
173

[YUGD91] Yu, M. L., Ghosh, S. and DeBenedictis, E., Proceedings of the SCS
Multiconference on Advances in Parallel and Distributed Simulation,
Anaheim, California, pp. 39-43, (January 1991).

172

[SCHW80] Schwartz, J. T., “Ultracomputers”,ACM Transactions on Programming
Languages and Systems, Vol. 2, No. 4, pp. 484-521, (October 1980).

[SOBW88] Sokol, L. M., Briscoe, D. P. and Wieland, A. P., “MTW: A Strategy for
Scheduling Discrete Simulation Events for Concurrent Execution”,
Proceedings of the SCS Multiconference on Distributed Simulation, San
Diego, California, pp. 34-42, (February 1988).

[SRIN92] Srinivasan, S., “Modeling a Framework for Parallel Simulations”, Master’s
Thesis, School of Engineering and Applied Science, University of Virginia,
Charlottesville, Virginia, May 1992.

[SRIN93] Srinivasan, S., “Adaptive Synchronization Algorithms for Parallel Discrete
Event Simulation”, A Research Proposal, Department of Computer Science,
University of Virginia, Charlottesville, Virginia, November 1993.

[SRRE93] Srinivasan, S. and Reynolds Jr., P. F., “Hardware Support for Aggressive
Parallel Discrete Event Simulation”, Computer Science Report No. TR-93-
07, Department of Computer Science, University of Virginia,
Charlottesville, Virginia, January 1993.

[SRRE93b] Srinivasan, S. and Reynolds Jr., P. F.,”Non-interfering GVT Computation
Via Asynchronous Global Reductions”,Proceedings of the 1993 Winter
Simulation Conference, Los Angeles, California, pp. 740-749, (December
1993).

[STON90] Stone, H. S.,High-Performance Computer Architecture, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990.

[TANE89] Tanenbaum, A. S.,Computer Networks - Second Edition, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1989.

[THIN92] Thinking Machines Corporation,The Connection Machine CM-5 Technical
Summary, Thinking Machines Corporation, Cambridge, Massachusetts,
January 1992.

[TOGA93] Tomlinson, A. I. and Garg, V. K., “An Algorithm for Minimally Latent
Global Virtual Time”, Proceedings of the 1993 Workshop on Parallel and
Distributed Simulation, San Diego, California, pp. 35-42, (May 1993).

[TUXU92] Turner, S. and Xu, M., “Performance Evaluation of the Bounded Time Warp
Algorithm”, Proceedings of the 1992 Western Simulation MultiConference
on Parallel and Distributed Simulation, Newport Beach, California, pp.
117-126, (January 1992).

[WALA89] Wagner, D. B. and Lazowska, E. D., “Parallel Simulation of Queueing
Networks: Limitations and Potentials”,Proceedings of the 1989 ACM
SIGMETRICS and PERFORMANCE ‘89: International Conference on
Measurement and Modeling of Computer Systems,Berkeley, California, pp.
146-155, (May 1989).

171

[REMM88] Reed, D. A., Malony, A. D., and McCredie, B. D., “Parallel Discrete Event
Simulation Using Shared Memory”,IEEE Transactions on Software
Engineering, Vol. 14, No. 4, pp. 541-553, (April 1988).

[REPA92] Reynolds Jr., P. F. and Pancerella, C. M., “Hardware Support for Parallel
Discrete Event Simulations”, Computer Science Report No. TR-92-08,
Department of Computer Science, University of Virginia, Charlottesville,
Virginia, April 1992.

[REPS92] Reynolds Jr., P. F., Pancerella, C. M. and Srinivasan, S., “Making Parallel
Simulations Go Fast”,Proceedings of the 1992 Winter Simulation
Conference, Alexandria, Virginia, pp. 646-655, (December 1992).

[REPS93] Reynolds Jr., P. F., Pancerella, C. M. and Srinivasan, S., “Design and
Performance Analysis of Hardware Support for Parallel Simulations”, in a
special issue ofJournal of Parallel and Distributed Computing on Parallel
and Distributed Simulation, Vol. 18, No. 4, pp. 435-453, (August 1993).

[REWW89] Reynolds Jr., P. F., Williams, C. and Wagner, R. R., “Parallel Operations”,
Computer Science Report No. TR-89-16, Department of Computer Science,
University of Virginia, Charlottesville, Virginia, December 1992.

[REWW92] Reynolds Jr., P. F., Williams, C. and Wagner, R. R., “Empirical Analysis of
Isotach Networks”, Computer Science Report No. TR-92-19, Department
of Computer Science, University of Virginia, Charlottesville, Virginia, June
1992.

[REYN82] Reynolds Jr., P. F., “A Shared Resource Algorithm for Distributed
Simulation”, Proceedings of the 9th Annual Symposium on Computer
Architecture, Austin, Texas, pp. 259-266, (April 1982).

[REYN88] Reynolds Jr., P. F., “A Spectrum of Options for Parallel Simulations”,
Proceedings of the 1988 Winter Simulation Conference, San Diego,
California, pp. 167-174, (January 1991).

[REYN91] Reynolds Jr., P. F.,”An Efficient Framework for Parallel Simulations”,
Proceedings of the SCS Multiconference on Advances in Parallel and
Distributed Simulation, Anaheim, California, pp. 167-174, (January 1991).

[REYN92] Reynolds Jr., P. F.,”An Efficient Framework for Parallel Simulations”,
International Journal in Computer Simulation, Vol. 2, No. 4, (1992).

[SAMA 85] Samadi, B., “Distributed Simulation, Algorithms, and Performance
Analysis”, PhD Thesis, Computer Science Department, University of
California at Los Angeles, Los Angeles, California, January 1985.

[SBUS90] Sun Microsystems,SBus Specification B.0, Sun Microsystems, Inc.,
Mountain View, California, 1990.

170

[NICO90] Nicol, D. M., “The Cost of Conservative Synchronization in Parallel
Discrete Event Simulations”, NASA Contractor Report 182034, Institute
for Computer Applications in Science and Engineering, NASA Langley,
Hampton, Virginia, May 1990.

[NICO91] Nicol, D. M., “Performance Bounds on Parallel Self-Initiating Discrete-
Event Simulations”, ACM Transactions on Modeling and Computer
Simulation, Vol. 1, No. 1, pp. 24-50, (January 1991).

[NICO93] Nicol, D. M., “The Cost of Conservative Synchronization in Parallel
Discrete Event Simulations”, Journal of the ACM, Vol. 40, No. 2, pp. 304-
333, (April 1993).

[NIFU92] Nicol, D. and Fujimoto, R., “Parallel Simulation Today”, to appear in The
Annals of Operations Research.

[NIRE84] Nicol, D. M. and Reynolds Jr., P. F., “Problem Oriented Protocol Design”,
Proceedings of the 1984 Winter Simulation Conference, Dallas, Texas, pp.
471-474, (December 1984).

[OWGR76] Owicki, S. and Gries, D., “An Axiomatic Proof Technique for Parallel
Programs I”, Acta Informatica, Vol. 6, pp. 319-340, 1976.

[PANC92] Pancerella, C. M., “Improving the Efficiency of a Framework for Parallel
Simulations”, Proceedings of the 1992 Western Simulation MultiConference
on Parallel and Distributed Simulation, Newport Beach, California, pp. 22-
29, (January 1992).

[PARE93] Pancerella, C. M. and Reynolds Jr., P. F., “Disseminating Critical Target-
specific Synchronization Information in Parallel Discrete Event
Simulations”, Proceedings of the 1993 Workshop on Parallel and
Distributed Simulation, San Diego, California, pp. 52-59, (May 1993).

[PEWM79] Peacock, J. K., Wong, J. W. and Manning, E., “Distributed Simulation Using
a Network of Processors”, Computer Networks 3, North-Holland Publishing
Company, pp. 44-56, 1979.

[PEWM79b] Peacock, J. K., Wong, J. W. and Manning, E., “A Distributed Approach to
Queueing Network Simulation”, Proceedings of the 1979 Winter Simulation
Conference, pp. 399-406, (December 1979).

[PFBG85] Pfister, G. F., Brantley, W. C., George, D. A., et. al., “The IBM Research
Parallel Prototype (RP3): Introduction and Architecture”, Proceedings of
the 1985 International Conference on Parallel Processing, St. Charles,
Illinois, pp. 764-771, (August 1985).

[RABJ88] Ranade, A. G., Bhatt, S. N. and Johnsson, S. L., “The Fluent Abstract
Machine”, YALEU/Department of Computer Science/Technical Report-
573, Department of Computer Science, Yale University, New Haven,
Connecticut, January 1988.

169

[L IMA85] Livny, M. and Manber, U. “Distributed Computation Via Active Messages”,
IEEE Transactions on Computers, Vol. C-34, No. 12, pp.1185-1190,
(December 1985).

[L ITR90] Liu, L. Z. and Tropper, C., “Local Deadlock Detection in Distributed
Simulations”, Proceedings of the SCS Multiconference on Distributed
Simulation, San Diego, California, pp. 64-69, (January 1990).

[LOCU88] Lomow, G., Cleary, J., Unger, B., et. al., “A Performance Study of Time
Warp”, Proceedings of the SCS Multiconference on Distributed Simulation,
San Diego, California, pp. 50-55, (February 1988).

[LUBA88] Lubachevsky, B. D., “Bounded Lag Distributed Discrete Event Simulation”,
Proceedings of the SCS Multiconference on Distributed Simulation, San
Diego, California, pp. 183-191, (February 1988).

[LUBA89] Lubachevsky, B. D., “Efficient Distributed Event-Driven Simulations of
Multiple-Loop Networks”,Communications of the ACM, Vol. 32, No. 1, pp.
111-123, (January 1989).

[LUSW89] Lubachevsky, B., Shwartz, A. and Weiss, A. “Rollback Sometimes Works
… If Filtered”, Proceedings of the 1989 Winter Simulation Conference,
Washington, DC, pp. 630-639, (December 1989).

[MCGR93] McGraw, R. M., “The Design and Test of Hardware Support for a Parallel
Reduction Network”, Master’s Thesis, School of Engineering and Applied
Science, University of Virginia, Charlottesville, Virginia, 1993.

[M ISR86] Misra, J., “Distributed Discrete-Event Simulation”,ACM Computing
Surveys, Vol. 18, No. 1, pp. 39-65, (March 1986).

[M IMI84] Mitra, D. and Mitrani, I. “Analysis and Optimum Performance of Two
Message-Passing Parallel Processors Synchronized by Rollback”,
PERFORMANCE ‘84, Elsevier Science Pub (North Holland), pp. 35-51,
1984.

[NICO84] Nicol, D. M., “Synchronizing Network Performance”, Master’s Thesis,
School of Engineering and Applied Science, University of Virginia,
Charlottesville, Virginia, January 1984.

[NICO88] Nicol, D. M., “High Performance Parallelized Discrete Event Simulation of
Stochastic Queueing Networks”,Proceedings of the 1988 Winter
Simulation Conference, San Diego, California, pp. 306-314, (December
1988).

[NICO88b] Nicol, D. M., “Parallel Discrete-Event Simulation of FCFS Stochastic
Queueing Networks”,Proceedings of the ACM SIGPLAN Symposium on
Parallel Programming: Experience with Applications, Languages, and
Systems, pp. 124-137, (1988).

168

[KEND92] Kendall Square Research Corporation, KSR Parallel Programming,
Kendall Square Research Corporation, Waltham, Massachusetts, 1992.

[KIRK92] Kirks, D. J., “A New Approach to Load Sharing”, A Research Proposal,
Department of Computer Science, University of Virginia, Charlottesville,
Virginia, September 1992.

[LAMP79] Lamport, L., “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocessor Programs”, IEEE Transactions on Computers,
Vol. C-28, No. 9, pp.690-691, (September 1979).

[LEAD92] Leiserson, C. E., Abuhamdeh, Z. S., Douglas, D. C., et. al., “The Network
Architecture of the Connection Machine CM-5”, Proceedings of the
Symposium on Parallel and Distributed Algorithms ‘92, San Diego,
California, (June 1992).

[LIAK93] Lindon, L. F. and Akl, S. G., “An Optimal Implementation of Broadcasting
with Selective Reduction”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 4, No. 3, pp. 256- 269, (March 1993).

[LILA89] Lin, Y. B. and Lazowska, E. D., “Exploiting Lookahead in a Parallel
Simulation”, Technical Report 89-10-06, Department of Computer Science,
University of Washington, Seattle, Washington, October 1989.

[LILA89b] Lin, Y. B. and Lazowska, E. D., “Determining the Global Virtual Time in a
Distributed Simulation”, Technical Report 90-01-02, Department of
Computer Science, University of Washington, Seattle, Washington,
December 1989.

[LILA89c] Lin, Y. B. and Lazowska, E. D., “Optimality Considerations for “Time
Warp” Parallel Simulation”, Technical Report 89-07-05, Department of
Computer Science, University of Washington, Seattle, Washington, July
1989.

[LILA89d] Lin, Y. B. and Lazowska, E. D., “A Study of Time Warp Rollback
Mechanisms”, Technical Report 89-09-07, Department of Computer
Science, University of Washington, Seattle, Washington, November 1989.

[LILA89e] Lin, Y. B. and Lazowska, E. D., “The Optimal Checkpoint Interval in Time
Warp Parallel Simulation”, Technical Report 89-09-04, Department of
Computer Science, University of Washington, Seattle, Washington, 1989.

[LILA90] Lin, Y. B. and Lazowska, E. D., “Optimality Considerations for Time Warp
Parallel Simulation”, Proceedings of the SCS Multiconference on
Distributed Simulation, San Diego, California, pp. 29-34, (January 1990).

[LILA90b] Lin, Y. B. and Lazowska, E. D., “Reducing the State Saving Overhead for
Time Warp Parallel Simulation”, Technical Report 90-02-03, Department of
Computer Science, University of Washington, Seattle, Washington, 1990.

167

[FUTG92] Fujimoto, R. M., Tsai, J. J. and Gopalakrishnan, G.C., “Design and
Evaluation of the Rollback Chip: Special Purpose Hardware for Time
Warp”, IEEE Transactions on Computers, Vol. 41, No. 1, pp. 68-82,
(January 1992).

[GAFN88] Gafni, A., “Rollback Mechanisms for Optimistic Distributed Simulation
Systems”, Proceedings of the SCS Multiconference on Distributed
Simulation, San Diego, California, pp. 61-67, (February 1988).

[GILM 88] Gilmer, J. B., “An Assessment of ‘Time Warp’ Parallel Discrete Event
Simulation Algorithm Performance”, Proceedings of the SCS
Multiconference on Distributed Simulation, San Diego, California, pp. 45-
49, (February 1988).

[GIRY88] Gibbons, A. and Rytter, W., Efficient Parallel Algorithms, Cambridge
University Press, Cambridge, Great Britain, 1988.

[HOSH85] Hoshino, T., PAX Computer: High-Speed Parallel Processing and Scientific
Computing, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1985.

[INTE89] Intel Corporation,iPSC2 Programmer’s Reference Manual, Intel Scientific
Computers, Beaverton, Oregon, October 1989.

[INTE93] Intel Corporation,Paragon Users’s Guide, Intel Supercomputer Systems
Division, Beaverton, Oregon, October 1993.

[IVER62] Iverson, K. E.,A Programming Language, Wiley, New York, New York,
1962.

[JEBH85] Jefferson, D., Beckman, B., Hughes, S.,et. al., “Implementation of Time
Warp on the Caltech Hypercube”,Proceedings of the Conference on
Distributed Simulation, San Diego, California, (January 1985).

[JEFF85] Jefferson, D. R., “Virtual Time”, ACM Transactions on Programming
Languages and Systems, Vol. 7, No. 3, pp. 404-425, (July 1985).

[JEFF90] Jefferson, D. R., “Virtual Time II: Storage Management in Distributed
Simulation”,Proceedings of the Ninth Annual Symposium on Principles of
Distributed Computing, Quebec City, Quebec, Canada, pp. 75-89, (August
1990).

[JESO85] Jefferson, D. and Sowizral, H., “Fast Concurrent Simulation Using the Time
Warp Mechanism”, Proceedings of the Conference on Distributed
Simulation, San Diego, California, pp. 63-69, (January 1985).

[JOSC79] Jordan, H. F., Scalabrin, M. and Calvert, W., “A Comparison of Three Types
of Multiprocessor Algorithms”,Proceedings of the 1979 International
Conference on Parallel Processing, pp. 231-238, (August 1979).

166

No. TR-92-18, Department of Computer Science, University of Virginia,
Charlottesville, Virginia, June 1992.

[FEKL92] Felderman, R. and Kleinrock, L., “Two Processor Time Warp Analysis:
Capturing the Effects of Message Queueing and Rollback/State Saving
Costs”, Technical Report 920035, Computer Science Department,
University of California at Los Angeles, Los Angeles, California, 1992.

[FEKL92b] Felderman, R. and Kleinrock, L., “Two Processor Conservative Simulation
Analysis”, Proceedings of the 1992 Western Simulation MultiConference on
Parallel and Distributed Simulation, Newport Beach, California, pp. 169-
177, (January 1992).

[FIGP91] Filoque, J. M., Gautrin, E. and Pottier, B., “Efficient Global Computations
on a Processors Network with Programmable Logic”, Report 1374, Institut
National de Recherche en Informatique et en Anutomatique, France,
January 1991.

[FOJO88] Fox, G., Johnson, M., Lyzenga, G., et. al., Solving Problems on Concurrent
Processors, Volume 1, Prentice-Hall Inc., Englewood Cliffs, New Jersey,
1988.

[FRWW84] Franklin, M. A., Wann, D. F. and Wong, K. F., “Parallel Machines and
Algorithms for Discrete-Event Simulation”, Proceedings of the 1984
International Conference on Parallel Processing, pp. 449-458, (August
1984).

[FUJI87] Fujimoto, R. M., “Performance Measurements of Distributed Simulation
Strategies”, Technical Report No. UUCS-87-026a, Computer Science
Department, University of Utah, Salt Lake City, Utah, November 1987.

[FUJI88] Fujimoto, R. M., “Lookahead in Parallel Discrete Event Simulation”,
Proceedings of the 1988 International Conference on Parallel Processing,
University Park, Pennsylvania, pp. 34-41, (August 1988).

[FUJI89] Fujimoto, R. M., “The Virtual Time Machine”, Proceedings of the 1989
ACM Symposium on Parallel Algorithms and Architectures, Santa Fe, New
Mexico, pp. 199-208, (June 1989).

[FUJI89b] Fujimoto, R. M., “Time Warp on a Shared Memory Multiprocessor”,
Proceedings of the 1989 International Conference on Parallel Processing,
University Park, Pennsylvania, pp. 242-249, (August 1989).

[FUJI90] Fujimoto, R. M., “Parallel Discrete Event Simulation”, Communications of
the ACM, Vol. 33, No. 10, pp. 30-53, (October 1990).

[FUJI90b] Fujimoto, R. M., “Performance of Time Warp Under Synthetic Workloads”,
Proceedings of the SCS Multiconference on Distributed Simulation, San
Diego, California, pp. 23-28, (January 1990).

165

[BRYA77] Bryant, R. E., “Simulation of Packet Communications Architecture
Computer Systems”, MIT-LCS-TR-188, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1977.

[BURO90] Buzzell, C. A. and Robb, M. J., “Modular VME Rollback Hardware for
Time Warp”, Proceedings of the SCS Multiconference on Distributed
Simulation, San Diego, California, pp. 153-156, (January 1990).

[CHIE94] Chien, A., Personal Communication, May 1, 1994.

[CHLA85] Chandy, K. M. and Lamport, L., “Distributed Snapshots: Determining
Global States of Distributed Systems”, ACM Transactions on Computer
Systems, Vol. 3, No. 1, pp.63-75, (February 1985).

[CHMI79] Chandy, K. M. and Misra, J., “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs”, IEEE Transactions on
Software Engineering, Vol. SE-5, No. 5, pp. 440-452, (September 1979).

[CHMI81] Chandy, K. M. and Misra, J., “Asynchronous Distributed Simulation via a
Sequence of Parallel Computations”, Communications of the ACM, Vol. 24,
No. 11, pp. 198-206, (April 1981).

[CHMI87] Chandy, K. M. and Misra, J., “Conditional Knowledge as a Basis for
Distributed Simulation”, Technical Report 5251:TR:87, Computer Science
Department, California Institute of Technology, Pasadena, California, 1987.

[CHSH89] Chandy, K. M. and Sherman, R., “The Conditional Event Approach to
Distributed Simulation”, Proceedings of the SCS Multiconference on
Distributed Simulation, Tampa, Florida, pp. 93-99, (March 1989).

[COKE91] Concepcion, A. I. and Kelly, S. G., “Computing Global Virtual Time Using
the Multi-Level Token Passing Algorithm”, Proceedings of the SCS
Multiconference on Advances in Parallel and Distributed Simulation,
Anaheim, California, pp. 63-68, (January 1991).

[DAFU93] Das, S. R. and Fujimoto, R. M., “A Performance Study of the Cancelback
Protocol for Time Warp”, Proceedings of the 1993 Workshop on Parallel
and Distributed Simulation, San Diego, California, pp. 135-142, (May
1993).

[DEGY91] DeBenedictis, E. and Ghosh, S., “A Novel Algorithm for Discrete-Event
Simulation”, IEEE Computer, Vol. 24, No. 6, pp. 21-33, (June 1991).

[DICK93] Dickens, P. M.,“Analysis of the Aggressive Global Windowing Algorithm”,
PhD Thesis, School of Engineering and Applied Science, University of
Virginia, Charlottesville, Virginia, January 1993.

[DIRE92] Dickens, P. M. and Reynolds Jr., P. F., “State Saving and Rollback Costs for
an Aggressive Global Windowing Algorithm”, Computer Science Report

164

Bibliography

[ABRI91] Abrams, M. and Richardson, D., “Implementing a Global Termination
Condition and Collecting Output Measures in Parallel Simulation”,
Proceedings of the SCS Multiconference on Advances in Parallel and
Distributed Simulation, Anaheim, California, pp. 86-91, (January 1991).

[AJKS83] Ajtai, M., Komlos, J. and Szemeredi, E., “An O(n(log(n)) Sorting
Network”, Proceedings of the 15th Annual Symposium on Theory of
Computing, Boston, Massachusetts, pp. 1-9, (1983).

[AKST94] Akl, S. G. and Stojmenovic, I., “Multiple Criteria BSR: An Implementation
and Applications to Computational Geometry Problems”, Proceedings of
HICSS, January 1994.

[AYAN89] Ayani, R., “A Parallel Simulation Scheme Based on Distances Between
Objects”, Proceedings of the SCS Multiconference on Distributed
Simulation, Tampa, Florida, pp. 113-118, (March 1989).

[BATC68] Batcher, K. E., “Sorting Networks and Their Applications”, Proceedings of
the AFIPS 1968 Joint Computing Conference, Atlantic City, New Jersey, pp.
307-314, (April 1968).

[BELL90] Bellenot, S., “Global Virtual Time Algorithms”, Proceedings of the SCS
Multiconference on Distributed Simulation, San Diego, California, pp. 122-
127, (January 1990).

[BERR86] Berry, O. “Performance Evaluation of the Time Warp Distributed
Simulation Mechanism”, PhD Thesis, University of Southern California,
Los Angeles, California, May 1986.

[BLEL89] Blelloch, G. E., “Scans as Primitive Parallel Operations”, IEEE
Transactions on Computers, Vol. 38, No. 11, pp.1526-1538, (November
1989).

[BLEL90] Blelloch, G. E., “Prefix Sums and Their Applications”, CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, November 1990.

[BROW93] Brown, M. S., “The Hardware Design and Implementation of a Parallel
Reduction Network”, Master’s Thesis, School of Engineering and Applied
Science, University of Virginia, Charlottesville, Virginia, 1993.

163

non-aggressive protocols. Our framework clearly determines the direction of the

development of such protocols because it reduces the associated costs of deadlock

detection, state saving, and synchronization. In sum, the work presented here has forever

changed the course of research in parallel simulation protocols in a very favorable

direction.

162

target-specific reductions in parallel simulations. Approaches to exploring this include the

generation of a large set of random directed acyclic graphs (DAG’s) which represent PDES

communication topologies. One could then perform several topological sorts on each DAG,

and analyze the DAG with respect to the dissemination of both parallel prefix and interval

parallel prefix target-specific reductions. An analysis would include a sensitivity analysis

to different topological sorts.

Once the analysis is complete, one could simulate parallel simulations with perfect

target-specific information versus approximate target-specific information (computed with

both parallel prefix and interval parallel prefix) and report on these results. Both parallel

prefix and interval parallel prefix can be computed with O(n) components in O(log n) time.

This empirical result would enable the comparison of the dissemination of approximate

target-specific reductions at a low cost with the dissemination of perfect target-specific

reductions at a higher cost. If the dissemination of approximate target-specific reductions

proves promising, a parallel prefix network or other prefix networks are low-cost

approximate target-specific reduction networks. Furthermore, current network designs can

be used to implement approximate target-specific reductions. (See Chapter 2.)

7.4. Concluding Remarks

In this thesis we have demonstrated the importance of the efficient computation of

reduction operations to parallel discrete event simulations. We have shown how the

efficient computation and dissemination of reduction operations enhances existing parallel

discrete event simulation synchronization protocols. The computation of target-specific

reductions within our framework allows new parallel discrete event simulation protocols

which are characterized by adaptive aggressive event processing to be developed. It is our

belief that the future direction of parallel discrete event simulation synchronization

protocols is the development of protocols that combine properties of both aggressive and

161

simulation synchronization protocols, where aggressive processing can be throttled without

the risk of the simulation deadlocking.

7.3. Future Research

Although we have developed a PDES framework and demonstrated its utility and

feasibility, work remains.

We have implemented two different message acknowledgment algorithms on our

prototype hardware. Based on performance results, we have concluded that the two-phase

acknowledgment is better. This conclusion is not drawn from a large simulation, however.

Simulations [SRIN92] have demonstrated the scalability of the two-phase acknowledgment

to simulations of size 32. It is open question how the two message acknowledgment

algorithms will compare when the number of processors is increased.

The empirical results presented in Chapter 6 are encouraging results for small

simulations. Whether these results are scalable to large and interesting PDES

communication topologies is still an open question. We believe that the benefits of target-

specific reductions will continue on larger graphs, especially on large graphs that are sparse,

i.e., a large number of LP’s each with a small number of immediate predecessors.

Probably the most important research to continue is our work with the target-

specific reduction problem. Our current best case parallel target-specific reduction network

has time complexity of O(log n) at the cost of O(n2) switches in the network. We believe

that this network complexity is not scalable to thousands of processors. Our goal is to find

a scalable and efficient network topology to compute and disseminate target-specific

reduced values.

In lieu of a scalable and efficient solution to computing and disseminating perfect

target-specific reductions, there is the computation and dissemination of approximate

160

granules of both event message processing times and host network communication

latencies. We have implemented both the two-phase acknowledgment (TPA) and the single

phase acknowledgment (SPA) on our four-node prototype framework hardware. TPA

performs as well as SPA with respect to the execution time of the simulation. Furthermore,

the combined sizes of the message lists on any given auxiliary processor is significantly less

for the two-phase acknowledgment. We therefore advocate using TPA to acknowledge

messages in a PDES implemented on our framework hardware.

Fifth, we have derived and presented best known results for computing and

disseminating target-specific reduced values. We have presented two sequential algorithms

which solve the target-specific dissemination problem in the general case. The algorithms

demonstrate a trade-off between time and space complexity. Both algorithms are

encouraging because they show an attainable sub-quadratic time complexity. We have

made progress in determining the cost of computing target-specific reductions in parallel.

We intend to continue on this course to develop efficient algorithms and networks to

compute target-specific reductions or approximations of target-specific reductions.

Finally, we have demonstrated the utility of target-specific reductions to both

conservative and optimistic parallel simulation protocols. Target-specific reductions

provide near-perfect state information to parallel simulation protocols. As a result, the

finishing times of conservative protocols can be reduced greatly by allowing more safe

events to be executed concurrently. Similarly, the total average state space of optimistic

protocols is reduced significantly. The reduction of state space is encouraging for both

hardware and software memory management support for Time Warp, such as the rollback

chip and the cancelback protocol. These conclusions were drawn empirically using

simulations. We believe that the efficient dissemination of near-perfect state information in

the form of target-specific reductions will be beneficial to adaptive aggressive parallel

159

processing, i.e., the computation of reduced values, from the execution of logical processes,

i.e., event processing and event message transmission and receipt. This abstract model is

realizable by many hardware implementations. At the functional level, we have developed

a hardware description which employs separate processors in a processor pair for the

execution of a logical process and the execution of the synchronization algorithms to

support the PDES protocol. Our functional design also employs separate networks for event

message transmission and reduction operations. This design offers minimal interaction

between the two processors in the processor pair and enhances the efficiency of the

simulation. Finally, we have described a detailed design of each component in the

functional design. The detailed design includes interfaces between the host and auxiliary

processors and between the auxiliary processors and the reduction network. These

interfaces preserve the correctness criteria and at the same time minimize the contention at

the interface.

Fourth, we have presented several algorithms for acknowledging messages in a

reduction network in support of computing global virtual time (and target-specific virtual

time) as reductions. In particular, two of the proposed algorithms correctly acknowledge

messages in a reduction network where output state vector loss is a property of the

hardware: a two phase acknowledgment and a single phase acknowledgment. These two

algorithms are correct when the reductions are computed asynchronously with the

execution of the simulation. The correctness of the single phase acknowledgment was

proven in this thesis. Our presentation of acknowledgment algorithms included discussions

and observations on the performance of the simulations executing in conjunction with each

algorithm. We have developed the batched acknowledgment enhancement as a method of

acknowledging several messages in a single reduced value. Simulations [SRIN92] have

shown that batched acknowledgments allow our framework hardware to support smaller

158

unreceived message time in the system. This reduced value is one of two reductions

necessary to compute global virtual time in an aggressive PDES. The event message

acknowledgment algorithms are correct when reductions are being computed

asynchronously with the execution of the simulation and with the assumption of state

vector loss on the output side of the reduction network. The algorithms guarantee that every

message is acknowledged and that the computed global virtual time tracks the actual global

virtual time.

7.2. Contributions

This dissertation makes contributions in six important areas for using a reduction-

based framework for parallel discrete event simulations. First we have demonstrated the

applicability of both global reductions and target-specific reductions to a wide range of

parallel discrete event simulations. The characterization of PDES synchronization

protocols utilizing reduced values is a new approach to making current parallel simulation

synchronization protocols efficient and to developing new synchronization protocols.

Protocols that employ the efficient computation of reductions have the potential to be very

efficient. Our framework is the first to demonstrate that reduced values can be computed

with near-zero overhead to the simulation.

Second, we have provided sound correctness criteria for this framework. The

correctness criteria define the computation and dissemination of multiple reduced values in

a PDES, where LP’s are executing asynchronously, and the computation of reduced values

proceeds asynchronously with the execution of the simulation.

Third, we have made significant contributions to the hardware component of the

framework at three levels. Each level adheres to the established correctness criteria. At the

highest level, we have developed a computation model that decouples the synchronization

157

synchronization protocols. We have introduced target-specific reductions as an integral part

of the next design of the framework hardware. We have made substantial progress in

determining the cost of computing target-specific reductions and in developing a scalable

design for a parallel target-specific reduction network.

As presented in Chapter 3, we have developed the framework hardware design at

three levels: an abstract computation model, a functional design, and a detailed design. We

have met our goals, presented in Chapter 1, for the design at each level of the framework

hardware:

• Speed— The hardware is designed to compute and disseminate global
synchronization information very rapidly (on the order of hundreds of
nanoseconds per reduction operation).

• Scalability — The processing time of the hardware to compute global
reductions increases logarithmically with the number of processors while the
number of components in the hardware increases linearly. The processing time
of the parallel target-specific reduction network shown in Figure 5.9 increases
logarithmically. It is a topic of future research to determine if we can reduce the
complexity of the number of components.

• Adaptability— The design of the interface to the host computing system (See
Section3.5.3.) isolates the design of the rest of the framework hardware from
the host computing system. Our prototype system [REPS93] assumes a Sun
SBus interface to a Sparc cluster (a network of Sparc-1e’s); this design is easily
adapted to other host systems.

• Generality— The framework hardware contains programmable ALU’s which
allow it to be used to support a wide variety of applications. Furthermore, the
hardware design allows the selection of two to eight different reduction
operations to be computed in support of the application.

