robin

acknowledgment mode is non-interfering. |
Theorem 4.2

The single phase acknowledgment is correct.
Proof

The correctness of the single phase acknowledgment follows directly from
Theorem 4.1, Lemma 4.4, Lemma 4.5, and Lemma 4.6.]

4.6. Improvements of the Acknowledgment Algorithms

The race condition described in Section 4.1.3. can be eliminated with additional
communication between an AP and its corresponding HP. Once an AP reads the change to
the next event time from the HP, processes this received message by adding it to the
appropriate unacknowledged message list, and submits the corresponding next event time
to the reduction network, resulting from a received message, it communicates this to the

HP. Only at that time can the HP send the acknowledgment message through the host

93

By P5 (correctly maintained unreceived message time) if LP, such that
s=sender(p’ (t)), reads and processes acknowledgment p’ (t) during round robin
mode at real timet, then LP, updates v s(t) accordingly.

Therefore, any message acknowledgment that completes in round robin mode will
maintain the correctness of GVT mode acknowledgments. [|

We note that any acknowledgment completed during round robin mode has a timestamp

greater than or equal to GV T,(t) by P9 (garbage collection). Furthermore, by this same

property, an unacknowledged message is not removed from an unacknowledged message

list unless GVT(t) is greater than its timestamp. This is important so that p;’s with

timestamps less than GV T(t) do not prevent p,’s with timestamps greater than or equal to

GVT(t) from being completed. Next we prove that the transitions between the two modes

do not affect the correctness.

Lemma4.5

Pr oof

The transition from round robin acknowledgment mode to GV T acknowledgment
mode is non-interfering.

Consider the transition from round robin mode to GVT mode.
Assume AP, is operating in round robin acknowledgment mode at real timet.

By P10 (GVT mode acknowledgment) AP, will remain in round robin
acknowledgment mode as long as no message in its unacknowledged message list
has a timestamp equal to GV T(t).

Assume at some real timety, t; > t, GVT(t) < GVT(t;). Assume that LP, has the
smallest outstanding message time in the system, v’ (t;)) = v s(tl) =GVTty), ad
that LP, was the receiver of this message. By P3 (periodic read) and P9 (garbage
collection) AP, will read anew state vector from the reduction network and process
GVT(t,) by some red timet,, t,>t;. By P10 (GVT mode acknowledgment) all
round robin mode acknowledgments are halted by AP, and GV T acknowledgment
mode is entered, such that timestamp(pr(tz)) =GVTt). By Lemma 4.2 the
acknowledgment will complete by some real time t;, t;>t,. By Lemma 4.4,
GVT(t) <GVTty), by some rea time t,, t,>1t; once GVT acknowledgment
mode is entered.

Hence, the transition from round robin acknowledgment mode to GVT
acknowledgment mode does not prevent the smallest message in the system from
being acknowledged. Therefore, the transition to GVT mode is non-interfering. =

92

By P4 (correctly set local clock), by somereal timet,, t; > t, each AP will process
all entriesin the HP-AP FIFO, and 0, (t,) = o, (1), Li, i=1...n.

There are a finite number of messages to be acknowledged. By Lemma 4.1 and
Lemma4.2for each u; < 0., =1...n, themessageswill be acknowledged, and the
corresponding L;’'s will bé set to greater values, and by these same lemmas,
GVT(t,) will equal the value of 6j (t) by somered timet,, t, > t;.

Hence, GV T (t+At) = GVT(t), in some finite rea time At, where At = t,-t. u

4.5.4. Correctness of Round Robin Acknowledgments

Now that we have shown the correctness of the GVT mode acknowledgments in
SPA, we must show that the round robin mode acknowledgments maintain the
advancement of GV T(t), and that the correctness of SPA is maintained during transitions
from round robin mode to GVT mode and vice versa. In Lemma 4.4 we prove that all
messages acknowledged during round robin mode are acknowledged properly. In Lemma
4.5 we show the non-interference of round robin acknowledgments. We use the term
non-interference in a less rigorous way than Owicki and Gries [OWGR76]. By
non-interference, we will show that each acknowledgment mode does not violate the
correctness of the other. Our strategy isto examine the variables and data structuresthat are
read and/or written while in round robin acknowledgment mode and to show that they will
remain in correct states. Also we demonstrate that the transitions between the two
acknowledgment modes do not violate the correctness of Lemma 4.2, Lemma 4.4, and
Theorem 4.1.

Lemma4.4

Message acknowledgments completed in round robin mode maintain the
correctness of GV T mode acknowledgments.

Pr oof

During round robin acknowledgment mode, AP, will write different M,(j)’s to the
T-value p,- By P6 (correctly updated unacknowledged message lists) each message
in an unacknowledged list at AP, at rea time t, including the M,(j)’s, has been
received by LP,.

91

Now we establish within finite time At, p'(t+At)=p (t). By P9 (garbage
collection) and P3 (periodic read), each AP, i=1...n, removes al messages with
timestamps less than GV T(t) from its unacknowledged message lists and updates
its p; s SO, timestamp(pr(t)) < timestamp(pi (t)), i=1...n, i #r by some real time
t;, t; > t. By P2 (reduction operation), a new state vector will be computed by some
real time t,, t,>t;, and p'(t,) will be set to pr(t). By P10 (GVT mode
acknowledgment) and P8 (unique timestamps) p'(t,) retains its value until
sometime after GV T(t) advances.

By P3 (periodic read) by some rea time ts, t; > t,, AP will read and process the
state vector containing p'(t,), the acknowledgment for its smallest outstanding
message. By P5 (correctly maintained unreceived message time), AP will update
Ug infinite real time, so that by real timet,, t, > t;, us(t4) > Us(t).

Hence, if ti meﬂamp(pr(t)) = GV TL(t), the acknowledgment of P, will completein
finite rea time At, where At = t-t. n

Lemma4.3

Pr oof

If GVT(t) = timestamp(p’ (t)), then in some finite rea time At, GVT(t+At) >
GVT.).

Assume that GVT(t) = timestamp(p’(t)), indicating that the message with
timestamp at GVT(t) is being acknowledged. AP, the auxiliary processor for LP,,
such that s = sender(p’ (t)), will eventually process the acknowledgment by Lemma
4.1. AP, will then increase its minimum unreceived message time v o which was
equal to GV T(t).

By P2 (reduction operation), anew state vector will be computed by somereal time
t;, t; > t. GVT(t)) # GVTt) by P8 (unique timestamps) and the change to v_.
Furthermore, by Lemma 4.1 (monotonically non-decreasing GVT,),
GVT(t) > GVT(Y).

Therefore, GVT(t+At) > GV T(t) in some finite rea time At, where At = t,-t, if
GVT(t) = timestamp(p’ (t)). [|

Theorem 4.1

Pr oof

If the simulation is halted at real timet, GV T (t+At) = GV T,(t), in some finite real
time At.

Assume that the simulation is halted at real timet, meaning GV T(t) isfixed at real
timet. Attimet, al LP's stop processing events and retain the values of their o,’s.
With areliable host communication network, all messagesintransit will bereceived
eventually. At real timet thereexists a. (t), such that &. (t) isthe smallest local clock
in the system and because the simulation is halted, GV T(t) = 6j (©).

90

Next we show that SPA acknowledges messages correctly and that if the simulation
makes progress, GVT, increases as messages are acknowledged, i.e.
GVT(t) < GVT(t+At) in some finite real time At, for all real timest as long as there are
messages to be acknowledged or events to be processed. In Lemma 4.2 we show that a
message acknowledgment with timestamp equal to GV T(t) will eventually be completed.
An acknowledgment is completed in SPA when AP,, the sender of the message, reads p’,
removes the message from an outstanding message list, and updates v accordingly. In
Lemma 4.4 we show that GV T(t) advances as messages are acknowledged. Finally, we
show that GV T(t) approaches GV T(t) (Theorem 4.1). Theorem 4.1 is aliveness proof, to
show that if the simulation is halted at any real timet, GV T (t+At) will equal GVT,(t) in
somefinitereal timeAt. We note that if the simulation is halted, some messages will remain
unacknowledged since the progress of GVT(t) is a commitment horizon for messages
acknowledged.

Lemma4.?2

If timestamp(p_ (t)) = GVT(t), then the acknowledgment of the unique message
with timestamp P, will completein finite rea time At.

Pr oof

By P1 (no loss), each AP receives information about the receipt of each event
message and antimessage from its corresponding HP. By P6 (correctly updated
unacknowledged message lists), each message will be incorporated into the
unacknowledged message list of the message receiver.

We have assumed GV T(t) is equal to the unique timestamp of an unacknowledged
message, which means it also must be equal to the (same) timestamp of an
outstanding message for some L P,. Since GV T(t) isthe minimum of all outstanding
messages and all local clocks by P7 (computed GVT), it follows that
GVT(t) = v’ (t). Therefore, GVT(t) =v'(t)=v S(t) = pr(t).

By P5 (correctly maintained unreceived message time), the message with
timestamp v S(t) does not have a corresponding completed acknowledgment. By P8
(unique timestamps) and P5 (correctly maintained unreceived message time),
GVT(t)=v S(t) until the acknowledgment is read and processed by AP, and AP,
has updated v

89

(b) AP, processes a new local clock valtéEW CLOCK) from the FIFO indicating

that LR has received a straggler (an event message arriving in;endalt) or
antimessage from LPcausing a rollback. In this casg; < 0;. Since both
messages and antimessages are used to compute unreceived message times, we
examine the possible scenarios:

(i) AP, the auxiliary processor for the sending,Litas processed the FIFO
entry SENT_MSG for the message sent with timestagyp ThereforeG < v, =
o, = G.

|

(if) AP, has not processed the FIFO erfgNT_MSG. In [SRRE93], it was
shown that if a rollback chain (or possibly several rollback chains) are followed
towards the root of the chain (or the root of the smallest rollback chain), there exists
an AR such thayy, < 0;. (The LP at the root of the rollback chain is the LP that
has rolled back |ts computatlon due to a straggler and not an antimessage. If LP
receives a straggler and then sends an event message that is a straggléveat LP
there are two rollback chains, where BRd LR are both roots.) Thereforé,< My
<g; =G.

Case I1.G = 0, for some

(a) AP, reads and processes an acknowledgment for the message with tamel
therefore sets its new unreceived message ﬁnme the smallest tlmestamp in its

outstanding message list. B (correctly maintained unreceived message time),
u; < U, andsinc&<v,,G< G.

(b) AP, processes a FIFO entBENT _MSG such that the timestamp of the message
sent <uv,. In other wordsp; < u.. However since a message is sent only after
executlng an event and enqueuelmgﬁAL CLOCK entry, u =0;. SinceG< O,

by Case I., and; = G,G<G.

ThereforeLemma 4.1 (monotonically non-decreasing G\(#)) holds at all times,
if there is a mechanism for L$receiving messages to notify the $Bhat sent
them. |

4.5.3. Overview of Theorem 4.1: GV T, approaches GVT,

Acknowledging messages is the key to the progress of the globally reduced
unreceived message time,, and therefore GV {t). In SFA, GVTt) serves as the
“handshake acknowledgment”, such that a message acknowledgment is guaranteed to have
been read and processed by the message sender wheft) @VJreater than the logical

timestamp of the message.

88

Srinivasan and Reynolds [SRRE93] showed that GV T () is strictly non-decreasing
when a single processor, and not a host-auxiliary processor pair, was used to execute
simulation events and interface with the reduction network. The asynchronous nature of the
auxiliary processors and the FIFO’s between the processorsin aHP-AP pair make our proof
more complex. We build on the proofs of Srinivasan and Reynolds [SRRE93] and use
similar proof techniques. The methods for maintaining thelocal T-values 0; and ip and the
computation of both ¢' and v' do not change in this algorithm. The difference between
TPA, proven correct in [SRRE93], and SPA, which we prove correct next, is the method of

acknowl edging messages.

In the following proof the only assumption made about acknowledgments is that
there isamechanism for the receiver of each message to notify the sender of the receipt of
the message. Thereis no assumption that acknowledgments use a reduction network or any
particular algorithms.

Lemma4.l

GVT(t), which is the minimum of all local clocks, o' (t), and minimum of all
unreceived messagetimes v’ (t) at all real timest, ismonotonically non-decreasing
asafunction of t; i.e., GVT(t) £ GVT(t+At), LJAt > 0.

Pr oof

If thereis achange in GV T (t) from one reduction cycle (GV T (t;) = G) to the next
(GVTp(t0+5) =QG), Whereg isthetimeit takes to complete areduction cycle (refer
to Figure 4.5), then we must show that this change is always nondecreasing. We
refer to T-values contributing to G using the ™ symbol and to those contributing to
G without it. We consider the two cases — change to local clock or change to
unreceived message time — in which GV T (t) can be computed. For each case,
there are two sub-cases. In other words, there are four waysto transition from G to
G.

Casel. G = &; for somei

(a) AP, processes anew local clock value (NEW CLOCK) from the FIFO indicating
that LP; has finished processing an event and computed ;. G; must be at least as
large as 0; sincethe eventslist is sorted in non-decreasing order. Therefore, G < O;
<0, =G.

|

87

Property P9 (garbage collection):

When AP, reads and processes a new state vector at real time t, indicating that
GVT(t) > GVT(t-At), where GV T(t-At) wasthelast GVT value processed by AP,
it removes al messages with timestamps less than GVT(t) from its
unacknowledged message lists and updates the batches to be acknowledged in each
list, including P; , within finite real time.

Property P10 (GVT mode acknowledgment):

When AP, determines that it has a message to acknowledge with timestamp equal
to GVT(t), it enters GVT mode and continues to acknowledge this message until
some real time t+At such that GV T(t) < GVT(t+At). If AP, enters GVT mode at
real timet and at real time t+At, GV T(t) < GV T(t+At), and there is no messagein
an unacknowledged message list for L P, with timestamp equal to GV T(t+At), then
AP, resumes round robin mode and acknowledges another message.

4.5.2. Overview of Lemma4.1: GVT(t) IsMonotonically Non-decreasing As a Func-

tion of Real Timet

Since GVTt) is a commitment horizon for the garbage collection of
unacknowledged messages, it is critical that the function GVT(t) is monotonically
non-decreasing as a function of t and that it never exceeds GV T,(t). Note that if ever
GVT(t+At) < GVT(t), an AP may determine incorrectly that a message acknowledgment
was read and processed by the sender and remove it from an unacknowledged message list.
Hence, GV T(t) would never advance, in particular it would never increase beyond thetime
of that message acknowledgment. Before proving the correctness of SPA, we must show

that GV T(t) isanon-decreasing function of real timet. Thisisthe goal of Lemma4.1.

Since GV T(t) is the computed GV T that emerges from the reduction network, it
follows that GVT(t) = GVT(t-At) for some At > 0. This follows directly from definitions
as depicted in Figure 4.5. If we show that GV T (t) is monotonically non-decreasing for all
times t when a reduction cycle is started, then GVT(t) will be monotonically

non-decreasing for all real timest. We show this.

86

Property P2 (reduction operation):

The PRN computes reductions on state vectors. Acknowledghedties are

computed with a minimum operation that is a tagged selective operation.
4.5.1.2. Properties of the AP

Property P3 (periodic read):

Each auxiliary processor will read the output from the reduction network in a finite,
bounded amount of time.

4.5.1.3. Properties of the AP Algorithm

Property P4 (correctly set local clock):

When LR completes an event, receives a message or antimessage, or rolls back, the
T-valueo; at AR is set correctly to reflect its local clock.

Property P5 (correctly maintained unreceived message time):

When LR sends an event message or antimessage? it greater than the
timestamp of the message, will be set to the timestamp of the message by AP
When AR reads an acknowledgmepit from the reduction network and processes
this as an acknowledgment for a messagehiaB sent, that message is removed
from one of LPs outstanding message lists ands set to the smallest among the
timestamps of messages remaining irid. Butstanding message lists. At any time,
L, is always equal to the smallest timestamp ifid.utstanding message lists.

Property P6 (correctly updated unacknowl edged message lists):

When LR receives an event message or antimessage, that message is added to an
unacknowledged message list at. AP

Property P7 (computed GVT):

By definition, computed GVT at real timeGVT(t), is the minimum of all local
clocksa’ (t) and minimum of all unreceived message time&) and will always
be set to eitheo’ (t) or v’ (t).

4.5.1.4. Properties of SPA

Property P8 (unique timestamps):

All T-values that are inputs to the reduction network have unique logical
timestamps. Therefore, given a set of inputs, there isan@yossible computed
output that can emge from a tagged selective reduction in the reduction network.

85

correctness proof states that (1) GV T,(t) is aways less than or equal to GV T(t) at al real
timest; and (2) GVT(t) approaches GV T(t), or that if the ssmulation is halted at any real
timet,, GVT(t) will equal GV T(ty) in somefinitetime, t = t,. We prove the correctness of

SPA here.

There are two modes for acknowledging messages in SPA: round robin mode and
GVT mode. The round robin mode coupled with lost state vectors on the output side of the
reduction network makes no guarantee that any round robin acknowledgment sent through
the PRN is ever read and processed by the AP of the LP sending the message. Therefore,
we can only prove that messages are acknowledged in GVT mode, since there is no
guarantee that any messages are acknowledged during round robin mode. We expect the
round robin mode to enhance the efficiency of SPA. In Section 4.5.4., we prove that round

robin mode maintains the correctness of SPA.

Our correctness proofs assume a processor pair consisting of a host processor and
an auxiliary processor as described in Chapter 3. The event execution is performed on the
host processors, GVT computation algorithms and SPA execute on auxiliary processors,

and all globally reduced values are computed on state vectors in a reduction network.

4.5.1. Properties of the Hardware and Algorithms

Before proving the correctness of the single phase acknowledgment, we present
some properties of the framework hardware and corresponding algorithms. Some of these

properties appeared first in [SRRE93].

4.5.1.1. Properties of the Framework Hardware

Property P1 (no 10ss):
No communication from the HP to AP is|ost.

SENDER: I F p' has been sent to this LP
THEN |IF p' is in any outstandi ng nessage |i st
THEN Renove all outstandi ng nessages up to and
i ncluding p' message;
I F timestamp (p') = v,
THEN v = smal l est tinmestanp in any
out standi ng nessage |ist;

RECEI VER: I F T,=0 -- timeslice is over
THEN s := next sender;
T = Try
pi := Pi(s);
ELSE Ti:=T; - 1;
NEW GVT: I F nmode = GVT node -- resune round robin
THEN node : = round robin;
Ti .= TRR;

FOR each sender r
I F GVT > tinmestanp (Pi(r))
THEN PRi(r) := Bi(r);
Bi(r) .= {OO,CD,O};

I F p. = old P(r) -- continue round robin
THEN IF P(r) Z {o, ®,0}
THEN P *= Pi(r);
ELSE T,:= 0; -- force tineslice end
I F ti mestamp (Pi(r)) = GVT
THEN node : = GVT node; -- suspend round robin
p; 1= Pir);
NEW MSG r .= sender(new_nsg)

I F (Pl(r) = {OO’(D,O}) OoR
(timestanp(new_nsg) < tinestanp(Py(r)))

THEN Pj(r) := batch containi ng new_nsg;
I F P = old Pi(r)
THEN p. := P(r);

ELSE IF timestamp (Bi(r)) > tinmestanp (new_nsg)
THEN tinmestanp (Bj(r)) := tinestanp (new_nsg);
size (By(r)) := size(By(r)) + 1,
ELSE size(By(r)) := size(B(r)) + 1;

Figure 4.8 Acknowledgment Algorithms Assuming FIFO Channels Between LP's.

4.5. Proof of Correctness of SPA

A proof of correctness for an aggressive PDES synchronization protocol executing

on the framework hardware was presented by Srinivasan and Reynolds [SRRE93]. The

83

to contain the sequence number of the new message, but its timestamp was not smaller than
the batch’s, the batch M;(j) could be removed from the unacknowledged list with no
guarantee that the acknowledgment with the additional sequence number was read and
processed by the sender. To ensure that every message is acknowledged, the batch M,(j) is
updated to include a new message only if the timestamp of the new messageis smaller than
the timestamp of the batch M;(j).

4.4.6. FIFO Case

The FIFO agorithms in Figure 4.8 assume messages are received by LP, in the
same order in which they are sent by LP,. The maintenance of unacknowledged message
listsis much easier in the FIFO case: each AP, need only maintain two message tuples for
each sender LP,

* P,(K— the current batch being acknowledged for L P,

» B;(k)— the next batch to be acknowledged after the acknowledgment for P;(k)
has been completed.

