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Abstract

Accurate failure prediction in Grids is critical for
reasoning about QO0S guarantees such as job
completion time and availability. Statistical methods
can be used but they suffer from the fact that they are
based on assumptions, such as time-homogeneity, that
are often not true. In particular, periodic failures are
not modeled well by statistical methods. In this paper,
we present an alternative mechanism for failure
prediction in which periodic failures are first
determined and then filtered from the failure list. The
remaining failures are then used in a traditional
datistical method. We show that the use of pre-
filtering leads to an order of magnitude better
predictions.

1. Introduction

Ensuring QoS properties such as job completion
time or availability in grids often requires predicting

whether a particular resource such as a host will be

functioning over some time interval [21, 23, 24, 5].
For example, if we wish to start at timiea jobJ that

takes 8 CPU hours and guarantee that it will complete

at some tim@+8 on a hosH with probabilityP, then
we need to be able to determine the probability thet t
host will continue to function over that intervaff we

cannot find some host that meets these requirements

then we may need to search for two or more hosts s
that we can run multiple copies dfand know that,
with probabilityP, at least one copy dfwill complete.
The problem is how do we estimate the probabilities.
More formally, letit be a time interval with a start
time and a stop time, and [Bt(4it) be the probability
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that hostH; will function over the intervalit. How do

we compute thé;’s? One obvious solution is to use
statistical methods based on historical data of the up
and down states of the machines. The problem, as
we'll see in Section 4, is that statistical models
perform very poorly in environments where there are a
significant number of periodic events such as when
machines are automatically rebooted on some
schedule, when some machines are turned off each
night, or when weekly backups take machines off-line.
Indeed, in shared workstation environments, if we
model a host as being unavailable or “down” when a
user is at the keyboard, one can observe regular
patterns of availability.

To address the shortcomings of traditional statistic
techniques in failure prediction in large-scale grids
composed on resources controlled by others, we have
developed diltered failure prediction model (FFP).

The basic idea of FFP is simple - we assume that we
have an event history for each host that consists o
series of UP/DOWN events. We first determine
periodic events, note them, filter them out, and then
pass the remaining events onto a traditional stadistic
method. Then, to computB(Jt), we first check
against periodic failures, and if not affected by a
periodic failure, use the statistical method to
determine the probability of success. We have found
that FFP significantly outperforms time-homogeneous
statistical techniques — allowing us to provide more
accurate QoS bounds.

The remainder of this paper is as follows. We
begin with a thorough examination of statistical
techniques and why they do not work well in an
environment with periodic events. We then present
FFP in detail, including the results using FFP versus a
standard method on a large number of machines at the



University of Virginia. We conclude with a summary distribution is about the length of process lifetime

and discussion of future work. when it finishes normally. They do not include the
termination of a job from errors and resource failure.
2. Related Work The emergence of Grid as a new distributed

computing platform has fostered many studies on

There has been a great deal of work on ana|yzingresource aV&l'abl'lty/re“abl“ty prediction in Grid [5,
events and building models for machine/resource 23, 4, 27]. Brevik et al.[5] compare parametric and
behavior. non-parametric methods for predicting machine

Some have focused on ana|yzing error and failure aV&I'abl'lty Their result shows that a non-paralinetr
event logs [16, 18, 24]. The work of Lin et al.[18] is @pproach is better in most experiments in estimating
similar to our approach in the sense that they see thdhe lower bound of a given quantile, especially when
failures and errors due to multiple sources, not athe sample size is small. A non-parametric approach
single source. They separate sources of errors intdS very useful when the distribution is not easy to be
intermittent and transient, and provide a set of rulesfitted by parametric methods as in our case. However,
for fault prediction. They show that the time between the problem with non-parametric approaches is that
errors from each separate source follows a Weibullthey are geared toward testing assertions rather than
distribution and the combined errors cannot be estimation of effects. From a practical viewpoint, a
modeled by any well-known distributions. However, job scheduler needs to estimate and quantify the
their approach uses information obtained in a reliability at some specific time to test and compare
controlled environment. In Grids, we have very the fitness of the resources. Our work shows that
limited control on resources and the available Parametric approaches are problematic in the presence
information about resource error and failure. of periodic failures, but the distribution can be fitted
Therefore, the approach of Lin et al. cannot be usedusing parametric methods after filtering of periodic
for our research as it stands. Our approach does nofailures. Ren et al.[23] used a semi-Markov model to
rely on detailed information from a resource. In the make a long-term prediction of machine availability.
extreme case, the only information that we can get isA semi-Markov model can make more accurate
p|ng results to check the liveness of a resource. predictions than an ordinary Markov model with the