• Low cost— A prototype system for four processors has been built for twenty
thousand dollars. We expect a production system to cost much less.

We believe these qualities will enable the hardware to support synchronization in general

parallel computations as well as parallel simulations.

We have developed algorithms which use a reduction network to acknowledge

event messages in support of the computation of a reduced value for the minimum

156

7 Conclusions

The results presented in this dissertation include the successful achievement of

several of our objections and significant progress toward the achievement of others. We

summarize our contributions and discuss avenues of future research.

7.1. Summary of Work

The framework for parallel discrete event simulations [REYN91] was advanced in

this thesis, is a novel and efficient combination of both hardware and software to rapidly

compute and disseminate reduced values in support of a spectrum of PDES synchronization

protocols. It is the first significant research in the computation and dissemination of reduced

values to support parallel simulations. As hardware technology progresses and parallel

simulation protocols advance, this framework will remain fundamental.

The framework has three major components: 1) small sets of reduced values that

describe the state of a parallel simulation, 2) hardware, consisting of a reduction network

and general-purpose auxiliary processors, to rapidly compute and disseminate these values,

and 3) algorithms that execute on the auxiliary processors so that the reduced values are

computed correctly in the reduction network and the parallel simulation executes correctly

on the host processors. In this dissertation we have completed research in each of these

three areas. We summarize the work in each area now.

As discussed in Section 3.1. and Section 5.1., a set of reduced values to support a

parallel simulation can consist of both globally reduced values and target-specific reduced

values. We have demonstrated the applicability of both to parallel simulation

155

protocol [DAFU93], as discussed in Section 5.1.2. It is a topic of future research to

investigate both larger systems and a broader class of protocols.

We have concluded that target-specific synchronization information offers

significant benefits to conservative PDES’s. In a conservative parallel simulation, target-

specific synchronization information reduces the finishing time of the simulation. This

result is intuitive: near-perfect state information − information that comes close to the true

state when the near-perfect information is received − eliminates artificial dependencies and

provides more parallelism in a PDES.

We have also concluded that the dissemination of target-specific synchronization

information is beneficial to Time Warp-like PDES’s. The dissemination of target-specific

critical state information allows GVT to be computed on a local basis. We have introduced

a local GVT, target-specific virtual time or TSVTi, as the smallest possible time to which

LPi can roll back. Any fossils with timestamps earlier than TSVTi can be collected by LPi,

and TSVTi is a more accurate commitment horizon for LPi than GVT. Since TSVT is based

only on information relevant to the target LP, thus, in a sense, making it more accurate than

GVT, fossils (state information that precedes a TSVT) will be reduced.

In [SRIN93], it was proposed that effective PDES protocols will be those that do

adaptive aggressive processing, characterized by controlled aggressiveness, where the

benefits of aggressiveness are maximized and its costs are minimized. The impact on state

saving is clearly evident. We believe that target-specific virtual time and other target-

specific information that can be derived through reduction network techniques will be

beneficial to aggressive adaptive algorithms.

154

Figure 6.20 Results of Fan-in/ Fan-out Topology of 32 LP’s.

6.5. Summary and Conclusions

We have presented a short study of the effects of target-specific synchronization

information on both optimistic and conservative PDES synchronization protocols. These

empirical results demonstrate the utility of target-specific reductions to both conservative

and optimistic PDES protocols. First, the finishing time of conservative PDES’s was

reduced substantially, in all cases, since the target-specific information about event times

of predecessors eliminated artificial dependencies among LP’s. Second, the amount of state

space in optimistic PDES’s was reduced when TSVT was used in fossil collections. The

efficient computation of TSVT will support the rollback chip [FUTG92] and the cancelback

Globally reduced information

TS reduced information

30.6

2.5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

10

20

30

153

Figure 6.19 Results of Fan-in Topology of 32 LP’s.

Finally in Figure 6.16 we see the results of a 32 LP communication topology that

combines fan-in and fan-out properties such that no two LP’s have the same predecessor

set. In this case the execution time of a conservative PDES executing on top of the

reduction network that computes target-specific reduced values is reduced by a factor of

over twelve.

Globally reduced information

TS reduced information

29.7

2.5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

10

20

30

152

unreceived message times are computed. The effect of the target-specific information is

once again more significant in the 32 LP fan-out topology than the 16 LP fan-out topology.

Figure 6.18 Results of Fan-out Topology of Sixteen LP’s.

Figure 6.15 shows the results of a fan-in topology of 32 LP’s. The execution time

of the conservative PDES is reduced by a factor of approximately twelve. Recall that the

improvement in execution time was a factor of eight for the fan-in of 16 LP’s.

Globally reduced information

TS reduced information

28.5

1.8

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

10

20

30

151

We find again that the execution time of a conservative PDES with 32 LP’s is greatly

reduced with the availability of target-specific reductions.

In Figure 6.13 we present the results of 32 LP’s in a linear topology executing a

conservative PDES on top of both a global reduction network and a target-specific

reduction network. The speedup measured is a factor of 11.5. This is a greater performance

improvement than the sixteen LP linear topology.

Figure 6.17 Results of Linear Topology of 32 LP’s.

Figure 6.14 shows a bar graph for the conservative PDES’s of a 32 LP fan-out

topology executing on top of the two reduction networks. In this case the execution time of

the simulation is reduced by a factor of 15.5 when the target-specific next event times and

Globally reduced information

TS reduced information

31.2

2.7

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

10

20

30

150

In other words, each LP has a unique set on which target-specific reductions are computed.

The results of the simulations with this topology can be found in Figure 6.16.

Figure 6.16Results of Fan-in/ Fan-out Topology of Sixteen LP’s.

6.4.5. Results of Simulations with Thirty-two LP’s

We simulated conservative PDES of size thirty-two LP’s operating on top of both a

reduction network computing globally reduced values and a reduction network computing

target-specific reductions.

We simulated the same four different topologies of 32 LP’s as we did with 16 LP’s:

a linear topology, a fan-out topology (similar to Figure 6.3), a fan-in topology (similar to

Figure 6.4), and a topology with both fan-in and fan-out properties (similar to Figure 6.5).

5

Globally reduced information

TS reduced information

21.5

2.5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

10

15

25

20

149

Figure 6.15 Results of Fan-in Topology of Sixteen LP’s.

The final topology of sixteen LP’s that we simulated of sixteen LP’s that has very

similar communication properties to Figure 6.5. This communication topology is

characterized by the property that no two LP’s have the same immediate predecessor set.

5

Globally reduced information

TS reduced information

20.7

2.5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

10

15

20

148

that target-specific reductions could have more benefits to a conservative PDES as the

number of LP’s increases.

Figure 6.14 Results of Fan-out Topology of Sixteen LP’s.

Figure 6.15 shows the results of a fan-in topology of sixteen LP’s. In this case there

is a reduction in the finishing time of the conservative PDES by a factor of eight. Again this

is an increase in the performance from the eight LP fan-in topology.

5

Globally reduced information

TS reduced information

19.7

1.9

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

10

15

20

147

Figure 6.13 shows the results of the linear topology of sixteen LP’s. The total

execution time of the conservative PDES is reduced by more than a factor of eight when

target-specific reductions, instead of global reductions, are computed and disseminated in

support of the simulation.

Figure 6.13 Results of Linear Topology of Sixteen LP’s.

Figure 6.14 shows the results of a fan-out topology of sixteen LP’s. The total

execution time of the simulation is reduced by a factor of over 10.5. We observe a greater

improvement in the fan-out topology with sixteen LP’s than with eight LP’s. This suggests

5

Globally reduced information

TS reduced information

22.2

2.7

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

10

15

25

20

146

target-specific hardware differ by a factor of 2. The additional dependencies require more

state to be saved, in the average case, by LP6.

Figure 6.12Results of Topology of Eight LP’s in Figure 6.7.

6.4.4. Results of Simulations with Sixteen LP’s

We simulated conservative PDES of size sixteen LP’s operating on top of both a

reduction network computing globally reduced values and a reduction network computing

target-specific reductions. We did not have the resources to run an optimistic PDES for

topologies of larger size than eight.

We simulated four different topologies of 16 LP’s: a linear topology, a fan-out

topology (similar to Figure 6.3), a fan-in topology (similar to Figure 6.4), and a topology

with both fan-in and fan-out properties (similar to Figure 6.5). Our results follow.

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

5

10

15

Globally reduced information

TS reduced information

13.3

2.5

To
ta

l s
ta

te
 s

av
ed

160

320 320.5

41.5

145

Figure 6.11 Results of Topology With Eight LP’s in Figure 6.6.

Finally, Figure 6.12 is a bar graph of the results of the Figure 6.7, the augmented

topology of Figure 6.6 with additional directed arcs into LP6. The reduction to the

execution time in the conservative PDES is a factor of 5; this is essentially the same as the

results without the additional arcs. On the other hand, the results of the optimistic

simulations for the same graph differ. In the optimistic PDES, the reduction to the state

space is a factor of 7.7. Notice that the total average states saved in the PDES in Figure 6.7

sitting on top of the target-specific hardware and that in the PDES in Figure 6.6 using the

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

5

10

15

Globally reduced information

TS reduced information

13.6

2.4

To
ta

l s
ta

te
 s

av
ed 150

300 299.3

19.9

144

Figure 6.10 is a bar graph showing the results of the first combination graph, i.e.,

with both fan-in and fan-out properties. In this conservative PDES with eight LP’s the

finishing time was reduced by a factor of 5. The dissemination of TSVT had a much greater

effect on this topology than either the fan-in graph (Figure 6.9) or the fan-out graph (Figure

6.8); the amount of state space needed was reduced by a factor of over 6.

Figure 6.10 Results of Topology With Eight LP’s in Figure 6.5.

Figure 6.11 is a bar graph showing simulation results for the topology in Figure 6.6.

In the conservative parallel simulation, the finishing time was reduced by a factor of 5.7,

the effect is slightly greater than that reported in Figure 6.10. The total amount of state

space needed in the optimistic parallel simulation was reduced by a factor of 15. This is a

significant reduction to the total average state space required to run the simulation.

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

5

10

15

Globally reduced information

TS reduced information

13.9

2.7

To
ta

l s
ta

te
 s

av
ed

70

140 132.2

21.6

143

approximately 7.5 times, with the benefit of target-specific synchronization information on

which to base processing decisions.

Figure 6.9 shows the results of the PDES fan-in communication topology in Figure

6.4. The finishing time for the conservative PDES was reduced by a factor of 5 when target-

specific state information was computed and disseminated.

Figure 6.9 Results of Fan-in Topology With Eight LP’s.

Due to the communication topology, fewer average states are saved in the optimistic

fan-in topology (Figure 6.9) than in the optimistic fan-out topology (Figure 6.8). This is

because there are more source LP’s, and source LP’s do not need to save state at all.

However, the total amount of memory needed to save state in the simulations of the fan-in

topology was still reduced by a factor of 4.75 when target-specific reductions were

computed and disseminated.

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

5

10

15

Globally reduced information

TS reduced information

13.8

2.7

To
ta

l s
ta

te
 s

av
ed

50

100 96.7

20.3

142

6.4.3. Results of Simulations with Eight LP’s

All of the simulations which were run for eight LP’s executed until GVT exceeded

20,000. In other words, the termination condition for the simulations of eight LP’s was that

GVT was greater than 20,000 units.

Figure 6.8 is a bar graph showing the results of the PDES fan-out communication

topology in Figure 6.3. We note that the finishing times of the optimistic simulations were

essentially the same. The benefit of providing hardware support for target-specific virtual

time is that the amount of saved state over time decreases. In the optimistic simulations with

eight LP’s in this fan-out topology, the total state space required was cut by a factor of 4.5.

As expected, the finishing time of the conservative PDES was reduced significantly,

Figure 6.8Results of Fan-out Topology With Eight LP’s.

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

5

10

15

Globally reduced information

TS reduced information

13.7

1.8

To
ta

l s
ta

te
 s

av
ed

50

100

87.0

19.8

141

Figure 6.6 shows a very regular graph with a single source and a single sink. Three

independent paths exist from the source node LP1 to the sink LP8.

Figure 6.6 A Fan-in/ Fan-out Topology With Eight LP’s.

Figure 6.7 adds two additional communication channels to Figure 6.6. Hence, LP6

is now dependent on both LP2 and LP4. The additional dependencies will change the

necessary target-specific reductions which will be computed to support this topology.

Figure 6.7 A Fan-in/ Fan-out Topology With Eight LP’s.

LP8

LP5

LP1

LP2

LP3

LP4

LP6

LP7

LP8

LP5

LP1

LP2

LP3

LP4

LP6

LP7

140

Figure 6.4 A Fan-In Topology With Eight LP’s.

Figure 6.5 A Fan-in/ Fan-out Topology With Eight LP’s.

LP1 LP2

LP4

LP5

LP3

LP6

LP7

LP8

LP1 LP3

LP2

LP4

LP6

LP7

LP5

LP8

139

is the single source. LPi, i = 1, 2,…, n, needs target-specific information from all LP’s on

the path from the source to it.

Figure 6.3 A Fan-out Topology With Eight LP’s.

Figure 6.4 depicts a communication topology which we refer to as a fan-in graph.

A fan-in graph has a single sink LP, in this case LP8, such that every other LP in the system

is a predecessor to that sink. The sink needs global synchronization information.

Finally, Figure 6.5, Figure 6.6, and Figure 6.7 illustrate both fan-in properties and

fan-out properties in a communication topology for a PDES with eight LP’s. Each of these

topologies has a different dissemination pattern for target-specific information.

Figure 6.5 is a topology where no two LP’s have the same immediate predecessor

set. We believe this type of graph represents a class of graphs for which it may be difficult

to provide target-specific information in a general interconnection network.

LP1

LP2

LP3

LP4

LP5

LP6

LP7

LP8

138

(There are some areas where computed TSVT might be beneficial to reducing the execution

time of the simulation. This is to be explored.) The total amount of state space in the

simulation is reduced by a factor of 3.6. The total amount of state space is computed for all

LP’s, in this case for four LP’s, and not on a per LP basis. If the state space were limited,

as it is in Fujimoto’s high-speed rollback chip [FUTG92], this can be a significant savings.

Figure 6.2 Results of Linear Topology with Four LP’s.

6.4.2. Topologies of Eight Logical Processes

For the simulations of size eight, we used more interesting topologies. All

topologies are acyclic graphs because a cyclic subgraph can be reduced to a single node

requiring the same target-specific information that each of its components requires. Figure

6.3 depicts a communication topology which we refer to as a fan-out graph. A fan-out graph

has one LP that is a predecessor of every other LP in the system; this LP, LP1 in Figure 6.3,

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
) 8

Globally reduced information

TS reduced information

5.42

1.68

To
ta

l s
ta

te
 s

av
ed

50

100
90.8

24.6

4

137

messages sent the message will arrive in 500 microseconds. We believe that
these times are representative of current technology and message traffic
patterns.

6.4.1. Topology of Four Logical Processes

A linear topology such as in Figure 6.1 was used in the simulations with four LP’s.

These simulations were run until GVT was greater than 15,000, i.e. the termination

condition was GVT exceeding 15,000 units. (Approximately 12,000 to 20,000 total events

were executed.)

Figure 6.1 Linear Topology With Four LP’s.

For each simulation, we report our results using bar graphs. The left bar graph in

each figure shows the simulation results of the conservative PDES: one bar indicates the

execution time of a conservative PDES operating on top of a reduction network which

computes globally reduced values and the second bar indicates the execution time of the

same conservative PDES operating on top of a reduction network which computes target-

specific reduced values. Likewise, the bar graph for the optimistic simulations show the

difference in the total amount of state space in the simulation, when the same simulation

has globally reduced values and target-specific reduced values.

Figure 6.2 shows the simulation results of this four LP linear topology. As expected,

the target-specific dissemination of synchronization information reduced the finishing time

of the conservative PDES by a factor greater than 3. We note that the finishing times of the

optimistic PDES’s were not affected by the dissemination of target-specific reductions.

LP1 LP2 LP3 LP4

136

• The target-specific reduction network can compute reductions with the same
speed as the global PRN.

• The wallclock time to execute an event is a parameter consisting of a
distribution and a mean. The distribution can be exponential or uniform random.

• The logical time to execute an event is also a parameter consisting of a
distribution and a mean. The distribution can be either exponential or uniform
random.

• An antimessage will cause an event to be interrupted.

• Antimessages are cancelled aggressively in batches if possible. A batch
antimessage is a group of antimessages sent through the host network in one
physical message.

• Fossil collection is uniform randomly distributed to be performed after every 2-
5 events.

• State saving is performed after each event.

• There is no cost associated with state saving or fossil collection. There is an
unbounded amount of state saving memory. This is a reasonable assumption,
assuming the rollback chip of Fujimoto [FUTG92].

• States are counted each time fossil collection occurs. A state is either a snapshot
of the current state or a message in the output message list, which is used to
determine where to send antimessages.

The topologies of the graphs we studied were varied to reflect certain degrees of

fan-in, fan-out and combinations of the two. We chose to work with relatively small (4 and

8-node) graphs in order to guarantee reasonable execution times for the large set of

experiments we ran. We expect to see trends are we increase the size of graphs.

6.4. Simulation Results

The following parameters were used in every simulation:

• The wallclock time to execute an event was uniform randomly distributed
between 0 and 2 milliseconds with a mean of 1 millisecond.

• The simulation time to execute an event was uniform randomly distributed
between 0 and 20 units with a mean of 10 units.

• The wallclock time to send a message takes at least 100 microseconds. In 85%
of all messages sent, the message will arrive in 100 microseconds. In 6% of all
messages sent the message will arrive in 200 microseconds. In 4% of all
messages sent the message will arrive in 300 microseconds. In 3% of all
messages sent the message will arrive in 400 microseconds. Finally, in 2% of all

135

A reduction network which computes and disseminates target-specific reductions in

O(log n) time is certainly feasible. (See Chapter 5.)

6.3. Simulation Assumptions

We have made certain assumptions with respect to our simulations. We believe

them to be realistic with respect to current technology and parallel simulations in general.

Assumptions about the reduction network and all interfaces are based on the prototype

design of our four-processor global reduction network [REPS93].

• Each logical process LPi in the parallel simulation executes on a dedicated
physical host processor HPi.

• There are two times represented in this simulation. Logical time refers to the
logical time of the PDES being simulated. Wallclock time refers to the
simulated time of physical events, where a physical event can be a message sent
through the host communication network, an event being executed, or a
reduction operation being performed.

• The communication topology of the PDES is based on an input graph to the
simulator. An LP sends an event message with equal probability to any of its
immediate successors. Each event generates one new event message. Internal
events are generated by an LP so that the workload of all processors is the same.

• LP’s send event messages and antimessages through the host communication
network. The wallclock time to send a message is based on a probability
distribution and the distance between two processors in the physical system.
The physical distance or number of hops between processors is an input to the
simulations. All simulations presented in this chapter assume that the distance
between any two processors is the same.

• The reduction networks take 150 ns. per stage. It takes 90 ns. per 16-bit read or
write in the auxiliary processor. It takes 100 ns. to read values from the interface
to the PRN. Likewise it takes 100 ns. for values to propagate from the PRN to
the level of the interface readable by the AP.

• The wallclock time that it takes for a host processor to read values from the host
processor - auxiliary processor interface is 95 nanoseconds for a 32-bit read.

• The AP executes all acknowledgment processes. Batched acknowledgments, as
described in Chapter 4, are implemented.

• An HP will poll its interface to its AP at regular intervals, with no delay. This
suggests that GVT computed in the reduction network is as accurate as possible.

134

simulations also use two-phase acknowledgments of both messages and antimessages in

the reduction network in order to correctly maintain GVT.

When the optimistic PDES is implemented on top of the target-specific reduction

network, a target-specific virtual time (TSVT) is computed for all LP’s. (See Section 5.1.2.)

Since TSVTi is customized for each LPi, i = 1, 2,…, n, it more accurately reflects the state

information on which to base event processing decisions. Furthermore, fossil collection

should be done with more accurate information. This supports a better utilization of state

saving memory.

6.2. Hardware Computation Model

A hardware computation model can be found in Figure 3.2. The host system is a

closely coupled network of high speed processors with its own network for interprocess

communication. Each host processor (HP) is paired with a dedicated auxiliary processor

(AP) which performs all synchronization activity and interfaces to the high speed reduction

network. The PDES synchronization protocol and all event processing occurs on the host

processors. Interfaces between a host processor and its corresponding auxiliary processor

and between an auxiliary processor and the reduction network are designed to permit the

correct execution of a PDES while allowing the host processors to operate asynchronously

with the auxiliary processors and reduction network. (See Chapter 3 for details.)

For our simulations we assume that all reductions in the reduction network are

computed inO(log n) time wheren is the number of processors in the host system. In a

reduction which computes globally reduced values, a binary tree-shaped reduction

network, as , can compute reductions with this time complexity. Furthermore, this same

network requiresO(n) components.

133

reduction network in order to correctly maintain the smallest unreceived message time. All

acknowledgments are batched in order to use the reduction network more efficiently.

When the conservative PDES is simulated on top of the target-specific reduction

network, two target-specific minimum operations are computed for each LP: a target-

specific minimum next time and a target-specific smallest unreceived message time .

Each LP receives reduced information only from those LP’s that can have an impact on its

performance, and LP’s will receive more accurate state information. As described in

Chapter 5, target-specific primary acknowledgments have the same target as messages, and

consequently, target-specific handshake acknowledgments are computed using the inputs

from only immediate successors. Thus, from the perspective of a given LP, its target-

specific inputs and outputs depend on the operation being performed, and different LP’s

will have different sources of inputs and different targets.

6.1.2. Optimistic Simulation Algorithms

The optimistic PDES implemented is a Time Warp simulation [JEFF85]. (See

Section 2.1.3. for details on Time Warp simulations.) In our simulations, antimessages are

cancelled aggressively, such that all events sent in the LP’s future are cancelled at the time

of rollback. Furthermore, our simulations batch antimessages to each receiving LP so that

the total amount of message traffic in both the host communication network and our

synchronization network is reduced. A batch antimessage allows multiple antimessages to

be sent in one physical message, reducing the total number of outstanding messages in the

host network. Furthermore, the number of messages which must be acknowledged in the

reduction network is also reduced. GVT is computed in the reduction network as the

smallest time in the system: the minimum of the smallest logical clock time and

minimum unreceived message time . (See Section 3.1.2.) The optimistic parallel

η′i υ′i

σ′

υ′

132

We have also concluded that the dissemination of target-specific synchronization

information is beneficial to Time Warp-like PDES’s. The dissemination of target-specific

critical state information allows GVT to be computed on a local basis — target-specific

virtual times (TSVT’s). Since a TSVT is based only on information relevant to the target

LP, thus, in a sense, making it more accurate than GVT, fossils (state information that

precedes a TSVT) will be reduced.

In the first section we describe the algorithms used in the simulations. In

Section 6.2. we give a brief description of the hardware model used in the simulations. In

Section 6.3. we describe our simulation assumptions. In Section 6.4. we present the results

of our simulations. Finally, in Section 6.5. we discuss the implications of our results.

6.1. Simulation Algorithms

We simulated two different PDES’s, a conservative parallel simulation and an

optimistic parallel simulation. Each PDES was simulated on top of the two hardware

configurations, each with the high-level configuration in Figure 3.2. The only difference

between the two configurations is the type of reductions computed in the reduction

network.

6.1.1. Conservative Simulation Algorithms

The conservative PDES is based on the synchronization algorithms in [REYN92]

(See Section 3.1.1.). LP’s maintain a next event time and a smallest unreceived message

time ; two globally reduced minimum operations are performed on these inputs, giving

 and , respectively. The LP with the smallest next event time, such that it is not larger

than the global minimum unreceived message time, can safely execute its event. Message

acknowledgments are performed with the two-phase protocol (See Section 4.3.) in the

ηi

υi

η′ υ′

131

6 Performance of Global versus
Target-specific Reductions

In this chapter we present results of simulations that strongly suggest the need for a

next-generation reduction network to compute and disseminate results of target-specific

reductions to support both aggressive and non-aggressive parallel discrete event

simulations. Many of these simulation results were first presented in [PARE93]. As

established in previous chapters, target-specific reductions allow an LP to receive

synchronization information only from those logical processes which may have a direct or

indirect impact on its performance.

To determine the performance gains of a reduction network which computes target-

specific reductions, we have simulated the two conditions: several PDES’s operating on top

of a reduction network which computes globally reduced values and several PDES’s

operating on top of a reduction network which computes target-specific reduced values

across subsets of LP’s (assuming one LP per processor). The goal of these simulations was

to demonstrate the utility and benefits of target-specific reduction networks.

We have concluded that target-specific synchronization information offers

significant benefits to conservative PDES’s. In a conservative parallel simulation, target-

specific synchronization information reduces the finishing time of the simulation. This

result is intuitive: near-perfect state information − information that comes close to the true

state when the near-perfect information is received − eliminates artificial dependencies and

enables more parallelism in a PDES.

130

In the next chapter we present simulation results which demonstrate the need for

hardware to compute target-specific reductions in support of parallel simulations.

129

5.7. Summary and Conclusions

In this chapter we have presented theoretical results on the cost of computing and

disseminating target-specific reductions. We have two contributions in this area and several

observations. First, we have demonstrated the applicability of target-specific reductions to

a wide range of PDES synchronization protocols. In the next chapter we will present

simulation results that quantify the benefits of target-specific reductions over global

reductions to both conservative and optimistic protocols.

Second, we have shown two sequential algorithms which solve the target-specific

dissemination problem in the general case. The algorithms show a trade-off between the

time and space complexity. The first algorithm has a O(n log n) time complexity with the

associated cost a O(2n) space complexity in bits. The second solution is actually a family

of solutions, where the best time/space complexity combination of solutions is O(n2/log2 n)

time complexity and O(n4(log log2 n)/log2 n) space complexity in bits. These are the best

known time/space complexity results for this problem. They are encouraging because of the

sub-quadratic time complexity of the associated algorithms.

Also, we can make some observations regarding the computation of target-specific

values in parallel. We have presented a design of parallel target-specific reduction network

which computes n target-specific reductions in O(log n) time with O(n2) components. This

is a small contribution but it is worthy of note at this time because the product of the time

and space complexity is O(n2 log n), which is less than the product of the time and space

complexities of any of our sequential solutions. It also serves as a proof of concept. It is

also an interesting observation that this parallel target-specific reduction network computes

all binary, associative operations and is not limited to the computation of minimum and

maximum values.

128

compute the reductions for each of the n outputs. The leaves of the broadcast trees are

preprogrammed to determine if its input must be sent to the corresponding reduction

computation; if an input is not sent to a reduction computation, the identity element for that

reduction is sent instead. Whether there exists a reduction network which computes target-

specific reductions for all communication topologies in O(log n) time with less than O(n2)

components is still an open research question. The complexity of the network in Figure 5.9

is equivalent to Akl’s best solution to compute the multiple criteria n-processor BSR, as

discussed in Section 2.2.3.

Figure 5.9A Target-specific Parallel Reduction Network.

Key

ALU switch

broadcast switch

LP1 LP2 LP3 LP4

LP1 LP2 LP3 LP4

127

We discuss the selection ofk by presenting a table of results. Recall thatk can be

between1 andn. Given this we have a family of solutions, depending on the value ofk:

 If k = (n log n)1/2, the time complexity is minimized atO(n2/((n log n)1/2)). If

k = log n ork = log2 n, then the time complexity is sub-quadratic, and the space complexity

is polynomial in the number of bits.

5.6. A Physical Realization of a Target-specific Reduction Network

One way to compute target-specific reductions for all possible communication

topologies inO(log n) time is to construct a reduction network by essentially duplicating a

binary tree global reduction networkn times, such that each of then reduction results is sent

to an LP executing on a different processor and a processor only contributes an input to a

reduction if its LP is a predecessor to the LP receiving the result. The drawback to this

approach is thatO(n2) components (elements in the reduction network) are required. We

use this construction to show an implementation of a target-specific reduction network in

Figure 5.9. Each of then inputs is broadcastedn times in a binary tree of broadcast

switches, and then then2 leaves of the trees are inputs to then binary trees of ALU’s which

Table 5.1Family of Solutions.

k Time Complexity Space Complexity (in bits)

1 O(n2) O(n2)

log n O(n2/log n) O(n3(log log n)/log n)

log2 n O(n2/log2 n) O(n4(log log2 n)/log2 n)

n1/2 O(n3/2) O((2 ^ (n1/2)) · (n3/2))

(n log n)1/2 O(n2/((n log n)1/2)) O(n2(log((n log n)1/2))/
(n log n)1/2)

n O(n2/log n) O(2nn2)

126

5.5.4. A Family of Solutions

Next we explore divide-and-conquer techniques to reduce the space complexity of

the above problem. Assume that the sets are divided into n/k groups of k sets, where

1 ≤ k ≤ n. Then separately solve the problem for each of the groups.

There will be n/k lattices, one for each group of sets. The lattices will be initialized

as in Section 5.5.1. Once the sort of the n buckets is completed, the assignment of minimum

values will take place by following the levels in every lattice. The algorithm is complete

when each lattice has been used to assign values to sets.

We discuss the space requirements in terms of bit complexity. The total number of

nodes in each lattice is 2k. For each node, there are two arrays. The pointer array P will have

k elements, each of size k bits. The bucket array A will have n elements, one for each bucket,

each with log k bits to refer to one of k sets. So, the total space requirement for each node

is 2k(k2 + n log k). Since there are n/k nodes, the total space needed is O(2k(nk + (n2 log k)/

k)) bits.

Again, we consider the time to read values with size greater than log n. There are

two parts to the algorithm: the sort of the bucket values and the assignment of minimum

values to each set. It will take O(n log n) time to sort n buckets; this doesn’t change from

the original algorithm. The time to traverse each lattice and assign values to k sets will be

n + k(k/log n), where n is the time to read possibly n buckets, and k(k/log n) is the time to

read all pointers to traverse the lattice. Since there are n/k lattices, the time complexity to

assign values to all n sets will be O(n2/k + nk/log n).

125

in Figure 5.8, if b2 is the sorted minimum, then S3 is assigned the minimum value of b2, and

P[3] is followed to get to the next node in the lattice. The bucket reference b2 will continue

to be the bucket reference into A until all sets with that minimum have been assigned its

value. Once this happens and an empty node in the A vector is found, then the next bucket

reference in the sorted permutation is used to index the A array.

5.5.2. Space Complexity Analysis

We analyze the space requirements with a bit analysis. The total number of nodes

in the lattice is 2n. For each node, there are 2 vectors: P and A, each with n elements. Each

pointer in P has n bits so that 2n unique nodes can be referenced. Each element in the A

vector has log n bits to reference n buckets. Therefore, the total number of bits is

2n(n2 + n log n), or O(n22n) bits.

5.5.3. Time Complexity Analysis

The time analysis will take into consideration that a word of size log n can be read

in constant time. There are two parts to the algorithm: the sort of the bucket values and the

assignment of minimum values to each set.

The sort will take O(n log n) time. Then the lattice will be used to assign minimum

values to each set. There are n levels in the lattice. At each level, at least one A vector

element will be read and one pointer P will be read. Each A vector element can be read in

constant time. Each pointer, however, will take n/log n time to read because of its size.

There are n levels of the lattice and at most n elements of vector A will be read at only one

level. Therefore, the assignment process will take O(n2/log n) time. Hence, the total time

complexity for this algorithm is O(n2/log n).

124

it. For example, the node containing the set {S1, S2, S3} will point to the nodes {S1, S2},

{S1, S3}, and {S2,S3}. The pointer in vector location i points to the subset of the next

smaller size which does not contain element i; thus, P[2] of node {S1, S2, S3} contains the

pointer to node {S1, S3}. If a node does not contain the subset Si, then P[i] in that node will

be a null pointer. The configuration of the pointer vector P will always be the same for each

problem instance of the same size.

Figure 5.8 Lattice Used to Store Preprocessed Subset Information.

The second vector, A, is the solution vector, or vector which assigns bucket

references to sets. This array is indexed by the bucket number. We have assumed the

following three subsets of three total buckets: S1 = {b1, b3}, S2 = {b3}, and S3 = {b1, b2}

for the assignment of values to the A vector in Figure 5.8. Once the bucket values are sorted,

the permutation of buckets is used to traverse the lattice and find the solution. For example,

S1 S2 S3

S2 S3 S1 S3 S1 S2

S3 S2 S1

P

P PP

P P P

P

S1
S3
S1

S1

S1

S1

S1

S3

S1

S3

S3

S2

S2

S3

S3

123

Figure 5.7After Minimum Value Assigned to SetS1.