The P;(k)’ sreplace the M;(j)’ s from the non-FIFO a gorithm. Since messages arrivein order
of increasing sequence numbers, an AP only has to store two batches as the entire
unacknowledged message list: P;(K) isthe acknowledgment being submitted in round robin
fashion, and B;(k) will be the next batch acknowledged in round robin fashion. Therefore,
the memory requirement for the unacknowledged lists will be bounded by a constant. This
islikely to be a significant improvement in the amount of memory used at the AP level as

compared to the amount of memory that we expect will be used in the non-FIFO case.

The procedures SENDER and RECEI VER are identical to those in the non-FIFO
case. The only differences in the procedures NEW GVT and NEW _MSG occur because the

unacknowledged message list and M;(j)’s are replaced by P;(k)’s and B;(K)'s.

82

The procedur&ENDER is the portion of S®in which LP, monitors the output of
the reduction network for message acknowledgments. Whaea@s an acknowledgment
from the reduction network for a message batch it sent and processes this acknowledgment,
it removes this batch from its outstanding message list and upglatesordingly The
procedureSENDER is performed each time an AP reads a new output state vector from the
PRN. The procedurBECEI VER controls the counter for the round robin timeslice and
cycles through th#,(j)’s, making each the primary message acknowledgmeimntturn,

whenever APis executing in round robin mode.

The procedurblEW GVT is executednly when GV T has changed. In the filsE
statement the AP will restart round robin mode if the mode is set to GVT mode; singe GVT
has advanced, this implies that the message with a timestamp equal to the previpus GVT
has been acknowledged. Next, the AP performs garbage collection on the unacknowledged
message lists and updates My§)’s to reflect the changes in these lists. If a spadifiy
changes and its previous value is currently being submittpldtasthe reduction network,
the T-value P; is updated to reflect the change mad®lig). If a specificM;(j) becomes
null, indicating an empty unacknowledged [isind M(j) is currently being submitted as
P, the AP forces the timeslice to end and the next time the procB&@E VER is
executedpi will be updated with the nekd;(j) in round robin ordeiThe last F statement
is the test for the equality of the current message Baighand GVT,; if they are equal,
the AP enters GVT mode, as described earterforce its smallest unacknowledged

message to be acknowledged.

The procedur&EW MSG is executed once each time an AP is notified by its HP
that a new event message has been recé\i#l.M5Gadds the new message to the correct
unacknowledged message list and updates the correspdtding the timestamp of the

new message Isssthan the timestamp of the currduyj). If the batchvi(j) were updated

81

SENDER:

RECEI VER:

NEW GVT:

NEW MSG:

I F
THEN

I F

THEN

ELSE

I F
THEN

FOR

r:.=
I F

THEN

ELSE

p' has been sent to this LP
I F p' is in any outstandi ng nmessage |i st
THEN Renove the acknow edged batch from out st andi ng
nmessage |ist;
I F timestamp (p') = v,
THEN v, = smal l est timestanp in outstanding
nmessage lists;

T,=0 -- tinmeslice end

S := next sender;

Ti 1= Trw

p, 1= M(s);

T:=T - 1;

node = GVT node -- resune round robin
node : = round robin;

Ti = TRR;

each sender r

Di scard all messages, possibly including the batch
M(r), in unacknow edged nessage list with
ti mestanmps < GVT;

M(r) := next mninmmbatch from sender r;
I F p. = old M(r) -- continue round robin
THEN 1F M(r) # {o, ®,0}
THEN p, 1= M(r);
ELSE T;:= 0; -- force tineslice end
I F timestamp (M(r)) = GVT
THEN node : = GVT node; -- suspend round robin
pi = M(r);

sender (new_mnsg) ;

(new_nsg i s contiguous with M(r))
AND (tinmestanp (new_nsg) < tinmestamp (M(r)))

Add new_nsg to unacknow edged |ist and coal esce M(r)
with new_nmsg and adj acent contiguous bat ches;

I F P = old M(r)

THEN Py = M(r);

I F (new_nsg is not contiguous with M(r)) AND
(tinmestanp (new_nsg) < tinmestanmp (M(r)))

THEN Add new nsg to unacknow edged nmessage |i st;

M(r) := batch including new_nsg;
I F P = old M(r)
THEN P 1= M(r);

ELSE Add new nmsg to unacknow edged nessage |ist;

Figure 4.7 Acknowledgment Algorithms Assuming Non-FIFO Channels Between LP's.

80

Each auxiliary processor executes the following algorithm:

AUX_PRQOC: VWHI LE simul ation is executing

Read t he PRN out put;
I F gl obal state has changed
THEN Wite global state vector to HP interface;
I F GVT has changed
THEN Perform NEW GVT;
Per f or m SENDER;
I F node = round robin

Per f or m RECEI VER,;
I F FIFO is not enpty;
THEN Get next entry from FI FG

CASE (entry_type):

NEW CLOCK: 0= new_cl ock_val ue;

SENT_MSG | F message_tinme < v.
THEN v. := nmessage_ti ne;
Add nessage to ordered
out st andi ng nessage |ist;

RCVD_MSG Per f or m NEW M5G,
END WHI LE

Figure 4.6 Auxiliary Processor Algorithm for Single Phase Acknowledgments.

The auxiliary processor algorithm remains the same for both the non-FIFO and FIFO
acknowledgment algorithms. NEW _GVT is the procedure which is executed when GV T,
advances; its primary functions are to check for unacknowledged messages equal to the
current GVT,. and to perform necessary garbage collection, i.e., the removal of messages

from unacknowledged message lists.

4.45. Non-FIFO Case

The non-FIFO agorithms in Figure 4.7 make no assumption about the order that
messages are received between a sender-recelver pair. Theoretically, a message with

sequence number g could be received | ater than a message with sequence number g+1, 1 > 0.

79

M;(j)— the current batch being acknowledged from AP’s unacknowledged
message list for sender LP,. This is the contiguous batch of messages with the
smallest timestamp from sender LP;, such that the acknowledgment for the
batch has not completed: it is a pointer into the unacknowledged message list j.

* p;— current active acknowledgment { message time, message ID} from LP,
one of the M;(j)’s.

* Trg— the total number of iterations of the auxiliary processor algorithm that
each M;(j) will be acknowledged in the round robin acknowledgment. Tgg isa
constant in SPA.

e T, — acount of the number of iterations of the auxiliary processor loop for
which aparticular M;(j) has been the current active acknowledgment, p; .

The M;(j)’s represent message batches: { message time, message I D, batch size} . We
use a functional notation to refer to a single component of the batch; for example,
timestamp (M;(j)) refers only to the logical timestamp of M;(j) and sender((IM;(j)) refersto

the sending LP (LP) which is part of the message ID.

4.4.4. General Description of Acknowledgment Algorithm

A round robin acknowledgment algorithm is executed by each LP. Each LP,
submits, in round robin fashion, each of its M;(j)’s as the current acknowledgment P; for
an equal amount of time (Tgg units) to the reduction network. When LP, has an M;(j) with
timestamp equal to GVT(t) at real timet, the round robin acknowledgment mode, or round
robin mode, is suspended, and GVT acknowledgment mode, or GVT mode, is entered. In
GVT mode p; is set to the message acknowledgment with time equal to GVT(t). GVT
mode is critical to this algorithm and the progress of the simulation: the message with the
timestamp at GV T(t) must be acknowledged so that GV T, advances. When AP, at real time
t+At, detects that GV T (t+At) > timestamp(p; (t+At)), M(j) is updated, and round robin
acknowledgments resume. The algorithm RECEI VER is only executed while in round
robin mode. The algorithm mode isinitialized to round robin and will only changeto GVT

mode when an M;(j) has atimestamp equal to the current GV T..

78

ID can be appended to 0;. This algorithm works with non-aggressive PDES

synchronization protocols. Now we discuss the effects of rollback and forward processing.

In an aggressive PDES, an LP can process events with the same logical timestamp
during forward processing and again after a rollback and hence, event messages can have
duplicate timestamps. In this case, we suggest appending the unique sender-receiver
seguence number to L, and a suitable unused sequence number to 0. Another solution to
this problem is to use an adapted version of TPA, such that the receiving AP will enter a
handshake mode to break ties of two or more messages with timestamps equal to GVT,. In
this adapted TPA, an AP,, the auxiliary processor for a receiving LP, will monitor the
handshake acknowledgment reduced value T’ when it is acknowledging a message with
time equal to GVT,, and AP, will stop submitting this acknowledgment in the reduction
network when it receives a second phase acknowledgment, such that p, =T .AP the
auxiliary processor for a message sender, will submit a handshake acknowledgment t Jto
the reduction network when it reads and processes an acknowledgment for a message with
timestamp equal to GV T, (i.e, its L, is equal to GVT,). Also unique timestamps must be
guaranteed for each message-antimessage pair since both messages and antimessages must
be acknowledged. We suggest using a single bit appended to the logical timestamp to
distinguish between an event message and its corresponding antimessage. When GVT, is
used as an acknowledgment, it is the finer grain of logical time at the auxiliary processor

level and in the reduction network.

4.4.3. Data Structures and Values M aintained by Each AP

The host processor requirements for SPA are the same as those for TPA. As with
TPA, each auxiliary processor maintains two lists of messages: unacknowledged message
list and outstanding message list. Each AP, also maintains the T-values of and u;. In

addition to these data structures and values, each AP, must maintain the following:

77

18) At somerea timet,,, t,, >t,;, LP, setsitslocal clock F4(t22) to 8, writes
this clock update to its FIFO, and processes an event at time 8. AP, sets 0, ()
to 8 at somereal time tyg, tys > th.

19) At some real time ty,, ty, > tys, &l global values now reflect the changes
made to al local clocks. o' (t,,) =7, L' (t,y) =5 and p'(ty) = {5, S0, 1} (a
deterministic selection). GV T (t,,) = 5.

20) At some red time ty, ts>t, LP, reads and processes the
acknowledgment p' and updates v (t;s) to .

21) At some real time tyg, tys > tos, al global values now reflect the change in
LP,; 0'(tg) =7, L' (tg) =5 and p'(te) ={5 S 1} (a deterministic
selection). GV T(t,s) = 5. Furthermore, GV T (t,c+At) =5 for all real times At.

We conclude, without proof, that unique timestamps are necessary for preventing livelock
and guaranteeing progress of the reduction operations (i.e. to guarantee that GVT,
eventually increases as GVT, increases). If non-unique timestamps are present in the
system, we can augment timestamp values to create unique timestamp values with the

following technique.

At the auxiliary processor level, append the sender ID to the message timestamp
when messages are acknowledged in the reduction network. Furthermore, the logical
process ID i from LP, must be appended to both its smallest unreceived message time L,
and its local clock ;, SO that the ID serves as a tie-breaker for non-unique timestamps.
When an LP executing on a host processor receives an event message, it does not see the
sender ID in the timestamp field; this identifying ID is only seen at the AP level. The
uniqueness of logical timestamps is only necessary for the message acknowledgment
algorithm. Hence, there is a finer granularity of logical time with respect to the low-level
algorithms executing on the auxiliary processors and not the LP's executing on the host
processors, yet the ability for LP's to execute events with the same timestamp in any order
is not sacrificed. If the PDES allows multiple messages to be sent to severa LP'swith the

same logical timestamp, areceiver ID can be added to L, and an additional logical process

76

5) LP; sends amessage to LP, with timestamp 5.

6) All globa values now reflect the changes made in LP;: o' (t5) = 3 and
L' (t5) =5. GVT(ts) = 3.

7) LP;setsitslocal clock Eg(tS) to 5, at some real time tg, tg > ts, writes this
clock update to its FIFO, and processes an event at time 5.

8) AP; reads the entry in its FIFO and updates o,(t;) at some red time t;,
t;>te. S0, 0 (t7) = 5.

9) LP;enqueues a SENT_NMSGfor logical time 5 at some real time tg, tg > t5,
and writesthisto its FIFO. This causes v,(to) to be set to 5 by AP; at real time
to, ty > tg. NO visible changeismadeto v'.

10) LP; sends amessage to LP, with timestamp 5.

11) All global values now reflect the changes made in LP;: o' (t;0) =5 and
L' (t)p) =5. GV T(t;0) =5 at somereal timet,g, t;o > to.

12) At some real time t;q, ty; > t;o, LP, receives the message from LP;, sets
0,(ty) to 5, and writes these entries to its FIFO. At real timety,, ty, > ty, AP,
reads the entries in the FIFO, sets 02(t12) to 5, setsits acknowledgment p, ()
to {5, s;.,, 1}, where s, is the sequence number from LP; to LP,. LP, will
continue to submit this acknowledgment until GV T(t,,+At) > 5, in some finite
real time At.

13) At some real time t;3, t;3>t;,, LP, receives the message from LP;, sets
0,(t15) to 5, and writes these entries to its FIFO. At real time tyy, ty > t;3, AP,
reads the entries in the FIFO, sets 0,,(t,4) to 5, and sets its acknowledgment
P,(t) to {5, s34, 1}, where s34 is the sequence number from LP; to LP,. LP,
will continue to submit this acknowledgment into the reduction network until
GV T(t,,+At) > 5, in some finite real time At.

14) At some real time t;5, t;5>t,, al globa values now reflect the changes
made in LP, and LP,;; 0'(tj5) =5, U'(t15) =5 and p'(t35) ={5, s1., 1} (@
deterministic selection). GV T(t;5) = 5.

15) At somereal timetyg, ti6> ty5, LP; setsitslocal clock Fl(t16) to 13, writes
this clock update to its FIFO, and processes an event at time 13. AP, sets
crl(t17) to 13 at somereal timet;,, t;7 > ty;.

16) At some real time t;g, t;5> t;7, LP, setsitslocal clock Fz(tls) to 9, writes
this clock update to its FIFO, and processes an event at time 9. AP, sets 0,,(tyo)
to 13 at some real timet;g, t1g > tyg.

17) At some real time ty, tyy > ty9, LP; setsits local clock Eg(tzo) to 7, writes
this clock update to its FIFO, and processes an event at time 7. AP; sets 04(t,,)
to 7 at somereal timet,;, ty; >ty

75

VT

State Vector State Vector State Vector | GVT(t)
0
PRN
GVT(1)

Figure4.5 GVT Computation Model.

4.4.2. Guaranteeing Unique Timestamps

In SPA the advancement of GVT, will be used as a second acknowledgment and it
iscritical that all messages are acknowledged so that GV T, advances. To accomplish this
we require that all local clocks and event messages have unique logical timestamps. If
unique timestamps were not present in the system, we could have a livelock in the
computation of GV T, asillustrated by the following sequence of events, assuming alinear

topology of four LP's:

1) (0] (to) = 4, (0) (to) = 11, 03(t0) = 3, and 04(t0) = 10. O-I(to): 3 and
' (ty) = 0. GVT(ty) = 3 at somereal timet,.

2) LP; setsitsloca clock ch(tl) to 5, at somered timet,, t; > t,, writes this
clock update to its FIFO, and processes an event at logical time 5.

3) AP, reads the entry in its FIFO and updates ol(tz) at some real time t,,
t,> 1. S0, 0, (tp) = 5.

4) LP; enqueues a SENT_MSGfor logical time 5 at some real time tg, t; > t,,
and writesthisto its FIFO. This causes ul(t4) tobeset to5 by AP, at real time
ty, t, > t3. Thisin turn causes v’ (t5) to change to 5 at somereal timets, where ts
is greater thant, by at least time .

74

therefore neither is g;. What we are stating here is that for any value taken on by o (v,

of will have that value at some later time t+At.
Definition: GV T(t) isthe actual value of GV T in the simulation at real timet.

Definition: GVT(t) isthe value of GVT that can be potentially calculated from the
input set of state vectors submitted to the PRN at real timet. Theinput state vectors contain
the values of of (t) and L, (t), for al i=1...n. Notethat the values of of (t) and L, (t) do
not change in the reduction network, so it isonly necessary to consider the different values
in the host processor and the T-values which can be used in a computation in the reduction

network.

Definition: GVT(t) is the computed value of GVT that is emitted from the

reduction network at real timet.

At times it will be important to bind the value of computed GVT, GVT,, to a
particular instance in real time. If this is the case, we will use the notation GV T(t). If
binding GV T(t) to aparticular real timet isnot important to the discussion at hand, we use

the notation GVT,. Similarly we use GVT,and GV T,

Figure 4.5 shows the relationship of GVT(t) to both GV T,(t) and GVT(t) at real
timet. Thefollowing relationisinvariant: GVT,(t) £ GVT(t) £ GV TL(t) at real timet, Lt

Definition: the advancement of GVT, occurs if, for a given real time t and some

finitereal time At, GVT(t) < GVT(t+At).

Next we discuss the necessity of unique timestamps in the reduction network to

guarantee the advancement of GV T, when GV T, advances.

73

between the two is the method in which the unacknowledged message list is stored. Also,
we suggest around robin scheme for increasing the total number of acknowledgments that
can complete before the next advancement of computed GV T. Before presenting these
algorithms, we discuss in the next two sections the computation of global virtual timein a
reduction network and the importance of unique logical timestamps to the correctness of
these algorithms. Both of these concepts are critical to the understanding of SPA and its

correctness proof.

4.4.1. Computing Global Virtual Timein a Reduction Networ k

When global virtual time is computed in a reduction network, it lags behind the
actual global virtual time in the system being simulated. Before explaining this lag we

require some definitions:

Definition: of (t) istheloca clock time of LP, as observed in AP, at real timet.
of (t) isaT-valuewhich may beread by the PRN from AP,’s PRN input state vector at real
time t. Similarly, L, (t) isthe minimum unreceived message time T-value which can be

read by the PRN from AP’s PRN input state vector at real timet.

Definition: M, () = MIN(cri (t),ui(t)). M, (t) isthe minimum timestamp that
may be read by the PRN from AP’s state vector at real time t. Note, however, that there

could be a smaller timestamp in the FIFO between HP, and AP, because of rollback.

Definition: o (t) istheloca clock value of LP, at the host processor HP, at real
time t. Due to the delay between the time the host processor writes this value to the host
processor-auxiliary processor interface, the T-value of (t) at the same time t is not
necessarily equal to o (t) . Thefollowing equality holdsat all real timest for some positive

finite At: o (t) = of (t+At) . Note 0, is not necessarily monotonic with respect to t, and

72

acknowledgments. Now we present a potential improvement to acknowledging messages
in the reduction network which is correct even with state vector loss; thisa gorithm requires
only a single minimum value to be computed and disseminated in the reduction network.

We name this algorithm single phase acknowledgment (SPA).

Recall that GVT is computed as the minimum of two globally reduced values:
minimum local clock ¢’ and minimum unreceived messagetime v'. The acknowledgment
algorithm described in this section uses the advance of computed GVT, GVT(t), the global
virtual time computed in the reduction network at rea time t, as the second
acknowledgment in a handshake. (See Section4.4.1.) We observe that a message
acknowledgment must have been received if GVT has increased beyond the message's
timestamp since v’ must be greater than the received message's timestamp, and so the
message is removed from an LP,’s unacknowledged message list when this happens. The
acknowledgment algorithm makes no assumption that the PDES synchronization protocol
isTimeWarp; GVT issimply computed as the minimum time in the simulation, regardless
of the synchronization protocol used. Hence, in anon-aggressive PDES, thisa gorithm may
not reduce the number of operations computed in the reduction network but it does

eliminate the lag to handshake acknowledgments.

The algorithms SENDER, RECEI VER, and NEW GVT in this section eliminate the
second reduction operation and together replace the CHK ACK routine, described in
previous sections. Also, the algorithm SENT _MSG, which executes on an AP, has been

modified, and the algorithm NEW MSG replaces RCV_MSG

We present two cases for this acknowledgment algorithm: (1) a non-FIFO case,
which makes no assumption about the order in which messages are received between a
sender-receiver pair, and (2) a FIFO case, which assumes that all messages between a

sender-receiver pair will be received in the order in which they are sent. The difference

71

activities (e.g. the computation of GVT). As discussed, all acknowledgments will be
processed by both sending and receiving AP's. This comes at the cost of having to do two
reductions in the reduction network. A proof of correctness for TPA can be found in

[SRREQ3].