Sahoor et al.[24] discussed critical event prediction €xpense of much higher computational complexity
in terms of proactive management in autonomic [20].  Our work complements their approach by
computing. This study does critical event prediction filtering periodic unavailability before the modeling
in large-scale computer clusters. They suggest the us@nd prediction of non-periodic events.
of linear time-series models and rule-based Despite the large body of work on error/failure
classification techniques to do rare event prediction. prediction, the absence of any research on periodic
The prediction is made by detecting occurrences of aresource unavailability as a separate source of failure
set of event types in a time window. This approach and modeling of them to make a prediction in job
also assumes that a predictor has detailed informatiorscheduling is the motivation of our study in this paper.
about event types, which is rarely available in Grid.

The preprocessing of the original data set of events3. Input Data
to simplify analysis has been done before, e.g., [16]
and [17]. However, the technigues have been mostly To understand the behavior of a large collection of
used to eliminate redundant information such as machines, we set up a monitoring environment at the
successive repeated errors. In our case, the originaUniversity of Virginia [14] that collected up/down
series of events are preprocessed to separate periodioformation at 5-minute intervals for over 700
events from non-periodic events. machines over a three-month period. We observed

The concept that a resource’s lifetime follows some that the machines fell into two broad classes —
kind of statistical distribution has existed for a long managed machines that experienced regular rebooting
time and has its basis in queuing theory. Some [6, 13]Jand those that did not. Rebooting is an instanceeof th
have used processes/machine lifetime distribution foridea of “software rejuvenation” [15]. The idea is to
load balancing. In [13], the process lifetime periodically restart software to prevent errors from
distribution is used to initiate dynamic migration. accumulating.

Typically, they all assume some probability Figure 1 below shows the inter-event time
distributions for the process lifetime. However, the distribution of failures for a single “managed”
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Figure 1. Inter-arrival intervals of failures on a “managedachine in
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Figure 2. Inter-arrival intervals of failures on a typicalrfmnanaged”
machine in minutes

machine. Each point represents a down-time. Tt
height of the point indicates the number of minute:
of uptime that preceded the failure. Note the larg
number of reboots at approximately 1440 minute
(one day). You can also see that occasionally tt
machine missed a reboot — and that schedule
reboots are not the only cause of reboot. Because
the reporting interval, the machine may appear t
have missed a reboot. That is not the case — rath:
it rebooted quickly enough to meet its next requiret
report-in. In the case of unmanaged machines, thc

two parameters, shaper
parameter, of a Weibull
empirical data [25].

For a resource which does not show periodic
failure, optimization-based model fitting techniques
work reasonably well if we choose the right model.
For example, Figure 3 shows that time-to-failure
(TTF)
distribution of an unmanaged machine can be
approximated by Weibull distribution. The fitted
exponential distribution shows a bigger gap than the
Weibull from the empirical distribution, but it can be
used when the exact estimate is not required.

In contrast, the distribution of resource with
periodic unavailability cannot be easily modeled by
any single well-known statistical distribution because
it does not resemble any one of them. In Figure 4, the
distribution of the managed machine shows sudden
discontinuity at 1440 minutes. This discontinuity
comes from the fact that the machine reboots exéry
hours. The empirical distribution obtained from a
managed machine cannot be easily approximated by

parameter and scale
distribution to fit the
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story is different. As shown in Figure 2, there is mfigure 3. Time-to-fail distribution of an unmanaged machined aits

clear pattern.
We will use this data set throughout the
remainder of the paper.

4. Standard Statistical M ethods

Given the problem of predicting uptimes, one
would normally think to use simple statistical
methods such as fitting the collected data to
continuous model. The exponential distribution [25
model is most common and easiest to use for failut
analysis. For a more exact estimate, a Weibu

itting to Weibull and exponential distribution
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distribution [25] is commonly used. Optimization- Figure 4. TTF distribution of a managed machine and itsnfiftito
based model fitting techniques such as MLEVeibulland exponential distribution

(Maximum Likelihood Estimator) can be used to get

any statistical distribution. And, as a consequenee, th
prediction from predictors that do not consider these
kinds of periodic resource unavailability can be either
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Figure 5. Time-to-fail distribution of a managed machine iaftiéering
out periodic failures and its fitting to Weibull dnexponential
distribution

inaccurate or totally wrong. For example, the
empirical distribution shows us that the probability of
a job to live longer than 24 hours is almost O.
However, the fitted models tell us that there is more
than a 30% chance of survivability after 24 hours,
which is totally misleading.