5.5.1. Solution Algorithm

We begin by discussing the necessary preprocessing and data structures in our

solution algorithm. Recall that the contents of each subsetS1, …, Sn are knowna priori, so

this information can be used to initialize a data structure we call ahierarchy or lattice, as

shown in Figure 5.8. The lattice is a partially ordered set containing the relationship

between the bucket contents and the subset references. Each node of the lattice represents

a set of the subsets, such that the first level of the lattice contains one node representing all

n sets, the second level containsn nodes representing all subsets of size(n-1) sets, and so

on until the(n+1)st level contains an empty set. Each node has two vectors of sizen

associated with it. One is a vector of pointers to the next level of the lattice. This pointer

arrayP, shown below each node in Figure 5.8, contains all pointers from that node to the

next level in the lattice; a node will point to all nodes on the next level which are subsets of

{ }

{ }

. . .

.

.

.

S2

Sn

b1 b2 b3 bn

. . .

. . .

122

Figure 5.6 An Instance of the Minimum Value in All Subsets Problem Assuming Pointers.

After the sort has completed, the second step is to select the minimum value in each

set Si, 1 ≤ i ≤ n, by finding the set Si’s pointer which points to the smallest bucket value in

the sorted list. The algorithm begins with the first bucket, that bucket with the smallest

value, and assigns the bucket value to the minimum values of all sets with a pointer into the

bucket. Once a value has been assigned to mi, all pointers from the set, i.e., all pointers of

the set’s color, are removed from consideration. For example, assume the buckets in Figure

5.6 have been sorted. The minimum value m1 of set S1 will be the value in bucket b1. Figure

5.7 depicts the removal of set S1 once the value of m1 has been resolved. The buckets are

followed in increasing order and minimum values are assigned in this way until all

minimum values have been assigned values.

We describe the algorithm, associated data structures, and necessary preprocessing

to accomplish this solution in sub-quadratic time in the following section.

{ }
{ }

{ }

. . .

.

.

.

S1

S2

Sn

b1 b2 b3 bn

. . .

. . .

. . .

121

entries. Each entry is an k-word solution vector. Each word in memory has a width of log k

bits. There are (n/k)2 subproblems. Therefore, the total space complexity to solve all

subproblems is O(k! ⋅ (n2/k)⋅log k) bits.

The selection of k is critical to the time and space complexities of the algorithm. If

we assume that k = n/log n, there are log n groups of n/log n buckets by n/log n subsets. The

time complexity to solve the problem is O(n log n). This does not change.

The space complexity to solve the problem is O(n log n ⋅ log(n/log n) ⋅ (n/log n)!)

bits. The dominating component of this will obviously be (n/log n)!. Since it is well known

that n! ≤ nn, and both have the same order complexity, we make the observation that (n/

log n)! ≤ nn/log n. Furthermore, nn/logn = (2log n)n/log n = 2n. Hence, the space complexity is

O(2n) bits, a reduction from super-exponential space to exponential space.

We are optimistic about this result because of the O(n log n) time complexity

though we are aware of the practical considerations of the exponential space requirements.

We next present a family of solutions to this problem. Several members of the family

reduce the space complexity to polynomial space with cost of the time complexity

increasing. We note, however, that the time complexity remains sub-quadratic.

5.5. A Family of Solutions to the Target-specific Dissemination Problem

We assume the same set theoretical MVAS problem for this family of solutions. In

order to facilitate our algorithm discussion, we view the sets as sets of pointers to the

buckets as in Figure 5.6.

The first step of the solution is to once again sort the buckets in nondecreasing order

of the bucket contents. During the execution of the sort, the pointers are dragged along as

the elements are put in place.

120

There are four steps in the divide-and-conquer algorithm, where the first three steps

are similar to the larger problem solution and the final step resolves the solution of the

smaller subproblems to get a solution to the entire problem. The first step in the execution

of the algorithm is to sort each of the n/k groups of k buckets. Second, for each subproblem

of k subsets and k buckets, the permutation of the sorted k subsets is used as a k-word

address to access a solution vector of bucket references for the k subsets. Third, a partial

minimum value is assigned to each of the k subsets for that subproblem; this value is the

minimum value for that subset across k buckets. The final step in the algorithm is to

combine the partial minimum values of the subproblems to give a solution to the large

problem. So, for each of the n subsets, the minimum of its n/k partial minimums is

computed, one for each group of buckets.

It is possible to keep the time complexity of the divide-and-conquer solution at

O(n log n) if k is selected carefully. We explain this now. The time to sort one group of k

buckets is O(k log k). Therefore, the time to sort n/k groups is n/k ⋅ k log k or O(n log k).

The time to address the solution vector of bucket references is O(k) for one subproblem,

since it takes unit time to read each word in the k-word address. Since there are (n/k)2

subproblems, the total time to address the solution vectors is O(n2/k). Similarly, the time

complexity to assign minimum values to each of k sets is O(k) for one subproblem since the

contents of a bucket can be read in unit time; the time complexity to do the assignments for

all (n/k)2 subproblems is O(n2/k). Finally, the time to compute the minimums of n/k partial

values for all n subsets will be O(n2/k). Therefore, the time complexity of the algorithm is

dominated by O(n2/k), so the total time complexity to solve the MVAS problem with a

divide-and-conquer algorithm is O(n2/k).

We analyze the total space needed to solve the problem using bit complexity. For

each subproblem of k buckets and k subsets, the table of possible solution vectors has k!

119

of k buckets. During the preprocessing, a table of the solution vectors of bucket references

of the k subsets is created for each of the k! permutations for one subproblem. Figure 5.5

shows how the problem is partitioned. We assume that each partial solution vector of bucket

references can be addressed by its permutation.

Figure 5.5 Divide-and-Conquer Partitioning of MVAS Problem.

{
{

{

. . .

S1

S2

Sk

b1 b3

b1, b2, b4, . . . }
b2, b3, b5, . . . }

b1, b3, b4, . . . }
.
.
.

b2 bk . . .{ . . .
b1 b3b2 bk

{Group 1 Group n/k

. .
 .{Group 1

{
{

{

S1

S2

Sk

b1, b2, b6, . . . }
b1, b3, b4, . . . }

b1, b2, b4, . . . }

. .
 .{Group n/k

118

The third step of the algorithm is the use of the bucket reference vector to assign

actual values from the buckets to the vector of minimums. The result of this step of the

algorithm is a vector of n values, each is the minimum value in the respective set.

5.4.3. Time Complexity Analysis

We analyze each of the three steps in the algorithm. The time to sort the n buckets

is O(n log n). The time to address the solution vector of bucket references is O(n), since it

takes a unit time to read each word in the n-word address. Finally, the time to assign a value

to each set is O(n) since the contents of a bucket can be read in unit time, and there are n

bucket references in the solution vector. Therefore, the time complexity of the algorithm is

dominated by the sort, and the total time complexity to solve the MVAS problem is

O(n log n).

5.4.4. Space Complexity Analysis

We analyze the total space needed to solve the problem using both word complexity

and bit complexity. The table of possible solution vectors has n! entries. Each entry is an n-

word solution vector. So, the space complexity is O(n! ⋅ n) words. Each word in memory

has width of log n bits. Therefore, the total space complexity in bits is O(n! ⋅n log n). We

recognize that this is a super-exponential amount of space and unacceptable.

We now show how to reduce the space requirements of the algorithm, employing

well known divide and conquer techniques. We show that the space complexity can be

reduced to an exponential space complexity instead of a super-exponential space

complexity and the time complexity will remain O(n log n).

Assume that both the sets and the buckets are partitioned into n/k groups of k subsets

by n/k groups of k buckets, where 1 ≤ k ≤ n. This gives us (n/k)2 subproblems to solve using

the same algorithm which was used to solve the large problem. There are k! permutations

117

not affect the runtime of the algorithm. In Section 5.4.4. we show that the memory can be

reduced to O(2n); however, for now we assume the entire permutation table to simplify our

description of this solution.

5.4.2. General Algorithm

Assume that an instance of the MVAS problem is viewed as in Figure 5.3. In other

words, the subsets are references to the buckets. The first step of the solution is to sort the

buckets in nondecreasing order using a computationally efficient sorting algorithm.

The second step is to use the sorted permutation as an address to find the solution

vector of bucket references in the table. Figure 5.4 shows how a memory hierarchy can

support an n-word address. Once the n-word address is referenced, a pre-stored solution

vector of bucket references is located.

Figure 5.4 Memory Requirements of an O(n log n) Solution to the MVAS Problem.

. . .

memory level 1

memory level 2

memory level 3

memory level n

n-word address: . . .

n-word solution vector of bucket references:. . .

116

Minimum Value in All Subsets (MVAS) Problem. Given a setB of buckets,B =

{ b1, b2, …, bn}, andn subsets of these buckets,S1, S2, …, Sn, find the solution vectorM

= {m1, m2, …, mn}, such thatmi is the minimum value across all buckets in setSi.

The contents, or bucket references, of the subsets are known prior to the

computation of the minimums. Bucket references are static for each graph topology.

Therefore, we allow preprocessing to be done to the subsets prior to the computation of the

minimums. The preprocessing isnot part of the execution time of the sequential algorithm.

In the solutions in Section5.4.and Section5.5., preprocessing reduces the ultimate time

complexity of an algorithm to solve the MVAS problem. In the next section we present a

solution to the target-specific reduction problem with the best time complexity we have

found.

5.4. A O(n log n) Time Solution

We present the necessary preprocessing and anO(n log n) time algorithm for the

MVAS problem.

5.4.1. Preprocessing

Our first observation is that there aren! possible permutations, or sorted orders, of

the n buckets. For each permutation there is an associated solution vector to the MVAS

problem. This suggests that there are at most n! possible solutions.

During preprocessing, each of then! solution vectors are stored in a table in

memory, such that a solution vector can be addressed by its permutation. We assume that a

permutation can be treated as ann-word address to the associated solution vector. We

envision a memory hierarchy, as depicted in Figure 5.4, such that each word in then-word

address refers to a different memory bank. The time complexity of the algorithm will take

at leastO(n · n!) since each memory location must be initialized. This preprocessing will

115

O(n log n) time solution to this particular problem. Before presenting our current solutions,

we give a detailed problem discussion.

5.3.2. An Equivalent Problem

In order to visualize the problem, consider the set of n numbers to be a set of bucket

references {b1, b2, …, bn}, such that each bucket contains a value. This adds a level of

indirect referencing to the n inputs; for example, the input value from LP1 is always

contained in bucket b1. There are n subsets of the bucket set, labeled S1 through Sn. Each

subset is essentially a set of references to the buckets. An instance of this problem is shown

pictorially in Figure 5.3. To solve this problem the minimum bucket value in each set must

be computed. The solution is a vector of n numbers, where each number is a value

contained in a bucket.

Figure 5.3 An Instance of the Minimum Value in All Subsets Problem.

Therefore, an equivalent problem to the target-specific reduction problem can be

defined as follows:

{
{

{

. . .

S1

S2

Sn

b1 b2 b3 bn

b1, b2, b4, . . . }
b2, b3, b5, . . . }

b1, b3, b4, . . . }

.

.

.

114

5.3. Target-Specific Reduction Problem Definition

Several applications, including parallel discrete event simulation, require the

computation of n minimum (or maximum) values of any n subsets of n dynamically

changing numbers. In PDES, we view this problem as a graph theoretical one, since a

communication graph, as in Figure 5.1, shows the relationship of LP’s. We redefine this

problem as a set theoretical one in order to describe our solution algorithms.

Problem Definition. Given a set of n numbers and n subsets of those n numbers,

the target-specific minimum values are computed as n minimum values, one minimum

value per set.

Each of the n numbers are input values to reduction operations (input values from

an LP to a reduction), each subset represents the set of input values to one target-specific

reduction (a target-specific reduction for one LP is based on inputs from its predecessors in

the directed graph), and the computed minimums are the results of the n target-specific

reductions (a computed output for each LP).

5.3.1. Upper Bound of the Target-Specific Minimum Value Problem

Clearly, an upper bound on this problem is O(n2). A simple O(n2) algorithm to

compute the n target-specific minimum values examines each set, and for each set, it

compares the elements in that set to find the minimum value. Since there are n sets with at

most n elements each, then at most n2 values need to be compared. Hence, the upper bound

time complexity is O(n2). Space complexity is also O(n2) since it takes O(n2) space to store

the n sets. We note that a large number of graphs do not have this worst case complexity.

For example, if either the total number of arcs is O(n log n) or the maximum number of

input arcs is limited to O(log n) per node, then the time complexity to compute n target-

specific values is O(n log n). The O(n2) is simply worst case. Our goal was to find an

113

numerical computations, and parallel programming problems that require the computation

of binary, associative operations across irregular communication patterns. The impact of

the efficient computation target-specific reductions in parallel computations is a topic of

future research.

5.2. Problem Characteristics

All binary, associate operations (minimum, maximum, addition, logical OR, etc.)

do not have the same characteristics. We discuss differences which are pertinent to the

computation of target-specific reductions.

Both addition and multiplication have inverse operations; subtraction is the inverse

operation to addition and division is the inverse operation to multiplication. Some binary

associative operations (minimum, maximum, logical OR, and logical AND, for example)

are persistent; in other words, an operand can be included in the operation one or more

times without changing the result of the operation. The operations of addition and

multiplication and the computation of logical XOR are not persistent.

A final characteristic of the binary, associative operations minimum and maximum

is that they are comparison-based operations. This suggests that sorting algorithms may be

instrumental in algorithms which compute comparison-based target-specific reductions.

The theoretical results we present in the next sections assume that the target-specific

binary, associative operations are comparison-based. Therefore, we narrow the class of

reductions to include only those which are comparison-based, i.e., minimum and maximum

operations. We are not concerned with this limitation because most of the computations

required in a parallel discrete event simulation are comparison-based: smallest outstanding

message time, minimum logical clock, and message acknowledgments all require the

computation of minimums.

112

to that LP, those LP’s which send it messages. For example, in Figure 5.1, the only LP

which is an immediate predecessor to LP5 is LP3. Consequently, a target-specific handshake

acknowledgment is computed using the inputs from only immediate successors. In the

same figure, LP4’s immediate successor’s are LP6 and LP7. Based on simulations presented

in Chapter 6, we have strong reason to believe that the performance of all acknowledgment

algorithms will improve if global reductions are replaced with target-specific reductions

because the acknowledgments are done on a per LP basis.

5.1.4. Other Target-specific Reductions in PDES’s

We expect the computation and dissemination of target-specific state information to

benefit other PDES synchronization protocols as well. For example, target-specific ceiling

or fault values can support windowing synchronization protocols. New windowing

protocols are likely to arise with the rapid and efficient computation of target-specific

reductions.

Finally, we expect the dissemination of near-perfect state information to support

adaptive PDES synchronization protocols, those that combine the strengths of both

aggressive and non-aggressive protocols while limiting the weaknesses. This is a topic of

current research [SRIN93].

If target-specific synchronization information is available to LP’s in a PDES, all

LP’s receive more accurate state information and can process events accordingly. The final

result is a framework for PDES that efficiently supports a wide range of PDES’s.

5.1.5. Target-Specific Reductions in Other Parallel Computing Applications

The benefits of the computation and dissemination of target-specific reduced values

are not limited to parallel discrete event simulations. We expect target-specific reductions

to enhance a range of parallel computing problems: load balancing [KIRK92], iterative

111

Figure 5.2An Instance of an Optimistic PDES.

The efficient computation of target-specific virtual times, i.e., in a high-speed

reduction network, can provide near-perfect state information at a low cost. This can be

important, for example, to the cancelback protocol of [JEFF90], a memory management

protocol for Time Warp, executing on a shared memory multiprocessor. Performance

studies [DAFU93] have shown that the global computation of GVT on the Kendall Square

Research Machine (KSR) [KEND92] in support of the cancelback protocol has a high cost.

5.1.3. Target-specific Acknowledgment of Messages in PDES’s

In Chapter 4 we discussed how globally computed minimum operations support

message acknowledgments in a PDES. All reduced values and message acknowledgment

algorithms can be modified for target-specific message acknowledgments. Target-specific

acknowledgments have the same target as messages: a target-specific acknowledgment of

a message for a given LP is computed using the inputs from only immediate predecessors

LP1 LP3

LP2

LP4

LP6

LP7

LP5

LP8

σ2 = 10 σ6 = 2

σ3 = 7 σ4 = 12σ1 = 8 σ7 = 3

σ8 = 6

σ5 = 4

υ1 = 5
TSVT1 = ∞

TSVT2 = 5

TSVT3 = 5 TSVT4 = 5

TSVT6 = 5

TSVT7 = 4

TSVT5 = 5

TSVT8 = 2

υ3 = ∞ υ4 = ∞ υ7 = ∞
υ8 = ∞

υ2 = ∞ υ6 = ∞

υ5 = ∞

110

5.1.2. Target-specific Reductions in Optimistic PDES’s

We introduce a new value,target-specific virtual time (TSVT) to be computed for

LP’s in an optimistic PDES. Target-specific virtual time is a relative value: TSVTi is the

minimum logical timestamp to which LPi, i = 1, 2,…, n, can roll back, and it is computed

from input values based on the transitive closure of the communication graph. If there are

n LP’s in a simulation, thenn separate TSVT’s must be computed. The TSVT for two

separate LP’s will only be computed in the same way if both predecessor sets are identical.

Definition. Target-specific virtual time for LPi, TSVTi,(t) at real timet, is the

minimum of the virtual times in (1) the logical clocks of predecessors of LPi based on the

transitive closure of the communication graph at timet, and (2) all messages that have been

sent by LPi’s predecessors but have not yet been processed by real timet.

Figure 5.2 shows smallest unreceived message times (’s), local clocks (’s), and

computed TSVTi’s at an instance of real time in a parallel simulation. The nodes in the

communication graph are shaded to show the nodes which have the same TSVT.

Since TSVTi is customized for each LPi, it more accurately reflects the state

information on which to base event processing decisions. It is more accurate than GVT.

Therefore, fossil collection can be done with more accurate state knowledge. This can lead

to better utilization of state saving memory. (See Chapter 6 for performance results on the

reduction in state space.) If the state space were limited, as it is in Fujimoto’s high-speed

rollback chip [FUTG92], this can be a significant benefit.

υi σi

109

Figure 5.1 An Example PDES Communication Topology.

Many PDES’s exhibit static communication properties: that is, the number of LP’s

and the communication topology are known a priori. Furthermore, many have partially

static topologies, where the sets of potential predecessors to each LP are known a priori. A

conservative PDES with these properties shows significant runtime speedup if the rapid

dissemination of target-specific synchronization information is possible. (See Chapter 6.)

By providing the dissemination of target-specific next event times, target-specific

unreceived message times, and target-specific lookahead values to a conservative PDES,

decisions about safe processing will be based on more accurate information. These target-

specific values are computed from an LP’s predecessors as determined by the transitive

closure of the static communication graph. By providing information specific to each LP’s

requirements, the potential for increased parallelism and a resulting speedup is apparent.

We report on speedup potential in conservative PDES in Chapter 6.

LP1 LP3

LP2

LP4

LP6

LP7

LP5

LP8

108

5.1. Target-specific Reductions in Parallel Simulations

The dissemination of global state information in the form of globally reduced

values means that each of the LP’s in a parallel simulation receives information that is

derived from the whole group’s inputs. In a target-specific reduction, each of the LP’s is an

individual target, such that it receives a particular reduced value computed from a subset

of the LP’s on which it is logically dependent. In a system of n LP’s, n target-specific

reductions must be computed for each operation. Each of the necessary reduction

operations in a PDES may have different targets. Thus, from the perspective of a given LP,

its target-specific inputs and outputs depend on the operation being performed. Also,

different LP’s can have different sources of inputs and different targets, as we explore next.

5.1.1. Target-specific Reductions in Conservative PDES’s

A conservative PDES synchronization protocol based on global state information

can introduce artificial dependencies that may not exist, causing potentially parallel events

to execute sequentially. For example, assume the communication graph of LP’s in Figure

5.1. LP1 is not dependent on any LP’s and should be able to advance its simulation clock

without blocking. LP2 should receive synchronization information only from LP1, LP5

should only receive synchronization information from LP1 and LP3, etc. In this case, target-

specific next event times and target-specific unreceived message times for LPi are

computed from those LP’s that can have an impact on its performance, that is, all of LPi’s

predecessors in the directed graph representing the communication topology of the PDES.

107

5 The Cost of Doing Target-specific
Reductions

We have established that target-specific reductions can be critical to the

performance of both aggressive and non-aggressive parallel simulations [PARE93]. In this

chapter we present the best known theoretical results on the sequential computation of

target-specific binary, associative operations. Our theoretical contributions include the

establishment of specific time complexity and space complexity trade-offs. These

complexities are important to the computation of reduced values in a target-specific

reduction network because they can be used to estimate the cost of computing target-

specific reductions in parallel.

We begin this chapter by motivating the need for the computation of target-specific

reductions in parallel discrete event simulations. We demonstrate the applicability of target-

specific reductions to a wide range of PDES synchronization protocols in Section 5.1. In

Section 5.2. we discuss characteristics of binary, associative operations that have an effect

on the computation of target-specific reductions. In Section 5.3. we present a problem

formulation and relate its graph theoretical representation to an equivalent set theoretic one.

In Sections 5.4 and 5.5 we present sequential solutions to this problem. These solutions

differ in time and space complexities and the obvious trade-offs between the two.

Intuitively, the best sequential solution to this problem has time complexity O(n2);

however, the results in this chapter show that a sub-quadratic solution is attainable. In

Section 5.6. we discuss the implementation of a parallel target-specific reduction network.

106

processor. We conclude that TPA performs as well as SPA, and that memory utilization on

the auxiliary processors is better.

The simulation performance studies presented in [SRIN92] and performance studies

presented in Section 4.8. are encouraging. They show significant potential for

reduction-based acknowledgment algorithms. These experimental results, however,

assume that reductions are computed globally. In the next chapter we introduce

target-specific reductions to more accurately depict the state of a PDES. We believe the

performance of the message acknowledgment algorithms in this chapter can be improved

greatly since target-specific acknowledgments allow many acknowledgments to occur

concurrently. We expect the time lag between the sending of a message and its

acknowledgment to be reduced significantly.

105

4.9. Summary and Conclusions

In this chapter we have presented several algorithmic variations on acknowledging

event messages in a reduction network. We have made several contributions in this area.

First, we have demonstrated the feasibility of performing message

acknowledgments in the reduction network. The algorithms are instrumental in particular

to the computation of global virtual time in aggressive PDES synchronization protocols and

minimum outstanding message times in other PDES synchronization protocols in the

reduction-based framework developed in Chapter 3.

Second, we have presented batching acknowledgments as a method of

acknowledging multiple messages in a single reduction, and this improvement has proven

to be robust and stable. With the batching of acknowledgments, the framework hardware is

able to efficiently support smaller event granules. Throughout this chapter we have

discussed the fundamental issues involved with each alternative. We have included

discussions about implementation details and correctness issues.

Third, we have developed two algorithms which correctly acknowledge messages

in a reduction network where output state vector loss is a property of the hardware: a

two-phase acknowledgment and a single phase acknowledgment. Furthermore, the

algorithms are correct when the reductions are being computed asynchronously with the

execution of the simulation. A correctness proof for TPA was presented in [SRRE93], and

correctness proofs for SPA were presented here.

Finally, we have implemented both the two-phase acknowledgment and the single

phase acknowledgment on our prototype framework hardware. We compared the two with

respect to execution time of the simulation and sizes of the message lists on auxiliary

104

Figure 4.14 Effect of Load on Batch Size, where Number of Internal Events Is 2.

We conclude, based on our performance results, that TPA gives the same

performance as SPA, using less memory on the auxiliary processor. It is an open question

how each acknowledgment algorithm will perform in a larger system. The simulation

results in [SRIN92], however, indicate that TPA is scalable to up to 32 processors with

essentially no growth in the time required to acknowledge messages.

0.000 0.010 0.020 0.030 0.040

Mean Time Between Received Messages (seconds)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

M
ax

im
um

 b
at

ch
 s

iz
e

Two-phase acknowledgment
Single phase acknowledgment

103

form. In most cases the sizes of the maximum batches are three times greater in SPA than

in TPA.

Figure 4.13 Effect of Load on Batch Size, where Number of Internal Events Is 10.

0.0 0.2 0.4 0.6 0.8 1.0

Mean Time Between Received Messages (seconds)

1.0

2.0

3.0

4.0

5.0

M
ax

im
um

 b
at

ch
 s

iz
e

Two-phase acknowledgment
Single phase acknowledgment

102

Figure 4.12 Effect of Load on Sizes of Lists, where Number of Internal Events Is 2.

The graphs in Figures 4.13 and 4.14 show the effect of load on the maximum batch

size of an acknowledgment in the reduction network. It comes as no surprise that the batch

sizes are larger in SPA than in TPA. In TPA, the maximum size of batches is less than three

in all cases and less than two in the case when the number of internal events is uniform

randomly distributed from 0-10 (Figure 4.13). SPA, however, allows a message to be

coalesced with a batched acknowledgment in progress, as long as the timestamp of the

message is less than that of the acknowledgment in progress. This allows larger batches to

0.000 0.010 0.020 0.030 0.040
Mean Time Between Received Messages (seconds)

0.0

1.0

2.0

3.0

A
ve

ra
ge

 L
is

t S
iz

e

Unacknowledged list - TPA
Unacknowledged list - SPA
Outstanding list - TPA
Outstanding list - SPA

101

time a message is sent through the host communication network until that message is

received and acknowledged.

Figure 4.11 Effect of Load on Sizes of Lists, where Number of Internal Events Is 10.

In SPA the unacknowledged message list is smaller than the outstanding message

list. A message is removed from the outstanding message list when an acknowledgment is

received in the reduction network. A message is not removed from the unacknowledged

message list until global virtual time has increased to a time that is greater than the

message’s timestamp. In all cases, the total sizes of both the unacknowledged message list

and the outstanding message list in SPA are significantly greater than the sizes of the

corresponding lists in TPA. We explore the effects of load on the maximum batch size next.

0.0 0.2 0.4 0.6 0.8 1.0
Mean Time Between Received Messages (seconds)

0.0

0.5

1.0

1.5

A
ve

ra
ge

 L
is

t S
iz

e

Unacknowledged list - TPA
Unacknowledged list - SPA
Outstanding list - TPA
Outstanding list - SPA

100

Figure 4.10 Effect of Load on Execution Time, where Number of Internal Events Is 2.

The graphs in Figures 4.11 and 4.12 show the effect of the auxiliary processor load

on both the size of the unacknowledged message list and the size of the outstanding

message list. The size of the unacknowledged message list in TPA is essentially zero at all

times. This suggests that when APi receives an entry for a newly received message at its

host processor, that message will be submitted to the reduction network as immediately.

For a given LP in TPA, the size of its outstanding message list is larger than its

unacknowledged list because a message remains in the outstanding message list from the

0.000 0.010 0.020 0.030 0.040

Mean Time Between Received Messages (seconds)

5.0

10.0

15.0

20.0

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Two-phase acknowledgment
Single phase acknowledgment

ρi

99

communication network is saturated (message arrival rate ≥ network message processing

rate).

Figure 4.9 Effect of Load on Execution Time, where Number of Internal Events Is 10.

0.0 0.2 0.4 0.6 0.8 1.0
Mean Time Between Received Messages (seconds)

0.0

20.0

40.0

60.0

80.0

100.0

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Two-phase acknowledgment
Single phase acknowledgment

98

results on the size of the outstanding and unacknowledged message lists from each of the

four auxiliary processors twice. We varied the event delay, the delay to save state, and the

number of internal events generated per output event. Our results follow.

4.8.3. Results of Experiments

We gathered the following statistics for each run:

• mean length of the unacknowledged message lists at an AP
• mean length of the outstanding message lists at an AP
• maximum sizes of batches of acknowledgments
• wallclock time to execute the simulation
• number of messages (event messages and antimessages) received by an LP

We estimated the mean time between received messages by dividing the wallclock

time of the simulation by the number of messages received at an LP. The mean time

between received messages reflects that load on the auxiliary processor, so we use this time

as the independent variable to present our results graphically. In all graphs the results of

TPA studies are represented with circles on the curves, and the results of SPA studies are

represented with inverted triangles on the curves.

The graphs in Figures 4.9 and 4.10 show that the execution times of the simulations

are essentially the same for both acknowledgment algorithms. In Figure 4.9 the number of

internal events between output events (those that generate an event message) was uniform

randomly distributed between 0 and 10. In Figure 4.10 the number of internal events

between output events was uniform randomly distributed at 2. The general shape of the

curves is linear, as expected. As the mean time between messages decreases, the execution

time of the simulation decreases. Note that as the mean time between messages decreases

(causing the auxiliary processor load to increase), the execution time becomes asymptotic

to the cost of doing message transmission and processing. At this point the host

97

The prototype hardware limits state vectors to size eight; each of the eight

components is a register pair, one 32-bit data register and one 32-bit tag register. For both

acknowledgment algorithms, we have programmed the reduction network to operate on

state vectors of size four. We discuss the implementation details next.

4.8.2. Implementation of Acknowledgment Algorithms

Both TPA and SPA were implemented. TPA was implemented exactly as discussed

in Section 4.3. In lieu of guaranteeing unique timestamps in the implementation of SPA, we

used TPA as a simple and efficient way to break a deadlock situation as discussed in

Section 4.4.2. We assume the non-FIFO case for SPA, where messages at LPr are not

necessarily received in the order they were sent from LPs.

Time Warp was selected as the parallel simulation synchronization protocol. The

communication topology of the LP’s was a fully connected graph, i.e., each LP sent a

message with equal probability to one of the three other LP’s. Prior to gathering results we

varied the global virtual time between 1000 and 20,000 to verify that the statistics would

be gathered during stable conditions in the simulation. In each result reported, the

termination condition was that global virtual time exceeded 20,000.

In SPA, we performed a sensitivity analysis to the variable TRR, the number of

iterations that a round robin acknowledgment is submitted by APi to the PRN as . We

observed little sensitivity to this variable. It is an open question whether larger simulations

are more sensitive to this value. For SPA we selected TRR = 25 since this value gave slightly

better timings.

Each point reported on a graph indicates the average of eight executions of a

simulation with the same event time, same delay to save state, and the same number of

internal events generated per output event (event resulting in a message send). We gathered

ρi

96

All three of our proposed alternatives depend on a new global synchronization

value , which replaces the acknowledgment messages in Reynolds’s framework

algorithms. All algorithms eliminate the potential race condition in Reynolds’s algorithm,

although in the previous section we showed how to use the host network while eliminating

this race condition. Both the two-phase acknowledgment and the single phase (round robin)

acknowledgment guarantee the correctness of PDES synchronization algorithms even

when output values from the PRN are overwritten prior to being read. In the next section

we present our results on the performance of both TPA and SPA.

4.8. Performance Results

We have implemented both TPA and SPA on our four-processor prototype

framework hardware [REPS93]. We discuss the prototype system and execution parameters

prior to presenting our results.

4.8.1. Prototype Framework Hardware

The host system is a Sparc cluster: four Sparc 2 equivalent processors with Ethernet

(TCP/IP) as the host communication network. The expected host communication latency

time is approximately two milliseconds.

Each auxiliary processor is a 25 MHz Motorola 68020 microprocessor with 256

Kbytes of RAM. The host-auxiliary processor interface is implemented with a dual-ported

RAM, where a Sparc 2 accesses the dual-ported RAM through a Sun SBus interface

[SBUS90].

The parallel reduction network consists of three ALU’s in a binary tree-shaped

network. The minor cycle time is 150 nanoseconds. The pipelining in the reduction network

is performed synchronously.

ρ′

95

communication network. This is essentially a handshake between the host processor and

auxiliary processor in order to eliminate the race condition. Therefore, the race condition is

eliminated by submitting the T-values in the receiving LP to the reduction network prior to

sending an acknowledgment.

If this synchronization between the two processors is implemented, the host

communication network can be used to acknowledge some of the messages in the system.

A host processor can submit some acknowledgments to the reduction network and others

to the host communication network. Furthermore, if an HP employs piggybacking of

batched acknowledgments to event messages, no additional message traffic is generated in

the host network. Piggybacking can only be used if a pair of LP’s have a bidirectional

communication, as in Figure 4.1. The performance of using both networks for message

acknowledgments is a topic of future research.