4.3.1. Performance

In practice, we expect good performance from the version of TPA in Figure 4.4
since there are dedicated auxiliary processors monitoring the high-speed output from the
reduction network and executing al acknowledgment agorithms. Furthermore,
simulations [SRIN92] show that under normal load, the mean time to complete atwo-phase
acknowledgment isaround 10 microsecondsin a 32-processor system. Inthese simulations,
the time to acknowledge a message was measured from the moment an AP starts an
acknowledgment until it receives a second acknowledgment from the AP whose message
it is acknowledging. This is competitive with the current technology for existing
communication systems; for example, a zero byte message sent from node to node on the
Intel Paragon [INTE93] can take 30-70 microseconds using commercial messaging layers
and the latency can be reduced to about 5 microseconds with a lower overhead layer
[CHIEQ]. In comparable time our acknowledgments are processed at the software level on
AP's; process to process acknowledgments an a Paragon can be orders of magnitude more

expensive.

Next we present a single phase acknowledgment which eliminates the need for one
of the two reduction operations in the reduction network.
4.4. Single Phase Acknowledgment

TPA requires two acknowledgments in a handshake. Two values must be reduced

and disseminated in the reduction network, and this may delay subsequent

70

message, LP,, while the second | F statement is executed by the AP for an LP sending a
message, LP,. The RCV_MSG procedure in Figure 4.3 is executed by AP, to begin the
acknowledgment algorithm of the first received message or of a message received when

there are no other unacknowledged messages.

Once AP, detectsthat p’ isan acknowledgment for a batch of messagesit has sent,
it setsits T Jtop'to echo the acknowledgment. AP, then removesthe messagesin the batch
from LP, s outstanding messagellist, if they have not been previously removed, and updates
U, if the received acknowledgment wasfor its smallest outstanding message. If AP, detects
that p' is not acknowledging a batch from another sender, it sets its second
acknowledgment T ; to {0, ®,0}, the idle acknowledgment, so that other
acknowledgments can be answered with a second phase acknowledgment. The AP, with
the smallest handshake acknowledgment (i.e., T' = pr) can then update p, to its smallest
unacknowledged batch since it has determined that AP, has read and processed the

acknowledgment.

CHK_ACK: I F (1t = pi) AND (p. # {0, P, 0}) - - RECEI VER
THEN |IF unacknomﬁedged list is not enpty
THEN Renove next batch to be acknow edged from
unacknow edged | i st;
Set p. to acknow edge this batch

ELSE p, = {o, ®,0};
I F p' has been sent to this LP - - SENDER
THEN 1. := p';

I|: p' messages in outstandi ng nmessage |i st

THEN Renove the acknow edged batch from out st andi ng
nmessage |ist;
Updat e UK i f necessary;
ELSE 1, := {0, ®,0};

Figure 4.4 Modified Synchronization Algorithm Using Two-Phase Acknowledgments.

The advantage of this double acknowledgment approach is that acknowledgments

can take place as fast as the algorithm will allow since they are not tied to any other

69

In practice, AP, may miss an acknowledgment (a value of p’ intended for AP
emitted from the reduction network since an AP, could update its p, =P, the smallest
acknowledgment in the system, prior to AP, reading and processing it. Hence, the modified
synchronization algorithms do not guarantee that all acknowledgments are read and
processed by their intended recipients or that v’ is maintained correctly without some
severe assumptions regarding the detection of outputs from the reduction network. Hence,
the theoretical results presented in the previous section are only obtainable if the hardware
can guarantee that all p'’s are read by the AP's that need to process them. Recall that the
detailed hardware design presented in Chapter 3 does allow state vector loss on the output
side of the reduction network. We now present an alternative CHK_ACK process, an
acknowledgment handshake, which guarantees correctness even when reduction network

output results are overwritten prior to being read, i.e., even with output state vector |oss.

4.3. Two-Phase Acknowledgment

The following two-phase acknowledgment (TPA) uses the computation and
dissemination of two reduction operations in order to guarantee that all acknowledgments
areread and processed by AP’ sof sending LP'sandthat v’ iscorrect. Weintroduce another
local T-value, T " which is the ordered pair {message time, message ID}, where the
message tagged by message ID (which contains information about batches) has been
acknowledged by both the receiver LP, (actually AP,) and then by the sender L P, (actually
AP). 1", the global minimum acknowledged message, is computed across all LP's and
disseminated to those LP's:

T = MINI_Pi (ri) JfordlLP,i=1,2,...,n

The modified CHK_ACK algorithm in Figure 4.4 shows how the two-phase
acknowledgment isimplemented. The CHK _ACK procedure consists of two parts. The first

| F statement implements the part of TPA executed by the AP for an LP receiving a

68

To implement batched acknowledgments on the reduction network, aconcatenation
of the smallest sequence number of a contiguous batch and the number of messages
acknowledged in the batch are placed in the tag register and the message timestamp in the
dataregister. (See Section 3.5.4.)

Simulations[SRIN92] demonstrate that the batching of acknowledgments makesthe
system more robust. Astheload increases on an AP, its unacknowledged message lists start
growing. As a consequence, contiguous batches of messages form, and therefore, with
batching of acknowledgments, AP's perform more work per unit time than with single
acknowledgments. A second, important conclusion of Srinivasan’s simulationsisthat since
with batched acknowledgments the hardware saturates at smaller event granules, the
batched acknowledgment enhancement improves the stability of the PRN (effectively

increases its bandwidth).

We assume in the remainder of this chapter that all message acknowledgments are

batched.

4.2.7. Correctness

Unlike changesto ¢’ and v’ in the framework, p’ must be monitored closely by
each AP for the modified algorithms to be correct and efficient. The process CHK_ACK is
sensitive to output data from the reduction network and is expected to evaluate every p'
that emerges from the network. The auxiliary processor of the receiver of the message, AP,
must recognize p, = p' assoon as possible in order to update P, promptly. Similarly, the
auxiliary processor of the sender of the message, AP,, must detect an acknowledgment
from AP, before AP, stops submitting the P, representing the acknowledgment, to the
reduction network. AP, then removes p’ from LP,'s outstanding message list and modifies

U accordingly.

67

will be more accurate because acknowledgments are performed in less time. With two
reduction networks, however, there is again a potential race condition between updating
PDES state T-values and acknowledgment T-values. This race condition can be eliminated
if the two reduction networks are synchronized. By synchronizing the two networks, the
order of changesto all T-values, including P for agiven LPisguaranteed to be preserved

in global counterparts.

4.2.6. Batched Acknowledgments

From the description above, it is clear that acknowledgments in the reduction
network are serialized, such that only the acknowledgment with the smallest timestamp will
complete in a reduction cycle. This serialization can be aleviated by acknowledging a
batch of messages in a single physical acknowledgment. This enhancement improves the
efficiency of employing the reduction network to acknowledge messages. Messages
arriving from the same sender can be acknowledged as sequences by acknowledging the
message | D of the largest in-sequence message; this same scheme is common in computer

networks [TANES9].

Batched acknowledgments can be implemented by adding a third component to P,
and p'. Now these message acknowledgment T-values have the form: {message time,
message I D, batch size} . An acknowledging AP, searchesits unacknowledged message list
for a batch of received messages with contiguous sequence numbers and sets its p, to the
triple {the smallest timestamp in the batch, the message sequence number of the first
message in the batch, the number of messages in the batch}. Note that in PDES's with
aggressive processing, the first message in a batch will not aways have the smallest
timestamp. A null batched acknowledgment, indicating that there are no unacknowledged

messages, is denoted as { o, @, 0} .

66

frequency that none of LP,’s received messages are ever acknowledged. In other words,
thereisapotential, albeit unlikely, problem with starvation: no P, will ever beequal to p’,

and hence, no message received by LP, will ever be acknowledged.

4.2.5. Performance

An undesirable feature of the algorithms shown in Figure 4.2 and Figure 4.3 is that
the acknowledgment of messages is serialized. The time complexity of this algorithm to
acknowledge one message is O(log n), where n is the number of LP’'s. This proposed
acknowledgment algorithm may not scale well to large numbersof LP's. If each LP aways
has at least one message to acknowledge then the expected time until the acknowledgment

for each LP'sfirst message is complete is 1/2*n* log n, or O(n log n) complexity.

A further problem is that the amount of time between acknowledgments is greater
than one reduction cycle time of the reduction network. When p, =p', AP, must read the
output register containing p', must recognize the acknowledgment, and then rewrite P,;
this is not an insignificant amount of processing and should take an additional reduction
cyclesince P, will not be updated beforeit isagain read by the network. Scalability isalso
an issue in Reynolds's framework algorithms since a moderate number of additional
acknowledgment messages may flood the host network. Recall, however, that in practice
the reduction network can be orders of magnitude faster than the host communication

network.

We have presented work using two reduction networks to compute synchronization
values: one network produces the PDES state T-values, such as v’ and o', and the other
network is dedicated to the acknowledgment of messages [PANC92]. This has an advantage
over the serial acknowledgment algorithm since its best case performance can be shown to

be O(1) and this best case O(1) complexity occurs under heavy load. This suggests that v’

65

CHK_ACK isaprocessthat executes once each time through the auxiliary processor
loop as shown in Figure 4.2. In CHK_ACK each AP monitors the value of the global
minimum unacknowledged message p'. The ordered pairs emerging from the reduction
network are equivalent to acknowledgment messages. If the ordered pair p’ isin LP,'s
outstanding message list, indicating that L P, had sent the message, then AP, removes the
corresponding message from this outstanding message list. The value of v S is modified
accordingly, i.e., updated when p' is the message acknowledgment for the outstanding
message U... If p' = P, indicating that LP,’s acknowledgment is the minimum, then P, is
updated and the corresponding entry in the unacknowledged message list is removed by
AP.. In Section 4.2.5. through Section 4.2.7. we discuss performance and correctnessissues

of process CHK _ACK.

It istempting to have AP, update P, in RCV_MBGif a new message with a smaller
message time arrives. This preemption of p, Quarantees that p, represents the smallest
received but not acknowledged message for LP,, yet there are two reasons why it is
necessary to update P, inanonpreemptive manner. First, aproblem occursif the preempted
P, is equal to the computed p’; this situation causes AP, to assume that the message is
acknowledged, yet AP, if it failed to recognize the equality of P, and p' before changing
P, would fail to determine that the acknowledgment was read and processed by AP.. AP,
would submit the same p, to the network at some later time and would eventually read and
process an output state vector from the reduction network such that p, = p'. APy the
auxiliary processor of the sender of the message, reads and processes the acknowledgment,
i.e, p' is in its outstanding message list, before AP, has removed P, from its
unacknowledged message list. This approach is inefficient since the performance of the
framework is degraded by the dual submissions of the same P, by AP,. A lesser problem

occurs with a steady flow of messages into LP;: P, could be modified with sufficient

monitored by each LP; (actually all auxiliary processors serving LP's) since it replaces a

physical acknowledgment message in the host network. Specific details follow.

RCV_MBG | F p; = { 00, b}
THEN P = {message tine, nessage |D};
ELSE Add message to unacknow edged nessage |ist;

CHK_ACK I F p' = P - - RECEI VER
THEN Update P;;
Renmove nessage | D from unacknow edged nessage |ist;

I F p' in outstanding nessage |ist - - SENDER
THEN Renove nessage | D from outstandi ng nessage |ist;
Updat e U; i f necessary;

Figure 4.3 Algorithms for Receiving Messages and Processing Acknowledgments.

The algorithms RCV_MSGand CHK _ACK are defined in order to maintain v’. The
process RCV_MSG isperformed by an AP when a message is received at the HP, and the
process CHK ACK isperformed repeatedly asthe output of the reduction network changes

Without loss of generality assume that LP; refersto any LP sending a message and
similarly LP, refers to any LP receiving a message. When LP, sends a message and HP;
notifies AP, the SENT_MSG process from Figure 4.2 is executed by the AP, When LP,
receives amessage and HP, notifies AP,, the RCV_MSGprocessfrom Figure 4.3 is executed
by AP..

In process SENT_MSG, an entry of {message time, message ID} is made to the
outstanding messagelist for LP,. In process RCV_MSG, an entry of { message time, message
ID} is made to the unacknowledged message list for LP,, indicating a new message is
received but unacknowledged. The local value of P, is updated immediately by AP, only
if its current value is equal to {o,®}, indicating no message is unacknowledged. No
physical acknowledgment message is sent through the host network in this algorithm. We

discuss the implications of updating p; after we explain process CHK _ACK.

63

the message ID serves only to identify the specific message that is acknowledged. Hence,
p' iscomputed across all LP's and disseminated to those LP's:
p' = MINI_Pi (pi) JfordlLP,i=1,2,...,n

4.2.4. Auxiliary Processor Algorithmsfor Message Acknowledgments

In Section 3.6. we described the general format of an auxiliary processor algorithm.
In the first message acknowledgment algorithm we present, each auxiliary processor
executes the specific algorithm in Figure 4.2. An auxiliary processor aternately reads the
output from the reduction network, writes this output to the host processor registers,
performs the acknowledgment algorithm CHK _ACK which we describe next, and reads the
host processor FIFO for a change in the LP's state. In the event of a message receipt, the

AP performs the process RCV_MSGin Figure 4.3, which initiates an acknowledgment.

AUX_PROC: VWHI LE sinulation is executing
Read t he PRN out put;
I F gl obal state has changed
THEN Wite global state vector to HP interface;
Per f or m CHK_ACK;
| F FIFO is not enpty;
THEN Get next entry from Fl FG
CASE (entry_type):
NEW CLOCK: 0= new cl ock_val ue;

SENT_MSG | F nessage tine < u.
THEN v. := nessage_tine;
Add nmessage to ordered
out st andi ng nessage |i st;

RCVD_NMSG Per f or m RCV_NMSG,
END VWHI LE

Figure 4.2 Auxiliary Processor Algorithm.

The algorithmsin Figure 4.2 and Figure 4.3 operate asfollows. The ordered pair P;
in LP, isinitialized to {c,d} , indicating no event messages have been sent through the

network. P; is maintained for messages received, not messages sent; however, it is

62

* S(j)— the sequence number for each LP, j = 1, 2, ..., n, to which it sends a
message.When LP; sends a message to LB, it increments the counter S(j) and
uses its value in the message identifier. Message identifiers form a contiguous
sequence for each ordered pair of communicating LP's. Thiswill be crucial for
batched acknowledgments described later.

4.2.2. Data Structures and Values Maintained by Each AP

Each AP, maintains the following local T-values and data structures:

* 0, — local clock of LP.

* For each LP, to which LP, sends a message, an outstanding message list of
message tuples. A message is removed from an outstanding message list once
AP, reads a message acknowledgment from the reduction network and
processes this acknowledgment.

. ui—smallesttim&stamp of amessage in all outstanding message listsin LP..

» For each LP, which sends messages to it, AP, maintains an unacknowledged
message list. The unacknowledged message list is sorted by sequence number.
A message will be removed from the unacknowledged list when it has been
determined that the AP of the sending LP has processed its acknowledgment.

An auxiliary processor AP, processes an acknowl edgment by removing the corresponding
message from the correct outstanding message list and updating v, to be the current

smallest timestamp in all of its outstanding message lists.

4.2.3. A New T-Value for Message Acknowledgments

A new loca T-value is defined for acknowledging messages in the reduction
network: P, isthe ordered pair {message time, message |D}; such that message timeisthe
smallest timestamp of a message that has been received by LP, but for which an
acknowledgment has not completed and the message ID is its message identifier. If an LP
has no messages to acknowledge, it setsits p; to { c0,®} , denoting anull acknowledgment.
Each LP, sends its p; into the pipelined reduction network, and p', the global minimum
{messagetime, message ID} acrossall LP's, iscomputed and disseminated in the reduction

network. The global minimum of the ordered pairsis computed as minimum message time;

61

all tasks required to maintain local T-values, including event message acknowledgment
algorithms. Each HP, maintains the local clock, the events list, and the outgoing message
list (list of antimessages) required in an aggressive parallel simulation. Each AP, maintains
data structuresin support of the event message acknowledgments and reduction operations
supporting the PDES synchronization protocol. Specific details regarding the correctness
of an aggressive PDES executing on a processor pair in the framework hardware can be

found in [SRRE93].

4.2.1. Host Processor Requirementsfor Acknowledgment Algorithms

Recall that the communication channel between an HP and its AP is functionally a
FIFO (See Section 3.5.3.). An HP enqueues tagged entries into the FIFO with the tag
indicating the nature of the communication. The HP must communicate the following
simulation events to its AP in order to correctly compute GVT and perform message
acknowledgments in the reduction network: a changein an LP'slocal clock, due to either

an event execution or arollback; the receipt of a message or antimessage; and the sending

of amessage or antimessage.

Event messages will be acknowledged in the reduction network by employing a
tagged selective operation. This requires a unique tag for each message, since multiple
messages may have the same logical timestamp. Each message is assigned a globally
unique message 1D, a unique tag consisting of a message sequence number between a
sender-receiver pair concatenated with a sender ID and a receiver ID, where sequence
numbers are issued in numerical order for each sender-receiver pair. A message can be
viewed as a tuple, {message time, message 1D}, where the message time is a logical
timestamp and the message ID is a unique identifier. Message sequence numbers are

maintained by each LP, executing on its HP, as follows:

60

6) All global values now reflect the changes made in LP;: ¢’ =5and v’ =4.
GVT =min(c’, v") =4.

7) LP; receives the message, sets 0, to 4, and sends an acknowledgment to
LP;.

8) No global values yet reflect the changes made in LP..
9) LP; receivesthe acknowledgment message and sets v 1 too.

10) v’ is computed to be . ¢’ = 5. GVT = min(o’, v') = 5. This is the
incorrect computation of GVT since o, = 4.

The race condition is not prevented since the hardware supporting the framework
cannot control the order that acknowledgments are received with respect to the order in

which the globally reduced values are updated.

-
-

Figure4.1 A Simple PDES Communication Topology.

Given the problemswith using the host network for acknowledgments, we conclude
it may be better to use the synchronization network for message acknowledgments. As

shown in the sequel this conclusion is quite appropriate.

4.2. Acknowledging M essagesin a Reduction Network

Without loss of generality, assumethat each LP,, i =1, 2, ..., n, occupies aunique
physical processor pair, HP. and AP,. We note that all acknowledgment algorithms can be
extended to support multiple LP's executing on a processor pair. Synchronization tasks
execute on the AP, and PDES protocol -dependent and appli cati on-specific tasks execute on
the HP. In an aggressive PDES, the HP will perform event execution, sending and receiving

event messages, state saving, and rolling back the computation while the AP will perform

59

of a host network, the framework can benefit greatly if v’ or a good approximation of v’

were computed in the reduction network.

4.1.2. Additional M essage Traffic in the Host Networ k

The use of acknowledgment messages in the host communication network can
degrade the performance of aPDES in another way. Sending one acknowledgment message
for each event message in a distributed memory machine doubles the message traffic (in a
shared memory machine the analogous problem is memory contention); hence, the arrival
of both event messages and acknowledgment messages is potentially delayed. A doubling
of message traffic can often have a seriousimpact on performance, since performance often

degrades super-linearly with message volume.

4.1.3. A Potential Race Condition

If two separate networks are used to disseminate synchronization information, asin
Reynolds's framework algorithms, there is a possible race condition between
acknowledgments in the host network and computations of v’ in the reduction network.
Assume the communication topology in Figure 4.1, where LP' s are executing an optimistic
PDES synchronization protocol executing on top of our framework hardware. (See
Section 3.1.2.) The reduction network computes two globally reduced valuesin this PDES:
0', the minimum unreceived message time, and ¢’ the minimum logical clock across all
LP's. A race condition can occur with the following sequence of events:

1) o,=4and0,=7.0' =4and v’ =. GVT =min(c’, v') = 4.
2) LP; finishes processesits event at time 4.
3) LP; sets L, to4, which causes v’ to change to 4, one reduction cycle later.

4) LP; sends amessageto LP, with timestamp 4.
5) LP; setsits 0,105 and begins to process the event at time 5.

58

network to acknowledge messages. In Section 4.3. we present a solution which employs a
two reduction handshake algorithm in the reduction network. This work was first
introduced by Pancerella [PANC92]. In Section 4.4. we discuss an aternative to this
algorithm, one that requires a single reduction operation to be computed in the reduction
network. We prove the correctness of this aternative in Section 4.5. In Section 4.6. we
present improvements for all message acknowledgment algorithmswhich use the reduction
network. In Section 4.7. we discuss important issues which must be considered when
selecting one particular algorithm. Finally in Section 4.8., we present performance results
of two different acknowledgment algorithms executing on our four-node prototype

framework hardware.

4.1. Efficiency Consider ations of the Framewor k

As shown in Chapter 3, GVT can be computed as the minimum of two globally
reduced valuesacrossall LP's,i=1, 2, ...,n: ¢', theminimum logical clock time, and v’,

the minimum unreceived message time.