5. Filtered Failure Prediction

In the previous section, we showed that we can
model failures of a resource using ordinary statistical
methods but that the models perform poorly in the
presence of periodic events.

used again to fit the empirical time-to-fail distribution

to a Weibull and an exponential distribution. The
discontinuity observed in Figure 4 is gone and the
empirical distribution is more closely approximated
both by Weibull and exponential distribution with

smaller gaps. Therefore, if we assume there willde n
periodic failure in the future, we can more precisely
predict the reliability of a resource with approximated
statistical models.

This motivates us to proposEiltered Failure
Prediction (FFP) where periodic and non-periodic
failures are identified and treated as separate
independent sources.

In FFP, a sampled signal of resource up/down is fed
into a filter which detects and separates periodic
failure signals from the original. The filtered up/down
signal is used to build a model for reliability
prediction. Here, we use the Markov model for its
simplicity with reasonable precision. The Markov
model built from a filtered signal is called the filtdre
Markov model hereafter. If the sampled resource
up/down signal has a periodic component, it is
detected and used to predict the next time when the
resource is unavailable due to periodic failure.

Keep in mind that our objective is to predig{/t)
and that/t includes both a start time and a duration.
The reliability acquired from the filtered Markov
model is only valid when the expected execution time

In this section, we of a job does not span the next periodic failure point.

present a Filtered Failure Prediction technique whereThe reliability from FFP is the conditional probatyili
failures of a resource are categorized into periodic andthat the job’'s execution does not span the periodic

non-periodic to make a more effective prediction.
5.1. Filtered Failure Prediction M odel

Figure 5 shows what happens if periodic failures
are filtered out from the original signal. The same

failure point. Therefore, the final predicted relialili
can be summarized as follows:

reliability re(At)
= Probability(no failure overt | 4t does not span
the next periodic failure point)

up/down signal used to generate Figure 4 is used but a- reliabilityprediction from fitered Markov moddiIt)

periodic failures are removed from the signal. After
this filtering, optimization-based fitting techniques are
Filtered UP/DOWN signal
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Figure 6. The Markov model is built from filtered machine dg#n
signal. The information about periodic resourcauailability is also
obtained from the filtering

, Where
a=)1
b
For example, assume a resource has periodic
failures every 24 hours, its predicted reliability from
the filtered Markov model is 90% after 10 hours, and
its last periodic failure occurred at tirhe At t+5 and
t+15, the resource is requested to execute a job which
needs 10 hours CPU time and more than 80%
reliability. The first request can be accepted because
the resource is more reliable than is required (90% >

80%). However, the second request cannot be
accepted because its run spans the next periodic failure

if At doesnotspanghenextperiodicfailurepoint
otherwise
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q; Ay ) Qiy3 Figure 8. State transition diagram and its probability matrix
Figure 7. The sequence of “down” events. p is period &rid time o ) o
tolerance periodic down time for a periodic event tym&;ie ,
Py is:

point. Its reliability after 10 hours frott 10 is 0% (=
0*90%), not 90%. Next expected periodic down time =

min(a; ime + N"Px) > current wall clock time
5.2. Filtering of regular events where n=1,2,3...

The most common approach to finding periodicities 5.3, M odeling of non-periodic availability
is the fast Fourier transform. The fast Fourier
transform provides the means of transforming a signalOnce the failure history has been filtered and periodic
defined in the time domain into one defined in the events are removed, a model is built from the
frequency domain. However, using fast Fourier remaining non-periodic events. For our research, a
transform is inappropriate in our problem because thesimple Markov chain as in Figure 8 is used for
time information obtained from Grid is often modeling and prediction.
imprecise.  In Grid, geographical long distance  The reliability of a resource is calculated as the
between the resources and an entity that monitorsfollowing equation if a client requests to execute a job
resources can lead to imprecise time information, on it.
phase shift in periods. Therefore, instead of using fast reliabilityprediction from fitered Markov mod6h) :(ph)up'up
Fourier transform, we used a modified version of the
periodicity detection algorithm from the work of Ma et The monitoring interval should be chosen to
al.[19]. balance between the modeling accuracy and the

