
Failure Prediction in Computational Grids1 
 
 
 

Woochul Kang and Andrew Grimshaw 
University of Virginia 

{wk5f, grimshaw}@cs.virginia.edu 
 
 

 

                                                        
1 Partially funded by NSF-SCI-0426972. 

Abstract 
 

Accurate failure prediction in Grids is critical for 
reasoning about QoS guarantees such as job 
completion time and availability.  Statistical methods 
can be used but they suffer from the fact that they are 
based on assumptions, such as time-homogeneity, that 
are often not true. In particular, periodic failures are 
not modeled well by statistical methods. In this paper, 
we present an alternative mechanism for failure 
prediction in which periodic failures are first 
determined and then filtered from the failure list.  The 
remaining failures are then used in a traditional 
statistical method.  We show that the use of pre-
filtering leads to an order of magnitude better 
predictions. 

 
1. Introduction 

 
Ensuring QoS properties such as job completion 

time or availability in grids often requires predicting 
whether a particular resource such as a host will be 
functioning over some time interval [21, 23, 24, 5].  
For example, if we wish to start at time T a job J that 
takes 8 CPU hours and guarantee that it will complete 
at some time T+8 on a host H with probability P, then 
we need to be able to determine the probability that the 
host will continue to function over that interval.  If we 
cannot find some host that meets these requirements, 
then we may need to search for two or more hosts so 
that we can run multiple copies of J and know that, 
with probability P, at least one copy of J will complete.  
The problem is how do we estimate the probabilities. 

More formally, let ∆t be a time interval with a start 
time and a stop time, and let Pi(∆t) be the probability 

that host Hi will function over the interval ∆t.  How do 
we compute the Pi’s?  One obvious solution is to use 
statistical methods based on historical data of the up 
and down states of the machines.  The problem, as 
we’ll see in Section 4, is that statistical models 
perform very poorly in environments where there are a 
significant number of periodic events such as when 
machines are automatically rebooted on some 
schedule, when some machines are turned off each 
night, or when weekly backups take machines off-line.  
Indeed, in shared workstation environments, if we 
model a host as being unavailable or “down” when a 
user is at the keyboard, one can observe regular 
patterns of availability. 

To address the shortcomings of traditional statistic 
techniques in failure prediction in large-scale grids 
composed on resources controlled by others, we have 
developed a filtered failure prediction model (FFP).  
The basic idea of FFP is simple - we assume that we 
have an event history for each host that consists of a 
series of UP/DOWN events.  We first determine 
periodic events, note them, filter them out, and then 
pass the remaining events onto a traditional statistical 
method.  Then, to compute Pi(∆t), we first check 
against periodic failures, and if not affected by a 
periodic failure, use the statistical method to 
determine the probability of success.  We have found 
that FFP significantly outperforms time-homogeneous 
statistical techniques – allowing us to provide more 
accurate QoS bounds. 

The remainder of this paper is as follows.  We 
begin with a thorough examination of statistical 
techniques and why they do not work well in an 
environment with periodic events.  We then present 
FFP in detail, including the results using FFP versus a 
standard method on a large number of machines at the 



University of Virginia.  We conclude with a summary 
and discussion of future work. 
 
2. Related Work 
 

There has been a great deal of work on analyzing 
events and building models for machine/resource 
behavior. 

Some have focused on analyzing error and failure 
event logs [16, 18, 24].  The work of Lin et al.[18] is 
similar to our approach in the sense that they see the 
failures and errors due to multiple sources, not a 
single source.  They separate sources of errors into 
intermittent and transient, and provide a set of rules 
for fault prediction.  They show that the time between 
errors from each separate source follows a Weibull 
distribution and the combined errors cannot be 
modeled by any well-known distributions.  However, 
their approach uses information obtained in a 
controlled environment.  In Grids, we have very 
limited control on resources and the available 
information about resource error and failure.  
Therefore, the approach of Lin et al. cannot be used 
for our research as it stands.  Our approach does not 
rely on detailed information from a resource.  In the 
extreme case, the only information that we can get is 
ping results to check the liveness of a resource. 