Inorder tomaintain v’ all event messages must be acknowledged. Inthe algorithms
proposed by Reynolds [REYN92] acknowledgment messages are sent through the host
network of the paralel machine. There are three problems with using the host
communication network, and not the high-speed reduction network, for acknowledging

messages. We discuss these next.

4.1.1. A Significant Lag Timefor Critical Synchronization Values

If messages are acknowledged in the host network, this has an impact on the
accuracy of the computation of v': the value of v’ will lag behind ¢’ by at least the host

network latency time. Since the reduction network will have alag time typically 10°3 that

4 Acknowledgment Messagesin a
Reduction Network

A probable source of performance degradation in Reynolds's original PDES
framework algorithms [REYN91] (See Chapter 3.) (from here on known as Reynolds's
framework algorithms) is the communication of synchronization information among LP's,
i.e,, acknowledgment messages, outside the reduction network. This is undesirable.
Message acknowledgments are critical to the computation of the minimum unreceived
message time which is used in the computation of global virtual time. The hardware-based
framework presented in the previous chapter provides for the high speed computation of
GVT, yet the acknowledgment of messages in a host communication network can reduce
the performance gains of the framework. This chapter presents several novel approaches

which use a reduction network for message acknowledgments.

In order to make the presentation of our algorithms simpler, we assume the PDES
synchronization protocol executing on the host processors is an aggressive one, and the
reduction network will be used to compute global reductions, including GV T. All message
acknowledgment algorithms presented in this chapter can be used to correctly compute
T-valuesin anon-aggressive PDES. Since our acknowledgment algorithmswill execute on
auxiliary processors in the framework hardware configuration depicted in Figure 3.2, their
execution will in no way interfere with normal PDES event processing on the host

processors or the event message traffic in the host communication network.

First we show efficiency problems with Reynolds's framework algorithms. In

Section 4.2. we discuss the necessary algorithmic requirements for using a reduction

57

56

Second, we have provided sound correctness criteria for this framework. The
correctness criteria define the computation and dissemination of multiple reduced values,
where LP's are executing asynchronously. Furthermore, the correctness criteria do not
require the blocking of either the processors executing events or the reduction network

computing the critical synchronization values.

Finally, we have devel oped the hardware design at three levels. At the highest level,
we have defined a computation model which decouples the LP processing from the
synchronization of LP's. Thismodel provides an abstraction of PDES processing such that
the model can be realizable by many implementations. Furthermore, this model is able to
advance with advances in technology. At the functional level, we have described an
implementation of the computation model that adheres to the established correctness
criteria. This functional implementation employs separate processors for event processing
and synchronization processing, and separate networks for reduction operations and event
messages. This functional description allows the synchronization processing to occur with
near-zero overhead to the PDES. Finadly, at the detailed hardware design we have proven
the feasibility of designing detailed components and interfaces which are both correct and

efficient.

In the next chapter we explore the acknowledgment of event messages in a
reduction network. The algorithms and computed values assume the detailed hardware
design presented in this chapter. The acknowledgment of messages is important to the
computation of a minimum outstanding message time, which is useful in non-aggressive
PDES synchronization protocols, aggressive PDES synchronization protocols, and

adaptive aggressive PDES synchronization protocols.

55

algorithm will have the format in Figure 4.7, where the algorithm is executed continually

with the simulation.

AUX_PRQOC: VWHI LE simul ation is executing
Read t he PRN out put;
I F gl obal state has changed
THEN Wite global state vector to HP interface;
Perf orm synchroni zati on al gorithns;
I F FIFO is not enpty;
THEN Get next entry from FI FG
Process entry;
END WH LE

Figure 4.7 Auxiliary Processor Algorithm Format.

In the next chapter we present specific auxiliary processor agorithms for
acknowledging event messages in areduction network in support of the computation of v’

the minimum unreceived message time for all LP’'sin aPDES.

3.7. Summary and Conclusions

We have presented in this chapter our contributions to Reynolds's original
framework for parallel discrete event simulation. This framework provides novel and

efficient support of PDES synchronization protocols.

We identify three primary contributions of the work presented in this chapter. First,
we have demonstrated the applicability of this framework to a wide range of PDES
synchronization protocols. The applicability of the framework to PDES synchronization
protocols began in [REYN91] with reduced values and low-level algorithms to support
conservative protocols. It continued in [SRIN92] with the applicability to optimistic
protocols. In this chapter, we have expanded on this and shown the applicability to the
computation of lookahead values, the execution of iterative PDES synchronization

protocols, and the detection of termination conditionsin a PDES.

the auxiliary processors and guarantee that the reduced values correctly represent the state
of the ssmulation. We discuss the algorithmic requirements of both the host and auxiliary
processors in the following sections. Specific details about framework algorithms can be
found in [REYN92] (conservative PDES algorithms), [SRRE93] (optimistic PDES

algorithms), and the next chapter (message acknowledgment algorithms).

3.6.1. Host Processor Algorithms

In our paralel simulation framework, all processing of an LP — event processing
and event message sending and receiving —occurs on the HP. The HP must communicate
any simulation events which represent a change to the ssimulation state vector to its AP in
order to correctly compute reduced state vectors in the reduction network. Examples of
eventswhich affect GV T computation include achangein an LP'slocal clock, dueto either

an event execution or arollback; the receipt of a message or antimessage; and the sending

of amessage or antimessage.

In general, the additional processing on the host processor will be minimal. The host
processor only needs to notify its AP of a change in its local state as described above. As
seen in Figure 3.3, the interface between an HP and its AP is functionally a FIFO. An HP
enqueues tagged entries into the FIFO with the tag indicating the nature of the

communication.

3.6.2. Auxiliary Processor Algorithms

All processing of the SP’swill be executed on the auxiliary processors. The AP will
aternately read the output from the reduction network, write this output to the host
processor buffer or registers, perform low-level synchronization algorithms dependent on
the PDES synchronization protocol and the required computations in the reduction
network, and read the host processor FIFO for a change in the LP's state. A typical AP

53

owner bit whiletheintermediate values are being written in parallel to theregistersreadable
by the AP. Applications using the framework hardware must be robust enough to tolerate
the loss of state vectors emerging from the PRN. Consistent with the correctness criteria set
forth in Section 3.2., we note that an AP never sees a partial state vector. State vectors are

either seenin their entirety or not at all.

The three levels of registers on the input side guarantee sequential consistency by
preserving state vectors, as discussed in Section 3.2. Observable sequentia consistency
requires that the overwrite bit be used whenever the values in a state vector must be used
in aglobal operation. Furthermore, there can be no loss of state vectors on the output side
of the PRN — that is, AP’smust process every state vector that emerges from the reduction
network — if observable sequentia consistency is to be maintained. Since this AP-PRN
interface does not prevent state vector loss, an alternative, which is the equivalent of
observable sequential consistency, isto use two extra input registers and compute tagged
selective operations to perform a double handshake [PANC92], as discussed in Chapter 4.
We note, however, that it is expensive (in terms of computation time) to implement
observable sequential consistency in the framework hardware and it should be avoided

when possible.

Specific details about our prototype hardware have been published by Reynolds,
Pancerella, and Srinivasan [REPS93]. We now discuss the algorithms that execute on the

host and auxiliary processorsin order to support parallel ssmulations.

3.6. Framework Algorithms

Synchronization algorithms are the third component of our PDES framework.
Given the correctness criteria in Section 3.2. and the functionality of the hardware

described in Section 3.5., framework algorithms execute on both the host processors and

52

ith output register pairs. That is, the PRN may complete reading state vectors from each of
n input register banks at a fdéifent time than when it completes writing new reduced state
vectors. The writing of a reduced state vector for a set of input state vectors will lag-by (((

1) + log, n) - ¢) nanoseconds, where the minor cycle timerianoseconds, the state vector

size ism, and there are processors.

3.5.5.2. Auxiliary Processor-PRN Interface: Output

As shown in Figure 3.6, the three banks of output registers are constructed to
preserve state vectors and to minimize AP-PRN interference in a similar fashion to the
input register banks. Once evenyninor cycles (assuming a full pipe in the PRN), the PRN
generates a globally reduced state vegtbich is written to th€RN output registers. This
state vector is transferred to thrtermediate output registers and finally to theAP output
registers, which are readable by the APnce again the interface controller guarantees that
the PRN never blocks, and transfers between output register levels are prioritized to prevent

this.

Each time the PRN completes writing a state vector into the PRN output registers,
the values are shifted into the Intermediate output registers. When the bottom row is shifted,
the values in the intermediate row are concurrently shifted into the AP output registers
unless the AP has locked the top row because it is reading the AP output registers. In that
event, the Intermediate output registers are overwritten by the PRN output registers, and the
contents of the intermediate registers are lost foreMee AP output registers have a
control bit, an owner bit (O), that is set and reset by the auxiliary proc&€bsoowner bit
determines whether Intermediate output registers can be written to the AP output registers
or are lost; it also ensures an atomic read of a state vector by.thBeMRP sets the owner
bit prior to reading the state vector in the AP output registers and resets it after it is done

reading the complete state vecfbne AP may block momentarily if it attempts to set the

51

registers when this process does not cause the PRN to block or when it does not lead to a
loss of integrity of a state vector. Finally, we note that due to the relative speeds of an AP
and the PRN, it is very unlikely that an overwritable state vector will be overwritten prior
to being read by the PRN; however, we have designed the reduction network to provide the

guarantee anyway, for future use.

The combination of non-overwrite on input to the PRN and no loss of state vectors
on output is sufficient to guarantee the observable sequential consistency introduced in
Section 3.2.. If either of these conditions cannot be met then observable sequential
consistency cannot be guaranteed. However, neither is required to guarantee sequential

consistency. We discuss this further at the end of this section.

The PRN reads state vectors of a specified size cyclically, starting with the mih
component and proceeding to the first component. Thus, the PRN reduces the mih
component, followed by the (m-1)¥, and so on. The PRN is pipelined; thus the processing
of the (i-1)* components commences as soon as the top level of ALU’s completes
processing the ith components. The PRN reads the ith register pair from each of the ninput
banks simultaneously. The time for the PRN to read an entire state vector is an input cycle.
Aninput cycle finishes when the first components of the state vector are consumed. At the
end of an input cycle, the controller transfers the Intermediate input registers to the PRN
input registers. The transfer can be overlapped with the last PRN read in the input cycle;
thus, the hardware requires a minimum state vector size of two so that this transfer can be
performed as efficiently as possible. Thetransfer from theintermediate registersto the PRN
registers has a higher priority than the transfer from the AP registers to the intermediate

registers so that the PRN never blocks.

We note that log, of n and mare not necessarily equal. Therefore, whilethe PRN is

reading from the ith input register pair from all n processors, it is not necessarily writing the

50

registers. The state machine which controlsthe interface transfers state vectors from the AP
input registers to the Intermediate input registers and then to the PRN input registers. The
transfer is done so as to minimize interference. Intermediate registers facilitate getting
snapshots of valid local state vectors to be passed on to the PRN input registers without
blocking the PRN.

When an auxiliary processor has completed writing a new state vector, it sets two
single-bit control flags: the overwrite bit (OW) and the owner bit (O). The owner bit is
always set when the AP hasfinished writing avalid state vector into the AP input registers;
this indicates that the interface controller now owns the top level of registers. When the
interface state machinetransfersthis state vector to the Intermediate input registers, it resets
the owner bit indicating that the AP once again owns the AP input registers. If the AP
attemptsto write to the AP input registers while the owner bit is still set, it will be blocked.
However, given the relative speeds of the PRN and the AP, thisis not expected to happen

often.

The overwrite bit gives the application some control over what values are
eventually fed into the reduction network. Specificaly, if the AP marks a state vector as
“non-overwritable”, it is guaranteed that the entire vector will be processed by the PRN.
When the control logic transfers the AP input registers to the intermediate level, the
overwrite bit is also transferred. If the AP indicates a state vector is overwritable then the
state machine controlling the register banks can allow subsequent state vectors written by
the AP to overwrite the state vector in the Intermediate input registers. If the AP signals a
state vector as non-overwritable and it is transferred to the intermediate registers, the
overwrite bit will prevent the transfer of a newly written AP level state vector until the
contents of the Intermediate input registers are transferred to the PRN input registers. The

control logic guarantees that AP input registers are only moved to the Intermediate input

49

and process the same state vector repeatedly. Even if an input value changes with high
frequency, it will very likely be used more than one time in the computation of areduction
due to the relative speeds of AP’s and the PRN. Similarly, on the output side, the PRN will
produce globally reduced state vectors faster than an AP can read and process them, and as
aresult the AP's may lose some state vectors. Applications executing on the framework
hardware will have to tolerate the loss of globally reduced state vectors. All reads to
registers from the PRN or an AP are nondestructive. We now discuss the input and output

interfaces in greater detail.

AP input registers AP input register

DDD'FDDD@@DDD‘PDDD@

Intermediate input registers Intermediate output registers

S | I A Ja4d4

550
Quahooono aaadtooo

Input registers Output registers

X [/

PRN

.

Figure 3.6 Interface Between an Auxiliary Processor and the PRN.

3.5.5.1. Auxiliary Processor-PRN Interface: I nput

The interface from an auxiliary processor to the PRN consists of three banks of
register pairs: the AP input registers, the Intermediate input registers, and the PRN input
registers. The AP writes state vectors of size m to the top row of registers, the AP input

registers, and the PRN reads state vectors of size m from the bottom row, the PRN input

48

Asseen in Figure 3.3, the interface to the PRN from each AP isidentical. Each AP
has sets of memory-mapped input registers and memory-mapped output registers. A
processor can write to the input registers and read from the output registers; the PRN will
read values from the input registers and write the corresponding globally reduced results
into the output registers. This memory-mapped interface is a possible source of memory
contention if both the PRN and the auxiliary processor attempt to access the input or output
registers simultaneously. We discuss next how the interface between the auxiliary processor
and the PRN is constructed in order to minimize memory contention, to facilitate atomic

writes with and without overwrite capabilities, and to preserve state vectors.

3.5.5. Auxiliary Processor-PRN Interface

The AP-PRN interface is designed to operate on state vectors in order to support
both atomic accesses of globally reduced values and order preservation of input values to
the reduction network. From an SP’s point of view, it feeds avalid state vector to the PRN,
where “valid” is defined by the application using the framework hardware. The PRN reads
the state vectors, processes them by performing the corresponding reduction on each
component, and writes a globally reduced state vector at each AP. Furthermore, the
hardware provides an atomic read access to a single output state vector so that an AP can
read an entire state vector. The application software should access whol e state vectors, not

individual components, if consistent states are required by the application.

An auxiliary processor and the reduction network operate asynchronously with
respect to one another. As shown in Figure 3.6, three banks of input and output register
pairs provide an interface of isolation, such that both can access the register banks with
minimal interference. This interface is designed to guarantee that the PRN never blocks
while waiting to read a value or write a value. The PRN is expected to read and process

state vectors at arate much faster than an AP produces them; the PRN, therefore, may read

47

32 32 8¢ iS

Error Check
8

32 32

Opcode I

Y

—s]

A |

Selector I

3X Y32

¥s

Figure 3.5 An ALU Node in the Parallel Reduction Network.

input cycle will consist o minor cycles, wherenis the si

the time to produce a globally reduced state vector of lenggle - mnanoseconds, where

c is the minor cycle time, plus the time to fill the pipe wh

ze of the state vectors. Thus,

ich id0g,n nanoseconds. &/

refer to the time to compute a globally reduced state vectaedsietion cycleSince speed

of computing reduced state vectors is the primary design goal of the hardware, it is
important thatc be small. The minor cycle time in our prototype hardware is 150

nanoseconds, giving a reduction cycle of time of 1.2 microseconds for 32 processors with

4-element state vectors.

46

the PRN does not have to be a binary tree; it could, for example, be constructed as a quad

tree.

A single ALU node is shown in Figure 3.5. The ALU’s perform reduction
operations, i.e., binary, associative operations on two inputs based on a programmed
operation code which accompanies the inputs;, operations include sum, minimum,
maximum, logical AND, logical OR, etc. Each input data register is paired with a tag
register. The ALU’s support tagged sel ective operations; in asel ective reduction operation,
such as minimum or maximum, a tag accompanies the “winning” value of the binary
operation. The PRN propagates the tag of the input that “wins’ a selective operation, a
minimum or maximum operation, so that the tag of the smallest or largest component
emerges from the bottom of the PRN for a minimum or maximum operation. In the case
where there is no single choice in a selective operation (i.e., both operands are equal), the
PRN selects deterministically the tag which is propagated. A selective operation requires

two operationsin the ALU: acompare and a select.

As shown pictorially in Figure 3.5, two inputs and two reduction operation codes
arriveat an ALU node. An error check is performed on the reduction operation codes; if the
two operations are not equal, an error flag is placed in the tag, and the tag is propagated
through the reduction network. After areduction is performed, the resultant value and the

operation code are propagated to the next stage of the PRN.

Pipelining is employed in order to use the reduction network efficiently: partial
results are pipelined through the log n stages of the PRN such that each stage of ALU’sis
always busy. The PRN can pipeline reduction operations at arate equal to the delay time of
astage. Thetime for avalue to pass from one level of the PRN to the next isaminor cycle
time. The time required for the top row of LP' sto read all the elements of the state vectors

iscalled the input cycle time. Since the stages of the reduction network are pipelined, an

45

As seen in Figure 3.3, the host processor can access the FIFO gueue and the
registers via an HP interface. The HP interface isolates the particular host processor from
the rest of the system. If the host system changes, this HP interface is the only thing that
will need to be redesigned. | solating the HP interface provides adaptability to other parallel
computers or closely coupled networks. For example, the HP interface could be changed
from a SCSI to a VME interface, and all that would be required is the logic to respond to
requests by the HP on the FIFO queue and register bank.

3.5.4. The Parallel Reduction Network

The parallel reduction network (PRN), is the reduction network which computes
and disseminates the results of global reduction operations. As seen in Figure 3.4, the PRN
is a binary tree of depth log,n, where n is the number of host (and auxiliary) processors.
Each node of the tree is an Arithmetic Logic Unit (ALU) with some logic for tagged
selective operations. Each stage of the PRN consists of half as many ALU'’s as the stage
above it, with the first stage having n/2 ALU’s. The PRN’s binary tree properties alow a

global reduction operation to be computed and disseminated in O(log n) time. We note that

ALU ALU ALU ALU

ALU ALU

A/

Figure 3.4 Parallel Reduction Network.

Critical information to be passed to the state machine includes the number of components

in a state vector and the operations to be performed on components.

The master host processor can send tagged data representing new reduction network
programming information to its auxiliary processor at any time. Similarly, host processors
can send data to their respective auxiliary processors indicating they are to receive new
programs to execute. This will permit dynamic reprogramming of the AP's and the
reduction network. We assume that applications running on the HP’'s and programs running

on the AP’s are sufficiently robust to support this dynamic reprogramming.

3.5.3. Host Processor - Auxiliary Processor Interface

Functionally, there are two data paths between a host processor and auxiliary
processor: one from the HP to the AP and the other from the AP to the HP. The HP
occasionally writes tagged information to the interface which the AP processes, based on
the tag, and generates state vectors to input into the reduction network. Similarly, the AP

writes globally reduced values to the interface which are subsequently read by the HP.

The addition of dedicated processors requires correctness criteria to be preserved
between a host processor and its auxiliary processor. There are two requirements on the
data path from an HP to its AP: (1) no information sent by the HP islost and (2) the AP
processes the data in the order in which it is sent by the HP. Under the established
correctnesscriteriain Section 3.2., an application executing on the HP does not need to read
and process al globally reduced values; a recent version of globally reduced values,
however, is expected to be available to the HP. This suggests an implementation requires at
least a FIFO queue from HP to AP and a set of registers that can be written and read

atomically from AP to HP.

43

Host Processor

HP Interface

EPROM

Auxiliary
Processor

Y |
Input registers I Output registers I

Figure 3.3 Auxiliary Processor.

3.5.2. Setup

Each auxiliary processor bootsup in a“listening” state in which it monitorsits host
processor interface. A host processor sends tagged data to its auxiliary processor
representing a program to be loaded and executed by the AP. The physical interface

between a host processor and its auxiliary processor is described in the next section.

One of the host processors in the system and its corresponding auxiliary processor
are designated as a master pair of processors. The master pair communicates reduction

network programming information to the state machine controlling the reduction network.