The algorithm takes as input the sequence of downcomputational cost. While we may have a more
eventsS={a, &, ...,a}. If the number of occurrence accurate model with a shorter monitoring interval, the
of periods 1 time - &.ime, IS bigger than the threshold, cost of monitoring and computation increase. In our
C,, the period is recognized as periodic. ~The experiment, a 5-minute interval is used to monitor the
algorithm uses chi-squared test to determine a 95%resources and the chain has only two states; up and
confidence level threshold. The number of period down.
occurrences is adjusted to accommodate the time The assumption behind the Markov chain is that
tolerance,d, of period length. After the lengths of sojourn time in each state follows exponential
periods are identified, we determine the wall clock distribution and the parametric modeling in the

time of the next periodic down event as follows: previous section shows that exponential distribution is
For each periog identified above: less accurate than Weibull. However, we assume
1. Get first eveng; from S such that p+ ¢ < @1 time - exponential distribution because of its analytical
Qi time <P+ 9 tractability. The shortcomings of the exponential
2. Count the number of eveaf such that & ime = distribution, such as memory-less property, is
dhme tN'ptd  (nN=1,23...) complemented using periodicity information which

3. If the total count from step 2 is over the threshold, tells the wall-clock time of the next periodic failur#.

C,, from the periodic detection algorithm, output more accurate modeling is required, then FFP can be

(aitime , P) and removey; of step 1 andy s of step 3 combined with a semi-Markov model which has a

from S different state sojourn time distribution such as

4. Else get nexd; for step 1, and repeat 1~4 Weibull or hypo-exponential with  additional
computational cost and complexity [23].

The wall clock times; ime S as the output of step 3 are

the basis times from which we can calculate the nextg Experiment and Results

expected periodic down time. The next expected
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: : : ‘ are the prediction error that indicates their prediction
osf - - Cmpiical-wihout periodic falures| inaccuracy. As expected, FFP is much more accurate
oBr N —empiicalwh periodic falures g than the ordinary Markov model. For instance, the

o ] prediction error at 15 hours in NFFP is more than

10% compared to less than 3% in FFP. Moreover, this
gap widens rapidly as the time increases in the
ordinary Markov model. In contrast, the increase of

the gap is much slower in FFP.

The large prediction error from NFFP is
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Time (in hours) problematic in job scheduling. For instance, when we
Figure 9. Empirical reliabilities and predicted reliabilitie$ FFP and include perlpdlc failures, the empirical reliability qﬁe
NFFP over time 24 hours is almost 0. However, the predicted

) _ o reliability from NFFP is about 18%. The scheduler
In this section, we compare the prediction accuracymay decide to give high redundancy to increase the
of FFP and traditional techniques and analyze thereliapility because the probability that at least afie

impact of periodicity on statistical modeling. them survives after 15 hours is more than 90%.
_ o However, this decision is wrong if we are aware &f th
6.1. Experiment on prediction accuracy fact that all computing resources are going to fail at

some specific period, particularly in 24 hours in this
To investigate the effectiveness of the FFP experiment. In the case of FFP, the scheduler can
described in the previous section, we compare themake a more accurate prediction because it knows the
predictive accuracy of an FFP to the ordinary Markov time when a resource is going to periodically fail and
model which does not detect and filter periodic the fact that the statistical reliability only haganing
failures. We call this ordinary Markov model a non- when the expected run does not span over the next
filtered failure prediction (NFFP) hereafter. A periodic failure point.
representative machine was chosen from the machines This prediction accuracy difference between FFP
described in Section 3, and the trace of 3 months fromand the ordinary Markov model is not particular to
the machine is divided into two parts, one month for one machine but can be found over all machines in the
training and the remaining two months for validation. experiment.  The average and 95% confidence
Empirical reliabilities are calculated by observing the intervals of a relative prediction error from 519
2-month validation data. In the case of FFP, empirical machines which have periodic failures are shown in
reliability is calculated from the same 2-month Figure 10. The relative prediction error is defined as
validation data but from which periodic failures are follows:
removed. The predicted and empirical reliabilities as
a function of time are shown in Figure 9. The upper . reliability, s = reliability e
two lines are the predictions from FFP and the  prediction_errorg, = r:'}abili :
.. e Ltpeas . lypredicled
empirical reliabilities from a trace from which
periodic failures are removed, and the two lines below . . . -
are the predictions from NFFP and the empirical Figure 10 is the relgtlve predlctlon_ errors from
reliabilities from an original trace respectively. NFFI_D and FFP respectively. We again see that _the
While the prediction from NFFP tells the r(_elat_l\_/e prediction error of an unfiltered model is
significant compared to the filtered model. The
confidence interval is very small because all machine
used in the experiment are homogeneous and under
the same management policy. The confidence interval
is likely to be larger in other environments.

probability that no failures will happen during a given
time interval without consideration of periodic
failures, the prediction from FFP is the conditional
probability that no failures will happen if the time
window does not span the next periodic failure point.
The gaps between the empirical reliabilities and
predicted reliability from each model, NFFP and FFP,
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6.2. Analysis
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Figure 11.Autocorrelations of filtered and unfiltered timeftol series

To understand the effect of periodic resource
unavailability on predictability, we did the same
analysis as in [27].