4.7. Discussion

Each of the algorithms, TPA and SPA, presented here requires each LP to maintain

two lists of outstanding messages; Reynolds’s framework algorithms only required LP’s to

maintain a list of messages sent. The size of these data structures, i.e., the memory

requirement, is largely dependent on the properties of an LP, the PDES synchronization

protocol used, and the application. All lists are maintained on the auxiliary processor and

not the host processor. We expect the size of the unacknowledged message lists in the

non-FIFO SPA to grow faster than the unacknowledged message lists in TPA because

garbage collection will only occur with the advance of GVTc. In TPA messages are

removed from the unacknowledged list when a handshake completes. We present

performance results comparing these two algorithms with respect to memory requirements

in Section 4.8.

94

Lemma 4.6

The transition from GVT acknowledgment mode to round robin acknowledgment
mode is non-interfering.

Proof

Consider the transition from GVT acknowledgment mode to round robin
acknowledgment mode.

Assume APr is operating in GVT acknowledgment mode at real time t.

Assume that at some real time t1, t1 > t, GVTc(t) < GVTc(t1). By P3 (periodic read)
and P9 (garbage collection) APr will read a new state vector from the reduction
network and will process GVTc(t1) by some real time t2, t2 > t1. By P9 (garbage
collection) APr will remove acknowledgments which have times less than GVTc(t1),
so that old acknowledgment values will not interfere with acknowledgments to be
performed in the future.

Furthermore, by P10 (GVT mode acknowledgment) APr resumes round robin mode
when it determines it no longer needs to acknowledge the smallest message in the
system. Hence, the transition from GVT acknowledgment mode to round robin
acknowledgment mode does not prevent future messages from being
acknowledged.

Therefore, the transition from GVT acknowledgment mode to round robin
acknowledgment mode is non-interfering. ■

Theorem 4.2

The single phase acknowledgment is correct.

Proof

The correctness of the single phase acknowledgment follows directly from
Theorem 4.1, Lemma 4.4, Lemma 4.5, and Lemma 4.6. ■

4.6. Improvements of the Acknowledgment Algorithms

The race condition described in Section 4.1.3. can be eliminated with additional

communication between an AP and its corresponding HP. Once an AP reads the change to

the next event time from the HP, processes this received message by adding it to the

appropriate unacknowledged message list, and submits the corresponding next event time

to the reduction network, resulting from a received message, it communicates this to the

HP. Only at that time can the HP send the acknowledgment message through the host

93

By P5 (correctly maintained unreceived message time) if LPs, such that
s = sender((t)), reads and processes acknowledgment (t) during round robin
mode at real time t, then LPs updates (t) accordingly.

Therefore, any message acknowledgment that completes in round robin mode will
maintain the correctness of GVT mode acknowledgments. ■

We note that any acknowledgment completed during round robin mode has a timestamp

greater than or equal to GVTc(t) by P9 (garbage collection). Furthermore, by this same

property, an unacknowledged message is not removed from an unacknowledged message

list unless GVTc(t) is greater than its timestamp. This is important so that ’s with

timestamps less than GVTc(t) do not prevent ’s with timestamps greater than or equal to

GVTc(t) from being completed. Next we prove that the transitions between the two modes

do not affect the correctness.

Lemma 4.5

The transition from round robin acknowledgment mode to GVT acknowledgment
mode is non-interfering.

Proof

Consider the transition from round robin mode to GVT mode.

Assume APr is operating in round robin acknowledgment mode at real time t.

By P10 (GVT mode acknowledgment) APr will remain in round robin
acknowledgment mode as long as no message in its unacknowledged message list
has a timestamp equal to GVTc(t).

Assume at some real time t1, t1 > t, GVTc(t) < GVTc(t1). Assume that LPs has the
smallest outstanding message time in the system, (t1) = (t1) = GVTc(t1), and
that LPr was the receiver of this message. By P3 (periodic read) and P9 (garbage
collection) APr will read a new state vector from the reduction network and process
GVTc(t1) by some real time t2, t2 > t1. By P10 (GVT mode acknowledgment) all
round robin mode acknowledgments are halted by APr and GVT acknowledgment
mode is entered, such that timestamp((t2)) = GVTc(t1). By Lemma 4.2 the
acknowledgment will complete by some real time t3, t3 > t2. By Lemma 4.4,
GVTc(t1) < GVTc(t4), by some real time t4, t4 > t3, once GVT acknowledgment
mode is entered.

Hence, the transition from round robin acknowledgment mode to GVT
acknowledgment mode does not prevent the smallest message in the system from
being acknowledged. Therefore, the transition to GVT mode is non-interfering. ■

ρ′ ρ′
υs

ρi

ρi

υ′ υs

ρr

92

By P4 (correctly set local clock), by some real time t1, t1 > t, each AP will process
all entries in the HP-AP FIFO, and (t1) = (t), ∀i, i=1…n.

There are a finite number of messages to be acknowledged. By Lemma 4.1 and
Lemma 4.2 for each < , i =1…n, the messages will be acknowledged, and the
corresponding ’s will be set to greater values, and by these same lemmas,
GVTc(t2) will equal the value of (t) by some real time t2, t2 > t1.

Hence, GVTc(t+∆t) = GVTa(t), in some finite real time ∆t, where ∆t = t2-t. ■

4.5.4. Correctness of Round Robin Acknowledgments

Now that we have shown the correctness of the GVT mode acknowledgments in

SPA, we must show that the round robin mode acknowledgments maintain the

advancement of GVTc(t), and that the correctness of SPA is maintained during transitions

from round robin mode to GVT mode and vice versa. In Lemma 4.4 we prove that all

messages acknowledged during round robin mode are acknowledged properly. In Lemma

4.5 we show the non-interference of round robin acknowledgments. We use the term

non-interference in a less rigorous way than Owicki and Gries [OWGR76]. By

non-interference, we will show that each acknowledgment mode does not violate the

correctness of the other. Our strategy is to examine the variables and data structures that are

read and/or written while in round robin acknowledgment mode and to show that they will

remain in correct states. Also we demonstrate that the transitions between the two

acknowledgment modes do not violate the correctness of Lemma 4.2, Lemma 4.4, and

Theorem 4.1.

Lemma 4.4

Message acknowledgments completed in round robin mode maintain the
correctness of GVT mode acknowledgments.

Proof

During round robin acknowledgment mode, APr will write different Mr(j)’s to the
T-value . By P6 (correctly updated unacknowledged message lists) each message
in an unacknowledged list at APr at real time t, including the Mr(j)’s, has been
received by LPr.

σi σi

υi σj
υi

σj

ρr

91

Now we establish within finite time ∆t, (t+∆t) = (t). By P9 (garbage
collection) and P3 (periodic read), each APi, i=1…n, removes all messages with
timestamps less than GVTc(t) from its unacknowledged message lists and updates
its , so, timestamp((t)) < timestamp((t1)), i=1…n, i ≠ r by some real time
t1, t1 > t. By P2 (reduction operation), a new state vector will be computed by some
real time t2, t2 > t1, and (t2) will be set to (t). By P10 (GVT mode
acknowledgment) and P8 (unique timestamps) (t2) retains its value until
sometime after GVTc(t) advances.

By P3 (periodic read) by some real time t3, t3 > t2, APs will read and process the
state vector containing (t2), the acknowledgment for its smallest outstanding
message. By P5 (correctly maintained unreceived message time), APs will update

 in finite real time, so that by real time t4, t4 > t3, (t4) > (t).

Hence, if timestamp((t)) = GVTc(t), the acknowledgment of will complete in
finite real time ∆t, where ∆t = t4-t. ■

Lemma 4.3

If GVTc(t) = timestamp((t)), then in some finite real time ∆t, GVTc(t+∆t) >
GVTc(t).

Proof

Assume that GVTc(t) = timestamp((t)), indicating that the message with
timestamp at GVTc(t) is being acknowledged. APs, the auxiliary processor for LPs,
such that s = sender((t)), will eventually process the acknowledgment by Lemma
4.1. APs will then increase its minimum unreceived message time , which was
equal to GVTc(t).

By P2 (reduction operation), a new state vector will be computed by some real time
t1, t1 > t. GVTc(t1) ≠ GVTc(t) by P8 (unique timestamps) and the change to .
Furthermore, by Lemma 4.1 (monotonically non-decreasing GVTc),
GVTc(t1) > GVTc(t).

Therefore, GVTc(t+∆t) > GVTc(t) in some finite real time ∆t, where ∆t = t1-t, if
GVTc(t) = timestamp((t)). ■

Theorem 4.1

If the simulation is halted at real time t, GVTc(t+∆t) = GVTa(t), in some finite real
time ∆t.

Proof

Assume that the simulation is halted at real time t, meaning GVTa(t) is fixed at real
time t. At time t, all LP’s stop processing events and retain the values of their ’s.
With a reliable host communication network, all messages in transit will be received
eventually. At real time t there exists (t), such that (t) is the smallest local clock
in the system and because the simulation is halted, GVTa(t) = (t).

ρ′ ρr

ρi ρr ρi

ρ′ ρr
ρ′

ρ′

υs υs υs

ρr ρr

ρ′

ρ′

ρ′
υs

υs

ρ′

σi

σj σj
σj

90

Next we show that SPA acknowledges messages correctly and that if the simulation

makes progress, GVTc increases as messages are acknowledged, i.e.

GVTc(t) < GVTc(t+∆t) in some finite real time ∆t, for all real times t as long as there are

messages to be acknowledged or events to be processed. In Lemma 4.2 we show that a

message acknowledgment with timestamp equal to GVTc(t) will eventually be completed.

An acknowledgment is completed in SPA when APs, the sender of the message, reads ,

removes the message from an outstanding message list, and updates accordingly. In

Lemma 4.4 we show that GVTc(t) advances as messages are acknowledged. Finally, we

show that GVTc(t) approaches GVTa(t) (Theorem 4.1). Theorem 4.1 is a liveness proof, to

show that if the simulation is halted at any real time t, GVTc(t+∆t) will equal GVTa(t) in

some finite real time ∆t. We note that if the simulation is halted, some messages will remain

unacknowledged since the progress of GVTc(t) is a commitment horizon for messages

acknowledged.

Lemma 4.2

If timestamp((t)) = GVTc(t), then the acknowledgment of the unique message
with timestamp will complete in finite real time ∆t.

Proof

By P1 (no loss), each AP receives information about the receipt of each event
message and antimessage from its corresponding HP. By P6 (correctly updated
unacknowledged message lists), each message will be incorporated into the
unacknowledged message list of the message receiver.

We have assumed GVTc(t) is equal to the unique timestamp of an unacknowledged
message, which means it also must be equal to the (same) timestamp of an
outstanding message for some LPs. Since GVTc(t) is the minimum of all outstanding
messages and all local clocks by P7 (computed GVT), it follows that
GVTc(t) = (t). Therefore, GVTc(t) = (t) = (t) = (t).

By P5 (correctly maintained unreceived message time), the message with
timestamp (t) does not have a corresponding completed acknowledgment. By P8
(unique timestamps) and P5 (correctly maintained unreceived message time),
GVTc(t) = (t) until the acknowledgment is read and processed by APs and APs

has updated .

ρ′

υs

ρr
ρr

υ′ υ′ υs ρr

υs

υs
υs

89

(b) APi processes a new local clock value (NEW_CLOCK) from the FIFO indicating
that LPi has received a straggler (an event message arriving in an LPi’s past) or
antimessage from LPj, causing a rollback. In this case, < . Since both
messages and antimessages are used to compute unreceived message times, we
examine the possible scenarios:

(i) APj, the auxiliary processor for the sending LPj, has processed the FIFO
entrySENT_MSG for the message sent with timestamp. Therefore,G ≤ =
 = .

(ii) APj has not processed the FIFO entrySENT_MSG. In [SRRE93], it was
shown that if a rollback chain (or possibly several rollback chains) are followed
towards the root of the chain (or the root of the smallest rollback chain), there exists
an APk such that ≤ . (The LP at the root of the rollback chain is the LP that
has rolled back its computation due to a straggler and not an antimessage. If LPi

receives a straggler and then sends an event message that is a straggler at LPj, then
there are two rollback chains, where LPi and LPj are both roots.) Therefore, G ≤
≤ = .

Case II. = for somei

(a) APi reads and processes an acknowledgment for the message with time, and
therefore sets its new unreceived message time to the smallest timestamp in its
outstanding message list. ByP5 (correctly maintained unreceived message time),

≤ , and sinceG ≤ , G ≤ .

(b) APi processes a FIFO entrySENT_MSG, such that the timestamp of the message
sent < . In other words, < . However, since a message is sent only after
executing an event and enqueueing aLOCAL_CLOCK entry, = . SinceG ≤
by Case I., and = , G ≤ .

Therefore,Lemma 4.1 (monotonically non-decreasing GVTc(t)) holds at all times,
if there is a mechanism for LP’s receiving messages to notify the LP’s that sent
them. ■

4.5.3. Overview of Theorem 4.1: GVTc approaches GVTa

Acknowledging messages is the key to the progress of the globally reduced

unreceived message time, , and therefore GVTc(t). In SPA, GVTc(t) serves as the

“handshake acknowledgment”, such that a message acknowledgment is guaranteed to have

been read and processed by the message sender when GVTc(t) is greater than the logical

timestamp of the message.

σ̂i σi

σ̂i υj
σ̂i Ĝ

µk σ̂i

µk
σ̂i Ĝ

Ĝ υ̂i

υi
υ̂i

υi υ̂i υi Ĝ

υi υ̂i υi
υ̂i σi σi

υ̂i Ĝ Ĝ

υ′

88

Srinivasan and Reynolds [SRRE93] showed that GVTp(t) is strictly non-decreasing

when a single processor, and not a host-auxiliary processor pair, was used to execute

simulation events and interface with the reduction network. The asynchronous nature of the

auxiliary processors and the FIFO’s between the processors in a HP-AP pair make our proof

more complex. We build on the proofs of Srinivasan and Reynolds [SRRE93] and use

similar proof techniques. The methods for maintaining the local T-values and and the

computation of both and do not change in this algorithm. The difference between

TPA, proven correct in [SRRE93], and SPA, which we prove correct next, is the method of

acknowledging messages.

In the following proof the only assumption made about acknowledgments is that

there is a mechanism for the receiver of each message to notify the sender of the receipt of

the message. There is no assumption that acknowledgments use a reduction network or any

particular algorithms.

Lemma 4.1

GVTc(t), which is the minimum of all local clocks, , and minimum of all
unreceived message times at all real times t, is monotonically non-decreasing
as a function of t; i.e., GVTc(t) ≤ GVTc(t+∆t), ∀∆t ≥ 0.

Proof

If there is a change in GVTp(t) from one reduction cycle (GVTp(t0) = G) to the next
(GVTp(t0+δ) =), where δ is the time it takes to complete a reduction cycle (refer
to Figure 4.5), then we must show that this change is always nondecreasing. We
refer to T-values contributing to using the ˆ symbol and to those contributing to
G without it. We consider the two cases — change to local clock or change to
unreceived message time — in which GVTp(t) can be computed. For each case,
there are two sub-cases. In other words, there are four ways to transition from G to

.

Case I. = for some i

(a) APi processes a new local clock value (NEW_CLOCK) from the FIFO indicating
that LPi has finished processing an event and computed . must be at least as
large as since the events list is sorted in non-decreasing order. Therefore, G ≤
≤ = .

σi υi

σ′ υ′

σ′ t()
υ′ t()

Ĝ

Ĝ

Ĝ

Ĝ σ̂i

σ̂i σ̂i
σi σi

σ̂i Ĝ

87

Property P9 (garbage collection):

When APi reads and processes a new state vector at real time t, indicating that
GVTc(t) > GVTc(t-∆t), where GVTc(t-∆t) was the last GVT value processed by APi,
it removes all messages with timestamps less than GVTc(t) from its
unacknowledged message lists and updates the batches to be acknowledged in each
list, including , within finite real time.

Property P10 (GVT mode acknowledgment):

When APi determines that it has a message to acknowledge with timestamp equal
to GVTc(t), it enters GVT mode and continues to acknowledge this message until
some real time t+∆t such that GVTc(t) < GVTc(t+∆t). If APi enters GVT mode at
real time t and at real time t+∆t, GVTc(t) < GVTc(t+∆t), and there is no message in
an unacknowledged message list for LPi with timestamp equal to GVTc(t+∆t), then
APi resumes round robin mode and acknowledges another message.

4.5.2. Overview of Lemma 4.1: GVTc(t) Is Monotonically Non-decreasing As a Func-

tion of Real Time t

Since GVTc(t) is a commitment horizon for the garbage collection of

unacknowledged messages, it is critical that the function GVTc(t) is monotonically

non-decreasing as a function of t and that it never exceeds GVTa(t). Note that if ever

GVTc(t+∆t) < GVTc(t), an AP may determine incorrectly that a message acknowledgment

was read and processed by the sender and remove it from an unacknowledged message list.

Hence, GVTc(t) would never advance, in particular it would never increase beyond the time

of that message acknowledgment. Before proving the correctness of SPA, we must show

that GVTc(t) is a non-decreasing function of real time t. This is the goal of Lemma 4.1.

Since GVTc(t) is the computed GVT that emerges from the reduction network, it

follows that GVTc(t) = GVTp(t-∆t) for some ∆t > 0. This follows directly from definitions

as depicted in Figure 4.5. If we show that GVTp(t) is monotonically non-decreasing for all

times t when a reduction cycle is started, then GVTc(t) will be monotonically

non-decreasing for all real times t. We show this.

ρi

86

Property P2 (reduction operation):

The PRN computes reductions on state vectors. AcknowledgmentT-values are
computed with a minimum operation that is a tagged selective operation.

4.5.1.2. Properties of the AP

Property P3 (periodic read):

Each auxiliary processor will read the output from the reduction network in a finite,
bounded amount of time.

4.5.1.3. Properties of the AP Algorithm

Property P4 (correctly set local clock):

When LPi completes an event, receives a message or antimessage, or rolls back, the
T-value at APi is set correctly to reflect its local clock.

Property P5 (correctly maintained unreceived message time):

When LPi sends an event message or antimessage, if is greater than the
timestamp of the message, will be set to the timestamp of the message by APi.
When APi reads an acknowledgment from the reduction network and processes
this as an acknowledgment for a message LPi has sent, that message is removed
from one of LPi’s outstanding message lists and is set to the smallest among the
timestamps of messages remaining in LPi’s outstanding message lists. At any time,

 is always equal to the smallest timestamp in LPi’s outstanding message lists.

Property P6 (correctly updated unacknowledged message lists):

When LP1 receives an event message or antimessage, that message is added to an
unacknowledged message list at APi.

Property P7 (computed GVT):

By definition, computed GVT at real timet, GVTc(t), is the minimum of all local
clocks and minimum of all unreceived message times and will always
be set to either or .

4.5.1.4. Properties of SPA

Property P8 (unique timestamps):

All T-values that are inputs to the reduction network have unique logical
timestamps. Therefore, given a set of inputs, there is onlyone possible computed
output that can emerge from a tagged selective reduction in the reduction network.

σi

υi
υi

ρ′

υi

υi

σ′ t() υ′ t()
σ′ t() υ′ t()

85

correctness proof states that (1) GVTc(t) is always less than or equal to GVTa(t) at all real

times t; and (2) GVTc(t) approaches GVTa(t), or that if the simulation is halted at any real

time t0, GVTc(t) will equal GVTa(t0) in some finite time, t ≥ t0. We prove the correctness of

SPA here.

There are two modes for acknowledging messages in SPA: round robin mode and

GVT mode. The round robin mode coupled with lost state vectors on the output side of the

reduction network makes no guarantee that any round robin acknowledgment sent through

the PRN is ever read and processed by the AP of the LP sending the message. Therefore,

we can only prove that messages are acknowledged in GVT mode, since there is no

guarantee that any messages are acknowledged during round robin mode. We expect the

round robin mode to enhance the efficiency of SPA. In Section 4.5.4., we prove that round

robin mode maintains the correctness of SPA.

Our correctness proofs assume a processor pair consisting of a host processor and

an auxiliary processor as described in Chapter 3. The event execution is performed on the

host processors, GVT computation algorithms and SPA execute on auxiliary processors,

and all globally reduced values are computed on state vectors in a reduction network.

4.5.1. Properties of the Hardware and Algorithms

Before proving the correctness of the single phase acknowledgment, we present

some properties of the framework hardware and corresponding algorithms. Some of these

properties appeared first in [SRRE93].

4.5.1.1. Properties of the Framework Hardware

Property P1 (no loss):

No communication from the HP to AP is lost.

84

SENDER: IF has been sent to this LP
THEN IF is in any outstanding message list

THEN Remove all outstanding messages up to and
including message;
IF timestamp () =
THEN := smallest timestamp in any

outstanding message list;

RECEIVER: IF Ti = 0 -- timeslice is over
THEN s := next sender;

Ti := TRR;
 := Pi(s);

ELSE Ti := Ti - 1;

NEW_GVT: IF mode = GVT mode -- resume round robin
THEN mode := round robin;

Ti := TRR;
FOR each sender r

IF GVT > timestamp (Pi(r))
THEN Pi(r) := Bi(r);

Bi(r) := ;
IF = old Pi(r) -- continue round robin
THEN IF Pi(r) ≠

THEN := Pi(r);
ELSE Ti := 0; -- force timeslice end

IF timestamp (Pi(r)) = GVT
THEN mode := GVT mode; -- suspend round robin

 := Pi(r);

NEW_MSG: r := sender(new_msg);
IF (Pi(r) =) OR

(timestamp(new_msg) < timestamp(Pi(r)))
THEN Pi(r) := batch containing new_msg;

IF = old Pi(r)
THEN := Pi(r);

ELSE IF timestamp (Bi(r)) > timestamp (new_msg)
THEN timestamp (Bi(r)) := timestamp (new_msg);

size (Bi(r)) := size(Bi(r)) + 1;
ELSE size(Bi(r)) := size(Bi(r)) + 1;

Figure 4.8 Acknowledgment Algorithms Assuming FIFO Channels Between LP’s.

4.5. Proof of Correctness of SPA

A proof of correctness for an aggressive PDES synchronization protocol executing

on the framework hardware was presented by Srinivasan and Reynolds [SRRE93]. The

ρ′
ρ′

ρ′
ρ′ υ

iυ
i

ρ
i

∞ Φ 0, ,{ }
ρ

i ∞ Φ 0, ,{ }
ρ

i

ρ
i

∞ Φ 0, ,{ }

ρ
iρ
i

83

to contain the sequence number of the new message, but its timestamp was not smaller than

the batch’s, the batch Mi(j) could be removed from the unacknowledged list with no

guarantee that the acknowledgment with the additional sequence number was read and

processed by the sender. To ensure that every message is acknowledged, the batch Mi(j) is

updated to include a new message only if the timestamp of the new message is smaller than

the timestamp of the batch Mi(j).

4.4.6. FIFO Case

The FIFO algorithms in Figure 4.8 assume messages are received by LPr in the

same order in which they are sent by LPs. The maintenance of unacknowledged message

lists is much easier in the FIFO case: each APi need only maintain two message tuples for

each sender LPk:

• Pi(k)— the current batch being acknowledged for LPk.

• Bi(k)— the next batch to be acknowledged after the acknowledgment for Pi(k)
has been completed.

The Pi(k)’s replace the Mi(j)’s from the non-FIFO algorithm. Since messages arrive in order

of increasing sequence numbers, an AP only has to store two batches as the entire

unacknowledged message list: Pi(k) is the acknowledgment being submitted in round robin

fashion, and Bi(k) will be the next batch acknowledged in round robin fashion. Therefore,

the memory requirement for the unacknowledged lists will be bounded by a constant. This

is likely to be a significant improvement in the amount of memory used at the AP level as

compared to the amount of memory that we expect will be used in the non-FIFO case.

The procedures SENDER and RECEIVER are identical to those in the non-FIFO

case. The only differences in the procedures NEW_GVT and NEW_MSG occur because the

unacknowledged message list and Mi(j)’s are replaced by Pi(k)’s and Bi(k)’s.

82

The procedureSENDER is the portion of SPA in which LPs monitors the output of

the reduction network for message acknowledgments. When LPs reads an acknowledgment

from the reduction network for a message batch it sent and processes this acknowledgment,

it removes this batch from its outstanding message list and updates accordingly. The

procedureSENDER is performed each time an AP reads a new output state vector from the

PRN. The procedureRECEIVER controls the counter for the round robin timeslice and

cycles through theMi(j)’s, making each the primary message acknowledgment in turn,

whenever APi is executing in round robin mode.

 The procedureNEW_GVT is executedonly when GVTc has changed. In the firstIF

statement the AP will restart round robin mode if the mode is set to GVT mode; since GVTc

has advanced, this implies that the message with a timestamp equal to the previous GVTc

has been acknowledged. Next, the AP performs garbage collection on the unacknowledged

message lists and updates theMi(j)’s to reflect the changes in these lists. If a specificMi(j)

changes and its previous value is currently being submitted as to the reduction network,

theT-value is updated to reflect the change made toMi(j). If a specificMi(j) becomes

null, indicating an empty unacknowledged list j and Mi(j) is currently being submitted as

, the AP forces the timeslice to end and the next time the procedureRECEIVER is

executed, will be updated with the nextMi(j) in round robin order. The lastIF statement

is the test for the equality of the current message batchMi(j) and GVTc; if they are equal,

the AP enters GVT mode, as described earlier, to force its smallest unacknowledged

message to be acknowledged.

The procedureNEW_MSG is executed once each time an AP is notified by its HP

that a new event message has been received.NEW_MSG adds the new message to the correct

unacknowledged message list and updates the correspondingMi(j) if the timestamp of the

new message isless than the timestamp of the currentMi(j). If the batchMi(j) were updated

υs

ρi

ρi

ρi

ρi

ρi

81

SENDER: IF has been sent to this LP
THEN IF is in any outstanding message list

THEN Remove the acknowledged batch from outstanding
message list;

IF timestamp () =
THEN := smallest timestamp in outstanding

message lists;

RECEIVER: IF Ti = 0 -- timeslice end
THEN s := next sender;

Ti := TRR;
 := Mi(s);

ELSE Ti := Ti - 1;

NEW_GVT: IF mode = GVT mode -- resume round robin
THEN mode := round robin;

Ti := TRR;
FOR each sender r

Discard all messages, possibly including the batch
Mi(r), in unacknowledged message list with
timestamps < GVT;

Mi(r) := next minimum batch from sender r;
IF = old Mi(r) -- continue round robin
THEN IF Mi(r) ≠

THEN := Mi(r);
ELSE Ti := 0; -- force timeslice end

IF timestamp (Mi(r)) = GVT
THEN mode := GVT mode; -- suspend round robin

 := Mi(r);

NEW_MSG: r := sender(new_msg);
IF (new_msg is contiguous with Mi(r))

AND (timestamp (new_msg) < timestamp (Mi(r)))
THEN Add new_msg to unacknowledged list and coalesce Mi(r)

with new_msg and adjacent contiguous batches;
IF = old Mi(r)
THEN := Mi(r);

ELSE IF (new_msg is not contiguous with Mi(r)) AND
(timestamp (new_msg) < timestamp (Mi(r)))

THEN Add new_msg to unacknowledged message list;
Mi(r) := batch including new_msg;
IF = old Mi(r)
THEN := Mi(r);

ELSE Add new_msg to unacknowledged message list;

Figure 4.7 Acknowledgment Algorithms Assuming Non-FIFO Channels Between LP’s.

ρ′
ρ′

ρ′ υ
iυ

i

ρ
i

ρ
i ∞ Φ 0, ,{ }

ρ
i

ρ
i

ρ
iρ
i

ρ
iρ
i

80

Each auxiliary processor executes the following algorithm:

AUX_PROC: WHILE simulation is executing
Read the PRN output;
IF global state has changed
THEN Write global state vector to HP interface;
IF GVT has changed
THEN Perform NEW_GVT;
Perform SENDER;
IF mode = round robin

Perform RECEIVER;
IF FIFO is not empty;
THEN Get next entry from FIFO;

CASE (entry_type):
NEW_CLOCK: := new_clock_value;

SENT_MSG: IF message_time <
THEN := message_time;
Add message to ordered
outstanding message list;

RCVD_MSG: Perform NEW_MSG;
END WHILE

Figure 4.6 Auxiliary Processor Algorithm for Single Phase Acknowledgments.

The auxiliary processor algorithm remains the same for both the non-FIFO and FIFO

acknowledgment algorithms. NEW_GVT is the procedure which is executed when GVTc

advances; its primary functions are to check for unacknowledged messages equal to the

current GVTc and to perform necessary garbage collection, i.e., the removal of messages

from unacknowledged message lists.

4.4.5. Non-FIFO Case

The non-FIFO algorithms in Figure 4.7 make no assumption about the order that

messages are received between a sender-receiver pair. Theoretically, a message with

sequence number q could be received later than a message with sequence number q+l, l > 0.

σ
i

υ
iυ

i

79

• Mi(j)— the current batch being acknowledged from APi’s unacknowledged
message list for sender LPj. This is the contiguous batch of messages with the
smallest timestamp from sender LPj, such that the acknowledgment for the
batch has not completed: it is a pointer into the unacknowledged message list j.

• — current active acknowledgment {message time, message ID} from LPi,
one of the Mi(j)’s.

• TRR— the total number of iterations of the auxiliary processor algorithm that
each Mi(j) will be acknowledged in the round robin acknowledgment. TRR is a
constant in SPA.

• Ti — a count of the number of iterations of the auxiliary processor loop for
which a particular Mi(j) has been the current active acknowledgment, .

The Mi(j)’s represent message batches: {message time, message ID, batch size}. We

use a functional notation to refer to a single component of the batch; for example,

timestamp(Mi(j)) refers only to the logical timestamp of Mi(j) and sender((Mi(j)) refers to

the sending LP (LPj) which is part of the message ID.

4.4.4. General Description of Acknowledgment Algorithm

A round robin acknowledgment algorithm is executed by each LP. Each LPi

submits, in round robin fashion, each of its Mi(j)’s as the current acknowledgment for

an equal amount of time (TRR units) to the reduction network. When LPi has an Mi(j) with

timestamp equal to GVTc(t) at real time t, the round robin acknowledgment mode, or round

robin mode, is suspended, and GVT acknowledgment mode, or GVT mode, is entered. In

GVT mode is set to the message acknowledgment with time equal to GVTc(t). GVT

mode is critical to this algorithm and the progress of the simulation: the message with the

timestamp at GVTc(t) must be acknowledged so that GVTc advances. When APi, at real time

t+∆t, detects that GVTc(t+∆t) > timestamp((t+∆t)), Mi(j) is updated, and round robin

acknowledgments resume. The algorithm RECEIVER is only executed while in round

robin mode. The algorithm mode is initialized to round robin and will only change to GVT

mode when an Mi(j) has a timestamp equal to the current GVTc.

ρi

ρi

ρi

ρi

ρi

78

ID can be appended to . This algorithm works with non-aggressive PDES

synchronization protocols. Now we discuss the effects of rollback and forward processing.

In an aggressive PDES, an LP can process events with the same logical timestamp

during forward processing and again after a rollback and hence, event messages can have

duplicate timestamps. In this case, we suggest appending the unique sender-receiver

sequence number to , and a suitable unused sequence number to . Another solution to

this problem is to use an adapted version of TPA, such that the receiving AP will enter a

handshake mode to break ties of two or more messages with timestamps equal to GVTc. In

this adapted TPA, an APr, the auxiliary processor for a receiving LP, will monitor the

handshake acknowledgment reduced value when it is acknowledging a message with

time equal to GVTc, and APr will stop submitting this acknowledgment in the reduction

network when it receives a second phase acknowledgment, such that = . APs, the

auxiliary processor for a message sender, will submit a handshake acknowledgment to

the reduction network when it reads and processes an acknowledgment for a message with

timestamp equal to GVTc (i.e, its is equal to GVTc). Also unique timestamps must be

guaranteed for each message-antimessage pair since both messages and antimessages must

be acknowledged. We suggest using a single bit appended to the logical timestamp to

distinguish between an event message and its corresponding antimessage. When GVTc is

used as an acknowledgment, it is the finer grain of logical time at the auxiliary processor

level and in the reduction network.

4.4.3. Data Structures and Values Maintained by Each AP

The host processor requirements for SPA are the same as those for TPA. As with

TPA, each auxiliary processor maintains two lists of messages: unacknowledged message

list and outstanding message list. Each APi also maintains the T-values and . In

addition to these data structures and values, each APi must maintain the following:

σi

υi σi

τ′

ρr τ′

τs

υi

σi υi

77

18) At some real time t22, t22 > t21, LP4 sets its local clock (t22) to 8, writes
this clock update to its FIFO, and processes an event at time 8. AP4 sets (t23)
to 8 at some real time t23, t23 > t22.