42

vector from the reduction network, it writes selected groups of these valuesinto the HP-AP
interface readabl e by the host processor. An L P executing on a host processor can compute
GVT, avoid deadlocks, and make processing decisions based on the synchronization
values. Other than simple tests such as these, the execution of the framework algorithms
does not interfere with an LP's event processing. A further advantage of a dedicated
processor interfacing with the host processor and the reduction network is that an AP can
compute the input reduction values based on multiple LP's executing on one host processor
and coordinate the synchronization activity of multiple LP’'s. In sum, this framework
implementation can off-load all parallel ssmulation synchronization overhead from host

processors and the host network.

3.5. Detailed Har dware Design

In the sections that follow we discuss the specifics of the hardware design of our
prototype. This prototype guarantees the established correctness criteria, and in our
discussion we focus on how we ensure the criteria. We note that this is not the only

hardware design which guarantees the correctness criteria.

3.5.1. Auxiliary Processor

The general layout of an auxiliary processor is depicted in Figure 3.3. Auxiliary
processors are fast, general purpose 32-bit microprocessors. Each AP has its own memory
to store synchronization programs and related data structures (See Section 3.6.).

Furthermore, each AP has EPROM to store aboot-up monitor which isexecuted upon reset.

41

The auxiliary processors are dedicated processors which manage the high
frequency 1/0 from the reduction network and execute the synchronization algorithms. A
high-speed bidirectional communication channel exists between a host processor and its
corresponding auxiliary processor. All interfaces between the host processor and the
auxiliary processor (See Section 3.5.3.) and between the auxiliary processor and the

reduction network (See Section 3.5.5.) must be designed to ensure the correctness criteria.

An integral part of the hardware is the reduction network. The reduction network
rapidly computes and disseminates different binary, associative operations across state
vectors of values. Each component of a state vector is an input to a binary, associative
operation. For example, it can be specified that all first components are to be summed, all
second components OR’ ed, and the minimum is to be taken of all third componentsin a
three component state vector. As per the correctness criteria, the state vector is the basic
unit of operation in an implementation of the hardware. Interfaces into and out of the
reduction network must preserve state vectors: the hardware reads state vectors of sizem,
computes m reduced values, and writes a reduced state vector. The hardware guarantees
that apartial or incomplete reduced state vector is never read by software running on an AP,
The success of disseminating synchronization values is contingent on the high speed at

which these values are made available to all processors.

Employing auxiliary processors provides a separation of the synchronization
activity (performed on auxiliary processors) and the application being simulated
(performed on host processors). The synchronization processes (SP's) execute the high
speed synchronization activity in the parallel ssmulation framework (See Section 3.6.) on
the dedicated AP's. The logical processes (LP's) execute on the host processors, and all
event messages are sent and received at the host processors. HP’'s communicate some

simulation activitiesto the AP’s. When an SP executing on an AP reads a new reduced state

40

3.4. Functional Hardware Description

In this section we focus on afunctional implementation of the computation model.
A high-level hardware description of this implementation is shown in Figure 3.2. The
shaded components represent hardware which is built and interfaced to an existing parallel
machine or cluster of computers. This hardware description wasfirst proposed by Reynolds
and Pancerella[REPA92]. The host system in our description is aclosely coupled network
of high speed processors with its own network for interprocess communication. The host
communication network is independent from the synchronization network, or reduction
network. Each host processor (HP) is paired with an auxiliary processor (AP) which

interfaces to the high speed reduction network.

Host Communication Network

Host
Processor

Host
Processor |

Auxiliary

Auxiliary I Auxiliary I

Processor Processor | Processor
* i + A
I nput I nput I nput
State Vector StateVectorf State Vector

Reduction Network

Output
State Vector

Figure 3.2 High-Level Hardware Description.

39

computed, and the low-level algorithms executed by the SP’s. Each SP will maintain an
input state vector containing local counterparts to each global value. The SP will in turn
process the information from its LP and submit a corresponding input state vector to the
synchronization network, which computes reduced values. As established in Section 3.2.,
some small set of globally reduced values in a state vector can describe the state of any
parallel ssmulation. The SP executes the synchronization algorithms described in future
sections so that the input values reflect a correct state and the output values are computed
correctly across all LP's. Functionally, the communication from the L P to the SP must be a

FIFO as established by the correctness criteriain the previous section.

The synchronization network computes and disseminates reduced values to the
SP’'s. An output state vector is written at each SP. An SP reads the output state vector,
processes this information, and then writes relevant reduced values to a memory location
readable by its LP. Functionally, this shared interface is a single set of registers, as

established by the correctness criteria.

In the next section we discuss our implementation of this computation model. There
are many possible implementations, including using existing machines such as the CM-5.
In our implementation, we employ separate processors for the LP event processing and the
SP synchronization processing. LP event processing and SP synchronization processing
could be implemented on the same processor; however, the synchronization processing
may be a potential overhead, and this will have a direct effect on the finishing time of the
simulation. We also employ two separate networks in our implementation; one network
(and possibly some processors) could be used for both event messages and reductions, but
in that case the computation of reductions may not be performed rapidly and continuously

asin our implementation.

38

Communication Network

LP
State Vecto State Vecto:I State Vecto:I

i

Figure 3.1 Abstract Computation Model.

All event processing and PDES synchronization protocols are executed by the
logical processes (LP’s). LP's send and receive event messages through a communication
network. The computation model is not tied to a distributed memory model; in a shared
memory implementation of the computation model, the communi cation network will be, in

fact, aglobal shared memory.

Each LP has a corresponding synchronization process (SP) associated with it. An
LP will notify its SP of changes to its local processing state. Examples of changes to the
local state include an advancement in the LP’'s local clock, notice of sending an event
message, hotice of receiving an event message, and rollback. Other changes will be

dependent on the PDES synchronization protocol, desired reduction operations to be

37

the effects (possible changes in F,) of only some members of that sequence are observed.
If it is important that all changes in state vector component values be used in global

reductions, then LP’'s must control the rate of changes to component val ues.

Given the state vector <Vil, Viz, ..., V™ for each of n LP’s, and the desire to
produce <F;, F», ..., F> in asequentially consistent manner, we have determined that a
framework can accomplish this by doing the equivalent of cyclically (1) taking a snapshot
of the <\/il, Viz, ..., V™>'s, (2) performing each of the m global reductions, F,, on the
captured m-tuples, and (3) presenting the resulting global reductions, <F,, F,, ..., F,>, to
each of the LP, atomically. While the global reductions are being performed, each LP,
should be able to update local copies of state vector components in preparation for the next

snapshot.

In the sections that follow we describe a computation model and an implementation
of this model that meet the requirements just given. A simple extension described in later
sections enables the framework to produce observable sequentialy consistent results as

long as no loss of globally reduced mtuples<F;, F,, ..., F,> can be guaranteed.

3.3. Abstract Computation M odel

An abstract computation model for computing and disseminating reduced values
can be found in Figure 3.1. This model describes the relationship of event processing to
logical process synchronization in any paralel simulation. In the following paragraphs we
explain each of the components in the computation model. In Section 3.4. we describe a
possible hardware implementation of this model, with specific details of this

implementation described in Section 3.5.

36

cyclethe globally reduced state vector <F,, F,, ..., F,> ismadeavailableto all of theLP's.
Some of the LP’'s may succeed in processing the information and others may not, resulting

inaloss.

If, preceding onecycle, LP, changes\/ik and just preceding the next cycleit changes
Vi', then the pair of resulting globally reduced state vectors have a desirable property: the
first incorporates the change to Vik only and the second incorporates the changes to both Vik
and Vi'. Observable sequential consistency is maintained for any processors that process
both vectors. For those that lose the first but observe the second, sequential consistency is
maintained; that is, the ordering of changes to Vik and Vi' is not necessarily preserved, but
never violated. Thus, the “precedes’ relation maintained by observable sequential

consistency is relaxed to the “ no-later-than” sequential consistency.

Many of the ordering requirements that arise in parallel simulation can be satisfied
with sequential consistency. For example, computation of GVT requires each LP maintain
acurrent simulation time and a smallest unreceived message time. When an LP completes
an event and sends a message to another LB, both its simulation time and its smallest
unreceived message time may change. A simulation-wide invariant that must be
maintained, as demonstrated by Reynolds [REYN92], is that the event or message in the
system with the smallest logical time must aways be represented in at least one LP's
simulation time or smallest unreceived message time. An LP just completing an event must
not allow its new simulation time (which may be infinity) to be a part of a global reduction
of al simulation times before its new smallest outstanding message time. However, it is
sufficient to allow them to be used in global computations simultaneously. That is,

sequential consistency is sufficient to support maintenance of the invariant.

We note that the effects of a particular value for a particular Vik need not be

observed. It is possible for LP,; to produce a sequence of new values for Vik at arate where

35

process aconstant flow of globally reduced values. Consider the speed at which such values
could be produced. Our prototype hardware [REPS93] computes global reductions, with
pipelining, such that new results are produced on the order of every 150 nanoseconds. The
absolute timing is not the factor here; rather it is that time relative to a typical processor’s
instruction cycle time. Given current processor technology at most tens of instructions
could be executed during the time a global reduction is performed. We conclude it is not

reasonabl e to expect a processor to keep up with aflow of global reductions.

We could consider slowing the reduction rate so that processors could keep up with
the flow of output. However, low latency is critical. When an LP computes a new T-value
the corresponding global reduction should be completed as quickly as possible. The
importance of this is established in our performance analysis of the hardware [REPS93].
This analysis concluded that under normal load, GVT computed on our hardware lags
behind the actual GVT by 5-10 microseconds.

As discussed above, cyclic application of the global reductions is a satisfactory
replacement for the dataflow approach that a total ordering represents; if changes to state
vector components can be properly paced and globally reduced values can be processed
without loss then observable sequential consistency can be guaranteed. However, even if
loss does occur, we can ensure sequential consistency. Consider treating the application of
F., Fy ..., F,asaglobally reduced state vector: <F,, F,, ..., F>. If, rather than allowing
results of the application of individual F, to belost, we required the granularity of alossto

be global state vectors, then it is possible to ensure sequential consistency. We elaborate.

At the beginning of a cycle a snapshot is taken of the state vectors for each of the
LP. Then F;, F,, ..., F,, are applied to these state vectors. In the meantime the LP, can
change components of local copies of their state vectors. These changes will not be

observed until another snapshot is taken at the beginning of the next cycle. At the end of a

Sequential consistency and observable sequential consistency do not address the
ordering of reductions between pairs of LP's, as does total ordering. Instead, they only
addressthe ordering of reductions applied to the sequences of value changesin components
of a given LP's state vector. If we consider applying a sequence of globa reductions in
response to changes in component values in L P state vectors, as we have considered so far,
then the issue of sequencing global reductions still exists. Consider the case where LP,
changes\/ik and then changes\/iI whileLP; first changes\/j' and then ij. Independent of the
temporal interleaving of these changes, if they all occur in an interval short enough so that
all changes are completed before any global reductions are initiated, then a sequencing
problem exists. Either order of applying F, and F, violates the order of component value
changesin either LP, or LP,. To prevent this, an LP must be able to control the timing of the
application of global reductions to changed component values in its state vector. One
approach would be to guarantee the following conditions: 1) whenever LP, changes the
value of Vik, the application of F, must occur in afinite, bounded amount of time and 2)

there must be away for LP, to determine that F, has been applied to Vik.

These conditions can be met by ensuring that the ordering of global reductions is
fixed and known. For example, if global reductionswere applied cyclicaly, F;, F», ..., Fp,
then LP's could submit changes to component values with temporal spacing between the
changes that equaled or exceeded the time required to complete a cycle of m reductions.
This approach is sufficient to guarantee observable sequential consistency as long as no

data loss occurs. We discuss the effects of dataloss next.

If LP's pace their changes to state vector values so that only one value change
occurs per cycle of mglobal reductionsand if LP's process al information produced by the
cyclic application of m reductions then observable sequential consistency is guaranteed.

The first condition is easily achieved, however, we do not expect LP's will be able to

33

and cost-effective solutions and because we can accomplish all we need with asimpler and

less expensive approach.

In place of total ordering we consider the concept of sequential consistency
[LAMPT79], which is defined as follows: for a given sequence of changes to the values of
components in the state vector of an LP,, the order in which global reductions appear to be
applied to those values must be the same asthe order in which the values were changed. An
interesting characteristic of sequential consistency is its appearance of correct execution
order. Consider asequence, S, of changesto the values of components of agiven LP's state
vector. The order in which members of Sare used in global reductions only matters at those
times when the result of a particular global reduction applied to, say, the i member of Sis
used in acomputation. At that point intime, all global reductions on thefirst (i-1) members
of S should be completed. Thus, sequential consistency guarantees a “no later than”
property with respect to the order of application of global reductions: at those pointsintime
at which we observe the results of a global reduction, all global reductions that should
precede it are also complete, but we have no way of determining in which order they

completed.

We define observable sequential consistency to be the case where al global
reductions are treated as though their values are used in subsequent computations; that is,
the order in which members of Sare used in global reductionsisidentical to the order in
which the respective component values appear in S. The difference between sequential
consistency and observable sequential consistency is that the former only guarantees the
“no-later-than” property with respect to the order of reductions, where the latter guarantees
a strict ordering. Observable sequential consistency is necessary if it isrequired that LP's
be able to observe the effects (on global reductions) of any changein any component in any

LP' s state vector.

32

where O isan associative, binary operator applied to the kth n-tuple. So, for example, if Vil
is LP’s next event time, then F; = mi n<V11, V21, Vn1> would be the minimum next

eventtimefor al nLP's.

In the discussion that follows we refer to <Vil, Viz, ..., V™ as LP’s state vector,

and the Vik’ s kinl... m, ascomponentsof LP’s state vector.

When computing globally reduced values, it is best to allow the computation of
these values to proceed asynchronously with the simulation. Ideally, we desire a total
ordering with respect to this asynchronous computation. That is, if at somereal timet, LP,
computes a new Vik and at some time greater than t, LP,, j not necessarily distinct from i,
computes a new VJ-', | not necessarily distinct from k, the computation of F, should

complete before the computation of F,.

A total ordering is desirable because it carries sequencing information with it that
could be exploited by the LP's. For example, the order in which globally reduced values are
computed (along with the ID’s of the LP sthat caused the computationsto occur) can reveal
information about which LP's are sending messages to others. That information, in turn,
could be used within an LP to determine, for example, its probability of receiving a

simulation-related message over some interval of time.

While atotal ordering isdesirable, it is both expensive and unnecessary for parallel
simulations. Guaranteeing total ordering requires cooperation among LP’'s with respect to
the order in which global functions should be invoked. This kind of cooperation can be
achieved, but at a cost. The cost can be tempora: LP's must continually execute the
equivalent of barrier synchronizations, or the cost can be monetary: specialized networks
such asthose proposed by Ranade, Bhatt, and Johnnson [RABJ38] and Reynolds, Williams,
and Wagner [REWW89] [REWW92] would be required in addition to our framework. We

have chosen to weaken the desire for total ordering because doing so leads to more efficient

31

consisting of synchronization values and related algorithms can be used to evaluate
termination conditions even when there are outstanding messages in the parallel
simulation. As mentioned above, computing minimum unreceived message times and
acknowledging messages in a reduction network can be used in order to detect outstanding
messages in a system. Moreover, asum of the number of all messages sent minus messages
received at all LP's can be computed as reductions to detect outstanding messages in the
system. If this value is maintained correctly, a sum of zero indicates that there are no

outstanding messages in the host communication network.

We now devel op the necessary correctness criteriafor computing and disseminating

multiple reduced values across LP's.

3.2. Correctness Criteria for Computing Multiple Reduced Values

As shown in the previous section, many examples have appeared in the parallel
simulation literature demonstrating the need for globally computed values. The hardware-
based framework we describe in this chapter is meant to compute these values correctly and

expediently.

We begin by formally defining the concept of globally reduced value. We assume
the existence of nlogical processes (LP's). Let the state of L P, be represented by the m-tuple
<V, 1 Viz,..., V™>_ A global reduction function, F, one which produces a globally reduced
value, operates on n values, one from each LP;: the n-tuple <V1k, Vzk,..., Vnk> for agiven k
inl... mistheinput to the global reduction function, F,. The reductions we desire can be

characterized by:

Fe = 0 V5 V5 . VAL fork=1,...,m

30

In addition to lookahead values, other possible reductions which could be applied
to parallel simulations are estimations of the maximum (or minimum) rate at which an LP
is processing events. If each LP submits a current estimate of its rate of simulation, the
fastest (or slowest) LP (with respect to logical time) can be identified. Felderman and
Kleinrock [FEKL92] show analytically that a Time Warp simulation can be more efficient
if a faster LP is dowed down; they do not propose how the information might be

propagated. We have a framework for disseminating thisinformation easily.

3.1.4. Reduced Valuesin Iterative Paralld Simulations

Iterative PDES synchronization protocols, such as Bounded Lag [LUBA88a],
Moving Time Window [SOBW88], and the aggressive Global Windowing Algorithm
proposed by Dickens [DICk93], require the computation and dissemination of ceiling
values or fault values. Lubachevsky [LUBA89] requires global establishment of minimum
next event time and other values to compute opaque periods. Global windowing protocols,
such as those proposed by Nicol [N1co93] and Dickens[DIRE92], require establishment of
parameters for the window. These values are defined as reductions across al LP's.
Furthermore, additional global reduction values, such as a minimum outstanding message
time or a minimum next event time, could enhance iterative PDES synchronization

protocols. For example, awindow may be enlarged by including this additional knowledge.

3.1.5. Reduced Values as Ter mination Detection Conditionsin Paralle Simulations

The chalenge of global termination detection and the calculation of output
measuresin aPDES [ABRI91] can be realized easily using reduction operations within our
framework. Many global termination conditions — for example, sums and boolean
operations — can be calculated and disseminated efficiently as globally reduced values.
Unlike Chandy and Lamport’s distributed snapshot algorithm [CHLAS85], a framework

29

the number of LP's, must be computed: o', the smallest logical clock in the system, or
minimum logical clock time, and v', the logical timestamp of the smallest outstanding
message in the system, or minimum unreceived message time. These global T-values are
computed as follows:

o' = MINI_Pi (oi) JfordlLP,i=1,2,...,n

v’ = MINI_F,i (ui) Jfordl LP,1=1,2,...,n
where o, is the logical clock of LP, L, is the logical timestamp of the smallest of all
messages that LP, has sent out which may or may not been received by their intended
receivers but have not been acknowledged, and n is the number of LP's. The logical clock
o, of LP is updated at two times during the execution of an optimistic PDES: (1) at the
start of a new event to be executed, and (2) when a message is received that causes a
rollback to atimein LP’slogical past. In an optimistic PDES, the T-value v; is updated to
include outstanding message times of both event messages and antimessages. The two
values of and v, are maintained locally by each LP.. GVT, by definition, is computed as

the minimum of these two values:

GVT = MIN(a’,u")
GVT computation and dissemination in this framework is a significant improvement in

algorithm complexity and implementation efficiency over existing GVT maintenance

schemes ([JEFF85], [JESO85], [SAMAS8S], [L1LA8Y], [BELLIO], [COKE9L], [TOGA93)).

3.1.3. Reduced Values as L ookahead Valuesin Parallel Simulations

Minimum event processing times and lookahead values can be computed as
globally reduced values. For example, the smallest future time that an LP can send event
messages can be computed as a globally reduced value. Each LP computes the value it

submitsto this reduction based on its current local clock and its minimum processing time.

28

where n, is the timestamp of the first event in LP,’s events list (which is assumed to be
sorted in non-decreasing timestamps order), L, isthe logical timestamp of the smallest of
all messages that LP, has sent out which may or may not have been received by their
intended receivers and about which LP, does not know, and n is the number of LP's. n, is
the next event time of LP;, and L, is the smallest unreceived message time of LP,. The next
event time n, of LP, is maintained as the smallest logical time in LP’s event list. The
smallest unreceived message time can be updated at two times during the execution of the
simulation: (1) when a message is sent to another LP and (2) when a message
acknowledgment is received. These two values are maintained locally. Accordingly, n' is

the minimum next event timeand v’ is the minimum unreceived message time for al LP's.

One method of correctly maintaining v’ across all processors is to use message
acknowledgment schemes which are based on the computation of reduced values. (See
Chapter 4.) Messages can be acknowledged with a tagged selective reduction operation,
such that a particular message can be identified. (See Section 3.5.4.).

These values, along with synchronization algorithms to correctly maintain them,
are sufficient to eliminate causality errors and support deadlock-free parallel simulation
even when message traffic is always present. The maintenance of v’ takesinto account the
messages that are in transit in the host communication network. The elimination of
causality errors allows an L P to recognize when it can commit to processing an irreversible

act such as 1/0. Details can be found in [REYN92].