We first plot the autocorrelations of filtered and

unfiltered time-to-fail series from a managed machine Hurst parameter is closer to 1.

in Figure 11.
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Figure 13.Self-similarity of filtered time-to-fail series

We can also think predictability in terms of self-
similarity. As stated in [27], high autocorrelation
often implies self-similarity which often is the
manifestation of an unpredictable chaotic series.

Figures 12 and 13 shows pox plot [17] for
unfiltered and filtered time-to-fail series respectively
The respective Hurst parameters from the pox plots
are 0.79 and 0.66. A series is more self-similar if its
The higher Hurst
parameter of the original time-to-fail series without

The autocorrelation as a function of previous lags filtering suggests to us that the series can be more

reveals how time-to-fail changes over time.

The chaotic

than the filtered. One interesting

autocorrelation of an unfiltered series is much higher characteristic of chaotic series is that, even thabegh
than the filtered series and this implies that theetim Series looks similar to random series, a pattern exists

to-fail changes relatively slowly. This slow decay i

the autocorrelation can be useful for models as theSimilarity seems more chaotic at first glance.

in the series. However, a series with high self-

As a

linear time series model in [8] which uses the consequence, the series is less predictable in practical
relationship between current and previous lags. Viewpoint [22]. On self-similarity, see [7, 9, 10, 11,
However, most other statistical models including the 17, 26, 2].

Markov model relies on the fact that a current state

and next state have very limited dependence.7. Summary and Future Work

Therefore, we believe that the high autocorrelation

Accurate prediction of resource availability is

spoils the predictability of models which assumes critical to providing completion time, availability, dn

limited dependence between lags. We do not considerother

quality of service guarantees. Accurate

using linear time series models because even thouglprediction using statistical methods is difficult in the

the model shows good performance in short-term presence of periodic events.

While periodic, some

prediction, its prediction accuracy deteriorates rapidly resources may claim a particular behavior — it may not
as the length of time window to predict increases [23]. always be prudent to trust the information.

For reliability prediction, long-term prediction, for

We have developed FFP - the Filtered Failure

example reliability after 24 hours, is very typical, and Prediction method that extends traditional statistical

this makes a linear time series model less suitable.

methods by first filtering out periodic events.

FFP



outperforms  both  exponential and  Weibull
distributions by more than a factor of 10 in predicting
whether a resource will be available for a particular
interval. The improvements are particularly

pronounced as the time interval approaches the

periodic failure interval.

IEEE Computer Society, Washington, DC, USA, 1999, pp.
10.

[9] M. W. Garrett and W. Willinger, Analysis, Modeling

and Generation of Self-Similar VBR Video Traffic,

SIGCOMM, 1994, pp. 269-280.

[10] M. E. Gomez and V. Santonja, Analysis of Self-
Similarity in /O Workload Using Structural Modeling,

We next plan to integrate FFP into the Genesis Il MASCOTS '99: Proceedings of the 7th International

[1] grid system being developed at the University of
Virginia. FFP will be integrated into the Genesis Il
implementation of the OGSA Basic Execution
Services (BES)[12] activity factory. BES activity

Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, IEEE Computer
Society, Washington, DC, USA, 1999, pp. 234.

[11] S. D. Gribble, G. S. Manku, D. S. Roselli, E. A.

factories take activity documents as parameters. Eaclprewer, T. J. Gibson and E. L. Miller, Self-Similarity

activity document contains a JDSL [3] document that

describes the job (including optionally the amount of
time the job will consume). Activity documents may

File Systems, Measurement and Modeling of Computer
Systems, 1998, pp. 141-150.

[12] A. Grimshaw, S. Newhousr, D. Pulsipher and M.
Morgan, OGSA Basic Execution Service Version 1.0, Open

also contain other sub-documents as extensibility grig Forum, 2006.

elements. We will extend the BES activity document

[13] M. Harchol-Balter and A. B. Downey, Exploiting

to contain a dependability document that specifies Process Lifetime Distributions for Dynamic Load Balancing,

both the “price” the user is willing to pay as well as
the reliability they require. FFP will allow us to kea
those guarantees.
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