19) At some real time t24, t24 > t23, all global values now reflect the changes
made to all local clocks: (t24) = 7, (t24) = 5 and (t24) = {5, s1-2, 1} (a
deterministic selection). GVTc(t24) = 5.

20) At some real time t25, t25 > t24, LP2 reads and processes the
acknowledgment and updates (t25) to ∞.

21) At some real time t26, t26 > t25, all global values now reflect the change in
LP2: (t26) = 7, (t26) = 5 and (t26) = {5, s1-2, 1} (a deterministic
selection). GVTc(t26) = 5. Furthermore, GVTc(t26+∆t) = 5 for all real times ∆t.

We conclude, without proof, that unique timestamps are necessary for preventing livelock

and guaranteeing progress of the reduction operations (i.e. to guarantee that GVTc

eventually increases as GVTa increases). If non-unique timestamps are present in the

system, we can augment timestamp values to create unique timestamp values with the

following technique.

At the auxiliary processor level, append the sender ID to the message timestamp

when messages are acknowledged in the reduction network. Furthermore, the logical

process ID i from LPi must be appended to both its smallest unreceived message time

and its local clock , so that the ID serves as a tie-breaker for non-unique timestamps.

When an LP executing on a host processor receives an event message, it does not see the

sender ID in the timestamp field; this identifying ID is only seen at the AP level. The

uniqueness of logical timestamps is only necessary for the message acknowledgment

algorithm. Hence, there is a finer granularity of logical time with respect to the low-level

algorithms executing on the auxiliary processors and not the LP’s executing on the host

processors, yet the ability for LP’s to execute events with the same timestamp in any order

is not sacrificed. If the PDES allows multiple messages to be sent to several LP’s with the

same logical timestamp, a receiver ID can be added to , and an additional logical process

σ4
σ4

σ′ υ′ ρ′

ρ′ υ1

σ′ υ′ ρ′

υi

σi

υi

76

5) LP1 sends a message to LP2 with timestamp 5.

6) All global values now reflect the changes made in LP1: (t5) = 3 and
(t5) = 5. GVTc(t5) = 3.

7) LP3 sets its local clock (t6) to 5, at some real time t6, t6 > t5, writes this
clock update to its FIFO, and processes an event at time 5.

8) AP3 reads the entry in its FIFO and updates (t7) at some real time t7,
t7 > t6. So, (t7) = 5.

9) LP3 enqueues a SENT_MSG for logical time 5 at some real time t8, t8 > t7,
and writes this to its FIFO. This causes (t9) to be set to 5 by AP3 at real time
t9, t9 > t8. No visible change is made to .

10) LP3 sends a message to LP4 with timestamp 5.

11) All global values now reflect the changes made in LP3: (t10) = 5 and
(t10) = 5. GVTc(t10) = 5 at some real time t10, t10 > t9.

12) At some real time t11, t11 > t10, LP2 receives the message from LP1, sets
(t11) to 5, and writes these entries to its FIFO. At real time t12, t12 > t11, AP2

reads the entries in the FIFO, sets (t12) to 5, sets its acknowledgment (t12)
to {5, s1-2, 1}, where s1-2 is the sequence number from LP1 to LP2. LP2 will
continue to submit this acknowledgment until GVTc(t12+∆t) > 5, in some finite
real time ∆t.

13) At some real time t13, t13 > t12, LP4 receives the message from LP3, sets
(t13) to 5, and writes these entries to its FIFO. At real time t14, t14 > t13, AP4

reads the entries in the FIFO, sets (t14) to 5, and sets its acknowledgment
(t14) to {5, s3-4, 1}, where s3-4 is the sequence number from LP3 to LP4. LP4

will continue to submit this acknowledgment into the reduction network until
GVTc(t14+∆t) > 5, in some finite real time ∆t.

14) At some real time t15, t15 > t14, all global values now reflect the changes
made in LP2 and LP4: (t15) = 5, (t15) = 5 and (t15) = {5, s1-2, 1} (a
deterministic selection). GVTc(t15) = 5.

15) At some real time t16, t16 > t15, LP1 sets its local clock (t16) to 13, writes
this clock update to its FIFO, and processes an event at time 13. AP1 sets

(t17) to 13 at some real time t17, t17 > t16.

16) At some real time t18, t18 > t17, LP2 sets its local clock (t18) to 9, writes
this clock update to its FIFO, and processes an event at time 9. AP2 sets (t19)
to 13 at some real time t19, t19 > t18.

17) At some real time t20, t20 > t19, LP3 sets its local clock (t20) to 7, writes
this clock update to its FIFO, and processes an event at time 7. AP3 sets (t21)
to 7 at some real time t21, t21 > t20.

σ′
υ′

σ3

σ3
σ1

υ3

υ′

σ′
υ′

σ2
σ2 ρ2

σ4
σ4

ρ4

σ′ υ′ ρ′

σ1

σ1

σ2
σ2

σ3
σ3

75

Figure 4.5 GVT Computation Model.

4.4.2. Guaranteeing Unique Timestamps

In SPA the advancement of GVTc will be used as a second acknowledgment and it

is critical that all messages are acknowledged so that GVTc advances. To accomplish this

we require that all local clocks and event messages have unique logical timestamps. If

unique timestamps were not present in the system, we could have a livelock in the

computation of GVTc, as illustrated by the following sequence of events, assuming a linear

topology of four LP’s:

1) (t0) = 4, (t0) = 11, (t0) = 3, and (t0) = 10. (t0) = 3 and
(t0) = ∞. GVTc(t0) = 3 at some real time t0.

2) LP1 sets its local clock (t1) to 5, at some real time t1, t1 > t0, writes this
clock update to its FIFO, and processes an event at logical time 5.

3) AP1 reads the entry in its FIFO and updates (t2) at some real time t2,
t2 > t1. So, (t2) = 5.

4) LP1 enqueues a SENT_MSG for logical time 5 at some real time t3, t3 > t2,
and writes this to its FIFO. This causes (t4) to be set to 5 by AP1 at real time
t4, t4 > t3. This in turn causes (t5) to change to 5 at some real time t5, where t5

is greater than t4 by at least time δ.

δ

LP LP LP

State Vector State Vector State Vector

PRN

GVTa(t)

GVTp(t)

GVTc(t)

σ1 σ2 σ3 σ4 σ′
υ′

σ1

σ1
σ1

υ1
υ′

74

therefore neither is . What we are stating here is that for any value taken on by ,

 will have that value at some later time t+∆t.

Definition: GVTa(t) is the actual value of GVT in the simulation at real time t.

Definition: GVTp(t) is the value of GVT that can be potentially calculated from the

input set of state vectors submitted to the PRN at real time t. The input state vectors contain

the values of and , for all i=1…n. Note that the values of and do

not change in the reduction network, so it is only necessary to consider the different values

in the host processor and the T-values which can be used in a computation in the reduction

network.

Definition: GVTc(t) is the computed value of GVT that is emitted from the

reduction network at real time t.

At times it will be important to bind the value of computed GVT, GVTc, to a

particular instance in real time. If this is the case, we will use the notation GVTc(t). If

binding GVTc(t) to a particular real time t is not important to the discussion at hand, we use

the notation GVTc. Similarly we use GVTa and GVTp.

Figure 4.5 shows the relationship of GVTp(t) to both GVTa(t) and GVTc(t) at real

time t. The following relation is invariant: GVTc(t) ≤ GVTp(t) ≤ GVTa(t) at real time t, ∀t.

Definition: the advancement of GVTc occurs if, for a given real time t and some

finite real time ∆t, GVTc(t) < GVTc(t+∆t).

Next we discuss the necessity of unique timestamps in the reduction network to

guarantee the advancement of GVTc when GVTa advances.

σi σi t()

σi

σi t() υi t() σi t() υi t()

73

between the two is the method in which the unacknowledged message list is stored. Also,

we suggest a round robin scheme for increasing the total number of acknowledgments that

can complete before the next advancement of computed GVT. Before presenting these

algorithms, we discuss in the next two sections the computation of global virtual time in a

reduction network and the importance of unique logical timestamps to the correctness of

these algorithms. Both of these concepts are critical to the understanding of SPA and its

correctness proof.

4.4.1. Computing Global Virtual Time in a Reduction Network

When global virtual time is computed in a reduction network, it lags behind the

actual global virtual time in the system being simulated. Before explaining this lag we

require some definitions:

Definition: is the local clock time of LPi as observed in APi at real time t.

is a T-value which may be read by the PRN from APi’s PRN input state vector at real

time t. Similarly, is the minimum unreceived message time T-value which can be

read by the PRN from APi’s PRN input state vector at real time t.

Definition: . is the minimum timestamp that

may be read by the PRN from APi’s state vector at real time t. Note, however, that there

could be a smaller timestamp in the FIFO between HPi and APi because of rollback.

Definition: is the local clock value of LPi at the host processor HPi at real

time t. Due to the delay between the time the host processor writes this value to the host

processor-auxiliary processor interface, the T-value at the same time t is not

necessarily equal to . The following equality holds at all real times t for some positive

finite ∆t: = . Note is not necessarily monotonic with respect to t, and

σi t()

σi t()

υi t()

µi t() MIN σi t() υi t(),()= µi t()

σi t()

σi t()

σi t()

σi t() σi t ∆t+() σi

72

acknowledgments. Now we present a potential improvement to acknowledging messages

in the reduction network which is correct even with state vector loss; this algorithm requires

only a single minimum value to be computed and disseminated in the reduction network.

We name this algorithm single phase acknowledgment (SPA).

Recall that GVT is computed as the minimum of two globally reduced values:

minimum local clock and minimum unreceived message time . The acknowledgment

algorithm described in this section uses the advance of computed GVT, GVTc(t), the global

virtual time computed in the reduction network at real time t, as the second

acknowledgment in a handshake. (See Section 4.4.1.) We observe that a message

acknowledgment must have been received if GVT has increased beyond the message’s

timestamp since must be greater than the received message’s timestamp, and so the

message is removed from an LPr’s unacknowledged message list when this happens. The

acknowledgment algorithm makes no assumption that the PDES synchronization protocol

is Time Warp; GVT is simply computed as the minimum time in the simulation, regardless

of the synchronization protocol used. Hence, in a non-aggressive PDES, this algorithm may

not reduce the number of operations computed in the reduction network but it does

eliminate the lag to handshake acknowledgments.

The algorithms SENDER, RECEIVER, and NEW_GVT in this section eliminate the

second reduction operation and together replace the CHK_ACK routine, described in

previous sections. Also, the algorithm SENT_MSG, which executes on an AP, has been

modified, and the algorithm NEW_MSG replaces RCV_MSG.

We present two cases for this acknowledgment algorithm: (1) a non-FIFO case,

which makes no assumption about the order in which messages are received between a

sender-receiver pair, and (2) a FIFO case, which assumes that all messages between a

sender-receiver pair will be received in the order in which they are sent. The difference

σ′ υ′

υ′

71

activities (e.g. the computation of GVT). As discussed, all acknowledgments will be

processed by both sending and receiving AP’s. This comes at the cost of having to do two

reductions in the reduction network. A proof of correctness for TPA can be found in

[SRRE93].

4.3.1. Performance

In practice, we expect good performance from the version of TPA in Figure 4.4

since there are dedicated auxiliary processors monitoring the high-speed output from the

reduction network and executing all acknowledgment algorithms. Furthermore,

simulations [SRIN92] show that under normal load, the mean time to complete a two-phase

acknowledgment is around 10 microseconds in a 32-processor system. In these simulations,

the time to acknowledge a message was measured from the moment an AP starts an

acknowledgment until it receives a second acknowledgment from the AP whose message

it is acknowledging. This is competitive with the current technology for existing

communication systems; for example, a zero byte message sent from node to node on the

Intel Paragon [INTE93] can take 30-70 microseconds using commercial messaging layers

and the latency can be reduced to about 5 microseconds with a lower overhead layer

[CHIE94]. In comparable time our acknowledgments are processed at the software level on

AP’s; process to process acknowledgments an a Paragon can be orders of magnitude more

expensive.

Next we present a single phase acknowledgment which eliminates the need for one

of the two reduction operations in the reduction network.

4.4. Single Phase Acknowledgment

TPA requires two acknowledgments in a handshake. Two values must be reduced

and disseminated in the reduction network, and this may delay subsequent

70

message, LPr, while the second IF statement is executed by the AP for an LP sending a

message, LPs. The RCV_MSG procedure in Figure 4.3 is executed by APr to begin the

acknowledgment algorithm of the first received message or of a message received when

there are no other unacknowledged messages.

Once APs detects that is an acknowledgment for a batch of messages it has sent,

it sets its to to echo the acknowledgment. APs then removes the messages in the batch

from LPs’s outstanding message list, if they have not been previously removed, and updates

, if the received acknowledgment was for its smallest outstanding message. If APs detects

that is not acknowledging a batch from another sender, it sets its second

acknowledgment to , the idle acknowledgment, so that other

acknowledgments can be answered with a second phase acknowledgment. The APr with

the smallest handshake acknowledgment (i.e., =) can then update to its smallest

unacknowledged batch since it has determined that APs has read and processed the

acknowledgment.

CHK_ACK: IF (=) AND (≠) -- RECEIVER
THEN IF unacknowledged list is not empty

THEN Remove next batch to be acknowledged from
unacknowledged list;

Set to acknowledge this batch;
ELSE := ;

IF has been sent to this LP -- SENDER
THEN := ;

IF messages in outstanding message list
THEN Remove the acknowledged batch from outstanding

message list;
Update , if necessary;

ELSE := ;

Figure 4.4 Modified Synchronization Algorithm Using Two-Phase Acknowledgments.

The advantage of this double acknowledgment approach is that acknowledgments

can take place as fast as the algorithm will allow since they are not tied to any other

ρ′

τs ρ′

υs

ρ′

τs ∞ Φ 0, ,{ }

τ′ ρr ρr

τ′ ρ
i

ρ
i

∞ Φ 0, ,{ }

ρ
iρ

i
∞ Φ 0, ,{ }

ρ′
τ
i

ρ′
ρ′

υ
iτ

i
∞ Φ 0, ,{ }

69

In practice, APs may miss an acknowledgment (a value of intended for APs)

emitted from the reduction network since an APr could update its = , the smallest

acknowledgment in the system, prior to APs reading and processing it. Hence, the modified

synchronization algorithms do not guarantee that all acknowledgments are read and

processed by their intended recipients or that is maintained correctly without some

severe assumptions regarding the detection of outputs from the reduction network. Hence,

the theoretical results presented in the previous section are only obtainable if the hardware

can guarantee that all ’s are read by the AP’s that need to process them. Recall that the

detailed hardware design presented in Chapter 3 does allow state vector loss on the output

side of the reduction network. We now present an alternative CHK_ACK process, an

acknowledgment handshake, which guarantees correctness even when reduction network

output results are overwritten prior to being read, i.e., even with output state vector loss.

4.3. Two-Phase Acknowledgment

The following two-phase acknowledgment (TPA) uses the computation and

dissemination of two reduction operations in order to guarantee that all acknowledgments

are read and processed by AP’s of sending LP’s and that is correct. We introduce another

local T-value, , which is the ordered pair {message time, message ID}s where the

message tagged by message ID (which contains information about batches) has been

acknowledged by both the receiver LPr (actually APr) and then by the sender LPs (actually

APs). , the global minimum acknowledged message, is computed across all LP’s and

disseminated to those LP’s:

, for all LPi, i = 1, 2, …, n

The modified CHK_ACK algorithm in Figure 4.4 shows how the two-phase

acknowledgment is implemented. The CHK_ACK procedure consists of two parts. The first

IF statement implements the part of TPA executed by the AP for an LP receiving a

ρ′

ρr ρ′

υ′

ρ′

υ′

τs

τ′

τ′ MINLPi
τi()=

68

To implement batched acknowledgments on the reduction network, a concatenation

of the smallest sequence number of a contiguous batch and the number of messages

acknowledged in the batch are placed in the tag register and the message timestamp in the

data register. (See Section 3.5.4.)

Simulations [SRIN92] demonstrate that the batching of acknowledgments makes the

system more robust. As the load increases on an AP, its unacknowledged message lists start

growing. As a consequence, contiguous batches of messages form, and therefore, with

batching of acknowledgments, AP’s perform more work per unit time than with single

acknowledgments. A second, important conclusion of Srinivasan’s simulations is that since

with batched acknowledgments the hardware saturates at smaller event granules, the

batched acknowledgment enhancement improves the stability of the PRN (effectively

increases its bandwidth).

We assume in the remainder of this chapter that all message acknowledgments are

batched.

4.2.7. Correctness

Unlike changes to and in the framework, must be monitored closely by

each AP for the modified algorithms to be correct and efficient. The process CHK_ACK is

sensitive to output data from the reduction network and is expected to evaluate every

that emerges from the network. The auxiliary processor of the receiver of the message, APr,

must recognize = as soon as possible in order to update promptly. Similarly, the

auxiliary processor of the sender of the message, APs, must detect an acknowledgment

from APr before APr stops submitting the , representing the acknowledgment, to the

reduction network. APs then removes from LPs’s outstanding message list and modifies

 accordingly.

σ′ υ′ ρ′

ρ′

ρr ρ′ ρr

ρr

ρ′

υs

67

will be more accurate because acknowledgments are performed in less time. With two

reduction networks, however, there is again a potential race condition between updating

PDES state T-values and acknowledgment T-values. This race condition can be eliminated

if the two reduction networks are synchronized. By synchronizing the two networks, the

order of changes to all T-values, including , for a given LP is guaranteed to be preserved

in global counterparts.

4.2.6. Batched Acknowledgments

From the description above, it is clear that acknowledgments in the reduction

network are serialized, such that only the acknowledgment with the smallest timestamp will

complete in a reduction cycle. This serialization can be alleviated by acknowledging a

batch of messages in a single physical acknowledgment. This enhancement improves the

efficiency of employing the reduction network to acknowledge messages. Messages

arriving from the same sender can be acknowledged as sequences by acknowledging the

message ID of the largest in-sequence message; this same scheme is common in computer

networks [TANE89].

Batched acknowledgments can be implemented by adding a third component to

and . Now these message acknowledgment T-values have the form: {message time,

message ID, batch size}. An acknowledging APr searches its unacknowledged message list

for a batch of received messages with contiguous sequence numbers and sets its to the

triple {the smallest timestamp in the batch, the message sequence number of the first

message in the batch, the number of messages in the batch}. Note that in PDES’s with

aggressive processing, the first message in a batch will not always have the smallest

timestamp. A null batched acknowledgment, indicating that there are no unacknowledged

messages, is denoted as .

ρi

ρr

ρ′

ρr

∞ Φ 0, ,{ }

66

frequency that none of LPr’s received messages are ever acknowledged. In other words,

there is a potential, albeit unlikely, problem with starvation: no will ever be equal to ,

and hence, no message received by LPr will ever be acknowledged.

4.2.5. Performance

An undesirable feature of the algorithms shown in Figure 4.2 and Figure 4.3 is that

the acknowledgment of messages is serialized. The time complexity of this algorithm to

acknowledge one message is O(log n), where n is the number of LP’s. This proposed

acknowledgment algorithm may not scale well to large numbers of LP’s. If each LP always

has at least one message to acknowledge then the expected time until the acknowledgment

for each LP’s first message is complete is 1/2*n* log n, or O(n log n) complexity.

A further problem is that the amount of time between acknowledgments is greater

than one reduction cycle time of the reduction network. When = , APr must read the

output register containing , must recognize the acknowledgment, and then rewrite ;

this is not an insignificant amount of processing and should take an additional reduction

cycle since will not be updated before it is again read by the network. Scalability is also

an issue in Reynolds’s framework algorithms since a moderate number of additional

acknowledgment messages may flood the host network. Recall, however, that in practice

the reduction network can be orders of magnitude faster than the host communication

network.

We have presented work using two reduction networks to compute synchronization

values: one network produces the PDES state T-values, such as and , and the other

network is dedicated to the acknowledgment of messages [PANC92]. This has an advantage

over the serial acknowledgment algorithm since its best case performance can be shown to

be O(1) and this best case O(1) complexity occurs under heavy load. This suggests that

ρr ρ′

ρr ρ′

ρ′ ρr

ρr

υ′ σ′

υ′

65

CHK_ACK is a process that executes once each time through the auxiliary processor

loop as shown in Figure 4.2. In CHK_ACK each AP monitors the value of the global

minimum unacknowledged message . The ordered pairs emerging from the reduction

network are equivalent to acknowledgment messages. If the ordered pair is in LPs’s

outstanding message list, indicating that LPs had sent the message, then APs removes the

corresponding message from this outstanding message list. The value of is modified

accordingly, i.e., updated when is the message acknowledgment for the outstanding

message . If = , indicating that LPr’s acknowledgment is the minimum, then is

updated and the corresponding entry in the unacknowledged message list is removed by

APr. In Section 4.2.5. through Section 4.2.7. we discuss performance and correctness issues

of process CHK_ACK.

It is tempting to have APr update in RCV_MSG if a new message with a smaller

message time arrives. This preemption of guarantees that represents the smallest

received but not acknowledged message for LPr, yet there are two reasons why it is

necessary to update in a nonpreemptive manner. First, a problem occurs if the preempted

 is equal to the computed ; this situation causes APs to assume that the message is

acknowledged, yet APr, if it failed to recognize the equality of and before changing

, would fail to determine that the acknowledgment was read and processed by APs. APr

would submit the same to the network at some later time and would eventually read and

process an output state vector from the reduction network such that = . APs, the

auxiliary processor of the sender of the message, reads and processes the acknowledgment,

i.e., is in its outstanding message list, before APr has removed from its

unacknowledged message list. This approach is inefficient since the performance of the

framework is degraded by the dual submissions of the same by APr. A lesser problem

occurs with a steady flow of messages into LPr: could be modified with sufficient

ρ′

ρ′

υs

ρ′

υs ρ′ ρr ρr

ρr

ρr ρr

ρr

ρr ρ′

ρr ρ′

ρr

ρr

ρr ρ′

ρ′ ρr

ρr

ρr

64

monitored by each LPi (actually all auxiliary processors serving LP’s) since it replaces a

physical acknowledgment message in the host network. Specific details follow.

RCV_MSG: IF =
THEN := {message time, message ID};
ELSE Add message to unacknowledged message list;

CHK_ACK IF = -- RECEIVER
THEN Update ;

Remove message ID from unacknowledged message list;

IF in outstanding message list -- SENDER
THEN Remove message ID from outstanding message list;

Update , if necessary;

Figure 4.3 Algorithms for Receiving Messages and Processing Acknowledgments.

The algorithms RCV_MSG and CHK_ACK are defined in order to maintain . The

process RCV_MSG is performed by an AP when a message is received at the HP, and the

process CHK_ACK is performed repeatedly as the output of the reduction network changes

Without loss of generality assume that LPs refers to any LP sending a message and

similarly LPr refers to any LP receiving a message. When LPs sends a message and HPs

notifies APs, the SENT_MSG process from Figure 4.2 is executed by the APs. When LPr

receives a message and HPr notifies APr, the RCV_MSG process from Figure 4.3 is executed

by APr.

In process SENT_MSG, an entry of {message time, message ID} is made to the

outstanding message list for LPs. In process RCV_MSG, an entry of {message time, message

ID} is made to the unacknowledged message list for LPr, indicating a new message is

received but unacknowledged. The local value of is updated immediately by APr only

if its current value is equal to , indicating no message is unacknowledged. No

physical acknowledgment message is sent through the host network in this algorithm. We

discuss the implications of updating after we explain process CHK_ACK.

ρ
i

∞ Φ{ , }
ρ

i

ρ′ ρ
i ρ

i

ρ′

υ
i

υ′

ρi

∞ Φ{ , }

ρi

63

the message ID serves only to identify the specific message that is acknowledged. Hence,

 is computed across all LP’s and disseminated to those LP’s:

, for all LPi, i = 1, 2, …, n

4.2.4. Auxiliary Processor Algorithms for Message Acknowledgments

In Section 3.6. we described the general format of an auxiliary processor algorithm.

In the first message acknowledgment algorithm we present, each auxiliary processor

executes the specific algorithm in Figure 4.2. An auxiliary processor alternately reads the

output from the reduction network, writes this output to the host processor registers,

performs the acknowledgment algorithm CHK_ACK which we describe next, and reads the

host processor FIFO for a change in the LP’s state. In the event of a message receipt, the

AP performs the process RCV_MSG in Figure 4.3, which initiates an acknowledgment.

AUX_PROC: WHILE simulation is executing
Read the PRN output;
IF global state has changed
THEN Write global state vector to HP interface;
Perform CHK_ACK;
IF FIFO is not empty;
THEN Get next entry from FIFO;

CASE (entry_type):
NEW_CLOCK: := new_clock_value;

SENT_MSG: IF message_time <
THEN := message_time;
Add message to ordered
outstanding message list;

RCVD_MSG: Perform RCV_MSG;
END WHILE

Figure 4.2 Auxiliary Processor Algorithm.

The algorithms in Figure 4.2 and Figure 4.3 operate as follows. The ordered pair

in LPi is initialized to , indicating no event messages have been sent through the

network. is maintained for messages received, not messages sent; however, it is

ρ′

ρ′ MINLPi
ρi()=

σ
i

υ
iυ

i

ρi

∞ Φ{ , }

ρi

62

• Si(j)— the sequence number for each LPj, j = 1, 2, …, n, to which it sends a
message.When LPi sends a message to LPj, it increments the counter Si(j) and
uses its value in the message identifier. Message identifiers form a contiguous
sequence for each ordered pair of communicating LP’s. This will be crucial for
batched acknowledgments described later.

4.2.2. Data Structures and Values Maintained by Each AP

Each APi maintains the following local T-values and data structures:

• — local clock of LPi.

• For each LPj to which LPi sends a message, an outstanding message list of
message tuples. A message is removed from an outstanding message list once
APi reads a message acknowledgment from the reduction network and
processes this acknowledgment.

• — smallest timestamp of a message in all outstanding message lists in LPi.

• For each LPk which sends messages to it, APi maintains an unacknowledged
message list. The unacknowledged message list is sorted by sequence number.
A message will be removed from the unacknowledged list when it has been
determined that the AP of the sending LP has processed its acknowledgment.

An auxiliary processor APi processes an acknowledgment by removing the corresponding

message from the correct outstanding message list and updating to be the current

smallest timestamp in all of its outstanding message lists.

4.2.3. A New T-Value for Message Acknowledgments

A new local T-value is defined for acknowledging messages in the reduction

network: is the ordered pair {message time, message ID}i such that message time is the

smallest timestamp of a message that has been received by LPi but for which an

acknowledgment has not completed and the message ID is its message identifier. If an LP

has no messages to acknowledge, it sets its to , denoting a null acknowledgment.

Each LPi sends its into the pipelined reduction network, and , the global minimum

{message time, message ID} across all LP’s, is computed and disseminated in the reduction

network. The global minimum of the ordered pairs is computed as minimum message time;

σi

υ
i

υ
i

ρi

ρi ∞ Φ{ , }

ρi ρ′

61

all tasks required to maintain local T-values, including event message acknowledgment

algorithms. Each HPi maintains the local clock, the events list, and the outgoing message

list (list of antimessages) required in an aggressive parallel simulation. Each APi maintains

data structures in support of the event message acknowledgments and reduction operations

supporting the PDES synchronization protocol. Specific details regarding the correctness

of an aggressive PDES executing on a processor pair in the framework hardware can be

found in [SRRE93].

4.2.1. Host Processor Requirements for Acknowledgment Algorithms

Recall that the communication channel between an HP and its AP is functionally a

FIFO (See Section 3.5.3.). An HP enqueues tagged entries into the FIFO with the tag

indicating the nature of the communication. The HP must communicate the following

simulation events to its AP in order to correctly compute GVT and perform message

acknowledgments in the reduction network: a change in an LP’s local clock, due to either

an event execution or a rollback; the receipt of a message or antimessage; and the sending

of a message or antimessage.

Event messages will be acknowledged in the reduction network by employing a

tagged selective operation. This requires a unique tag for each message, since multiple

messages may have the same logical timestamp. Each message is assigned a globally

unique message ID, a unique tag consisting of a message sequence number between a

sender-receiver pair concatenated with a sender ID and a receiver ID, where sequence

numbers are issued in numerical order for each sender-receiver pair. A message can be

viewed as a tuple, {message time, message ID}, where the message time is a logical

timestamp and the message ID is a unique identifier. Message sequence numbers are

maintained by each LPi executing on its HPi as follows:

60

6) All global values now reflect the changes made in LP1: = 5 and = 4.
GVT = min(,) = 4.

7) LP2 receives the message, sets to 4, and sends an acknowledgment to
LP1.

8) No global values yet reflect the changes made in LP2.

9) LP1 receives the acknowledgment message and sets to ∞.

10) is computed to be ∞. = 5. GVT = min(,) = 5. This is the
incorrect computation of GVT since = 4.

The race condition is not prevented since the hardware supporting the framework

cannot control the order that acknowledgments are received with respect to the order in

which the globally reduced values are updated.

Figure 4.1 A Simple PDES Communication Topology.

Given the problems with using the host network for acknowledgments, we conclude

it may be better to use the synchronization network for message acknowledgments. As

shown in the sequel this conclusion is quite appropriate.

4.2. Acknowledging Messages in a Reduction Network

Without loss of generality, assume that each LP i, i = 1, 2, …, n, occupies a unique

physical processor pair, HPi and APi. We note that all acknowledgment algorithms can be

extended to support multiple LP’s executing on a processor pair. Synchronization tasks

execute on the AP, and PDES protocol-dependent and application-specific tasks execute on

the HP. In an aggressive PDES, the HP will perform event execution, sending and receiving

event messages, state saving, and rolling back the computation while the AP will perform

σ′ υ′
σ′ υ′

σ2

υ1

υ′ σ′ σ′ υ′
σ2

LP1 LP2

59

of a host network, the framework can benefit greatly if or a good approximation of

were computed in the reduction network.

4.1.2. Additional Message Traffic in the Host Network

The use of acknowledgment messages in the host communication network can

degrade the performance of a PDES in another way. Sending one acknowledgment message

for each event message in a distributed memory machine doubles the message traffic (in a

shared memory machine the analogous problem is memory contention); hence, the arrival

of both event messages and acknowledgment messages is potentially delayed. A doubling

of message traffic can often have a serious impact on performance, since performance often

degrades super-linearly with message volume.

4.1.3. A Potential Race Condition

If two separate networks are used to disseminate synchronization information, as in

Reynolds’s framework algorithms, there is a possible race condition between

acknowledgments in the host network and computations of in the reduction network.

Assume the communication topology in Figure 4.1, where LP’s are executing an optimistic

PDES synchronization protocol executing on top of our framework hardware. (See

Section 3.1.2.) The reduction network computes two globally reduced values in this PDES:

, the minimum unreceived message time, and the minimum logical clock across all

LP’s. A race condition can occur with the following sequence of events:

1) = 4 and = 7. = 4 and = ∞. GVT = min(,) = 4.

2) LP1 finishes processes its event at time 4.

3) LP1 sets to 4, which causes to change to 4, one reduction cycle later.

4) LP1 sends a message to LP2 with timestamp 4.

5) LP1 sets its to 5 and begins to process the event at time 5.

υ′ υ′

υ′

υ′ σ′

σ1 σ2 σ′ υ′ σ′ υ′

υ1 υ′

σ1

58

network to acknowledge messages. In Section 4.3. we present a solution which employs a

two reduction handshake algorithm in the reduction network. This work was first

introduced by Pancerella [PANC92]. In Section 4.4. we discuss an alternative to this

algorithm, one that requires a single reduction operation to be computed in the reduction

network. We prove the correctness of this alternative in Section 4.5. In Section 4.6. we

present improvements for all message acknowledgment algorithms which use the reduction

network. In Section 4.7. we discuss important issues which must be considered when

selecting one particular algorithm. Finally in Section 4.8., we present performance results

of two different acknowledgment algorithms executing on our four-node prototype

framework hardware.

4.1. Efficiency Considerations of the Framework

As shown in Chapter 3, GVT can be computed as the minimum of two globally

reduced values across all LPi’s, i = 1, 2, …, n: , the minimum logical clock time, and ,

the minimum unreceived message time.

In order to maintain all event messages must be acknowledged. In the algorithms

proposed by Reynolds [REYN92] acknowledgment messages are sent through the host

network of the parallel machine. There are three problems with using the host

communication network, and not the high-speed reduction network, for acknowledging

messages. We discuss these next.