Sahoor et al.[24] discussed critical event prediction 
in terms of proactive management in autonomic 
computing.  This study does critical event prediction 
in large-scale computer clusters.  They suggest the use 
of linear time-series models and rule-based 
classification techniques to do rare event prediction.  
The prediction is made by detecting occurrences of a 
set of event types in a time window.  This approach 
also assumes that a predictor has detailed information 
about event types, which is rarely available in Grid. 

The preprocessing of the original data set of events 
to simplify analysis has been done before, e.g., [16] 
and [17].  However, the techniques have been mostly 
used to eliminate redundant information such as 
successive repeated errors.  In our case, the original 
series of events are preprocessed to separate periodic 
events from non-periodic events. 

The concept that a resource’s lifetime follows some 
kind of statistical distribution has existed for a long 
time and has its basis in queuing theory.  Some [6, 13] 
have used processes/machine lifetime distribution for 
load balancing.  In [13], the  process lifetime 
distribution is used to initiate dynamic migration.  
Typically, they all assume some probability 
distributions for the process lifetime.  However, the 

distribution is about the length of process lifetime 
when it finishes normally.  They do not include the 
termination of a job from errors and resource failure. 

The emergence of Grid as a new distributed 
computing platform has fostered many studies on 
resource availability/reliability prediction in Grid [5, 
23, 4, 27].  Brevik et al.[5] compare parametric and 
non-parametric methods for predicting machine 
availability.  Their result shows that a non-parametric 
approach is better in most experiments in estimating 
the lower bound of a given quantile, especially when 
the sample size is small.  A non-parametric approach 
is very useful when the distribution is not easy to be 
fitted by parametric methods as in our case.  However, 
the problem with non-parametric approaches is that 
they are geared toward testing assertions rather than 
estimation of effects.  From a practical viewpoint, a 
job scheduler needs to estimate and quantify the 
reliability at some specific time to test and compare 
the fitness of the resources.  Our work shows that 
parametric approaches are problematic in the presence 
of periodic failures, but the distribution can be fitted 
using parametric methods after filtering of periodic 
failures.  Ren et al.[23] used a semi-Markov model to 
make a long-term prediction of machine availability.  
A semi-Markov model can make more accurate 
predictions than an ordinary Markov model with the 
expense of much higher computational complexity 
[20].  Our work complements their approach by 
filtering periodic unavailability before the modeling 
and prediction of non-periodic events. 

Despite the large body of work on error/failure 
prediction, the absence of any research on periodic 
resource unavailability as a separate source of failure 
and modeling of them to make a prediction in job 
scheduling is the motivation of our study in this paper. 

 
3. Input Data 
 

To understand the behavior of a large collection of 
machines, we set up a monitoring environment at the 
University of Virginia [14] that collected up/down 
information at 5-minute intervals for over 700 
machines over a three-month period.  We observed 
that the machines fell into two broad classes – 
managed machines that experienced regular rebooting 
and those that did not.  Rebooting is an instance of the 
idea of “software rejuvenation” [15].  The idea is to 
periodically restart software to prevent errors from 
accumulating. 

Figure 1 below shows the inter-event time 
distribution of failures for a single “managed” 



machine.  Each point represents a down-time.  The 
height of the point indicates the number of minutes 
of uptime that preceded the failure.  Note the large 
number of reboots at approximately 1440 minutes 
(one day).  You can also see that occasionally the 
machine missed a reboot – and that scheduled 
reboots are not the only cause of reboot.  Because of 
the reporting interval, the machine may appear to 
have missed a reboot.  That is not the case – rather, 
it rebooted quickly enough to meet its next required 
report-in. In the case of unmanaged machines, the 
story is different.  As shown in Figure 2, there is no 
clear pattern. 

We will use this data set throughout the 
remainder of the paper. 