3.1.2. Reduced Valuesin Optimistic Parallel Simulations

In an optimistic PDES synchronization protocol, such as Time Warp [JEFF85], GV T
can be efficiently computed by an LP at any time using our framework (See [SRRE93Db]).

To compute GVT, two globally reduced values across all LP’s,i =1, 2, ..., n, wherenis

27

3.1. Reduced Valuesin Paralld Simulations

As defined in Chapter 2, a reduced value is the result of a binary, associative
operation. In this section we present reduced values that are useful in parallel simulations.
For simplicity, we assume all reduced values are computed globally, across n logical

processes. In Chapter 5, we introduce the notion of target-specific reductions.

A small set of globally reduced values can describe the synchronization state of any
parallel simulation. To do so, each logical process (LP) must maintain local counterparts to
each global value. Thesevaluesarelogical timestamps, sowerefer tothem as T-values. The
upper case“T” inthe“T-values’ signifieslogical time, whichistherange of these functions,
asagainst real time, which istheir domain. While each T-valueisaactually function of real
time, for example of (t) isthe T-valuefor thelocal clock of LP, at real timet, wewill only
use the function notation when it is necessary to reference a T-value at a particular instance
along the real time line. To compute a globa T-value, each LP maintains a corresponding
local T-value, the local counterpart to the global T-value computation. In the next few
sections, we explore various T-values in parallel simulations. Each of the T-values we

present are computed in a reduction network.

3.1.1. Reduced Valuesin Conservative Parallel Simulations

A set of T-values to support a conservative PDES synchronization protocol have
been presented in detail [REYN92] [REPA92]. The T-values computed are n’, the minimum
next event time, and v', the minimum logical timestamp of messages that have been sent
but not acknowledged. These global T-values are computed as follows:

n' = MINLPi (ni) Jforal LP,i=1,2,...,n

L' MINI_F,i (ui) Jforadl LP,i=1,2,...,n

26

reduction and dissemination of these synchronization values; and (3) synchronization
algorithmsthat guarantee that the reduced val ues represent a correct state. The computation
model is realizable on any closely coupled cluster of processors or any parallel machine.
This computation model is designed to ride the technology wave, such that as processors
and memories get faster, the framework can exploit these gainsWe use the term

“framework” to describe the entire software/hardware ensemble meant to support PDES.

Our framework has been described extensively to date. (See [REYN91], [REYN92],
[REPA92], [PANCO2], [REPS92], and [REPS93].) In this chapter we discuss our
contributions to the framework in three areas. the applicability of the framework to awide
range of PDES synchronization protocols, the correctness criteria on which the framework
hardware is based, and the hardware component of the framework. In Section 3.1. we
discuss reduced values in paralel ssimulations. In Section 3.2. we present correctness
criteria for the computation and dissemination of multiple reduced values in a parallel
simulation. In Section 3.3. we describe the computation model for the computation and
dissemination of reduced values. This computation model adheres to the established
correctness criteria. In Section 3.4. we describe a suggested high-level implementation of
the computation model, and in Section3.5. we give low-level details of this
implementation, based on the four-node prototype designed and built by the Departments
of Computer Science and Electrical Engineering at the University of Virginia. Details of the
electrical design for the prototype hardware have been completed by McGraw [MCGR93]
and Brown [BROW93]. In Section 3.6. we present some algorithms which execute on the
framework hardware and support parallel ssmulations. Throughout this chapter we make it

evident how the framework supports awide range of PDES synchronization protocols.

3 A Framework for Parallel Discrete
Event Simulations

Our parallel discrete event simulation framework, first introduced by Reynolds
[REYN91], isacombination of hardware and algorithmsin support of parallel simulations.
This framework, a low-level characterization of all PDES synchronization protocols,
provides a model for the efficient computation of critical synchronization values, such as
GVT, particularly in support of the rollback chip [FUTG92] and adaptive aggressive PDES
synchronization protocols [SRIN93]. The origina framework, as proposed by Reynolds
[REYN91] [REYN9Z], outlined the three components of the framework and provided low-
level algorithms to support a conservative PDES. Our research contributions are built on

this work.

Reynolds and Pancerella [REPA92] first described specific functional and
implementation details of the hardware component of the framework. We presented the
prototype hardware design and applications of the hardware-based framework to a wide
range of PDES synchronization protocols [REPS92]. Finally, the framework was further
developed by Reynolds, Pancerella, and Srinivasan [REPS93] with criteria for its correct
operation, functional characteristics, description of a prototype hardware design, and
performance results first reported by Srinivasan [SRIN92]. Our contributions to the

framework, as presented in these publications, will be presented in this chapter.

The framework itself is comprised of both hardware and software to support PDES.
There arethree componentsto thisframework: (1) reduced valuesthat characterize the state

of aparalel smulation; (2) an abstract computation model which isthe mechanism for the

25

24

paths. The transitive closure of a directed graph G = (V, E) is defined as the graph
G = (v, E*), where E' = {(LP, LP): thereisapathfromLP, to LP, in G}.

2.5. Summary and Conclusions

We have discussed concepts and terminology for parallel discrete event simulation,
reduction operations, networks which compute reductions, sorting networks, and directed
graph theory in preparation for the presentation of our results on the computation of

reductions in support of parallel discrete event simulation.

In the next chapter we present a reduction-based framework for parallel discrete
event simulations as introduced by Reynolds [REYN91] [REYN92]. In this chapter we
develop this framework with respect the applicability of the framework, the computation
model, the detailed hardware design, and correctness criteria. In Chapter 4 we present our
contributionswith respect to the algorithmic component of the framework. In Chapter 5 and

Chapter 6 we present our contributions on the computation of target-specific reductions.

23

Both of these networks have width O(n) and depth O(Iog2 n), so the time complexity to sort
nitemsis O(Iog2 n). The AKS sorting network [AJKS83] is an optimal sorting network
with width O(n) and depth O(log n), but the associated constants are too large for this

network to be considered practical.

2.4. Directed Graph Theory and Ter minology

Most PDES applications demonstrate a spatial locality: event messages tend to
follow static communication channels. Real life simulations that exhibit complete static
communication properties include logic networks, many queueing networks, and physics
simulations such as the Ising model. Hence, in practice, an LP only communicates with a
known, small set of other LP's. Target-specific synchronization information for LP, is
computed using inputsfrom all LP’ sthat can directly or indirectly send it an event message,
based on these known properties of the communication topology. Thisis our motivation for

introducing some directed graph theory and its terminology.

A directed graph isafinite, nonempty vertex set V together with a (possibly empty)
edge set E of ordered pairs of distinct vertices. An edge from LP, to LP;, indicating that L P,
sends event messages to LP, this is represented by (LP;, LP)). If there is a directed path
from LP, to LP; in the LP communication graph, then LP, is a predecessor of LP,. If there
isadirected edge from LP, to LP;, then LP, is an immediate predecessor of LP,. Likewise,
if thereisadirected path from LP, to LP, then LP, isasuccessor of LP,. If thereisadirected

edge from LP, to LP, then LP, is an immediate successor of LP.,.

Given adirected graph representing an L P communication topology, it is desirable
tofind out if thereis apath from LP, to LP, for all vertex pairs because each predecessor of

LP, can have adirect or indirect impact on its state because event messages are sent along

22

calculations necessary to support structural analysis algorithms. The sum and max
calculations in the FEM are calculated aternately without processor synchronization.
Unlikethe FEM, our hardware is designed to operate on aa set of input and output registers
which are treated as a single state vector, whereas the FEM uses asingleinput and asingle

output register. (See Chapter 3.)

2.3.4. Thinking M achines CM-5 Supercomputer

The Thinking Machines CM-5 [THIN92] contains two separate networks for
different types of communication and synchronization: the data network is the primary
message-passing network in the machine and the control network provides hardware
support for common cooperative operations. The CM-5 control network [LEAD92]
supports “ soft” barrier synchronization, global arithmetic and logical reduction operations,
parallel prefix and parale suffix operations, and segmented parallel prefix operations. As
in the iPSC/2, the reduction operations the CM-5 require the compl ete synchronization of
all processors. All processors must call global operation functions with acontributed val ue,
and a global operation blocks until all processors enter it. Our framework hardware, on the
other hand, computes and disseminates globally reduced values on state vectorswithout the
coordination of the host processors; the reduction operations on the PRN are performed
continuously and asynchronously. Furthermore, the hardware design employs dedicated

processors to manage the high-speed 1/0 between from the reduction network and itself.

2.3.5. Sorting Networks

There isamultitude of literature on parallel sorting and sorting networks. We limit
our discussion to a class of practical sorting networks and a theoretically optimal sorting
network. Batcher’s two sorting networks [BATC68], the odd-even merge network and the

bitonic sorting network, are both based on parallel merge sort and have similar properties.

21

optimal solution to the Multiple Criteria n-processor BSR problem is directly applicableto

the target-specific dissemination problem.

2.3. Related Architectures

Using a separate synchronization network for improving system performanceis not
anew idea. ThelBM RP3 [PFBG85] was designed as a shared memory multiprocessor that
houses both a combining network for synchronization traffic and alow latency network for
regular message traffic. In this section we discuss related hardware efforts for barrier

synchronization, computing reductions and sorting.

2.3.1. Hardwarefor Barrier Synchronization

Severa researchers have proposed the use of hardware to implement barrier
synchronization. Hoshino [HOSH85] has an efficient barrier synchronization in the PAX
computer. Stone [STON90] suggests the use of global busses to compute maximum values
and to implement fetch-and-increment. The hardware that we propose, on the other hand,

provides support for alarger class of algorithms than barrier synchronization algorithms.

2.3.2. Intel iPSC/2

Many parallel architectures provide for global binary, associative operations across
all processors. Global operations on the Intel iPSC/2 [INTE89] are provided for arithmetic
and logical operations. There is no separate network to support this computation. All
computation is performed on the host processors and all communication is done in the data

network.

2.3.3. Finite Element M achine

The Finite Element Machine (FEM) [JOoSc79], aNASA prototype, utilizes abinary

tree-structured max/summation network to perform the global sum and maximum

20

2.2.2. Minima of Interval Computation

A problem related to the segmented scan operation is the minima of intervals
operation [GIRY88]. Thisoperation takesavector a of integersand avector int, int; = [l;..r],

of intervals, both of size n, and returnsthe array X, defined as follows:

X = MIN(ak) JkOint
With the same complexity as the parallel prefix problem, the minima of intervals problem

can be solved in O(log n) with O(n) processors using a balanced binary tree method.

2.2.3. Broadcasting with Selective Reduction

Lindon and Akl [L1IAK93] introduced the Broadcasting with Selective Reduction
(BSR) as an extension to the CRCW PRAM model of parallel computation. This operation
permits a broadcast operation to shared memory, such that a binary, associative operator []
is applied to each data item whose tag satisfies the condition tag O limit, where O is the
selective operation. Linden and Akl show an optimal implementation for the BSR
operation of size O(n log n) and time complexity O(log n), where n is the total number of
processors and memory locations. This implementation combines sorting circuits, parallel
prefix circuits, and merging circuits. The sorting circuit is assumed to be an AKS sorting
circuit [AJKS83] which has optimal space and time complexities but an impracticaly large

multiplicative constant.

The Multiple Criteria n-processor BSR [LIAK93] allows multiple selection of the
data items to be reduced. Akl and Stojmenovic [AKST94] present a O(n2) switch solution
to this problem with time complexity of O(log n) and also state that it is an open problem
if there is a Multiple Criteria n-processor BSR implementation that requires a number of
switches asymptotically smaller than O(n2). The single criteria n-processor BSR

implementation is restricted to solving problems whose inputs obey astrict linear order. An

19

summations, logical AND’s, and logical OR’s. In the next sections we discuss types of

reduction computations and hardware efforts to compute reductions.

2.2.1. Parallel Prefix Operations

Theall-prefix-sums operation takes a binary, associative operator [1, and an ordered
set of n elements|[ay, &, ..., 8,4], and returns the ordered set [a,, (8, L] &), ..., (&g &, ...
a,.1)]. Anarray al-prefix-sums operation is called ascan. A reduction operation, therefore,
generates the final element of the scan. A segmented scan operation allows an array to be
operated on by a scan such that it is broken into segments with flags that allow the scan to
start again at each segment boundary. This requires two arrays, a, the data array, and f, the

flag array. The segmented scan can be defined by the following recurrence:
X =ayifi=0
x=a,iff=1,0<i<n

x=,a),iff=0,0<i<n
These formal definitions and applications of scans have been published by Blelloch
[BLEL9Q], athough scans were first introduced for the language APL [IVER6G2], and
segmented scans were first suggested by Schwartz [SCHwW80].

Blelloch [BLEL89] proposed atree-structured hardware implementation of parallel
prefix operations with O(n) components and O(log n) time complexity. The computation of
parallel prefix reductionsisasubset of our problem of computing and disseminating target-

specific synchronization information, as discussed in Chapters 5 and 6.

18

discrete event ssimulation engine. Fujimoto initially targeted the Virtual Time Machine
[FUJ89] as hardware support for discrete event simulation, but this machine is now
intended to utilize an aggressive style of execution in ageneral purpose parallel computer.
Fujimoto, et. al., developed the rollback chip [FUTG92] as a hardware enhancement to a
Time Warp engine. Therollback chipisamemory management unit that facilitatesthe state
saving and restoration that is inherent in aggressive protocols such as Time Warp. As
reported in a study by Buzzell and Robb [BUR090], the chip has excellent performance
capabilities.

Filogque, et. al., [FIGP91] proposed the use of a processor network with
programmable logic for efficient global computations, such as the computation of GVT in
aTimeWarp simulation. Thishardwareisnot asingle network like weintroduce in Chapter
3; it is, however, a distributed system of sockets, one per processor. The reprogrammable
sockets are connected in a pipelined ring, forming the computation engine. A token is
inserted into the ring by a designated control socket. It travels around the ring, performing
partial computations at each socket. When the token returns to the controller, the global
computation is complete. Therefore, their proposed hardware performs global
computations in O(n) time whereas, our synchronization network computes reductions in
O(log n) time. (See Chapter 3.) Furthermore, the proposed synchronization algorithms for
computing GVT in Filoque's network [FIGP91] rely on the host communication network
for message acknowledgments and our framework uses the framework hardware for this
purpose. (See Chapter 4.) The goals of both approaches are similar, but our framework is

more efficient, more flexible, and more scalable, as will be shown throughout this thesis.

2.2. Reduction Operations

We begin by defining areduction. A reduction is a binary, associative operation []

computed across n inputs. Examples of reductions include minimums, maximums,

17

Finally, in phase three LP's process al events that have been determined to be safe. The
primary difference between any of these synchronization protocols is the method used to
determine which events can safely be processed concurrently. Iterative protocols are

accurate, aggressive or non-aggressive, with or without risk, and loosely synchronous.

Examples of iterative PDES synchronization protocols include the Bounded Lag
protocol [LuBA88a], the Moving Time Window protocol [SoBW88], Chandy and
Sherman’s protocol for converting conditional eventsinto unconditional events[CHSH89],
an iterative algorithm based on the distance between objects [AYAN89], Nicol's iterative

algorithm [N1co90] [N1c091], and the Global Windowing Algorithm [DICK93].

2.1.5. Hardware Support for PDES

The need for special-purpose hardware to support PDES is well established. In a
recent survey on the state-of-the-art in parallel ssmulation, Nicol and Fujimoto recognize

hardware support as one of six important areas of future research [NIFU92].

The use of special-purpose hardware to improve the performance of simulation
programs is not novel. Logic simulation engines have been constructed that yield
significant speedups [FRWW84]. Lubachevsky suggests using a special-purpose network
to broadcast a minimum event time in his Bounded Lag protocol [LUBA88]. This network
is abinary tree implemented in hardware in order to support synchronization barriers and
to compute and broadcast aminimum next event time. His control synchronization network
is presented strictly in support of the bounded lag protocol; nonetheless, this has served as

amotivating factor in our approach.

Hardware enhancements for Time Warp have been prevalent in the research; for
example, Livny and Manber suggested using token rings for disseminating GVT

[LIMAB8S5]. One trend in hardware support for Time Warp is to design a high performance,

16

which significantly degrade performance in their telephone switching network simulation.
Mitraand Mitrani [MIM184] and L ubachevsky [LuSW89] have devel oped modelsto show

that echoing can occur.

Many experimental results have been published on the performance of the Time
Warp paralel simulation synchronization protocol [BERR86], [JEBH85], [GILM88],
[LOCUS8S]. It has been demonstrated that Time Warp is a robust protocol across a wide
range of workload parameters [FUJ90b] and is not as sensitive to lookahead as the
conservative protocols. (See [GAFNS88], [FUJ89b], [LILA89c], [LILA89d], [LILA8Ye],
[LILA9Q], and [LILA90Db] for additional performance studies on Time Warp.)

The major advantage of optimistic PDES synchronization protocols is that more
parallelism can be extracted from some applications than with other PDES synchronization
protocols. Time Warp does not suffer from artificial blocking. This advantage, however,
comes at the cost of extra memory requirements and a more complex mechanism for state
saving and rollback. Fujimoto found that as the size of the state increased by amodest size
of 2000 bytes, the degradation of performance was reported to be 50% [FuJ89b]. The
degradation of performance in this case is a result of both state saving overhead and the

increased frequency of fossil collection.

2.1.4. Iterative PDES Synchronization Protocols

Conservative and optimistic protocols are both asynchronous protocols. Several
researchers have introduced PDES synchronization protocols which are loosely
synchronous (See [F0Jo88]), such that LP's process asynchronously and synchronize
periodicaly at barriers. These protocols proceed iteratively and synchronize at the end of
each of three phases. Phase one requires LP's to determine the event with the smallest

timestamp in the system. In phase two LP's determine which events are safe to process.

15

limits the amount of saved state information that an LP must have in memory at any time;
it also prevents rollback to the beginning of simulation time (unless GVT is equal to this
time). Also, GVT is used to show a guarantee of progress in a Time Warp simulation
[JES085]. Furthermore, GVT can be used in termination detection, crash recovery, and

input and output handling.

There are three major challenges in optimistic protocols. First, the cost of periodic
state saving can be very high. The use of special-purpose hardware, the rollback chip
[FUTG92], can aimost eliminate this cost. The problem with the rollback chip is that its

memory capacity is limited.

Second, optimistic protocols use more memory than sequential simulations due to
state saving and aggressive processing. Fossil collection, or garbage collection, is
necessary for an efficient implementation of Time Warp. Fossil collection involves
destroying state information that is older than GVT as a method of freeing up available
memory for currently saved states. Since state saving is such an integra part of the Time
Warp protocol, efficient memory management iscritical to its performance. The cancelback
protocol [JEFF90], proposed by Jefferson, provides optimal storage management.
Performance studies [DAFU93] have shown that the GVT maintenance scheme is critical
to this memory management protocol. There are many proposed GVT computation
schemes. Representative ones include [JEFF85], [JES085], [SAMAS85], [LILA89Db],
[BELL9Q], [COKE9Q]], and [TOGA93].

The third main problem with a rollback-based simulation is that the process of
rolling back computation can degrade performance. A cascading rollback is a “chain
reaction” of rollbacks where the number of LP's increases without bound [LUSW89].
Echoing is a pattern of self-fueled rollbacks whose amplitude increases without bound

[LUSW89]. Turner and Xu [TuXU92] have reported cascading rollbacks and echoing

14

unconditionally. Since events can be processed out-of-order, Time Warp employs state

saving and rollback as methods for repairing potential incorrect event sequencing.

Each LP, executing a Time Warp simulation maintains its own local virtual time
(LVT), which acts as the ssimulation clock for LP.. Each LP will save its state periodically.
When a causality error is detected, the LP restores a previous state that was saved before
the error occurred. State restoration, or rollback, involves resetting an LP'slocal clock to a
time in the logical past. After an LP has completed a rollback, it can begin processing
forward in time. Unfortunately, due to the sending of event messages, a causality error
could be spread to other LP’s. To ensure accuracy, other LP’'s must be notified of erroneous
messages.

If LP, discoversacausality error at logical timet, then any messagesit has sent with
atimestamp greater than t are potentially in error. Time Warp employs antimessages as a
way to cancel event messages: each antimessage has the exact same content and format as
its corresponding event message, but it has a different sign. An antimessage may cause the
receiving LP to roll back, which may in turn cause more antimessages to be sent to other
LP's. Event messages can be cancelled with either aggressive cancellation, where a
rollback message causes the immediate cancellation of all event messages sent with
timestamps greater than the timestamp on the rollback message, or lazy cancellation, where
events are cancelled only if during subsequent forward processing they are determined to
bein error. One rollback can cause a cascade of rollbacks. An LP, however, can never roll

back past the global virtual time (GVT) [JEFF85].