4.1.1. A Significant Lag Time for Critical Synchronization Values

If messages are acknowledged in the host network, this has an impact on the

accuracy of the computation of : the value of will lag behind by at least the host

network latency time. Since the reduction network will have a lag time typically 10-3 that

σ′ υ′

υ′

υ′ υ′ σ′

57

4 Acknowledgment Messages in a
Reduction Network

A probable source of performance degradation in Reynolds’s original PDES

framework algorithms [REYN91] (See Chapter 3.) (from here on known as Reynolds’s

framework algorithms) is the communication of synchronization information among LP’s,

i.e., acknowledgment messages, outside the reduction network. This is undesirable.

Message acknowledgments are critical to the computation of the minimum unreceived

message time which is used in the computation of global virtual time. The hardware-based

framework presented in the previous chapter provides for the high speed computation of

GVT, yet the acknowledgment of messages in a host communication network can reduce

the performance gains of the framework. This chapter presents several novel approaches

which use a reduction network for message acknowledgments.

In order to make the presentation of our algorithms simpler, we assume the PDES

synchronization protocol executing on the host processors is an aggressive one, and the

reduction network will be used to compute global reductions, including GVT. All message

acknowledgment algorithms presented in this chapter can be used to correctly compute

T-values in a non-aggressive PDES. Since our acknowledgment algorithms will execute on

auxiliary processors in the framework hardware configuration depicted in Figure 3.2, their

execution will in no way interfere with normal PDES event processing on the host

processors or the event message traffic in the host communication network.

First we show efficiency problems with Reynolds’s framework algorithms. In

Section 4.2. we discuss the necessary algorithmic requirements for using a reduction

56

Second, we have provided sound correctness criteria for this framework. The

correctness criteria define the computation and dissemination of multiple reduced values,

where LP’s are executing asynchronously. Furthermore, the correctness criteria do not

require the blocking of either the processors executing events or the reduction network

computing the critical synchronization values.

Finally, we have developed the hardware design at three levels. At the highest level,

we have defined a computation model which decouples the LP processing from the

synchronization of LP’s. This model provides an abstraction of PDES processing such that

the model can be realizable by many implementations. Furthermore, this model is able to

advance with advances in technology. At the functional level, we have described an

implementation of the computation model that adheres to the established correctness

criteria. This functional implementation employs separate processors for event processing

and synchronization processing, and separate networks for reduction operations and event

messages. This functional description allows the synchronization processing to occur with

near-zero overhead to the PDES. Finally, at the detailed hardware design we have proven

the feasibility of designing detailed components and interfaces which are both correct and

efficient.

In the next chapter we explore the acknowledgment of event messages in a

reduction network. The algorithms and computed values assume the detailed hardware

design presented in this chapter. The acknowledgment of messages is important to the

computation of a minimum outstanding message time, which is useful in non-aggressive

PDES synchronization protocols, aggressive PDES synchronization protocols, and

adaptive aggressive PDES synchronization protocols.

55

algorithm will have the format in Figure 4.7, where the algorithm is executed continually

with the simulation.

AUX_PROC: WHILE simulation is executing
Read the PRN output;
IF global state has changed
THEN Write global state vector to HP interface;
Perform synchronization algorithms;
IF FIFO is not empty;
THEN Get next entry from FIFO;

Process entry;
END WHILE

Figure 4.7 Auxiliary Processor Algorithm Format.

In the next chapter we present specific auxiliary processor algorithms for

acknowledging event messages in a reduction network in support of the computation of ,

the minimum unreceived message time for all LP’s in a PDES.

3.7. Summary and Conclusions

We have presented in this chapter our contributions to Reynolds’s original

framework for parallel discrete event simulation. This framework provides novel and

efficient support of PDES synchronization protocols.

We identify three primary contributions of the work presented in this chapter. First,

we have demonstrated the applicability of this framework to a wide range of PDES

synchronization protocols. The applicability of the framework to PDES synchronization

protocols began in [REYN91] with reduced values and low-level algorithms to support

conservative protocols. It continued in [SRIN92] with the applicability to optimistic

protocols. In this chapter, we have expanded on this and shown the applicability to the

computation of lookahead values, the execution of iterative PDES synchronization

protocols, and the detection of termination conditions in a PDES.

υ′

54

the auxiliary processors and guarantee that the reduced values correctly represent the state

of the simulation. We discuss the algorithmic requirements of both the host and auxiliary

processors in the following sections. Specific details about framework algorithms can be

found in [REYN92] (conservative PDES algorithms), [SRRE93] (optimistic PDES

algorithms), and the next chapter (message acknowledgment algorithms).

3.6.1. Host Processor Algorithms

In our parallel simulation framework, all processing of an LP — event processing

and event message sending and receiving —occurs on the HP. The HP must communicate

any simulation events which represent a change to the simulation state vector to its AP in

order to correctly compute reduced state vectors in the reduction network. Examples of

events which affect GVT computation include a change in an LP’s local clock, due to either

an event execution or a rollback; the receipt of a message or antimessage; and the sending

of a message or antimessage.

In general, the additional processing on the host processor will be minimal. The host

processor only needs to notify its AP of a change in its local state as described above. As

seen in Figure 3.3, the interface between an HP and its AP is functionally a FIFO. An HP

enqueues tagged entries into the FIFO with the tag indicating the nature of the

communication.

3.6.2. Auxiliary Processor Algorithms

All processing of the SP’s will be executed on the auxiliary processors. The AP will

alternately read the output from the reduction network, write this output to the host

processor buffer or registers, perform low-level synchronization algorithms dependent on

the PDES synchronization protocol and the required computations in the reduction

network, and read the host processor FIFO for a change in the LP’s state. A typical AP

53

owner bit while the intermediate values are being written in parallel to the registers readable

by the AP. Applications using the framework hardware must be robust enough to tolerate

the loss of state vectors emerging from the PRN. Consistent with the correctness criteria set

forth in Section 3.2., we note that an AP never sees a partial state vector. State vectors are

either seen in their entirety or not at all.

The three levels of registers on the input side guarantee sequential consistency by

preserving state vectors, as discussed in Section 3.2. Observable sequential consistency

requires that the overwrite bit be used whenever the values in a state vector must be used

in a global operation. Furthermore, there can be no loss of state vectors on the output side

of the PRN — that is, AP’s must process every state vector that emerges from the reduction

network — if observable sequential consistency is to be maintained. Since this AP-PRN

interface does not prevent state vector loss, an alternative, which is the equivalent of

observable sequential consistency, is to use two extra input registers and compute tagged

selective operations to perform a double handshake [PANC92], as discussed in Chapter 4.

We note, however, that it is expensive (in terms of computation time) to implement

observable sequential consistency in the framework hardware and it should be avoided

when possible.

Specific details about our prototype hardware have been published by Reynolds,

Pancerella, and Srinivasan [REPS93]. We now discuss the algorithms that execute on the

host and auxiliary processors in order to support parallel simulations.

3.6. Framework Algorithms

Synchronization algorithms are the third component of our PDES framework.

Given the correctness criteria in Section 3.2. and the functionality of the hardware

described in Section 3.5., framework algorithms execute on both the host processors and

52

ith output register pairs. That is, the PRN may complete reading state vectors from each of

n input register banks at a different time than when it completes writing new reduced state

vectors. The writing of a reduced state vector for a set of input state vectors will lag by (((m-

1) + log2 n) ·c) nanoseconds, where the minor cycle time isc nanoseconds, the state vector

size ism, and there aren processors.

3.5.5.2. Auxiliary Processor-PRN Interface: Output

As shown in Figure 3.6, the three banks of output registers are constructed to

preserve state vectors and to minimize AP-PRN interference in a similar fashion to the

input register banks. Once everym minor cycles (assuming a full pipe in the PRN), the PRN

generates a globally reduced state vector, which is written to thePRN output registers. This

state vector is transferred to theIntermediate output registers and finally to theAP output

registers, which are readable by the AP. Once again the interface controller guarantees that

the PRN never blocks, and transfers between output register levels are prioritized to prevent

this.

Each time the PRN completes writing a state vector into the PRN output registers,

the values are shifted into the Intermediate output registers. When the bottom row is shifted,

the values in the intermediate row are concurrently shifted into the AP output registers

unless the AP has locked the top row because it is reading the AP output registers. In that

event, the Intermediate output registers are overwritten by the PRN output registers, and the

contents of the intermediate registers are lost forever. The AP output registers have a

control bit, an owner bit (O), that is set and reset by the auxiliary processor. The owner bit

determines whether Intermediate output registers can be written to the AP output registers

or are lost; it also ensures an atomic read of a state vector by the AP. The AP sets the owner

bit prior to reading the state vector in the AP output registers and resets it after it is done

reading the complete state vector. The AP may block momentarily if it attempts to set the

51

registers when this process does not cause the PRN to block or when it does not lead to a

loss of integrity of a state vector. Finally, we note that due to the relative speeds of an AP

and the PRN, it is very unlikely that an overwritable state vector will be overwritten prior

to being read by the PRN; however, we have designed the reduction network to provide the

guarantee anyway, for future use.

The combination of non-overwrite on input to the PRN and no loss of state vectors

on output is sufficient to guarantee the observable sequential consistency introduced in

Section 3.2.. If either of these conditions cannot be met then observable sequential

consistency cannot be guaranteed. However, neither is required to guarantee sequential

consistency. We discuss this further at the end of this section.

The PRN reads state vectors of a specified size cyclically, starting with the mth

component and proceeding to the first component. Thus, the PRN reduces the mth

component, followed by the (m-1)st, and so on. The PRN is pipelined; thus the processing

of the (i-1)st components commences as soon as the top level of ALU’s completes

processing the ith components. The PRN reads the ith register pair from each of the n input

banks simultaneously. The time for the PRN to read an entire state vector is an input cycle.

An input cycle finishes when the first components of the state vector are consumed. At the

end of an input cycle, the controller transfers the Intermediate input registers to the PRN

input registers. The transfer can be overlapped with the last PRN read in the input cycle;

thus, the hardware requires a minimum state vector size of two so that this transfer can be

performed as efficiently as possible. The transfer from the intermediate registers to the PRN

registers has a higher priority than the transfer from the AP registers to the intermediate

registers so that the PRN never blocks.

We note that log2 of n and m are not necessarily equal. Therefore, while the PRN is

reading from the ith input register pair from all n processors, it is not necessarily writing the

50

registers. The state machine which controls the interface transfers state vectors from the AP

input registers to the Intermediate input registers and then to the PRN input registers. The

transfer is done so as to minimize interference. Intermediate registers facilitate getting

snapshots of valid local state vectors to be passed on to the PRN input registers without

blocking the PRN.

When an auxiliary processor has completed writing a new state vector, it sets two

single-bit control flags: the overwrite bit (OW) and the owner bit (O). The owner bit is

always set when the AP has finished writing a valid state vector into the AP input registers;

this indicates that the interface controller now owns the top level of registers. When the

interface state machine transfers this state vector to the Intermediate input registers, it resets

the owner bit indicating that the AP once again owns the AP input registers. If the AP

attempts to write to the AP input registers while the owner bit is still set, it will be blocked.

However, given the relative speeds of the PRN and the AP, this is not expected to happen

often.

The overwrite bit gives the application some control over what values are

eventually fed into the reduction network. Specifically, if the AP marks a state vector as

“non-overwritable”, it is guaranteed that the entire vector will be processed by the PRN.

When the control logic transfers the AP input registers to the intermediate level, the

overwrite bit is also transferred. If the AP indicates a state vector is overwritable then the

state machine controlling the register banks can allow subsequent state vectors written by

the AP to overwrite the state vector in the Intermediate input registers. If the AP signals a

state vector as non-overwritable and it is transferred to the intermediate registers, the

overwrite bit will prevent the transfer of a newly written AP level state vector until the

contents of the Intermediate input registers are transferred to the PRN input registers. The

control logic guarantees that AP input registers are only moved to the Intermediate input

49

and process the same state vector repeatedly. Even if an input value changes with high

frequency, it will very likely be used more than one time in the computation of a reduction

due to the relative speeds of AP’s and the PRN. Similarly, on the output side, the PRN will

produce globally reduced state vectors faster than an AP can read and process them, and as

a result the AP’s may lose some state vectors. Applications executing on the framework

hardware will have to tolerate the loss of globally reduced state vectors. All reads to

registers from the PRN or an AP are nondestructive. We now discuss the input and output

interfaces in greater detail.

Figure 3.6 Interface Between an Auxiliary Processor and the PRN.

3.5.5.1. Auxiliary Processor-PRN Interface: Input

The interface from an auxiliary processor to the PRN consists of three banks of

register pairs: the AP input registers, the Intermediate input registers, and the PRN input

registers. The AP writes state vectors of size m to the top row of registers, the AP input

registers, and the PRN reads state vectors of size m from the bottom row, the PRN input

OOW

OW

O

PRN

AP input registers

PRN input registers PRN output registers

AP input registers

Intermediate input registers Intermediate output registers

Input registers Output registers

48

As seen in Figure 3.3, the interface to the PRN from each AP is identical. Each AP

has sets of memory-mapped input registers and memory-mapped output registers. A

processor can write to the input registers and read from the output registers; the PRN will

read values from the input registers and write the corresponding globally reduced results

into the output registers. This memory-mapped interface is a possible source of memory

contention if both the PRN and the auxiliary processor attempt to access the input or output

registers simultaneously. We discuss next how the interface between the auxiliary processor

and the PRN is constructed in order to minimize memory contention, to facilitate atomic

writes with and without overwrite capabilities, and to preserve state vectors.

3.5.5. Auxiliary Processor-PRN Interface

The AP-PRN interface is designed to operate on state vectors in order to support

both atomic accesses of globally reduced values and order preservation of input values to

the reduction network. From an SP’s point of view, it feeds a valid state vector to the PRN,

where “valid” is defined by the application using the framework hardware. The PRN reads

the state vectors, processes them by performing the corresponding reduction on each

component, and writes a globally reduced state vector at each AP. Furthermore, the

hardware provides an atomic read access to a single output state vector so that an AP can

read an entire state vector. The application software should access whole state vectors, not

individual components, if consistent states are required by the application.

An auxiliary processor and the reduction network operate asynchronously with

respect to one another. As shown in Figure 3.6, three banks of input and output register

pairs provide an interface of isolation, such that both can access the register banks with

minimal interference. This interface is designed to guarantee that the PRN never blocks

while waiting to read a value or write a value. The PRN is expected to read and process

state vectors at a rate much faster than an AP produces them; the PRN, therefore, may read

47

Figure 3.5 An ALU Node in the Parallel Reduction Network.

input cycle will consist ofm minor cycles, where m is the size of the state vectors. Thus,

the time to produce a globally reduced state vector of lengthm is c · m nanoseconds, where

c is the minor cycle time, plus the time to fill the pipe which isc · log2n nanoseconds. We

refer to the time to compute a globally reduced state vector as areduction cycle. Since speed

of computing reduced state vectors is the primary design goal of the hardware, it is

important thatc be small. The minor cycle time in our prototype hardware is 150

nanoseconds, giving a reduction cycle of time of 1.2 microseconds for 32 processors with

4-element state vectors.

32 32 32 32

32 32 8

88

8

Error Check

Opcode

Data

Tag Tag
ALU

Selector

Control

.

46

the PRN does not have to be a binary tree; it could, for example, be constructed as a quad

tree.

A single ALU node is shown in Figure 3.5. The ALU’s perform reduction

operations, i.e., binary, associative operations on two inputs based on a programmed

operation code which accompanies the inputs; operations include sum, minimum,

maximum, logical AND, logical OR, etc. Each input data register is paired with a tag

register. The ALU’s support tagged selective operations; in a selective reduction operation,

such as minimum or maximum, a tag accompanies the “winning” value of the binary

operation. The PRN propagates the tag of the input that “wins” a selective operation, a

minimum or maximum operation, so that the tag of the smallest or largest component

emerges from the bottom of the PRN for a minimum or maximum operation. In the case

where there is no single choice in a selective operation (i.e., both operands are equal), the

PRN selects deterministically the tag which is propagated. A selective operation requires

two operations in the ALU: a compare and a select.

As shown pictorially in Figure 3.5, two inputs and two reduction operation codes

arrive at an ALU node. An error check is performed on the reduction operation codes; if the

two operations are not equal, an error flag is placed in the tag, and the tag is propagated

through the reduction network. After a reduction is performed, the resultant value and the

operation code are propagated to the next stage of the PRN.

Pipelining is employed in order to use the reduction network efficiently: partial

results are pipelined through the log n stages of the PRN such that each stage of ALU’s is

always busy. The PRN can pipeline reduction operations at a rate equal to the delay time of

a stage. The time for a value to pass from one level of the PRN to the next is a minor cycle

time. The time required for the top row of LP’s to read all the elements of the state vectors

is called the input cycle time. Since the stages of the reduction network are pipelined, an

45

As seen in Figure 3.3, the host processor can access the FIFO queue and the

registers via an HP interface. The HP interface isolates the particular host processor from

the rest of the system. If the host system changes, this HP interface is the only thing that

will need to be redesigned. Isolating the HP interface provides adaptability to other parallel

computers or closely coupled networks. For example, the HP interface could be changed

from a SCSI to a VME interface, and all that would be required is the logic to respond to

requests by the HP on the FIFO queue and register bank.

3.5.4. The Parallel Reduction Network

The parallel reduction network (PRN), is the reduction network which computes

and disseminates the results of global reduction operations. As seen in Figure 3.4, the PRN

is a binary tree of depth log2n, where n is the number of host (and auxiliary) processors.

Each node of the tree is an Arithmetic Logic Unit (ALU) with some logic for tagged

selective operations. Each stage of the PRN consists of half as many ALU’s as the stage

above it, with the first stage having n/2 ALU’s. The PRN’s binary tree properties allow a

global reduction operation to be computed and disseminated in O(log n) time. We note that

Figure 3.4 Parallel Reduction Network.

ALU ALU ALU ALU

ALU ALU

ALU

44

Critical information to be passed to the state machine includes the number of components

in a state vector and the operations to be performed on components.

The master host processor can send tagged data representing new reduction network

programming information to its auxiliary processor at any time. Similarly, host processors

can send data to their respective auxiliary processors indicating they are to receive new

programs to execute. This will permit dynamic reprogramming of the AP’s and the

reduction network. We assume that applications running on the HP’s and programs running

on the AP’s are sufficiently robust to support this dynamic reprogramming.

3.5.3. Host Processor - Auxiliary Processor Interface

Functionally, there are two data paths between a host processor and auxiliary

processor: one from the HP to the AP and the other from the AP to the HP. The HP

occasionally writes tagged information to the interface which the AP processes, based on

the tag, and generates state vectors to input into the reduction network. Similarly, the AP

writes globally reduced values to the interface which are subsequently read by the HP.

The addition of dedicated processors requires correctness criteria to be preserved

between a host processor and its auxiliary processor. There are two requirements on the

data path from an HP to its AP: (1) no information sent by the HP is lost and (2) the AP

processes the data in the order in which it is sent by the HP. Under the established

correctness criteria in Section 3.2., an application executing on the HP does not need to read

and process all globally reduced values; a recent version of globally reduced values,

however, is expected to be available to the HP. This suggests an implementation requires at

least a FIFO queue from HP to AP and a set of registers that can be written and read

atomically from AP to HP.

43

Figure 3.3 Auxiliary Processor.

3.5.2. Setup

Each auxiliary processor boots up in a “listening” state in which it monitors its host

processor interface. A host processor sends tagged data to its auxiliary processor

representing a program to be loaded and executed by the AP. The physical interface

between a host processor and its auxiliary processor is described in the next section.

One of the host processors in the system and its corresponding auxiliary processor

are designated as a master pair of processors. The master pair communicates reduction

network programming information to the state machine controlling the reduction network.

EPROM

RAM

Host Processor

HP Interface

FIFO
queue

registers

Auxiliary
Processor

Input registers Output registers

42

vector from the reduction network, it writes selected groups of these values into the HP-AP

interface readable by the host processor. An LP executing on a host processor can compute

GVT, avoid deadlocks, and make processing decisions based on the synchronization

values. Other than simple tests such as these, the execution of the framework algorithms

does not interfere with an LP’s event processing. A further advantage of a dedicated

processor interfacing with the host processor and the reduction network is that an AP can

compute the input reduction values based on multiple LP’s executing on one host processor

and coordinate the synchronization activity of multiple LP’s. In sum, this framework

implementation can off-load all parallel simulation synchronization overhead from host

processors and the host network.

3.5. Detailed Hardware Design

In the sections that follow we discuss the specifics of the hardware design of our

prototype. This prototype guarantees the established correctness criteria, and in our

discussion we focus on how we ensure the criteria. We note that this is not the only

hardware design which guarantees the correctness criteria.

3.5.1. Auxiliary Processor

The general layout of an auxiliary processor is depicted in Figure 3.3. Auxiliary

processors are fast, general purpose 32-bit microprocessors. Each AP has its own memory

to store synchronization programs and related data structures (See Section 3.6.).

Furthermore, each AP has EPROM to store a boot-up monitor which is executed upon reset.

41

The auxiliary processors are dedicated processors which manage the high

frequency I/O from the reduction network and execute the synchronization algorithms. A

high-speed bidirectional communication channel exists between a host processor and its

corresponding auxiliary processor. All interfaces between the host processor and the

auxiliary processor (See Section 3.5.3.) and between the auxiliary processor and the

reduction network (See Section 3.5.5.) must be designed to ensure the correctness criteria.

An integral part of the hardware is the reduction network. The reduction network

rapidly computes and disseminates different binary, associative operations across state

vectors of values. Each component of a state vector is an input to a binary, associative

operation. For example, it can be specified that all first components are to be summed, all

second components OR’ed, and the minimum is to be taken of all third components in a

three component state vector. As per the correctness criteria, the state vector is the basic

unit of operation in an implementation of the hardware. Interfaces into and out of the

reduction network must preserve state vectors: the hardware reads state vectors of size m,

computes m reduced values, and writes a reduced state vector. The hardware guarantees

that a partial or incomplete reduced state vector is never read by software running on an AP.

The success of disseminating synchronization values is contingent on the high speed at

which these values are made available to all processors.

Employing auxiliary processors provides a separation of the synchronization

activity (performed on auxiliary processors) and the application being simulated

(performed on host processors). The synchronization processes (SP’s) execute the high

speed synchronization activity in the parallel simulation framework (See Section 3.6.) on

the dedicated AP’s. The logical processes (LP’s) execute on the host processors, and all

event messages are sent and received at the host processors. HP’s communicate some

simulation activities to the AP’s. When an SP executing on an AP reads a new reduced state

40

3.4. Functional Hardware Description

In this section we focus on a functional implementation of the computation model.

A high-level hardware description of this implementation is shown in Figure 3.2. The

shaded components represent hardware which is built and interfaced to an existing parallel

machine or cluster of computers. This hardware description was first proposed by Reynolds

and Pancerella [REPA92]. The host system in our description is a closely coupled network

of high speed processors with its own network for interprocess communication. The host

communication network is independent from the synchronization network, or reduction

network. Each host processor (HP) is paired with an auxiliary processor (AP) which

interfaces to the high speed reduction network.

Figure 3.2 High-Level Hardware Description.

.

Host Communication Network

Reduction Network

Host
Processor

Host
Processor

Host
Processor

Auxiliary
Processor

Auxiliary
Processor

Auxiliary
Processor.

Input
State Vector

Input
State Vector

Input
State Vector.

Output
State Vector

39

computed, and the low-level algorithms executed by the SP’s. Each SP will maintain an

input state vector containing local counterparts to each global value. The SP will in turn

process the information from its LP and submit a corresponding input state vector to the

synchronization network, which computes reduced values. As established in Section 3.2.,

some small set of globally reduced values in a state vector can describe the state of any

parallel simulation. The SP executes the synchronization algorithms described in future

sections so that the input values reflect a correct state and the output values are computed

correctly across all LP’s. Functionally, the communication from the LP to the SP must be a

FIFO as established by the correctness criteria in the previous section.

The synchronization network computes and disseminates reduced values to the

SP’s. An output state vector is written at each SP. An SP reads the output state vector,

processes this information, and then writes relevant reduced values to a memory location

readable by its LP. Functionally, this shared interface is a single set of registers, as

established by the correctness criteria.

In the next section we discuss our implementation of this computation model. There

are many possible implementations, including using existing machines such as the CM-5.

In our implementation, we employ separate processors for the LP event processing and the

SP synchronization processing. LP event processing and SP synchronization processing

could be implemented on the same processor; however, the synchronization processing

may be a potential overhead, and this will have a direct effect on the finishing time of the

simulation. We also employ two separate networks in our implementation; one network

(and possibly some processors) could be used for both event messages and reductions, but

in that case the computation of reductions may not be performed rapidly and continuously

as in our implementation.

38

Figure 3.1 Abstract Computation Model.

All event processing and PDES synchronization protocols are executed by the

logical processes (LP’s). LP’s send and receive event messages through a communication

network. The computation model is not tied to a distributed memory model; in a shared

memory implementation of the computation model, the communication network will be, in

fact, a global shared memory.

Each LP has a corresponding synchronization process (SP) associated with it. An

LP will notify its SP of changes to its local processing state. Examples of changes to the

local state include an advancement in the LP’s local clock, notice of sending an event

message, notice of receiving an event message, and rollback. Other changes will be

dependent on the PDES synchronization protocol, desired reduction operations to be

State Vector

State Vector

SP

.

Communication Network

Synchronization Network

.

LP LP LP

SP SP

State Vector
.

State Vector

37

the effects (possible changes in Fk) of only some members of that sequence are observed.

If it is important that all changes in state vector component values be used in global

reductions, then LP’s must control the rate of changes to component values.

Given the state vector <Vi
1, Vi

2, …, Vi
m> for each of n LPi’s, and the desire to

produce <F1, F2, …, Fm> in a sequentially consistent manner, we have determined that a

framework can accomplish this by doing the equivalent of cyclically (1) taking a snapshot

of the <Vi
1, Vi

2, …, Vi
m>’s, (2) performing each of the m global reductions, Fk, on the

captured m-tuples, and (3) presenting the resulting global reductions, <F1, F2, …, Fm>, to

each of the LPi atomically. While the global reductions are being performed, each LPi

should be able to update local copies of state vector components in preparation for the next

snapshot.

In the sections that follow we describe a computation model and an implementation

of this model that meet the requirements just given. A simple extension described in later

sections enables the framework to produce observable sequentially consistent results as

long as no loss of globally reduced m-tuples <F1, F2, …, Fm> can be guaranteed.

3.3. Abstract Computation Model

An abstract computation model for computing and disseminating reduced values

can be found in Figure 3.1. This model describes the relationship of event processing to

logical process synchronization in any parallel simulation. In the following paragraphs we

explain each of the components in the computation model. In Section 3.4. we describe a

possible hardware implementation of this model, with specific details of this

implementation described in Section 3.5.

36

cycle the globally reduced state vector <F1, F2, …, Fm> is made available to all of the LP’s.

Some of the LP’s may succeed in processing the information and others may not, resulting

in a loss.

If, preceding one cycle, LPi changes Vi
k and just preceding the next cycle it changes

Vi
l, then the pair of resulting globally reduced state vectors have a desirable property: the

first incorporates the change to Vi
k only and the second incorporates the changes to both Vi

k

and Vi
l. Observable sequential consistency is maintained for any processors that process

both vectors. For those that lose the first but observe the second, sequential consistency is

maintained; that is, the ordering of changes to Vi
k and Vi

l is not necessarily preserved, but

never violated. Thus, the “precedes” relation maintained by observable sequential

consistency is relaxed to the “no-later-than” sequential consistency.

Many of the ordering requirements that arise in parallel simulation can be satisfied

with sequential consistency. For example, computation of GVT requires each LP maintain

a current simulation time and a smallest unreceived message time. When an LP completes

an event and sends a message to another LP, both its simulation time and its smallest

unreceived message time may change. A simulation-wide invariant that must be

maintained, as demonstrated by Reynolds [REYN92], is that the event or message in the

system with the smallest logical time must always be represented in at least one LP’s

simulation time or smallest unreceived message time. An LP just completing an event must

not allow its new simulation time (which may be infinity) to be a part of a global reduction

of all simulation times before its new smallest outstanding message time. However, it is

sufficient to allow them to be used in global computations simultaneously. That is,

sequential consistency is sufficient to support maintenance of the invariant.

We note that the effects of a particular value for a particular Vi
k need not be

observed. It is possible for LPi to produce a sequence of new values for Vi
k at a rate where

35

process a constant flow of globally reduced values. Consider the speed at which such values

could be produced. Our prototype hardware [REPS93] computes global reductions, with

pipelining, such that new results are produced on the order of every 150 nanoseconds. The

absolute timing is not the factor here; rather it is that time relative to a typical processor’s

instruction cycle time. Given current processor technology at most tens of instructions

could be executed during the time a global reduction is performed. We conclude it is not

reasonable to expect a processor to keep up with a flow of global reductions.

We could consider slowing the reduction rate so that processors could keep up with

the flow of output. However, low latency is critical. When an LP computes a new T-value

the corresponding global reduction should be completed as quickly as possible. The

importance of this is established in our performance analysis of the hardware [REPS93].

This analysis concluded that under normal load, GVT computed on our hardware lags

behind the actual GVT by 5-10 microseconds.

As discussed above, cyclic application of the global reductions is a satisfactory

replacement for the dataflow approach that a total ordering represents; if changes to state

vector components can be properly paced and globally reduced values can be processed

without loss then observable sequential consistency can be guaranteed. However, even if

loss does occur, we can ensure sequential consistency. Consider treating the application of

F1, F2, …, Fm as a globally reduced state vector: <F1, F2, …, Fm>. If, rather than allowing

results of the application of individual Fk to be lost, we required the granularity of a loss to

be global state vectors, then it is possible to ensure sequential consistency. We elaborate.

At the beginning of a cycle a snapshot is taken of the state vectors for each of the

LPi. Then F1, F2, …, Fm are applied to these state vectors. In the meantime the LPi can

change components of local copies of their state vectors. These changes will not be

observed until another snapshot is taken at the beginning of the next cycle. At the end of a

34

Sequential consistency and observable sequential consistency do not address the

ordering of reductions between pairs of LP’s, as does total ordering. Instead, they only

address the ordering of reductions applied to the sequences of value changes in components

of a given LP’s state vector. If we consider applying a sequence of global reductions in

response to changes in component values in LP state vectors, as we have considered so far,

then the issue of sequencing global reductions still exists. Consider the case where LPi

changes Vi
k and then changes Vi

l while LPj first changes Vj
l and then Vj

k. Independent of the

temporal interleaving of these changes, if they all occur in an interval short enough so that

all changes are completed before any global reductions are initiated, then a sequencing

problem exists. Either order of applying Fk and Fl violates the order of component value

changes in either LPi or LPj. To prevent this, an LP must be able to control the timing of the

application of global reductions to changed component values in its state vector. One

approach would be to guarantee the following conditions: 1) whenever LPi changes the

value of Vi
k, the application of Fk must occur in a finite, bounded amount of time and 2)

there must be a way for LPi to determine that Fk has been applied to Vi
k.

These conditions can be met by ensuring that the ordering of global reductions is

fixed and known. For example, if global reductions were applied cyclically, F1, F2, …, Fm,

then LP’s could submit changes to component values with temporal spacing between the

changes that equaled or exceeded the time required to complete a cycle of m reductions.

This approach is sufficient to guarantee observable sequential consistency as long as no

data loss occurs. We discuss the effects of data loss next.

If LP’s pace their changes to state vector values so that only one value change

occurs per cycle of m global reductions and if LP’s process all information produced by the

cyclic application of m reductions then observable sequential consistency is guaranteed.

The first condition is easily achieved, however, we do not expect LP’s will be able to

33

and cost-effective solutions and because we can accomplish all we need with a simpler and

less expensive approach.

In place of total ordering we consider the concept of sequential consistency

[LAMP79], which is defined as follows: for a given sequence of changes to the values of

components in the state vector of an LPi, the order in which global reductions appear to be

applied to those values must be the same as the order in which the values were changed. An

interesting characteristic of sequential consistency is its appearance of correct execution

order. Consider a sequence, S, of changes to the values of components of a given LP’s state

vector. The order in which members of S are used in global reductions only matters at those

times when the result of a particular global reduction applied to, say, the ith member of S is

used in a computation. At that point in time, all global reductions on the first (i-1) members

of S should be completed. Thus, sequential consistency guarantees a “no later than”

property with respect to the order of application of global reductions: at those points in time

at which we observe the results of a global reduction, all global reductions that should

precede it are also complete, but we have no way of determining in which order they

completed.