 
4. Standard Statistical Methods 
 

Given the problem of predicting uptimes, one 
would normally think to use simple statistical 
methods such as fitting the collected data to a 
continuous model.  The exponential distribution [25] 
model is most common and easiest to use for failure 
analysis.  For a more exact estimate, a Weibull 
distribution [25] is commonly used.  Optimization-
based model fitting techniques such as MLE 
(Maximum Likelihood Estimator) can be used to get 

two parameters, shaper parameter and scale 
parameter, of a Weibull distribution to fit the 
empirical data [25]. 
     For a resource which does not show periodic 
failure, optimization-based model fitting techniques 
work reasonably well if we choose the right model.  
For example, Figure 3 shows that time-to-failure 
(TTF)  
distribution of an unmanaged machine can be 
approximated by Weibull distribution.  The fitted 
exponential distribution shows a bigger gap than the 
Weibull from the empirical distribution, but it can be 
used when the exact estimate is not required. 

In contrast, the distribution of resource with 
periodic unavailability cannot be easily modeled by 
any single well-known statistical distribution because 
it does not resemble any one of them.  In Figure 4, the 
distribution of the managed machine shows sudden 
discontinuity at 1440 minutes.  This discontinuity 
comes from the fact that the machine reboots every 24 
hours.  The empirical distribution obtained from a 
managed machine cannot be easily approximated by 

any statistical distribution.  And, as a consequence, the 
prediction from predictors that do not consider these 
kinds of periodic resource unavailability can be either 

 0

 500

 1000

 1500

 2000

 2500

 20  40  60  80  100  120

Tim
e t

o f
ail

ur
e(

mi
n)

Sequence of Failures  
Figure 1.  Inter-arrival intervals of failures on a “managed” machine in 
minutes 

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10  20  30  40  50  60  70  80

Tim
e t

o f
ail

ur
e(

mi
n)

Sequence of Failures  
Figure 2.  Inter-arrival intervals of failures on a typical “unmanaged” 
machine in minutes 

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time to Failure

Cu
m

ula
tiv

e 
De

ns
ity

 

 

empirical
weibull
exponential

 
Figure 3.  Time-to-fail distribution of an unmanaged machine and its 
fitting to Weibull and exponential distribution 

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time to Failure

Cu
m

ula
tiv

e 
De

ns
ity

 

 

empirical
weibull
exponential

 
Figure 4.  TTF distribution of a managed machine and its fitting to 
Weibull and exponential distribution 



inaccurate or totally wrong.  For example, the 
empirical distribution shows us that the probability of 
a job to live longer than 24 hours is almost 0.  
However, the fitted models tell us that there is more 
than a 30% chance of survivability after 24 hours, 
which is totally misleading. 

 
 
 
 

5. Filtered Failure Prediction 
 
In the previous section, we showed that we can 

model failures of a resource using ordinary statistical 
methods but that the models perform poorly in the 
presence of periodic events.  In this section, we 
present a Filtered Failure Prediction technique where 
failures of a resource are categorized into periodic and 
non-periodic to make a more effective prediction. 

 
5.1. Filtered Failure Prediction Model 
 

Figure 5 shows what happens if periodic failures 
are filtered out from the original signal.  The same 
up/down signal used to generate Figure 4 is used but 
periodic failures are removed from the signal.  After 
this filtering, optimization-based fitting techniques are 

used again to fit the empirical time-to-fail distribution 
to a Weibull and an exponential distribution.  The 
discontinuity observed in Figure 4 is gone and the 
empirical distribution is more closely approximated 
both by Weibull and exponential distribution with 
smaller gaps.  Therefore, if we assume there will be no 
periodic failure in the future, we can more precisely 
predict the reliability of a resource with approximated 
statistical models. 

This motivates us to propose Filtered Failure 
Prediction (FFP) where periodic and non-periodic 
failures are identified and treated as separate 
independent sources. 

In FFP, a sampled signal of resource up/down is fed 
into a filter which detects and separates periodic 
failure signals from the original.  The filtered up/down 
signal is used to build a model for reliability 
prediction.  Here, we use the Markov model for its 
simplicity with reasonable precision.  The Markov 
model built from a filtered signal is called the filtered-
Markov model hereafter.  If the sampled resource 
up/down signal has a periodic component, it is 
detected and used to predict the next time when the 
resource is unavailable due to periodic failure. 