GVT ismaintained across all LP's: thisis asimulation-wide safe time. GV T isthe
guaranteed time for which all events with timestamps less than or equal to it have been
processed accurately. In other words, at any rea time r, GVT(r) is defined to be the

minimum of all local clocksand of the timestamps of all transient messages[JEFF85]. GV T

13

Lookahead isthe ability of an LPto predict its future behavior; in other words, if an LP has
received event messages up to logical timet, it can predict that any message it sendsin the
future will have atimestamp of at least (t + €) for some € > 0. Researchers have shown that
minimum event processing times and lookahead values can produce significant
performance improvements in a non-aggressive PDES synchronization protocol. (See
[NIRE84], [Fua87], [Fua88], [REMMS88], [N1co88], [NIco88b], [LILA8I], [WALAB9],

and [FEKL92b] for performance results on the effects of lookahead values.)

Conservative protocol s require the communication topol ogy to be static and known
a priori. Furthermore, these protocols do not efficiently support fully-connected
communication graphs. This usually requires excessive overheads such as broadcast
communication necessary to determine when it is safe to proceed. In general, conservative
protocols perform well on simulations with sparse topologies and good |ookahead

properties.

2.1.3. Optimistic PDES Synchronization Protocols

The most common optimistic protocol is Time Warp [JEFF85]. Time Warp employs
maximal aggressiveness. each LP executes without regard to whether there are
synchronization conflicts (i.e. potential causality errors) with other LP's. A protocol in this
classmay do incorrect processing, and at some point, the incorrect results must be undone,
and thework redone correctly. These protocols are accurate, aggressive, asynchronous, and

without risk.

Under the Time Warp protocol, an LP processes messages from its input queue(s)
in monotonically non-decreasing timestamp order until it exhausts the queue(s) [JESO85];
hence, it never blocks or waits until it can safely process the next message. Time Warp

guarantees that a parallel simulation cannot deadlock if and only if al LP's process events

12

synchronization protocols categorized with respect to aggressiveness, inaccuracy, risk and

synchrony. The names of the categories are common in the literature.

2.1.2. Conservative PDES Synchronization Protocols

Chandy and Misra[CHMI179] and Bryant [BRYA77] performed pioneering work in
this area independently. This class of protocols will never permit an LP to do incorrect
work; hence, each LP cannot proceed until it is guaranteed not to receive a message in its
logical past. In aconservative protocol, an LP will block until determines that it can safely
process an event. These protocol s are accurate, non-aggressive, asynchronous, and without

risk.

The most significant disadvantage of conservative PDES synchronization protocols
is that the potential parallelism is not always fully exploited due to artificial blocking
[REYNS82]. Artificial blocking occurs when LP, is blocked and waiting for a message from
an LP whose logical clock has already exceeded the message time of LP’s pending
message. This artificial blocking occurs because LP. has insufficient information to

determine that it can safely advance itslogical clock.

Blocking introduces the potential for deadlock. Deadlock occurs when a parallel
simulation has cycleswhere each LPin the cycleisblocked and waiting for amessage from
another LP in the same cycle. There are many research efforts in deadlock handling. (See
[CHMI79], [MISR86], [PEWM79], [PEWM79b], [REYN82], [NIico84], [CHMI8]],
[YUGD91], [DEGY91], and [LITR9IQ] for different approachesto dealing with the deadlock
problem.) Either deadlock avoidance or deadlock detection and recovery isan overhead for

the simulation.

The performance of conservative PDES synchronization protocols just described is

greatly affected by the amount of lookahead that is possible in the specific application.

11

others. The performance of one protocol over another depends on the multiprocessor
architecture and the application being simulated. Traditionally, researchers have
categorized PDES synchronization protocols as either conservative or optimistic. This
classification istoo restrictive; Reynolds has devel oped a set of design variablesthat define
a spectrum of options for parallel simulation synchronization protocols [REYNSS].
Although nine design variables are defined, the four that are most relevant to our research
are aggressiveness, accuracy, risk and synchrony.

» Aggressiveness involves relaxing the requirement that event messages are
processed in a strict monotonic order with respect to message times. In other
words, an event can be processed by an LP without the guarantee of freedom
from causality errors. An LP that adheres to a non-aggressive policy will only
process a message if no message that logically precedesit can arrive at that LP.

» Accuracy requires that events within LP's are ultimately processed in
monotonically non-decreasing order. In most cases, this requires that the set of
all final statesfor agiven parallel ssmulation be equivalent to the set of all final
states for a sequential counterpart. Accuracy requires that all events have the
effect of having been processed in a monotonic sequence; aggressiveness does
not address thisissue and is independent of accuracy.

* Riskisthe design variable that allows an LP to send messages that have been
processed based on aggressive or inaccurate processing assumptions. A
protocol that employs aggressiveness without risk guarantees that all rollbacks
are strictly local to that LP. A risk message [REYN88] is a message that is the
product of actions taken based on incomplete (conditional; see [CHMI87])
knowledge or as aresult of processing that leads to the transmission of out-of-
order messages. An LPisat risk if there exists arisk message at the head of at
least one of its input queues or if at least one of its input queues is empty.
Aggressive processing coupled with risk can create or pass along risk messages.

» Synchrony describes the amount of synchronization among LP's. Parallel
simulation synchronization protocols can be asynchronous, loosely
synchronous, or synchronous.

It isimportant to remember that these design variables are orthogonal ; hence, there
are severa levels of synchronization protocols and not just the conservative/optimistic

dichotomy often found in the literature. We present a brief overview of parallel smulation

10

nature of LP's logical clocks and communication delays among LP's, there is no way of

guaranteeing that messages received by LP; occur in a specific order.

A A
o 80 o 80
E = E =
IS] 60 IS] 60
D 50 > 50
O o
= | = | 40
© ©
8 30 8 0 |
))
LP, LP, LP, LP,
@) (b)

Figure 2.1 Example of a Causality Error in aParallel Simulation.

It would appear that parallel simulation is a natural candidate for parallel
processing. However, unlike the many applications that exhibit good parallelizing
properties, PDES's typically have irregular data-dependent properties. The LP's operate
asynchronously, and global time does not easily map to a parallel computer. The major
challengesfacing researchersin parallel simulation are to maximizethe parallelism that can
be obtained in a PDES and, at the same time, to synchronize logical processes such that

each LP processes events in non-decreasing timestamp order.

Most of the research in PDES has been directed at solving the synchronization
problem such as the one depicted in Figure 2.1. Many parallel simulation synchronization
protocols have been proposed; Fujimoto [FUJI90] gives a good survey of this literature.

Each of the proposed protocols performs well under certain conditions and poorly under

scheduled event will occur. Each LP maintains a relative counter, its logical clock, that
denotes how far that LP has progressed. It is very likely that logical clocks among LP's
logical clocks will differ, and this asynchronous property of paralel simulation can
introduce a synchronization problem, the central problem in PDES sinceitsinception. Each
LP maintains a data structure of events to be processed, its event list, and its logical clock
is advanced to the time of the event with the next logical time. Knowing when it is safe to

advance the logical clock of an LP isadifficult problem.

A causality error in aPDES occurs when event B depends on event A, and event B
is executed before event A. Observetheinstancein Figure 2.1. In Figure 2.1(a), LP; begins
to processitsearliest event at logical time 30 and L P, processesits event at logical time 60.
In Figure 2.1(b), LP; has finished the processing of its event at time 30 which resultsin a
timestamped message sent to LP,. The receipt of this message causes an event to be
scheduled at LP, with timestamp 40. In this example a causality error has occurred since
L P, has executed events out of timestamp order. A parallel smulation will be correct if and
only if each LP ultimately processes events equival ent to a nondecreasing timestamp order.
Adherence to thislocal causality constraint is sufficient, though not always necessary, to

guarantee the absence of causality errors [FUJ90]. However, due to both the asynchronous

2.1. Parallel Discrete Event Simulation

Discrete event simulation is a common technique for modelling large systems, for
example, military applications, logic circuits, traffic systems, and telecommunication
networks. A sequential discrete event simulation may require the execution of millions of
events and asaresult can take hours or daysto complete. Parallel discrete event simulation
(PDES) isthe process of executing a discrete event simulation on multiple processors with

the goal of reducing the finishing time of the equivalent sequential simulation.

Discrete event simulations often contain a high degree of potential parallelism;
however, in practice, they can be difficult to parallelize. Parallel simulation is a hard
problem because its very nature is data-dependent and asynchronous. As we will explain
in subsequent sections, most PDES's deal with asynchronous systems where events are not
synchronized by a global clock but rather are dependent on other events in the system.
Synchronization of logical processes in a PDES has been the magjor focal point of PDES

research.

In the next section, we present a model of parallel ssmulation and introduce the
terminology necessary for describing our research contributions to PDES. We discuss
common synchronization protocols for implementing parallel simulations. Our framework
for PDES, described in Chapter 3, will support each of the protocols mentioned in this

chapter. Finally, we discuss hardware support for parallel simulations.

2.1.1. Model of PDES

A general model of a PDES has been described by Misra [MISR86]. A PDES
consists of a set of logical processes (LP’s) that model physical processesin a system. All
interactions among physical processes are modeled by event messages, or events, sent

among LP's. Each message contains a timestamp indicating the logical time at which a

2 Background

Our research touches on the areas of parallel discrete event simulation, reduction
operations, networks which compute and disseminate the results of reduction operations,
and directed graph theory. We review the relevant literature and introduce terminology in

each of these areas.

Parallel discrete event simulation is the application which we support with the
computation of efficient reduction operations. Fujimoto has written an excellent survey of
PDES research prior to 1990 [FuJ90], and Nicol and Fujimoto have published current
PDES research topics since 1990 [NIFU92]. We present background research and related
work in PDESin Section 2.1.

Our research applies the efficient computation of reduction operations in hardware
to parallel smulation synchronization protocols. In Section 2.2. we discuss reduction
operations, and in Section 2.3. we present other networks which compute and disseminate
reduction results, including a discussion of sorting networks in Section 2.3.5. We include
the discussion of sorting networks because our best cost of computing target-specific
reductions (See Chapter 5) requires a sort, and we believe a solution to designing an
efficient target-specific paralel reduction network will likely have a sorting network as a

component.

The computation of target-specific reductions only supports parallel simulations
where the set of potential communicants is known prior to the execution of the simulation.
We review directed graph theory in Section 2.4. since many of these definitions are

necessary to the understanding of the target-specific problem and its solutions.

the exploration of the cost of computing target-specific reductions, in general,
trade-offs in time and space complexities

sthe best known results on the cost of computing target-specific reductions

othe utility of the target-specific reductions to both conservative and optimistic
parallel simulation synchronization protocols.

1.3. Thesis Overview
Thisthesisis organized as follows.

Chapter 2 offersareview of parallel discrete event simulation, reduction operations,

architecture support for computing reduced values, and related work.

Chapter 3 describes the computation model of our framework for parallel discrete

event ssimulation and its correctness.

Chapter 4 presents several algorithms for the acknowledgment of messages in a
reduction network and a proof of correctness of one of the more promising ones. Also,

performance issues of algorithms are discussed.

Chapter 5 explores time and space complexity issues related to target-specific

reductions.

Chapter 6 presents experimental results demonstrating the need for the rapid
dissemination of target-specific synchronization information in both conservative and

optimistic parallel discrete event simulations.

Chapter 7 offers conclusions drawn from thisresearch, and offers avenuesfor future

work.

The framework as proposed by Reynolds [REYN91] includes the computation of
globally reduced values. We believe that in some cases globally reduced information is not
sufficient for logical processesin aPDES to make the necessary event processing decisions.
Globally reduced values only capture information about one logical processor (e.g. the
smallest logical clock in the system) or all processors (e.g. the total number of outstanding
messages). The dissemination of global information means that each logical process
receives information that is derived from the whole group’s inputs. In many PDES's, each
logical processis only affected by the processing of a subset of the logical processes. By
providing target-specific reductions, where each logical process receives reduced
information from only those logical processes that have an impact on its performance (e.g.
all predecessors in a precedence graph), we expect significant performance gains
(measured in execution time, memory usage, or a combination of both) for paralléel
simulations. A network to compute and disseminate target-specific reductions can provide
near-perfect state information to parallel simulation synchronization protocols. Thisisthe
motivation for exploring the cost of computing and disseminating target-specific

reductions.

1.2. Contributions

This thesis contributes to the field of parallel discrete event smulation by

the devel opment of a hardware/software framework to support the wide range of
existing parallel ssimulation synchronization protocols and to influence the
development of new parallel simulation synchronization protocols

sthe first significant research on the importance of reductions in parallel
simulations

the exploration of several event message acknowledgment algorithms which use
a reduction network and remove all related load from a host communication
network

sthe introduction of target-specific reductions to parallel discrete event
simulations

reductionsfor synchronizing PDESlogical processes. Lubachevsky’s effort isquite limited

in scope, supporting of only the parallel simulation protocol he proposes.

Some ideal features of framework hardware to support synchronization in parallel
simulations are:

* Speed — The hardware must be designed to compute and disseminate
synchronization information very rapidly and with little overhead.

 Scalability — The hardware must be scalable.

» Adaptability — The hardware should be adaptable to current and future parallel
computers. Also, the framework should be designed to adapt to current
technology with ease.

» Generality — The hardware must be able to support a spectrum of parallel
simulation synchronization protocols [REYN8S].

e Low cost — The hardware to support parallel simulation synchronization
protocols should not be expensive.

One of the primary motivations of our effort is the efficient computation of global
virtual time in an optimistic PDES protocol. Global virtual time is comprised of two
reduced values:. the smallest logical clock in the system and the smallest time of a message
that has been sent but not yet received and processed by itsintended receiver. In support of
this second component of GVT, it is necessary to keep track of outstanding messages or to
acknowl edge messages once they have been received. Our solution to thisproblemisto use

the high-speed network, which computes reductions, to also acknowledge messages.

It is critical that the computation of reduced values proceed asynchronously to the
execution of the simulation and that neither the computation of the reductions nor the
simulationis blocked. Also, itiscritical that the algorithms which support synchronization
and event message acknowledgments be correct. We have based our framework on formal
correctness criteria and have derived correctness proofs for message acknowledgment

algorithms.

are mechanisms of guaranteeing the correct execution of paralel ssmulations. Broadly
these protocolsfall into two major classes, though there is awide range of synchronization
protocols. One classis protocols that are accurate, non-aggressive, and without risk (using
terminology developed by Reynolds [REYN8S]); these protocols are commonly referred to
as conservative protocols. Protocols that are non-aggressive and without risk do not allow
an LP to process an event with timestamp t, if it is possible that it will receive an event
message with timestamp r, r <t, at some point in the future. The second major class is
protocolsthat are accurate, aggressive, and with risk; these protocols are commonly called
optimistic protocols, and Time Warp [JEFF85] is the most common of the optimistic
protocols. Protocols that are aggressive and with risk allow an LP to process any event in
its event list, and any causality errors that result from aggressive processing are corrected
through a rollback mechanism. (See Chapter 2 for a more complete discussion of parallel

simulation synchronization protocols.)

The need for special-purpose hardware to support parallel simulations is well
established. The computation requirements for parallel simulations continue to grow. The
simulation of large communication networks and battlefield scenarios, for example, both
require a significant amount of computation time (sometimes weeks or more). In addition,
simulation programs, especially those employing aggressive processing, often utilize a
large amount of memory. The importance of research in the area of hardware support for
PDES has been recognized in a recent article on the state of the art in parallel ssimulation

[NIFU92].

Most of the research in hardware support for parallel ssimulations has been in
support of state saving and rollback in Time Warp simulations. The need for efficient
synchronization in parallel ssmulations has also been recognized, yet only one known

research effort [LUBA88] has considered hardware to support the efficient computation of

values, and 3) correct algorithms which execute on the hardware and use the reduced

values to support synchronization in aparallel simulation.

In this thesis we advance this framework in four mgjor areas. 1) a computation
model for computing reductions in a parallel ssmulation, 2) anovel implementation of the
hardware portion of the framework, 3) novel, verified message acknowledgment
algorithms which execute on the framework hardware and are used to maintain aminimum
outstanding message time necessary in the computation of critical synchronization values,
and 4) anew class of reductions, namely target-specific reductions. We discuss motivations

for each.

1.1. Motivation and Objectives of this Research

When a discrete event simulation is partitioned for parallel execution, logical
processes (LP's) model physical processes from the corresponding physical system. Each
logical processhasan eventslist, alist of eventsto be executed, and alocal clock, indicating
how far the simulation has progressed at that LP. Logical processes communicate through
the use of timestamped event messages, where an event message indicates a time that an
event will be scheduled inthe eventslist of the receiving logical process. Logical processes

are largely asynchronous.

A result of this model of paralel discrete event simulation is a difficult
synchronization problem: each LP must determine when it is permissible to advance its
logical clock. If an LP advancesitslogical clock too far ahead of other LP's, it may receive
an event message with a timestamp in its logical past, i.e., less than its local clock. A
causality error can occur when an LP receives a message with a timestamp in its logical
past. A causality error can led to incorrect resultsin the parallel ssmulation. Parallel discrete

event simulation synchronization protocols (sometimes called synchronization algorithms)

1 introduction

Parallel discrete event ssimulation (PDES), or parallel simulation, is the execution
of a discrete event simulation on a parallel computer. It is an atypical parallel computing
problem: the computation is asynchronous yet there can be a significant amount of inter-
dependence among processes. This makes parallel simulation a challenging problem.
During his keynote address at the Seventh Workshop on Parallel and Distributed
Smulation (May 1993), Mani Chandy identified two key research contributions that
parallel discrete event ssimulation (PDES) [FuJ90] has made and is making to parallel
computing: 1) the development of techniques for efficient asynchronous computation and
2) the exploration of reduction operations (binary, associative operations). The majority of
the research in parallel simulation has been the development of synchronization protocols,
and this research is concentrated in the first research area. The only significant research in
the computation of reduction operations has been the development of algorithms for the
computation of global virtual time (GVT) in a Time Warp parallel smulation. The utility
of reduction operations has been greatly overlooked until now. The results presented in this
thesis make important contributions to the efficient computation of reduction operationsin

support of parallel simulation.

A novel framework for parallel simulation was presented by Reynolds [REYN91].
This framework is a software/hardware ensemble for the efficient computation of
reductions and the dissemination of reduced valuesin support of parallel simulations. There
are three components to this framework: 1) reduced values which characterize the state of

a paralle simulation, 2) framework hardware to compute and disseminate the reduced

Copyright [0 1994.