We define observable sequential consistency to be the case where all global

reductions are treated as though their values are used in subsequent computations; that is,

the order in which members of S are used in global reductions is identical to the order in

which the respective component values appear in S. The difference between sequential

consistency and observable sequential consistency is that the former only guarantees the

“no-later-than” property with respect to the order of reductions, where the latter guarantees

a strict ordering. Observable sequential consistency is necessary if it is required that LP’s

be able to observe the effects (on global reductions) of any change in any component in any

LP’s state vector.

32

where is an associative, binary operator applied to the kth n-tuple. So, for example, if Vi
1

is LPi’s next event time, then F1 = min<V1
1, V2

1, …, Vn
1> would be the minimum next

event time for all n LP’s.

In the discussion that follows we refer to <Vi
1, Vi

2, …, Vi
m> as LPi’s state vector,

and the Vi
k’s, k in 1 … m, as components of LPi’s state vector.

When computing globally reduced values, it is best to allow the computation of

these values to proceed asynchronously with the simulation. Ideally, we desire a total

ordering with respect to this asynchronous computation. That is, if at some real time t, LPi

computes a new Vi
k and at some time greater than t, LPj, j not necessarily distinct from i,

computes a new Vj
l, l not necessarily distinct from k, the computation of Fk should

complete before the computation of Fl.

A total ordering is desirable because it carries sequencing information with it that

could be exploited by the LP’s. For example, the order in which globally reduced values are

computed (along with the ID’s of the LP’s that caused the computations to occur) can reveal

information about which LP’s are sending messages to others. That information, in turn,

could be used within an LP to determine, for example, its probability of receiving a

simulation-related message over some interval of time.

While a total ordering is desirable, it is both expensive and unnecessary for parallel

simulations. Guaranteeing total ordering requires cooperation among LP’s with respect to

the order in which global functions should be invoked. This kind of cooperation can be

achieved, but at a cost. The cost can be temporal: LP’s must continually execute the

equivalent of barrier synchronizations, or the cost can be monetary: specialized networks

such as those proposed by Ranade, Bhatt, and Johnnson [RABJ88] and Reynolds, Williams,

and Wagner [REWW89] [REWW92] would be required in addition to our framework. We

have chosen to weaken the desire for total ordering because doing so leads to more efficient

σ
k

31

consisting of synchronization values and related algorithms can be used to evaluate

termination conditions even when there are outstanding messages in the parallel

simulation. As mentioned above, computing minimum unreceived message times and

acknowledging messages in a reduction network can be used in order to detect outstanding

messages in a system. Moreover, a sum of the number of all messages sent minus messages

received at all LP’s can be computed as reductions to detect outstanding messages in the

system. If this value is maintained correctly, a sum of zero indicates that there are no

outstanding messages in the host communication network.

We now develop the necessary correctness criteria for computing and disseminating

multiple reduced values across LP’s.

3.2. Correctness Criteria for Computing Multiple Reduced Values

 As shown in the previous section, many examples have appeared in the parallel

simulation literature demonstrating the need for globally computed values. The hardware-

based framework we describe in this chapter is meant to compute these values correctly and

expediently.

We begin by formally defining the concept of globally reduced value. We assume

the existence of n logical processes (LP’s). Let the state of LPi be represented by the m-tuple

<Vi
1, Vi

2,..., Vi
m>. A global reduction function, F, one which produces a globally reduced

value, operates on n values, one from each LPi: the n-tuple <V1
k, V2

k,..., Vn
k> for a given k

in 1 … m is the input to the global reduction function, Fk. The reductions we desire can be

characterized by:

, for k = 1, …, mFk σk V1
k V2

k … Vn
k, , ,〈 〉=

30

In addition to lookahead values, other possible reductions which could be applied

to parallel simulations are estimations of the maximum (or minimum) rate at which an LP

is processing events. If each LP submits a current estimate of its rate of simulation, the

fastest (or slowest) LP (with respect to logical time) can be identified. Felderman and

Kleinrock [FEKL92] show analytically that a Time Warp simulation can be more efficient

if a faster LP is slowed down; they do not propose how the information might be

propagated. We have a framework for disseminating this information easily.

3.1.4. Reduced Values in Iterative Parallel Simulations

Iterative PDES synchronization protocols, such as Bounded Lag [LUBA88a],

Moving Time Window [SOBW88], and the aggressive Global Windowing Algorithm

proposed by Dickens [DICK93], require the computation and dissemination of ceiling

values or fault values. Lubachevsky [LUBA89] requires global establishment of minimum

next event time and other values to compute opaque periods. Global windowing protocols,

such as those proposed by Nicol [NICO93] and Dickens [DIRE92], require establishment of

parameters for the window. These values are defined as reductions across all LP’s.

Furthermore, additional global reduction values, such as a minimum outstanding message

time or a minimum next event time, could enhance iterative PDES synchronization

protocols. For example, a window may be enlarged by including this additional knowledge.

3.1.5. Reduced Values as Termination Detection Conditions in Parallel Simulations

The challenge of global termination detection and the calculation of output

measures in a PDES [ABRI91] can be realized easily using reduction operations within our

framework. Many global termination conditions — for example, sums and boolean

operations — can be calculated and disseminated efficiently as globally reduced values.

Unlike Chandy and Lamport’s distributed snapshot algorithm [CHLA85], a framework

29

the number of LP’s, must be computed: , the smallest logical clock in the system, or

minimum logical clock time, and , the logical timestamp of the smallest outstanding

message in the system, or minimum unreceived message time. These global T-values are

computed as follows:

, for all LPi, i = 1, 2, …, n

, for all LPi, i = 1, 2, …, n

where is the logical clock of LPi, is the logical timestamp of the smallest of all

messages that LPi has sent out which may or may not been received by their intended

receivers but have not been acknowledged, and n is the number of LP’s. The logical clock

 of LPi is updated at two times during the execution of an optimistic PDES: (1) at the

start of a new event to be executed, and (2) when a message is received that causes a

rollback to a time in LPi’s logical past. In an optimistic PDES, the T-value is updated to

include outstanding message times of both event messages and antimessages. The two

values and are maintained locally by each LPi. GVT, by definition, is computed as

the minimum of these two values:

GVT computation and dissemination in this framework is a significant improvement in

algorithm complexity and implementation efficiency over existing GVT maintenance

schemes ([JEFF85], [JESO85], [SAMA85], [LILA89], [BELL90], [COKE91], [TOGA93]).

3.1.3. Reduced Values as Lookahead Values in Parallel Simulations

Minimum event processing times and lookahead values can be computed as

globally reduced values. For example, the smallest future time that an LP can send event

messages can be computed as a globally reduced value. Each LP computes the value it

submits to this reduction based on its current local clock and its minimum processing time.

σ′

υ′

σ′ MINLPi
σi()=

υ′ MINLPi
υi()=

σi υi

σi

υi

σi υi

GVT MIN σ′ υ′,()=

28

where is the timestamp of the first event in LPi’s events list (which is assumed to be

sorted in non-decreasing timestamps order), is the logical timestamp of the smallest of

all messages that LPi has sent out which may or may not have been received by their

intended receivers and about which LPi does not know, and n is the number of LP’s. is

the next event time of LPi, and is the smallest unreceived message time of LPi. The next

event time of LPi is maintained as the smallest logical time in LPi’s event list. The

smallest unreceived message time can be updated at two times during the execution of the

simulation: (1) when a message is sent to another LP and (2) when a message

acknowledgment is received. These two values are maintained locally. Accordingly, is

the minimum next event time and is the minimum unreceived message time for all LP’s.

One method of correctly maintaining across all processors is to use message

acknowledgment schemes which are based on the computation of reduced values. (See

Chapter 4.) Messages can be acknowledged with a tagged selective reduction operation,

such that a particular message can be identified. (See Section 3.5.4.).

These values, along with synchronization algorithms to correctly maintain them,

are sufficient to eliminate causality errors and support deadlock-free parallel simulation

even when message traffic is always present. The maintenance of takes into account the

messages that are in transit in the host communication network. The elimination of

causality errors allows an LP to recognize when it can commit to processing an irreversible

act such as I/O. Details can be found in [REYN92].

3.1.2. Reduced Values in Optimistic Parallel Simulations

In an optimistic PDES synchronization protocol, such as Time Warp [JEFF85], GVT

can be efficiently computed by an LP at any time using our framework (See [SRRE93b]).

To compute GVT, two globally reduced values across all LPi’s, i = 1, 2, …, n, where n is

ηi

υi

ηi

υi

ηi

η′

υ′

υ′

υ′

27

3.1. Reduced Values in Parallel Simulations

As defined in Chapter 2, a reduced value is the result of a binary, associative

operation. In this section we present reduced values that are useful in parallel simulations.

For simplicity, we assume all reduced values are computed globally, across n logical

processes. In Chapter 5, we introduce the notion of target-specific reductions.

A small set of globally reduced values can describe the synchronization state of any

parallel simulation. To do so, each logical process (LP) must maintain local counterparts to

each global value. These values are logical timestamps, so we refer to them as T-values. The

upper case “T” in the “T-values” signifies logical time, which is the range of these functions,

as against real time, which is their domain. While each T-value is a actually function of real

time, for example is the T-value for the local clock of LPi at real time t, we will only

use the function notation when it is necessary to reference a T-value at a particular instance

along the real time line. To compute a global T-value, each LP maintains a corresponding

local T-value, the local counterpart to the global T-value computation. In the next few

sections, we explore various T-values in parallel simulations. Each of the T-values we

present are computed in a reduction network.

3.1.1. Reduced Values in Conservative Parallel Simulations

A set of T-values to support a conservative PDES synchronization protocol have

been presented in detail [REYN92] [REPA92]. The T-values computed are , the minimum

next event time, and , the minimum logical timestamp of messages that have been sent

but not acknowledged. These global T-values are computed as follows:

, for all LPi, i = 1, 2, …, n

, for all LPi, i = 1, 2, …, n

σi t()

η′

υ′

η′ MINLPi
ηi()=

υ′ MINLPi
υi()=

26

reduction and dissemination of these synchronization values; and (3) synchronization

algorithms that guarantee that the reduced values represent a correct state. The computation

model is realizable on any closely coupled cluster of processors or any parallel machine.

This computation model is designed to ride the technology wave, such that as processors

and memories get faster, the framework can exploit these gains.We use the term

“framework” to describe the entire software/hardware ensemble meant to support PDES.

Our framework has been described extensively to date. (See [REYN91], [REYN92],

[REPA92], [PANC92], [REPS92], and [REPS93].) In this chapter we discuss our

contributions to the framework in three areas: the applicability of the framework to a wide

range of PDES synchronization protocols, the correctness criteria on which the framework

hardware is based, and the hardware component of the framework. In Section 3.1. we

discuss reduced values in parallel simulations. In Section 3.2. we present correctness

criteria for the computation and dissemination of multiple reduced values in a parallel

simulation. In Section 3.3. we describe the computation model for the computation and

dissemination of reduced values. This computation model adheres to the established

correctness criteria. In Section 3.4. we describe a suggested high-level implementation of

the computation model, and in Section 3.5. we give low-level details of this

implementation, based on the four-node prototype designed and built by the Departments

of Computer Science and Electrical Engineering at the University of Virginia. Details of the

electrical design for the prototype hardware have been completed by McGraw [MCGR93]

and Brown [BROW93]. In Section 3.6. we present some algorithms which execute on the

framework hardware and support parallel simulations. Throughout this chapter we make it

evident how the framework supports a wide range of PDES synchronization protocols.

25

3 A Framework for Parallel Discrete
Event Simulations

Our parallel discrete event simulation framework, first introduced by Reynolds

[REYN91], is a combination of hardware and algorithms in support of parallel simulations.

This framework, a low-level characterization of all PDES synchronization protocols,

provides a model for the efficient computation of critical synchronization values, such as

GVT, particularly in support of the rollback chip [FUTG92] and adaptive aggressive PDES

synchronization protocols [SRIN93]. The original framework, as proposed by Reynolds

[REYN91] [REYN92], outlined the three components of the framework and provided low-

level algorithms to support a conservative PDES. Our research contributions are built on

this work.

Reynolds and Pancerella [REPA92] first described specific functional and

implementation details of the hardware component of the framework. We presented the

prototype hardware design and applications of the hardware-based framework to a wide

range of PDES synchronization protocols [REPS92]. Finally, the framework was further

developed by Reynolds, Pancerella, and Srinivasan [REPS93] with criteria for its correct

operation, functional characteristics, description of a prototype hardware design, and

performance results first reported by Srinivasan [SRIN92]. Our contributions to the

framework, as presented in these publications, will be presented in this chapter.

The framework itself is comprised of both hardware and software to support PDES.

There are three components to this framework: (1) reduced values that characterize the state

of a parallel simulation; (2) an abstract computation model which is the mechanism for the

24

paths. The transitive closure of a directed graph G = (V, E) is defined as the graph

G* = (V, E*), where E* = {(LPi, LPj): there is a path from LPi to LPj in G}.

2.5. Summary and Conclusions

We have discussed concepts and terminology for parallel discrete event simulation,

reduction operations, networks which compute reductions, sorting networks, and directed

graph theory in preparation for the presentation of our results on the computation of

reductions in support of parallel discrete event simulation.

In the next chapter we present a reduction-based framework for parallel discrete

event simulations as introduced by Reynolds [REYN91] [REYN92]. In this chapter we

develop this framework with respect the applicability of the framework, the computation

model, the detailed hardware design, and correctness criteria. In Chapter 4 we present our

contributions with respect to the algorithmic component of the framework. In Chapter 5 and

Chapter 6 we present our contributions on the computation of target-specific reductions.

23

Both of these networks have width O(n) and depth O(log2 n), so the time complexity to sort

n items is O(log2 n). The AKS sorting network [AJKS83] is an optimal sorting network

with width O(n) and depth O(log n), but the associated constants are too large for this

network to be considered practical.

2.4. Directed Graph Theory and Terminology

Most PDES applications demonstrate a spatial locality: event messages tend to

follow static communication channels. Real life simulations that exhibit complete static

communication properties include logic networks, many queueing networks, and physics

simulations such as the Ising model. Hence, in practice, an LP only communicates with a

known, small set of other LP’s. Target-specific synchronization information for LPi is

computed using inputs from all LP’s that can directly or indirectly send it an event message,

based on these known properties of the communication topology. This is our motivation for

introducing some directed graph theory and its terminology.

A directed graph is a finite, nonempty vertex set V together with a (possibly empty)

edge set E of ordered pairs of distinct vertices. An edge from LPi to LPj, indicating that LPi

sends event messages to LPj, this is represented by (LPi, LPj). If there is a directed path

from LPi to LP j in the LP communication graph, then LPi is a predecessor of LPj. If there

is a directed edge from LPi to LPj, then LPi is an immediate predecessor of LPj. Likewise,

if there is a directed path from LPi to LPj, then LPj is a successor of LPi. If there is a directed

edge from LPi to LPj, then LPj is an immediate successor of LPi.

Given a directed graph representing an LP communication topology, it is desirable

to find out if there is a path from LPi to LPj for all vertex pairs because each predecessor of

LPj can have a direct or indirect impact on its state because event messages are sent along

22

calculations necessary to support structural analysis algorithms. The sum and max

calculations in the FEM are calculated alternately without processor synchronization.

Unlike the FEM, our hardware is designed to operate on a a set of input and output registers

which are treated as a single state vector, whereas the FEM uses a single input and a single

output register. (See Chapter 3.)

2.3.4. Thinking Machines CM-5 Supercomputer

The Thinking Machines CM-5 [THIN92] contains two separate networks for

different types of communication and synchronization: the data network is the primary

message-passing network in the machine and the control network provides hardware

support for common cooperative operations. The CM-5 control network [LEAD92]

supports “soft” barrier synchronization, global arithmetic and logical reduction operations,

parallel prefix and parallel suffix operations, and segmented parallel prefix operations. As

in the iPSC/2, the reduction operations the CM-5 require the complete synchronization of

all processors. All processors must call global operation functions with a contributed value,

and a global operation blocks until all processors enter it. Our framework hardware, on the

other hand, computes and disseminates globally reduced values on state vectors without the

coordination of the host processors; the reduction operations on the PRN are performed

continuously and asynchronously. Furthermore, the hardware design employs dedicated

processors to manage the high-speed I/O between from the reduction network and itself.

2.3.5. Sorting Networks

There is a multitude of literature on parallel sorting and sorting networks. We limit

our discussion to a class of practical sorting networks and a theoretically optimal sorting

network. Batcher’s two sorting networks [BATC68], the odd-even merge network and the

bitonic sorting network, are both based on parallel merge sort and have similar properties.

21

optimal solution to the Multiple Criteria n-processor BSR problem is directly applicable to

the target-specific dissemination problem.

2.3. Related Architectures

Using a separate synchronization network for improving system performance is not

a new idea. The IBM RP3 [PFBG85] was designed as a shared memory multiprocessor that

houses both a combining network for synchronization traffic and a low latency network for

regular message traffic. In this section we discuss related hardware efforts for barrier

synchronization, computing reductions and sorting.

2.3.1. Hardware for Barrier Synchronization

Several researchers have proposed the use of hardware to implement barrier

synchronization. Hoshino [HOSH85] has an efficient barrier synchronization in the PAX

computer. Stone [STON90] suggests the use of global busses to compute maximum values

and to implement fetch-and-increment. The hardware that we propose, on the other hand,

provides support for a larger class of algorithms than barrier synchronization algorithms.

2.3.2. Intel iPSC/2

Many parallel architectures provide for global binary, associative operations across

all processors. Global operations on the Intel iPSC/2 [INTE89] are provided for arithmetic

and logical operations. There is no separate network to support this computation. All

computation is performed on the host processors and all communication is done in the data

network.

2.3.3. Finite Element Machine

The Finite Element Machine (FEM) [JOSC79], a NASA prototype, utilizes a binary

tree-structured max/summation network to perform the global sum and maximum

20

2.2.2. Minima of Interval Computation

A problem related to the segmented scan operation is the minima of intervals

operation [GIRY88]. This operation takes a vector a of integers and a vector int, inti = [li..ri],

of intervals, both of size n, and returns the array x, defined as follows:

, k ∈ inti

With the same complexity as the parallel prefix problem, the minima of intervals problem

can be solved in O(log n) with O(n) processors using a balanced binary tree method.

2.2.3. Broadcasting with Selective Reduction

Lindon and Akl [LIAK93] introduced the Broadcasting with Selective Reduction

(BSR) as an extension to the CRCW PRAM model of parallel computation. This operation

permits a broadcast operation to shared memory, such that a binary, associative operator ⊕

is applied to each data item whose tag satisfies the condition tag σ limit, where σ is the

selective operation. Linden and Akl show an optimal implementation for the BSR

operation of size O(n log n) and time complexity O(log n), where n is the total number of

processors and memory locations. This implementation combines sorting circuits, parallel

prefix circuits, and merging circuits. The sorting circuit is assumed to be an AKS sorting

circuit [AJKS83] which has optimal space and time complexities but an impractically large

multiplicative constant.

The Multiple Criteria n-processor BSR [LIAK93] allows multiple selection of the

data items to be reduced. Akl and Stojmenovic [AKST94] present a O(n2) switch solution

to this problem with time complexity of O(log n) and also state that it is an open problem

if there is a Multiple Criteria n-processor BSR implementation that requires a number of

switches asymptotically smaller than O(n2). The single criteria n-processor BSR

implementation is restricted to solving problems whose inputs obey a strict linear order. An

xi MIN ak()=

19

summations, logical AND’s, and logical OR’s. In the next sections we discuss types of

reduction computations and hardware efforts to compute reductions.

2.2.1. Parallel Prefix Operations

The all-prefix-sums operation takes a binary, associative operator ⊕, and an ordered

set of n elements [a0, a1, …, an-1], and returns the ordered set [a0, (a0 ⊕ a1), …, (a0 ⊕ a1 …

an-1)]. An array all-prefix-sums operation is called a scan. A reduction operation, therefore,

generates the final element of the scan. A segmented scan operation allows an array to be

operated on by a scan such that it is broken into segments with flags that allow the scan to

start again at each segment boundary. This requires two arrays, a, the data array, and f, the

flag array. The segmented scan can be defined by the following recurrence:

xi = a0, if i = 0

xi = ai, if fi = 1, 0 < i < n

xi = (xi-1 ⊕ ai), if fi = 0, 0 < i < n

These formal definitions and applications of scans have been published by Blelloch

[BLEL90], although scans were first introduced for the language APL [IVER62], and

segmented scans were first suggested by Schwartz [SCHW80].

Blelloch [BLEL89] proposed a tree-structured hardware implementation of parallel

prefix operations with O(n) components and O(log n) time complexity. The computation of

parallel prefix reductions is a subset of our problem of computing and disseminating target-

specific synchronization information, as discussed in Chapters 5 and 6.

18

discrete event simulation engine. Fujimoto initially targeted the Virtual Time Machine

[FUJI89] as hardware support for discrete event simulation, but this machine is now

intended to utilize an aggressive style of execution in a general purpose parallel computer.

Fujimoto, et. al., developed the rollback chip [FUTG92] as a hardware enhancement to a

Time Warp engine. The rollback chip is a memory management unit that facilitates the state

saving and restoration that is inherent in aggressive protocols such as Time Warp. As

reported in a study by Buzzell and Robb [BURO90], the chip has excellent performance

capabilities.

Filoque, et. al., [FIGP91] proposed the use of a processor network with

programmable logic for efficient global computations, such as the computation of GVT in

a Time Warp simulation. This hardware is not a single network like we introduce in Chapter

3; it is, however, a distributed system of sockets, one per processor. The reprogrammable

sockets are connected in a pipelined ring, forming the computation engine. A token is

inserted into the ring by a designated control socket. It travels around the ring, performing

partial computations at each socket. When the token returns to the controller, the global

computation is complete. Therefore, their proposed hardware performs global

computations in O(n) time whereas, our synchronization network computes reductions in

O(log n) time. (See Chapter 3.) Furthermore, the proposed synchronization algorithms for

computing GVT in Filoque’s network [FIGP91] rely on the host communication network

for message acknowledgments and our framework uses the framework hardware for this

purpose. (See Chapter 4.) The goals of both approaches are similar, but our framework is

more efficient, more flexible, and more scalable, as will be shown throughout this thesis.

2.2. Reduction Operations

We begin by defining a reduction. A reduction is a binary, associative operation ⊕

computed across n inputs. Examples of reductions include minimums, maximums,

17

Finally, in phase three LP’s process all events that have been determined to be safe. The

primary difference between any of these synchronization protocols is the method used to

determine which events can safely be processed concurrently. Iterative protocols are

accurate, aggressive or non-aggressive, with or without risk, and loosely synchronous.

Examples of iterative PDES synchronization protocols include the Bounded Lag

protocol [LUBA88a], the Moving Time Window protocol [SOBW88], Chandy and

Sherman’s protocol for converting conditional events into unconditional events [CHSH89],

an iterative algorithm based on the distance between objects [AYAN89], Nicol’s iterative

algorithm [NICO90] [NICO91], and the Global Windowing Algorithm [DICK93].

2.1.5. Hardware Support for PDES

The need for special-purpose hardware to support PDES is well established. In a

recent survey on the state-of-the-art in parallel simulation, Nicol and Fujimoto recognize

hardware support as one of six important areas of future research [NIFU92].

The use of special-purpose hardware to improve the performance of simulation

programs is not novel. Logic simulation engines have been constructed that yield

significant speedups [FRWW84]. Lubachevsky suggests using a special-purpose network

to broadcast a minimum event time in his Bounded Lag protocol [LUBA88]. This network

is a binary tree implemented in hardware in order to support synchronization barriers and

to compute and broadcast a minimum next event time. His control synchronization network

is presented strictly in support of the bounded lag protocol; nonetheless, this has served as

a motivating factor in our approach.

Hardware enhancements for Time Warp have been prevalent in the research; for

example, Livny and Manber suggested using token rings for disseminating GVT

[LIMA85]. One trend in hardware support for Time Warp is to design a high performance,

16

which significantly degrade performance in their telephone switching network simulation.

Mitra and Mitrani [MIMI84] and Lubachevsky [LUSW89] have developed models to show

that echoing can occur.

Many experimental results have been published on the performance of the Time

Warp parallel simulation synchronization protocol [BERR86], [JEBH85], [GILM88],

[LOCU88]. It has been demonstrated that Time Warp is a robust protocol across a wide

range of workload parameters [FUJI90b] and is not as sensitive to lookahead as the

conservative protocols. (See [GAFN88], [FUJI89b], [LILA89c], [LILA89d], [LILA89e],

[LILA90], and [LILA90b] for additional performance studies on Time Warp.)

The major advantage of optimistic PDES synchronization protocols is that more

parallelism can be extracted from some applications than with other PDES synchronization

protocols. Time Warp does not suffer from artificial blocking. This advantage, however,

comes at the cost of extra memory requirements and a more complex mechanism for state

saving and rollback. Fujimoto found that as the size of the state increased by a modest size

of 2000 bytes, the degradation of performance was reported to be 50% [FUJI89b]. The

degradation of performance in this case is a result of both state saving overhead and the

increased frequency of fossil collection.

2.1.4. Iterative PDES Synchronization Protocols

Conservative and optimistic protocols are both asynchronous protocols. Several

researchers have introduced PDES synchronization protocols which are loosely

synchronous (See [FOJO88]), such that LP’s process asynchronously and synchronize

periodically at barriers. These protocols proceed iteratively and synchronize at the end of

each of three phases. Phase one requires LP’s to determine the event with the smallest

timestamp in the system. In phase two LP’s determine which events are safe to process.

15

limits the amount of saved state information that an LP must have in memory at any time;

it also prevents rollback to the beginning of simulation time (unless GVT is equal to this

time). Also, GVT is used to show a guarantee of progress in a Time Warp simulation

[JESO85]. Furthermore, GVT can be used in termination detection, crash recovery, and

input and output handling.

There are three major challenges in optimistic protocols. First, the cost of periodic

state saving can be very high. The use of special-purpose hardware, the rollback chip

[FUTG92], can almost eliminate this cost. The problem with the rollback chip is that its

memory capacity is limited.

Second, optimistic protocols use more memory than sequential simulations due to

state saving and aggressive processing. Fossil collection, or garbage collection, is

necessary for an efficient implementation of Time Warp. Fossil collection involves

destroying state information that is older than GVT as a method of freeing up available

memory for currently saved states. Since state saving is such an integral part of the Time

Warp protocol, efficient memory management is critical to its performance. The cancelback

protocol [JEFF90], proposed by Jefferson, provides optimal storage management.

Performance studies [DAFU93] have shown that the GVT maintenance scheme is critical

to this memory management protocol. There are many proposed GVT computation

schemes. Representative ones include [JEFF85], [JESO85], [SAMA85], [LILA89b],

[BELL90], [COKE91], and [TOGA93].

The third main problem with a rollback-based simulation is that the process of

rolling back computation can degrade performance. A cascading rollback is a “chain

reaction” of rollbacks where the number of LP’s increases without bound [LUSW89].

Echoing is a pattern of self-fueled rollbacks whose amplitude increases without bound

[LUSW89]. Turner and Xu [TUXU92] have reported cascading rollbacks and echoing

14

unconditionally. Since events can be processed out-of-order, Time Warp employs state

saving and rollback as methods for repairing potential incorrect event sequencing.

Each LPi executing a Time Warp simulation maintains its own local virtual time

(LVT), which acts as the simulation clock for LPi. Each LP will save its state periodically.

When a causality error is detected, the LP restores a previous state that was saved before

the error occurred. State restoration, or rollback, involves resetting an LP’s local clock to a

time in the logical past. After an LP has completed a rollback, it can begin processing

forward in time. Unfortunately, due to the sending of event messages, a causality error

could be spread to other LP’s. To ensure accuracy, other LP’s must be notified of erroneous

messages.

If LPi discovers a causality error at logical time t, then any messages it has sent with

a timestamp greater than t are potentially in error. Time Warp employs antimessages as a

way to cancel event messages: each antimessage has the exact same content and format as

its corresponding event message, but it has a different sign. An antimessage may cause the

receiving LP to roll back, which may in turn cause more antimessages to be sent to other

LP’s. Event messages can be cancelled with either aggressive cancellation, where a

rollback message causes the immediate cancellation of all event messages sent with

timestamps greater than the timestamp on the rollback message, or lazy cancellation, where

events are cancelled only if during subsequent forward processing they are determined to

be in error. One rollback can cause a cascade of rollbacks. An LP, however, can never roll

back past the global virtual time (GVT) [JEFF85].

GVT is maintained across all LP’s: this is a simulation-wide safe time. GVT is the

guaranteed time for which all events with timestamps less than or equal to it have been

processed accurately. In other words, at any real time r, GVT(r) is defined to be the

minimum of all local clocks and of the timestamps of all transient messages [JEFF85]. GVT

13

Lookahead is the ability of an LP to predict its future behavior; in other words, if an LP has

received event messages up to logical time t, it can predict that any message it sends in the

future will have a timestamp of at least (t + ε) for some ε > 0. Researchers have shown that

minimum event processing times and lookahead values can produce significant

performance improvements in a non-aggressive PDES synchronization protocol. (See

[NIRE84], [FUJI87], [FUJI88], [REMM88], [NICO88], [NICO88b], [LILA89], [WALA89],

and [FEKL92b] for performance results on the effects of lookahead values.)

Conservative protocols require the communication topology to be static and known

a priori. Furthermore, these protocols do not efficiently support fully-connected

communication graphs. This usually requires excessive overheads such as broadcast

communication necessary to determine when it is safe to proceed. In general, conservative

protocols perform well on simulations with sparse topologies and good lookahead

properties.

2.1.3. Optimistic PDES Synchronization Protocols

The most common optimistic protocol is Time Warp [JEFF85]. Time Warp employs

maximal aggressiveness: each LP executes without regard to whether there are

synchronization conflicts (i.e. potential causality errors) with other LP’s. A protocol in this

class may do incorrect processing, and at some point, the incorrect results must be undone,

and the work redone correctly. These protocols are accurate, aggressive, asynchronous, and

without risk.

Under the Time Warp protocol, an LP processes messages from its input queue(s)

in monotonically non-decreasing timestamp order until it exhausts the queue(s) [JESO85];

hence, it never blocks or waits until it can safely process the next message. Time Warp

guarantees that a parallel simulation cannot deadlock if and only if all LP’s process events

12

synchronization protocols categorized with respect to aggressiveness, inaccuracy, risk and

synchrony. The names of the categories are common in the literature.

2.1.2. Conservative PDES Synchronization Protocols

Chandy and Misra [CHMI79] and Bryant [BRYA77] performed pioneering work in

this area independently. This class of protocols will never permit an LP to do incorrect

work; hence, each LP cannot proceed until it is guaranteed not to receive a message in its

logical past. In a conservative protocol, an LP will block until determines that it can safely

process an event. These protocols are accurate, non-aggressive, asynchronous, and without

risk.

The most significant disadvantage of conservative PDES synchronization protocols

is that the potential parallelism is not always fully exploited due to artificial blocking

[REYN82]. Artificial blocking occurs when LPi is blocked and waiting for a message from

an LP whose logical clock has already exceeded the message time of LPi’s pending

message. This artificial blocking occurs because LPi has insufficient information to

determine that it can safely advance its logical clock.

Blocking introduces the potential for deadlock. Deadlock occurs when a parallel

simulation has cycles where each LP in the cycle is blocked and waiting for a message from

another LP in the same cycle. There are many research efforts in deadlock handling. (See

[CHMI79], [MISR86], [PEWM79], [PEWM79b], [REYN82], [NICO84], [CHMI81],

[YUGD91], [DEGY91], and [LITR90] for different approaches to dealing with the deadlock

problem.) Either deadlock avoidance or deadlock detection and recovery is an overhead for

the simulation.

The performance of conservative PDES synchronization protocols just described is

greatly affected by the amount of lookahead that is possible in the specific application.

11

others. The performance of one protocol over another depends on the multiprocessor

architecture and the application being simulated. Traditionally, researchers have

categorized PDES synchronization protocols as either conservative or optimistic. This

classification is too restrictive; Reynolds has developed a set of design variables that define

a spectrum of options for parallel simulation synchronization protocols [REYN88].

Although nine design variables are defined, the four that are most relevant to our research

are aggressiveness, accuracy, risk and synchrony.

• Aggressiveness involves relaxing the requirement that event messages are
processed in a strict monotonic order with respect to message times. In other
words, an event can be processed by an LP without the guarantee of freedom
from causality errors. An LP that adheres to a non-aggressive policy will only
process a message if no message that logically precedes it can arrive at that LP.

• Accuracy requires that events within LP’s are ultimately processed in
monotonically non-decreasing order. In most cases, this requires that the set of
all final states for a given parallel simulation be equivalent to the set of all final
states for a sequential counterpart. Accuracy requires that all events have the
effect of having been processed in a monotonic sequence; aggressiveness does
not address this issue and is independent of accuracy.

• Risk is the design variable that allows an LP to send messages that have been
processed based on aggressive or inaccurate processing assumptions. A
protocol that employs aggressiveness without risk guarantees that all rollbacks
are strictly local to that LP. A risk message [REYN88] is a message that is the
product of actions taken based on incomplete (conditional; see [CHMI87])
knowledge or as a result of processing that leads to the transmission of out-of-
order messages. An LP is at risk if there exists a risk message at the head of at
least one of its input queues or if at least one of its input queues is empty.
Aggressive processing coupled with risk can create or pass along risk messages.

• Synchrony describes the amount of synchronization among LP’s. Parallel
simulation synchronization protocols can be asynchronous, loosely
synchronous, or synchronous.

It is important to remember that these design variables are orthogonal; hence, there

are several levels of synchronization protocols and not just the conservative/optimistic

dichotomy often found in the literature. We present a brief overview of parallel simulation

10

nature of LP’s logical clocks and communication delays among LP’s, there is no way of

guaranteeing that messages received by LPi occur in a specific order.

Figure 2.1 Example of a Causality Error in a Parallel Simulation.

It would appear that parallel simulation is a natural candidate for parallel

processing. However, unlike the many applications that exhibit good parallelizing

properties, PDES’s typically have irregular data-dependent properties. The LP’s operate

asynchronously, and global time does not easily map to a parallel computer. The major

challenges facing researchers in parallel simulation are to maximize the parallelism that can

be obtained in a PDES and, at the same time, to synchronize logical processes such that

each LP processes events in non-decreasing timestamp order.

Most of the research in PDES has been directed at solving the synchronization

problem such as the one depicted in Figure 2.1. Many parallel simulation synchronization

protocols have been proposed; Fujimoto [FUJI90] gives a good survey of this literature.

Each of the proposed protocols performs well under certain conditions and poorly under

30

50
60

80

G
lo

ba
l l

og
ic

al
 ti

m
e

LP1 LP2

30

50
60

80

G
lo

ba
l l

og
ic

al
 ti

m
e

LP1 LP2

40

(a) (b)

9

scheduled event will occur. Each LP maintains a relative counter, its logical clock, that

denotes how far that LP has progressed. It is very likely that logical clocks among LP’s

logical clocks will differ, and this asynchronous property of parallel simulation can

introduce a synchronization problem, the central problem in PDES since its inception. Each

LP maintains a data structure of events to be processed, its event list, and its logical clock

is advanced to the time of the event with the next logical time. Knowing when it is safe to

advance the logical clock of an LP is a difficult problem.

A causality error in a PDES occurs when event B depends on event A, and event B

is executed before event A. Observe the instance in Figure 2.1. In Figure 2.1(a), LP1 begins

to process its earliest event at logical time 30 and LP2 processes its event at logical time 60.

In Figure 2.1(b), LP1 has finished the processing of its event at time 30 which results in a

timestamped message sent to LP2. The receipt of this message causes an event to be

scheduled at LP2 with timestamp 40. In this example a causality error has occurred since

LP2 has executed events out of timestamp order. A parallel simulation will be correct if and

only if each LP ultimately processes events equivalent to a nondecreasing timestamp order.

Adherence to this local causality constraint is sufficient, though not always necessary, to

guarantee the absence of causality errors [FUJI90]. However, due to both the asynchronous

8

2.1. Parallel Discrete Event Simulation

Discrete event simulation is a common technique for modelling large systems, for

example, military applications, logic circuits, traffic systems, and telecommunication

networks. A sequential discrete event simulation may require the execution of millions of

events and as a result can take hours or days to complete. Parallel discrete event simulation

(PDES) is the process of executing a discrete event simulation on multiple processors with

the goal of reducing the finishing time of the equivalent sequential simulation.

Discrete event simulations often contain a high degree of potential parallelism;

however, in practice, they can be difficult to parallelize. Parallel simulation is a hard

problem because its very nature is data-dependent and asynchronous. As we will explain

in subsequent sections, most PDES’s deal with asynchronous systems where events are not

synchronized by a global clock but rather are dependent on other events in the system.

Synchronization of logical processes in a PDES has been the major focal point of PDES

research.

In the next section, we present a model of parallel simulation and introduce the

terminology necessary for describing our research contributions to PDES. We discuss

common synchronization protocols for implementing parallel simulations. Our framework

for PDES, described in Chapter 3, will support each of the protocols mentioned in this

chapter. Finally, we discuss hardware support for parallel simulations.

2.1.1. Model of PDES

A general model of a PDES has been described by Misra [MISR86]. A PDES

consists of a set of logical processes (LP’s) that model physical processes in a system. All

interactions among physical processes are modeled by event messages, or events, sent

among LP’s. Each message contains a timestamp indicating the logical time at which a

7

2 Background

Our research touches on the areas of parallel discrete event simulation, reduction

operations, networks which compute and disseminate the results of reduction operations,

and directed graph theory. We review the relevant literature and introduce terminology in

each of these areas.

Parallel discrete event simulation is the application which we support with the

computation of efficient reduction operations. Fujimoto has written an excellent survey of

PDES research prior to 1990 [FUJI90], and Nicol and Fujimoto have published current

PDES research topics since 1990 [NIFU92]. We present background research and related

work in PDES in Section 2.1.

Our research applies the efficient computation of reduction operations in hardware

to parallel simulation synchronization protocols. In Section 2.2. we discuss reduction

operations, and in Section 2.3. we present other networks which compute and disseminate

reduction results, including a discussion of sorting networks in Section 2.3.5. We include

the discussion of sorting networks because our best cost of computing target-specific

reductions (See Chapter 5) requires a sort, and we believe a solution to designing an

efficient target-specific parallel reduction network will likely have a sorting network as a

component.

The computation of target-specific reductions only supports parallel simulations

where the set of potential communicants is known prior to the execution of the simulation.

We review directed graph theory in Section 2.4. since many of these definitions are

necessary to the understanding of the target-specific problem and its solutions.

6

•the exploration of the cost of computing target-specific reductions, in general,
trade-offs in time and space complexities

•the best known results on the cost of computing target-specific reductions

•the utility of the target-specific reductions to both conservative and optimistic
parallel simulation synchronization protocols.

1.3. Thesis Overview

This thesis is organized as follows.

Chapter 2 offers a review of parallel discrete event simulation, reduction operations,

architecture support for computing reduced values, and related work.

Chapter 3 describes the computation model of our framework for parallel discrete

event simulation and its correctness.

Chapter 4 presents several algorithms for the acknowledgment of messages in a

reduction network and a proof of correctness of one of the more promising ones. Also,

performance issues of algorithms are discussed.

Chapter 5 explores time and space complexity issues related to target-specific

reductions.

Chapter 6 presents experimental results demonstrating the need for the rapid

dissemination of target-specific synchronization information in both conservative and

optimistic parallel discrete event simulations.

Chapter 7 offers conclusions drawn from this research, and offers avenues for future

work.

5

The framework as proposed by Reynolds [REYN91] includes the computation of

globally reduced values. We believe that in some cases globally reduced information is not

sufficient for logical processes in a PDES to make the necessary event processing decisions.

Globally reduced values only capture information about one logical processor (e.g. the

smallest logical clock in the system) or all processors (e.g. the total number of outstanding

messages). The dissemination of global information means that each logical process

receives information that is derived from the whole group’s inputs. In many PDES’s, each

logical process is only affected by the processing of a subset of the logical processes. By

providing target-specific reductions, where each logical process receives reduced

information from only those logical processes that have an impact on its performance (e.g.

all predecessors in a precedence graph), we expect significant performance gains

(measured in execution time, memory usage, or a combination of both) for parallel

simulations. A network to compute and disseminate target-specific reductions can provide

near-perfect state information to parallel simulation synchronization protocols. This is the

motivation for exploring the cost of computing and disseminating target-specific

reductions.

1.2. Contributions

This thesis contributes to the field of parallel discrete event simulation by

•the development of a hardware/software framework to support the wide range of
existing parallel simulation synchronization protocols and to influence the
development of new parallel simulation synchronization protocols

•the first significant research on the importance of reductions in parallel
simulations

•the exploration of several event message acknowledgment algorithms which use
a reduction network and remove all related load from a host communication
network

•the introduction of target-specific reductions to parallel discrete event
simulations

4

reductions for synchronizing PDES logical processes. Lubachevsky’s effort is quite limited

in scope, supporting of only the parallel simulation protocol he proposes.

Some ideal features of framework hardware to support synchronization in parallel

simulations are:

• Speed — The hardware must be designed to compute and disseminate
synchronization information very rapidly and with little overhead.

• Scalability — The hardware must be scalable.

• Adaptability — The hardware should be adaptable to current and future parallel
computers. Also, the framework should be designed to adapt to current
technology with ease.

• Generality — The hardware must be able to support a spectrum of parallel
simulation synchronization protocols [REYN88].

• Low cost — The hardware to support parallel simulation synchronization
protocols should not be expensive.

One of the primary motivations of our effort is the efficient computation of global

virtual time in an optimistic PDES protocol. Global virtual time is comprised of two

reduced values: the smallest logical clock in the system and the smallest time of a message

that has been sent but not yet received and processed by its intended receiver. In support of

this second component of GVT, it is necessary to keep track of outstanding messages or to

acknowledge messages once they have been received. Our solution to this problem is to use

the high-speed network, which computes reductions, to also acknowledge messages.

It is critical that the computation of reduced values proceed asynchronously to the

execution of the simulation and that neither the computation of the reductions nor the

simulation is blocked. Also, it is critical that the algorithms which support synchronization

and event message acknowledgments be correct. We have based our framework on formal

correctness criteria and have derived correctness proofs for message acknowledgment

algorithms.

3

are mechanisms of guaranteeing the correct execution of parallel simulations. Broadly

these protocols fall into two major classes, though there is a wide range of synchronization

protocols. One class is protocols that are accurate, non-aggressive, and without risk (using

terminology developed by Reynolds [REYN88]); these protocols are commonly referred to

as conservative protocols. Protocols that are non-aggressive and without risk do not allow

an LP to process an event with timestamp t, if it is possible that it will receive an event

message with timestamp r, r < t, at some point in the future. The second major class is

protocols that are accurate, aggressive, and with risk; these protocols are commonly called

optimistic protocols, and Time Warp [JEFF85] is the most common of the optimistic

protocols. Protocols that are aggressive and with risk allow an LP to process any event in

its event list, and any causality errors that result from aggressive processing are corrected

through a rollback mechanism. (See Chapter 2 for a more complete discussion of parallel

simulation synchronization protocols.)

The need for special-purpose hardware to support parallel simulations is well

established. The computation requirements for parallel simulations continue to grow. The

simulation of large communication networks and battlefield scenarios, for example, both

require a significant amount of computation time (sometimes weeks or more). In addition,

simulation programs, especially those employing aggressive processing, often utilize a

large amount of memory. The importance of research in the area of hardware support for

PDES has been recognized in a recent article on the state of the art in parallel simulation

[NIFU92].

Most of the research in hardware support for parallel simulations has been in

support of state saving and rollback in Time Warp simulations. The need for efficient

synchronization in parallel simulations has also been recognized, yet only one known

research effort [LUBA88] has considered hardware to support the efficient computation of

2

values, and 3) correct algorithms which execute on the hardware and use the reduced

values to support synchronization in a parallel simulation.

In this thesis we advance this framework in four major areas: 1) a computation

model for computing reductions in a parallel simulation, 2) a novel implementation of the

hardware portion of the framework, 3) novel, verified message acknowledgment

algorithms which execute on the framework hardware and are used to maintain a minimum

outstanding message time necessary in the computation of critical synchronization values,

and 4) a new class of reductions, namely target-specific reductions. We discuss motivations

for each.

1.1. Motivation and Objectives of this Research

When a discrete event simulation is partitioned for parallel execution, logical

processes (LP’s) model physical processes from the corresponding physical system. Each

logical process has an events list, a list of events to be executed, and a local clock, indicating

how far the simulation has progressed at that LP. Logical processes communicate through

the use of timestamped event messages, where an event message indicates a time that an

event will be scheduled in the events list of the receiving logical process. Logical processes

are largely asynchronous.

A result of this model of parallel discrete event simulation is a difficult

synchronization problem: each LP must determine when it is permissible to advance its

logical clock. If an LP advances its logical clock too far ahead of other LP’s, it may receive

an event message with a timestamp in its logical past, i.e., less than its local clock. A

causality error can occur when an LP receives a message with a timestamp in its logical

past. A causality error can led to incorrect results in the parallel simulation. Parallel discrete

event simulation synchronization protocols (sometimes called synchronization algorithms)

1

1 Introduction

Parallel discrete event simulation (PDES), or parallel simulation, is the execution

of a discrete event simulation on a parallel computer. It is an atypical parallel computing

problem: the computation is asynchronous yet there can be a significant amount of inter-

dependence among processes. This makes parallel simulation a challenging problem.

During his keynote address at the Seventh Workshop on Parallel and Distributed

Simulation (May 1993), Mani Chandy identified two key research contributions that

parallel discrete event simulation (PDES) [FUJI90] has made and is making to parallel

computing: 1) the development of techniques for efficient asynchronous computation and

2) the exploration of reduction operations (binary, associative operations). The majority of

the research in parallel simulation has been the development of synchronization protocols,

and this research is concentrated in the first research area. The only significant research in

the computation of reduction operations has been the development of algorithms for the

computation of global virtual time (GVT) in a Time Warp parallel simulation. The utility

of reduction operations has been greatly overlooked until now. The results presented in this

thesis make important contributions to the efficient computation of reduction operations in

support of parallel simulation.

A novel framework for parallel simulation was presented by Reynolds [REYN91].

This framework is a software/hardware ensemble for the efficient computation of

reductions and the dissemination of reduced values in support of parallel simulations. There

are three components to this framework: 1) reduced values which characterize the state of

a parallel simulation, 2) framework hardware to compute and disseminate the reduced

xiv

Copyright 1994.

Carmen Marie Pancerella

All Rights Reserved

May 1994

xiii

List of Symbols

(t) next event time of LPi at real time t

(t) minimum next event time of all LP’s at real time t

(t) smallest unreceived message time of LPi at real time t

(t) minimum unreceived message time of all LP’s at real time t

(t) logical clock of LPi as observed by APi at real time t

(t) smallest logical clock of all LP’s at real time t

logical clock of LPi at HPi at real time t

(t) T-value of primary acknowledgment by LPi at real time t

(t) smallest primary acknowledgment of all LP’s at real time t

(t) T-value of secondary acknowledgment by LPi at real time t

(t) smallest secondary acknowledgment of all LP’s at real time t

minimum timestamp of LPi that can be read by PRN at real time t;

 = MIN((t), (t))

ηi

η′

υi

υ′

σi

σ′

σi t()

ρi

ρ′

τi

τ′

µi t()

µi t() σi υi

xii

Figure 4.13 Effect of Load on Batch Size, where Number of Internal Events Is
10. .. 103

Figure 4.14 Effect of Load on Batch Size, where Number of Internal Events Is
2. .. 104

Chapter 5
Figure 5.1 An Example PDES Communication Topology. 109
Figure 5.2 An Instance of an Optimistic PDES. .. 111
Figure 5.3 An Instance of the Minimum Value in All Subsets Problem. 115
Figure 5.4 Memory Requirements of an O(n log n) Solution to the MVAS

Problem. ... 117
Figure 5.5 Divide-and-Conquer Partitioning of MVAS Problem. 119
Figure 5.6 An Instance of the Minimum Value in All Subsets Problem

Assuming Pointers. .. 122
Figure 5.7 After Minimum Value Assigned to Set S1. 123
Figure 5.8 Lattice Used to Store Preprocessed Subset Information. 124
Table 5.1 Family of Solutions. ... 127
Figure 5.9 A Target-specific Parallel Reduction Network. 128

Chapter 6
Figure 6.1 Linear Topology With Four LP’s. .. 137
Figure 6.2 Results of Linear Topology with Four LP’s. 138
Figure 6.3 A Fan-out Topology With Eight LP’s. 139
Figure 6.4 A Fan-In Topology With Eight LP’s. .. 140
Figure 6.5 A Fan-in/ Fan-out Topology With Eight LP’s. 140
Figure 6.6 A Fan-in/ Fan-out Topology With Eight LP’s. 141
Figure 6.7 A Fan-in/ Fan-out Topology With Eight LP’s. 141
Figure 6.8 Results of Fan-out Topology With Eight LP’s. 142
Figure 6.9 Results of Fan-in Topology With Eight LP’s. 143
Figure 6.10 Results of Topology With Eight LP’s in Figure 6.5. 144
Figure 6.11 Results of Topology With Eight LP’s in Figure 6.6. 145
Figure 6.12 Results of Topology of Eight LP’s in Figure 6.7. 146
Figure 6.13 Results of Linear Topology of Sixteen LP’s. 147
Figure 6.14 Results of Fan-out Topology of Sixteen LP’s. 148
Figure 6.15 Results of Fan-in Topology of Sixteen LP’s. 149
Figure 6.16 Results of Fan-in/ Fan-out Topology of Sixteen LP’s. 150
Figure 6.17 Results of Linear Topology of 32 LP’s. 151
Figure 6.18 Results of Fan-out Topology of Sixteen LP’s. 152
Figure 6.19 Results of Fan-in Topology of 32 LP’s. 153
Figure 6.20 Results of Fan-in/ Fan-out Topology of 32 LP’s. 154

Chapter 7

xi

List of Figures and Tables

Chapter 1

Chapter 2
Figure 2.1 Example of a Causality Error in a Parallel Simulation. 10

Chapter 3
Figure 3.1 Abstract Computation Model. .. 38
Figure 3.2 High-Level Hardware Description. .. 40
Figure 3.3 Auxiliary Processor. ... 43
Figure 3.4 Parallel Reduction Network. .. 45
Figure 3.5 An ALU Node in the Parallel Reduction Network. 47
Figure 3.6 Interface Between an Auxiliary Processor and the PRN. 49
Figure 4.7 Auxiliary Processor Algorithm Format. 55

Chapter 4
Figure 4.1 A Simple PDES Communication Topology. 60
Figure 4.2 Auxiliary Processor Algorithm. ... 63
Figure 4.3 Algorithms for Receiving Messages and Processing

Acknowledgments. .. 64
Figure 4.4 Modified Synchronization Algorithm Using Two-Phase

Acknowledgments. .. 70
Figure 4.5 GVT Computation Model. .. 75
Figure 4.6 Auxiliary Processor Algorithm for Single Phase

Acknowledgments. .. 80
Figure 4.7 Acknowledgment Algorithms Assuming Non-FIFO Channels

Between LP’s. .. 81
Figure 4.8 Acknowledgment Algorithms Assuming FIFO Channels Between

LP’s. ... 84
Figure 4.9 Effect of Load on Execution Time, where Number of Internal Events

Is 10. ... 99
Figure 4.10 Effect of Load on Execution Time, where Number of Internal

Events Is 2. ... 100
Figure 4.11 Effect of Load on Sizes of Lists, where Number of Internal Events

Is 10. ... 101
Figure 4.12 Effect of Load on Sizes of Lists, where Number of Internal Events

Is 2. ... 102

x

5.6. A Physical Realization of a Target-specific Reduction Network 127
5.7. Summary and Conclusions ... 129

Chapter 6 Performance of Global versus Target-specific Reductions 131
6.1. Simulation Algorithms .. 132

6.1.1. Conservative Simulation Algorithms ... 132
6.1.2. Optimistic Simulation Algorithms ... 133

6.2. Hardware Computation Model ... 134
6.3. Simulation Assumptions ... 135
6.4. Simulation Results .. 136

6.4.1. Topology of Four Logical Processes ... 137
6.4.2. Topologies of Eight Logical Processes .. 138
6.4.3. Results of Simulations with Eight LP’s 142
6.4.4. Results of Simulations with Sixteen LP’s 146
6.4.5. Results of Simulations with Thirty-two LP’s 150

6.5. Summary and Conclusions ... 154

Chapter 7 Conclusions .. 156
7.1. Summary of Work .. 156
7.2. Contributions .. 158
7.3. Future Research .. 161
7.4. Concluding Remarks ... 162

Bibliography .. 164

ix

4.4.4. General Description of Acknowledgment Algorithm 79
4.4.5. Non-FIFO Case .. 80
4.4.6. FIFO Case .. 83

4.5. Proof of Correctness of SPA ... 84
4.5.1. Properties of the Hardware and Algorithms 85

4.5.1.1. Properties of the Framework Hardware 85
4.5.1.2. Properties of the AP .. 86
4.5.1.3. Properties of the AP Algorithm .. 86
4.5.1.4. Properties of SPA .. 86

4.5.2. Overview of Lemma 4.1: GVTc(t) Is Monotonically Non-decreasing
As a Function of Real Time t ... 87

4.5.3. Overview of Theorem 4.1: GVTc approaches GVTa 89
4.5.4. Correctness of Round Robin Acknowledgments 92

4.6. Improvements of the Acknowledgment Algorithms 94
4.7. Discussion ... 95
4.8. Performance Results ... 96

4.8.1. Prototype Framework Hardware .. 96
4.8.2. Implementation of Acknowledgment Algorithms 97
4.8.3. Results of Experiments .. 98

4.9. Summary and Conclusions ... 105

Chapter 5 The Cost of Doing Target-specific Reductions 107
5.1. Target-specific Reductions in Parallel Simulations 108

5.1.1. Target-specific Reductions in Conservative PDES’s 108
5.1.2. Target-specific Reductions in Optimistic PDES’s 110
5.1.3. Target-specific Acknowledgment of Messages in PDES’s 111
5.1.4. Other Target-specific Reductions in PDES’s 112
5.1.5. Target-Specific Reductions in Other Parallel Computing

Applications ... 112
5.2. Problem Characteristics .. 113
5.3. Target-Specific Reduction Problem Definition 114

5.3.1. Upper Bound of the Target-Specific Minimum Value Problem .. 114
5.3.2. An Equivalent Problem .. 115

5.4. A O(n log n) Time Solution .. 116
5.4.1. Preprocessing ... 116
5.4.2. General Algorithm ... 117
5.4.3. Time Complexity Analysis .. 118
5.4.4. Space Complexity Analysis ... 118

5.5. A Family of Solutions to the Target-specific Dissemination Problem . 121
5.5.1. Solution Algorithm .. 123
5.5.2. Space Complexity Analysis ... 125
5.5.3. Time Complexity Analysis .. 125
5.5.4. A Family of Solutions .. 126

viii

Chapter 3 A Framework for Parallel Discrete Event Simulations 25
3.1. Reduced Values in Parallel Simulations ... 27

3.1.1. Reduced Values in Conservative Parallel Simulations 27
3.1.2. Reduced Values in Optimistic Parallel Simulations 28
3.1.3. Reduced Values as Lookahead Values in Parallel Simulations 29
3.1.4. Reduced Values in Iterative Parallel Simulations 30
3.1.5. Reduced Values as Termination Detection Conditions in Parallel

Simulations .. 30
3.2. Correctness Criteria for Computing Multiple Reduced Values 31
3.3. Abstract Computation Model .. 37
3.4. Functional Hardware Description .. 40
3.5. Detailed Hardware Design .. 42

3.5.1. Auxiliary Processor .. 42
3.5.2. Setup .. 43
3.5.3. Host Processor - Auxiliary Processor Interface 44
3.5.4. The Parallel Reduction Network .. 45
3.5.5. Auxiliary Processor-PRN Interface ... 48

3.5.5.1. Auxiliary Processor-PRN Interface: Input 49
3.5.5.2. Auxiliary Processor-PRN Interface: Output 52

3.6. Framework Algorithms ... 53
3.6.1. Host Processor Algorithms .. 54
3.6.2. Auxiliary Processor Algorithms .. 54

3.7. Summary and Conclusions ... 55

Chapter 4 Acknowledgment Messages in a Reduction Network 57
4.1. Efficiency Considerations of the Framework ... 58

4.1.1. A Significant Lag Time for Critical Synchronization Values 58
4.1.2. Additional Message Traffic in the Host Network 59
4.1.3. A Potential Race Condition ... 59

4.2. Acknowledging Messages in a Reduction Network 60
4.2.1. Host Processor Requirements for Acknowledgment Algorithms .. 61
4.2.2. Data Structures and Values Maintained by Each AP 62
4.2.3. A New T-Value for Message Acknowledgments 62
4.2.4. Auxiliary Processor Algorithms for Message Acknowledgments . 63
4.2.5. Performance ... 66
4.2.6. Batched Acknowledgments ... 67
4.2.7. Correctness ... 68

4.3. Two-Phase Acknowledgment ... 69
4.3.1. Performance ... 71

4.4. Single Phase Acknowledgment .. 71
4.4.1. Computing Global Virtual Time in a Reduction Network 73
4.4.2. Guaranteeing Unique Timestamps ... 75
4.4.3. Data Structures and Values Maintained by Each AP 78

vii

Table of Contents

Abstract ... iii

Acknowledgments .. iv

Dedication ... vi

Table of Contents .. vii

List of Figures ... xi

List of Symbols ... xiv

Chapter 1 Introduction ... 1
1.1. Motivation and Objectives of this Research ... 2
1.2. Contributions .. 5
1.3. Thesis Overview ... 6

Chapter 2 Background ... 7
2.1. Parallel Discrete Event Simulation ... 8

2.1.1. Model of PDES .. 8
2.1.2. Conservative PDES Synchronization Protocols 12
2.1.3. Optimistic PDES Synchronization Protocols 13
2.1.4. Iterative PDES Synchronization Protocols 16
2.1.5. Hardware Support for PDES .. 17

2.2. Reduction Operations ... 18
2.2.1. Parallel Prefix Operations .. 19
2.2.2. Minima of Interval Computation ... 20
2.2.3. Broadcasting with Selective Reduction ... 20

2.3. Related Architectures .. 21
2.3.1. Hardware for Barrier Synchronization .. 21
2.3.2. Intel iPSC/2 .. 21
2.3.3. Finite Element Machine ... 21
2.3.4. Thinking Machines CM-5 Supercomputer 22
2.3.5. Sorting Networks ... 22

2.4. Directed Graph Theory and Terminology .. 23
2.5. Summary and Conclusions ... 24

vi

Dedication

I dedicate this dissertation to my parents, Barbara and Mauro Pancerella, whose

love and support are immeasurable. My love and gratitude are immeasurable.

v

I treasure the friendships that I have made while in graduate school. Bryan Catron and Paula

Gabbert Catron, Kevin and Julie Treu, Pat and Cindy Heck, Ray Wagner, and Phil Dickens are my

old-timer friends, in whose footsteps I followed. I cherish the memories of cookouts, softball

championships, pinochle games, and good times. I thank Rachel Lorey and Karen LeMaire, both

roommates and close friends, for sharing cooking responsibilities and for being supportive during

difficult times. Finally, I thank my friends and drinking buddies Mark and Ann Bailey, Ed Loyot,

Mike Krell, and especially Mike Delong for the many happy hours, lunches, and griping sessions

that we shared.

I thank Tim Strayer, my best friend, for many things: the pleasant diversions from my

graduate studies, the dinners he cooked for me while I studied for comps, the innumerable pep talks

that he gave me along the way, the strong shoulders that I have cried on many times, the encouraging

and entertaining long-distance email that he sent me during the final days of my dissertation, and

his continued love and support. I look forward with great anticipation to spending time with him

now that we’re both out of grad school.

I personally thank Amy Fellin Caputo, Donna Makara Dudeck, Megan Evans, Karen

Yeager Gorel and their families for the encouraging words they’ve given me through high school,

college, and graduate school. I am blessed with their friendships. I especially thank Amy and Nick

for the hospitality of the Caputo Country Inn in Richmond, Virginia, a home away from home.

I am blessed with a wonderful brother and a sister. I thank Tony and his wife Mary Beth for

being supportive of my ambitions. I thank Chris for her love and friendship; the eight years between

us have disappeared, and I feel her presence with me everyday. I’ll never forgive myself for missing

her graduation from Penn State to finish my dissertation.

My parents are the people who have taught me the importance of education. This is one of

the most valuable lessons I have learned from them. I thank them for their encouragement while I

pursued my Ph.D. and for always seeing the light at the end of this tunnel, even when I couldn’t.

I’ll never be more than a heartbeat away from them.

This work was supported in part by NSF Grant #CCR-9108448, JPL Contract #957721,

NASA Grant NAG-1-1529, and NSF IIP Grant CDA-89-22545-03.

iv

Acknowledgments

First I thank my advisor Paul Reynolds for many things. His initial framework was a gold

mine of exciting research, and I’m happy to have had the chance to develop this framework here.

Second I thank Paul for pushing me when I needed a push and pulling me when I needed to be

pulled. Finally, I thank Paul for his advice, even when I didn’t take it.

I thank my committee members Andrew Grimshaw, Worthy Martin, Jim Cohoon, and Ron

Williams for their effort and guidance during this entire research project. They have made many

suggestions which make this work stronger. I extend a special thanks to Jim Cohoon for his helpful

advice throughout my graduate career; he has been always been a strong supporter of my work, and

I am grateful to him. I also thank Jim Ortega, the department chair, and the entire CS faculty, for

supporting my graduation “under the wire”.

The results that appear in Chapter 5 will never show the amount of time spent nor the

number of dead ends travelled. I thank Jeff Salowe, Gabe Robins, and Jim Cohoon for the time I

spent with them working on the theory behind this problem. Also, I discussed this problem with

several students: Kevin Treu, Phil Dickens, Ray Wagner, Bronis de Supinski, Sudhir Srinivasan,

and Craig Williams were all generous enough to take time away from their research to brainstorm

about this problem. I thank Sudhir also for proof-reading the algorithms and proofs in Chapter 4 and

for his help when I implemented the algorithms on our prototype hardware. His comments were

invaluable. Finally, I thank Ken Ruggaber, whose simulation code I used to implement the

acknowledgment algorithms. His programming efforts on the PRN made my life much easier.

I thank Mark Smith, Ray Lubinsky, Gina Bull, and Ann Bailey for their excellence in

systems administration. I thank Ginny Hilton, Carolyn Duprey, Kim Gregg, Barbara Graves, Pam

Evans, Chris Byars, Brenda Lynch, and Tammy Ramsey for all the paperwork they’ve prepared on

my behalf. I especially thank Tammy for working with me to graduate on time.

iii

Abstract

Building on Reynolds’s hardware/software framework for parallel discrete event

simulation (PDES), we establish a number of novel and best known results based on the use

of reduction-based computing to support PDES.

We demonstrate the utility of reduction-based computing to a spectrum of well-

known PDES synchronization protocols, such as conservative techniques and Time Warp.

We enhance the hardware portion of this framework at three levels: 1) we define a virtual

computation model, 2) we develop a functional design, and 3) we present a detailed

implementation of this design. Each of the preceding steps is based on correctness criteria

we establish here. We develop novel algorithms for performing reduction-based message

acknowledgments. We prove the correctness of one of them, a single phase

acknowledgment algorithm that takes advantage of the existence of global virtual time.

Finally, we introduce target-specific reductions, a very promising strategy for

disseminating near-perfect state information in PDES’s. A target-specific reduction is one

where each logical process receives synchronization information (reduced values) only

from those logical processes on which it is logically dependent. We demonstrate that the

computation of target-specific values can have a sub-quadratic sequential time complexity.

Supporting empirical results clearly demonstrate that target-specific reductions will

provide significant time and space savings in PDES’s.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy (Computer Science)

Carmen M. Pancerella

This dissertation has been read and approved by the Examining Committee:

Dissertation Advisor: Paul F. Reynolds, Jr.

Committee Chair: James Cohoon

Committee Member: Andrew S. Grimshaw

Committee Member: Worthy Martin

Curriculum Representative: Ronald Williams

Accepted for the School of Engineering and Applied Science:

Dean Edgar A. Starke, Jr.
School of Engineering and Applied Science

May 1994

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Reduction Operations in Parallel Discrete Event Simulations

Carmen M. Pancerella

May 1994