Carmen Marie Pancerella
All Rights Reserved

May 1994

Xiv

List of Symbols

n, ()
n' (v
v, (1)
v’ (t)
o; (1)
o' (1)
o; (1)
p; (B
p'(t)
T, (1)
T (1)

M (1)

next event time of LP; at real timet

minimum next event time of all LP's at real timet

smallest unreceived message time of LP, at real timet
minimum unreceived message time of all LP'sat real timet
logical clock of LP; as observed by AP; at real timet
smallest logical clock of all LP'sat real timet

logical clock of LP, at HP; at real timet

T-value of primary acknowledgment by LP, at real timet
smallest primary acknowledgment of all LP's at real timet
T-value of secondary acknowledgment by LP; at real time't
smallest secondary acknowledgment of al LP's at real timet

minimum timestamp of LP; that can be read by PRN at real timet;
1, (1) = MIN(; (0, v; (1)

Xiii

Xii

Figure 4.13 Effect of Load on Batch Size, where Number of Internal Eventsls

20, e ne e 103
Figure 4.14 Effect of Load on Batch Size, where Number of Internal Events|s
2 ettt et be et 104
Chapter 5
Figure 5.1 An Example PDES Communication Topology.ccccccevvveenee. 109
Figure 5.2 An Instance of an Optimistic PDES.cccccoovinniinieneniee 111

Figure 5.3 An Instance of the Minimum Valuein All Subsets Problem. ... 115
Figure 5.4 Memory Requirements of an O(n log n) Solution to the MVAS

Problem. ... 117
Figure 5.5 Divide-and-Conquer Partitioning of MVAS Problem. 119
Figure 5.6 An Instance of the Minimum Value in All Subsets Problem

ASSUMING POINEENS. ..ot 122
Figure 5.7 After Minimum Value Assigned to Set Sy, ..ocoevvevcencncienenns 123
Figure 5.8 Lattice Used to Store Preprocessed Subset Information. 124
Table 5.1 Family of SOIULIONS.cociiiiiieieeeee e 127
Figure 5.9 A Target-specific Parallel Reduction Network.cccceeueeee. 128

Chapter 6

Figure 6.1 Linear Topology With FOUr LP'S.cceeiiiiiiineeeree, 137
Figure 6.2 Results of Linear Topology with Four LP'S.ccccevvveiiveneenee. 138
Figure 6.3 A Fan-out Topology With Eight LP'S.cceeiiiiinieieeeee 139
Figure 6.4 A Fan-In Topology With Eight LP'S.ccccoiiiiiiiieece, 140
Figure 6.5 A Fan-in/ Fan-out Topology With Eight LP'S.ccceeveviveneee. 140
Figure 6.6 A Fan-in/ Fan-out Topology With Eight LP'S.cccccvieeiviennee. 141
Figure 6.7 A Fan-in/ Fan-out Topology With Eight LP'S.cccecvrvrennee. 141
Figure 6.8 Results of Fan-out Topology With Eight LP'S.ccceeveiiveneee. 142
Figure 6.9 Results of Fan-in Topology With Eight LP'S.ccccoiiieiinennne 143
Figure 6.10 Results of Topology With Eight LP' sin Figure 6.5. 144
Figure 6.11 Results of Topology With Eight LP'sin Figure 6.6. 145
Figure 6.12 Results of Topology of Eight LP'sin Figure 6.7. 146
Figure 6.13 Results of Linear Topology of Sixteen LP'S.ccccvvveriennee. 147
Figure 6.14 Results of Fan-out Topology of Sixteen LP's.cccccvevvveneee. 148
Figure 6.15 Results of Fan-in Topology of Sixteen LP'S.cccovveeivnenee. 149
Figure 6.16 Results of Fan-in/ Fan-out Topology of SixteenLP's. 150
Figure 6.17 Results of Linear Topology of 32 LP'S.ccccovvevveieceeciec 151
Figure 6.18 Results of Fan-out Topology of Sixteen LP'S.ccoceiveennee. 152
Figure 6.19 Results of Fan-in Topology of 32 LP'S.ccccocvviiiveninceeee, 153
Figure 6.20 Results of Fan-in/ Fan-out Topology of 32LP's.cccceue... 154

Chapter 7

List of Figuresand Tables

Chapter 1
Chapter 2
Figure 2.1 Example of a Causality Error in a Parallel Simulation. 10
Chapter 3
Figure 3.1 Abstract Computation Model.ccccoeveiieieieceeece e 38
Figure 3.2 High-Level Hardware DesCription.ccccceeeereerenieeneeneeseeneens 40
Figure 3.3 AuXiliary PrOCESSON.ccocoiviiiririeie e 43
Figure 3.4 Parallel Reduction NEtWOIK.ccccceevviieeiieie e 45
Figure 3.5 An ALU Nodein the Parallel Reduction Network.c........... 47
Figure 3.6 Interface Between an Auxiliary Processor and the PRN. 49
Figure 4.7 Auxiliary Processor Algorithm Format.cccceeeeveeeveeiieceenens 55
Chapter 4
Figure 4.1 A Simple PDES Communication Topology.cccceeeevvevieieenens 60
Figure 4.2 Auxiliary Processor Algorithm.ccooceiieiineneeieeeeeieene 63
Figure 4.3 Algorithms for Receiving Messages and Processing
ACKNOWIEAgMENTS.oceeeieeiece e 64
Figure 4.4 Modified Synchronization Algorithm Using Two-Phase
ACKNOWIEAgMENTES. ..o 70
Figure4.5 GVT Computation Model.ccoceeiiiieiicieceseee e 75
Figure 4.6 Auxiliary Processor Algorithm for Single Phase
ACKNOWIEAgMENTES. ..o 80
Figure 4.7 Acknowledgment Algorithms Assuming Non-FIFO Channels
BEWEEN LP'S. ..o 81
Figure 4.8 Acknowledgment Algorithms Assuming FIFO Channels Between
L P S, et nre 84
Figure 4.9 Effect of Load on Execution Time, where Number of Internal Events
3 S 99
Figure 4.10 Effect of Load on Execution Time, where Number of Internal
EVENESIS 2. ..o e 100
Figure 4.11 Effect of Load on Sizes of Lists, where Number of Internal Events
IS L0, et 101
Figure 4.12 Effect of Load on Sizes of Lists, where Number of Internal Events
S 102

Xi

5.6. A Physical Realization of a Target-specific Reduction Network 127
5.7. Summary and CONCIUSIONScoeeiiiriiinieiieie e 129

Chapter 6 Performance of Global versus Tar get-specific Reductions 131

6.1. SImulation AlQOrtNMScocuiiieiieee e 132
6.1.1. Conservative Simulation Algorithmsccocvevenenenenieeieeen, 132
6.1.2. Optimistic Simulation Algorithmsccccceeveveeveece e 133

6.2. Hardware Computation Model ... 134

6.3. SIMUIELioN ASSUMPLIONScoiviiirieeiieieie et 135

6.4. SIMUIELION RESUILS ..o 136
6.4.1. Topology of Four Logical PrOCESSEScccccerveereenieniinneenienieees 137
6.4.2. Topologies of Eight Logical ProCESSESccccoveveererieniereeeenen, 138
6.4.3. Results of Simulationswith Eight LP'Sccocoiiieiicecieece 142
6.4.4. Results of Simulationswith SIXteeNn LP'Sccocvvvriiieienie 146
6.4.5. Results of Simulations with Thirty-two LP'Scccvvvirenenene. 150

6.5. Summary and CoNCIUSIONSccceeiueiieriieie e 154

Chapter 7 CONCIUSIONSccuveeiiiee e 156

7.1, SUMMArY Of WOTK ..ot 156

7.2. CONLIIDULIONS ... e 158

7.3. FULUrE RESEAICH ..o 161

7.4. Concluding REMAIKScccecoieiieiece e 162

BibHOGrapnyoooeee e 164

4.4.4. General Description of Acknowledgment Algorithm 79
445 NON-FIFO CBSEc.eeiiiieieeeeee e 80
4.6, FIFO CaSE ..cuveveieeie sttt te ettt a e saesne st sreene e 83
4.5. Proof of Correctness Of SPA ..o 84
4.5.1. Properties of the Hardware and Algorithmscccccecevenenennee. 85
4.5.1.1. Properties of the Framework Hardwarecccccvecveveeenee. 85
4.5.1.2. PropertieS Of the APc.eveeeeceee e 86
4.5.1.3. Properties of the AP Algorithm ... 86
4.5.1.4. PropertieS of SPA ..o 86
4.5.2. Overview of Lemma4.1: GVT(t) IsMonotonically Non-decreasing
AsaFunction of Real TIMetccocvviiviriinereeeee e 87
4.53. Overview of Theorem 4.1: GVT. approachesGVT, 89
4.5.4. Correctness of Round Robin Acknowledgmentscccccveueee. 92
4.6. Improvements of the Acknowledgment Algorithms ... 94
VR TE o111 Lo o S 95
4.8. Performance RESUILSccoiveieieiiiininie e 96
4.8.1. Prototype Framework Hardwareccoccvveeneninneenesieeseeneenn 96
4.8.2. Implementation of Acknowledgment Algorithmsc.ccc.c...... 97
4.8.3. ResUlts Of EXPETMENESccvieecieeiecee et 98
4.9. Summary and CONCIUSIONSccoveeiiriiisiesieeie e 105
Chapter 5 The Cost of Doing Tar get-specific Reductions.................... 107
5.1. Target-specific Reductionsin Paralel Simulationscccceeveene. 108
5.1.1. Target-specific Reductionsin Conservative PDES's 108
5.1.2. Target-specific Reductionsin Optimistic PDES'sc.......... 110
5.1.3. Target-specific Acknowledgment of Messagesin PDES's 111
5.1.4. Other Target-specific Reductionsin PDES'Scccccccvveevieenee. 112
5.1.5. Target-Specific Reductions in Other Parallel Computing
APPHCALIONS ..ottt 112
5.2. Problem CharaCteristiCScoovevvieereriesiere e sie e nee e 113
5.3. Target-Specific Reduction Problem Definitioncccoveeeveeieceenen. 114
5.3.1. Upper Bound of the Target-Specific Minimum Value Problem .. 114
5.3.2. An Equivalent Problem ... 115
54. A 0(n1ogn) TiMe SOIULIONcceevveeiiieieseee e 116
5.4.1. PrePrOCESSING ..c.veeueereeeeeneesieesiesseessessesseessesssssseessessessesssessssssesnes 116
5.4.2. General AlQOrithm ..o 117
5.4.3. Time Complexity ANAYSIScccoeeveeieiieiece e 118
5.4.4. Space Complexity ANAlYSISccoeviriiieiiee e 118
5.5. A Family of Solutions to the Target-specific Dissemination Problem . 121
5.5.1. Solution AIGOrthmcceeiiee e 123
5.5.2. Space Complexity ANAYSISccoeveriiiierire e 125
5.5.3. Time Complexity ANAYSIScccoreriririeneneseseseeee e 125

5.5.4. A Family Of SOIULIONSccoccuiiiieiice e 126

viii

Chapter 3 A Framework for Parallel Discrete Event Simulations....... 25
3.1. Reduced Valuesin Parallel SImulationsccccoerieiieneninncenieeeee 27
3.1.1. Reduced Values in Conservative Parallel Simulations 27
3.1.2. Reduced Valuesin Optimistic Parallel Simulations 28
3.1.3. Reduced Vaues as Lookahead Valuesin Parallel Simulations 29
3.1.4. Reduced Valuesin Iterative Parallel Simulations...........ccccceeuenee. 30
3.1.5. Reduced Vaues as Termination Detection Conditionsin Parallel
SIMUIBLIONS ..o e 30
3.2. Correctness Criteriafor Computing Multiple Reduced Values 31
3.3. Abstract Computation MOdelcccevieiiiieiice e 37
3.4. Functional Hardware DESCIPLIONccocereeneriinneenieerie e 40
3.5. Detailed Hardware DESIQNccccoerererieieeresie e 42
3.5.1. AUXIlI@ry PrOCESSONccvecveeiiesiicie ettt 42
35,2, SEIUP it 43
3.5.3. Host Processor - Auxiliary Processor Interfaceccocvoeveveenne. 44
3.5.4. The Parallel Reduction NEtWOrKcccceverineienininiesese e 45
3.5.5. Auxiliary Processor-PRN Interfacecccooovvveveninnieneeinseenen, 438
3.5.5.1. Auxiliary Processor-PRN Interface: Inputcccccoeveenenne. 49
3.5.5.2. Auxiliary Processor-PRN Interface: Outputc.......... 52
3.6. Framework AIQOrithms ..o 53
3.6.1. Host Processor AIgorithms ..o 54
3.6.2. Auxiliary Processor AIQorithmscccceveveeiicececce e, 54
3.7. Summary and CONCIUSIONScc.coouiiiiriieiesiesee e e 55
Chapter 4 Acknowledgment Messagesin a Reduction Network 57
4.1. Efficiency Considerations of the Frameworkcccooeveeieninncnnene 58
4.1.1. A Significant Lag Time for Critical Synchronization Values 58
4.1.2. Additional Message Traffic in the Host Networkcccueneeee. 59
4.1.3. A Potential Race CONAIitioNccccoeeererienieneee e 59
4.2. Acknowledging Messages in a Reduction Networkcccccocevevenene. 60
4.2.1. Host Processor Requirements for Acknowledgment Algorithms .. 61
4.2.2. Data Structures and Vaues Maintained by Each AP 62
4.2.3. A New T-Value for Message Acknowledgmentsc.ccoceeuenee. 62
4.2.4. Auxiliary Processor Algorithms for Message Acknowledgments . 63
A4.2.5. PErfOrMENCEooiiiiiieee ettt st 66
4.2.6. Batched ACKnNOwIedgmentscccoceveiineneneneneeee e 67
4.2.7. COITECINESSeeueieieeeteesiee et ee s e e se s b sie e n e sne e e neesnnesne e s nneeneas 68
4.3. Two-Phase Acknowledgmentccoereriinenenie e 69
G I = 101 0= (o S 71
4.4. Single Phase Acknowledgmentcccooveveieenecie e 71
4.4.1. Computing Global Virtual Time in a Reduction Network 73
4.4.2. Guaranteeing Unique TIMESLAMPSccoerereereereereriesieseseeeeeans 75

4.4.3. Data Structures and Vaues Maintained by Each AP 78

Table of Contents

N 01 = ok SR I
ACKNOWIEAGMENTS ...t e v
D<o [o=\ Lo o HU RSP RPRR Vi
Table of CONLENLSooeeecieceece e e Vii
LISt Of FIQUIES ..ottt st Xi
List Of SYMDBOISoooeeeeeee e Xiv
Chapter 1 INtroduCtioNc.coceeiieie e 1
1.1. Motivation and Objectives of thisResearchcccccoocveneeiincenenee 2

D2 @0 11 o111 T o S 5

1.3. TRESIS OVEIVIEW ...ttt 6

Chapter 2 BackgroUndcocoiiiiiiiiieeeesee e 7
2.1. Parallel Discrete Event SImulationccccevereninenienesieneeeesesie s 8

2.1.1. Model Of PDES ...ttt 8

2.1.2. Conservative PDES Synchronization Protocolsccceceveenene. 12

2.1.3. Optimistic PDES Synchronization Protocolsccccceeeevvieenen, 13

2.1.4. Iterative PDES Synchronization ProtoCoIScccccveeienieneennnns 16

2.1.5. Hardware Support for PDES ... 17

2.2. RedUCtiON OPEratiONSccceeeeiiieieiiesieeiesee s este et e e eee e 18

2.2.1. Parallel Prefix Operationsccoceieeieneeneese e see e 19

2.2.2. Minima of Interval COmMPUEELIONcccevererienenenieeeeesee e 20

2.2.3. Broadcasting with Selective Reductionccccecevvveieeieceenen, 20

2.3. Related ArChItECIUIESooueieeieeie e 21

2.3.1. Hardware for Barrier Synchronizationccoceeeevenenencnennene 21

2.3 2. INE TPSCI2 ettt e 21

2.3.3. Finite Element Machingcoocoeiiieienieeee e 21

2.3.4. Thinking Machines CM-5 SUpercomputercccoeeeerenereeene 22

2.3.5. SOrting NEWOIKScoovieiecieseee e 22

2.4. Directed Graph Theory and Terminologycccceeeevereeneninneeneeeene 23

2.5. Summary and CONCIUSIONSccocoveririiieree e 24

Vi

Dedication

| dedicate this dissertation to my parents, Barbara and Mauro Pancerella, whose

love and support are immeasurable. My love and gratitude are immeasurable.

Vi

| treasurethe friendshipsthat | have made whilein graduate school. Bryan Catron and Paula
Gabbert Catron, Kevin and Julie Treu, Pat and Cindy Heck, Ray Wagner, and Phil Dickens are my
old-timer friends, in whose footsteps | followed. | cherish the memories of cookouts, softball
championships, pinochle games, and good times. | thank Rachel Lorey and Karen LeMaire, both
roommates and close friends, for sharing cooking responsibilities and for being supportive during
difficult times. Finaly, | thank my friends and drinking buddies Mark and Ann Bailey, Ed Loyot,
Mike Krell, and especially Mike Delong for the many happy hours, lunches, and griping sessions
that we shared.

| thank Tim Strayer, my best friend, for many things: the pleasant diversions from my
graduate studies, the dinners he cooked for mewhile | studied for comps, the innumerable pep talks
that he gave me along the way, the strong shouldersthat | have cried on many times, the encouraging
and entertaining long-distance email that he sent me during the final days of my dissertation, and
his continued love and support. | look forward with great anticipation to spending time with him

now that we' re both out of grad school.

| personaly thank Amy Fellin Caputo, Donna Makara Dudeck, Megan Evans, Karen
Yeager Gorel and their families for the encouraging words they’ ve given me through high school,
college, and graduate school. | am blessed with their friendships. | especially thank Amy and Nick
for the hospitality of the Caputo Country Inn in Richmond, Virginia, a home away from home.

| am blessed with awonderful brother and asister. | thank Tony and hiswife Mary Beth for
being supportive of my ambitions. | thank Chrisfor her love and friendship; the eight years between
us have disappeared, and | feel her presence with me everyday. I’ [| never forgive myself for missing

her graduation from Penn State to finish my dissertation.

My parents are the people who have taught me the importance of education. Thisis one of
the most valuable lessons | have learned from them. | thank them for their encouragement while |
pursued my Ph.D. and for always seeing the light at the end of this tunnel, even when | couldn’t.

I'll never be more than a heartbeat away from them.

This work was supported in part by NSF Grant #CCR-9108448, JPL Contract #957721,
NASA Grant NAG-1-1529, and NSF |IP Grant CDA-89-22545-03.

Acknowledgments

First | thank my advisor Paul Reynolds for many things. His initial framework was a gold
mine of exciting research, and I’'m happy to have had the chance to develop this framework here.
Second | thank Paul for pushing me when | needed a push and pulling me when | needed to be
pulled. Finaly, | thank Paul for his advice, even when | didn't takeit.

| thank my committee members Andrew Grimshaw, Worthy Martin, Jim Cohoon, and Ron
Williams for their effort and guidance during this entire research project. They have made many
suggestions which make this work stronger. | extend a special thanksto Jim Cohoon for his helpful
advice throughout my graduate career; he has been always been a strong supporter of my work, and
| am grateful to him. | aso thank Jim Ortega, the department chair, and the entire CS faculty, for

supporting my graduation “under the wire”.

The results that appear in Chapter 5 will never show the amount of time spent nor the
number of dead ends travelled. | thank Jeff Salowe, Gabe Robins, and Jim Cohoon for the time |
spent with them working on the theory behind this problem. Also, | discussed this problem with
severa students: Kevin Treu, Phil Dickens, Ray Wagner, Bronis de Supinski, Sudhir Srinivasan,
and Craig Williams were all generous enough to take time away from their research to brainstorm
about thisproblem. | thank Sudhir also for proof-reading the algorithms and proofsin Chapter 4 and
for his help when | implemented the algorithms on our prototype hardware. His comments were
invaluable. Finaly, | thank Ken Ruggaber, whose smulation code | used to implement the

acknowledgment algorithms. His programming efforts on the PRN made my life much easier.

| thank Mark Smith, Ray Lubinsky, Gina Bull, and Ann Bailey for their excellence in
systems administration. | thank Ginny Hilton, Carolyn Duprey, Kim Gregg, Barbara Graves, Pam
Evans, Chris Byars, Brenda Lynch, and Tammy Ramsey for all the paperwork they’ ve prepared on
my behalf. | especially thank Tammy for working with me to graduate on time.

Abstract

Building on Reynolds's hardware/software framework for parallel discrete event
simulation (PDES), we establish anumber of novel and best known results based on the use

of reduction-based computing to support PDES.

We demonstrate the utility of reduction-based computing to a spectrum of well-
known PDES synchronization protocols, such as conservative techniques and Time Warp.
We enhance the hardware portion of this framework at three levels: 1) we define a virtual
computation model, 2) we develop a functional design, and 3) we present a detailed
implementation of this design. Each of the preceding steps is based on correctness criteria
we establish here. We develop novel algorithms for performing reduction-based message
acknowledgments. We prove the correctness of one of them, a single phase
acknowledgment algorithm that takes advantage of the existence of global virtual time.
Finally, we introduce target-specific reductions, a very promising strategy for
disseminating near-perfect state information in PDES's. A target-specific reduction is one
where each logical process receives synchronization information (reduced values) only
from those logical processes on which it islogically dependent. We demonstrate that the
computation of target-specific values can have a sub-quadratic sequential time complexity.
Supporting empirical results clearly demonstrate that target-specific reductions will

provide significant time and space savingsin PDES's.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy (Computer Science)

Carmen M. Pancerella

This dissertation has been read and approved by the Examining Committee:

Dissertation Advisor: Paul F. Reynolds, Jr.

Committee Chair: James Cohoon

Committee Member: Andrew S. Grimshaw

Committee Member: Worthy Martin

Curriculum Representative: Ronald Williams

Accepted for the School of Engineering and Applied Science:

Dean Edgar A. Starke, Jr.
School of Engineering and Applied Science

May 1994

Reduction Operationsin Parallel Discrete Event Simulations

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partia Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Carmen M. Pancerdlla

May 1994