Keep in mind that our objective is to predict Pi(∆t) 
and that ∆t includes both a start time and a duration.  
The reliability acquired from the filtered Markov 
model is only valid when the expected execution time 
of a job does not span the next periodic failure point.  
The reliability from FFP is the conditional probability 
that the job’s execution does not span the periodic 
failure point.  Therefore, the final predicted reliability 
can be summarized as follows: 
 
reliability FFP(∆t) 
= Probability(no failure over ∆t | ∆t does not span         
                       the next periodic failure point) 
= α· reliabilityprediction from filtered Markov model (∆t) 
, Where    α =  ∆

otherwise0

point failure periodicnext   thespansnot  does  if1 t  

 
For example, assume a resource has periodic 

failures every 24 hours, its predicted reliability from 
the filtered Markov model is 90% after 10 hours, and 
its last periodic failure occurred at time t.  At t+5 and 
t+15, the resource is requested to execute a job which 
needs 10 hours CPU time and more than 80% 
reliability.  The first request can be accepted because 
the resource is more reliable than is required (90% > 
80%).  However, the second request cannot be 
accepted because its run spans the next periodic failure 

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time to Failure

Cu
mu

lat
ive

 D
en

sit
y

 

 

empirical after filtering
weibull
exponential

 
Figure 5.  Time-to-fail distribution of a managed machine after filtering 
out periodic failures and its fitting to Weibull and exponential 
distribution 

Filtering

Markov 
modeling

Periodic resource 
Unavailability information.
Eg: fails everyday 3:00 AM

up

down

Original UP/DOWN signal

Filtered UP/DOWN signal

 0

 500

 1000

 1500

 2000

 2500

 20  40  60  80  100  120

Tim
e t

o f
ail

ur
e(

mi
n)

Sequence of Failures

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10  20  30  40  50  60  70  80

Tim
e t

o f
ail

ure
(m

in)

Sequence of Failures

Filtering

Markov 
modeling

Periodic resource 
Unavailability information.
Eg: fails everyday 3:00 AM

up

down

Original UP/DOWN signal

Filtered UP/DOWN signal

 0

 500

 1000

 1500

 2000

 2500

 20  40  60  80  100  120

Tim
e t

o f
ail

ur
e(

mi
n)

Sequence of Failures

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10  20  30  40  50  60  70  80

Tim
e t

o f
ail

ure
(m

in)

Sequence of Failures

 
Figure 6.  The Markov model is built from filtered machine up/down 
signal.  The information about periodic resource unavailability is also 
obtained from the filtering 



point.  Its reliability after 10 hours from t+10 is 0% (= 
0*90%), not 90%. 

 
5.2. Filtering of regular events 
 

The most common approach to finding periodicities 
is the fast Fourier transform.  The fast Fourier 
transform provides the means of transforming a signal 
defined in the time domain into one defined in the 
frequency domain.  However, using fast Fourier 
transform is inappropriate in our problem because the 
time information obtained from Grid is often 
imprecise.  In Grid, geographical long distance 
between the resources and an entity that monitors 
resources can lead to imprecise time information, 
phase shift in periods.  Therefore, instead of using fast 
Fourier transform, we used a modified version of the 
periodicity detection algorithm from the work of Ma et 
al.[19]. 

The algorithm takes as input the sequence of down 
events S={a1, a2, …,aN}.  If the number of occurrence 
of periods, ai+1.time - ai.time, is bigger than the threshold, 
Cτ, the period is recognized as periodic.  The 
algorithm uses chi-squared test to determine a 95% 
confidence level threshold.  The number of period 
occurrences is adjusted to accommodate the time 
tolerance, δ, of period length.  After the lengths of 
periods are identified, we determine the wall clock 
time of the next periodic down event as follows: 
For each period pk identified above: 
1. Get first event ai from S such that   p+ δ ≤ ai+1.time - 
ai.time,≤ p + δ 
2. Count the number of event aj such that    aj.time = 
ai.time + n·p ± δ  (n=1,2,3…) 
3. If the total count from step 2 is over the threshold, 
Cτ, from the periodic detection algorithm, output 
(ai.time , pk) and remove ai of step 1 and ai s of step 3 
from S 
4. Else get next ai for step 1, and repeat 1~4 
 
The wall clock times ai.time s as the output of step 3 are 
the basis times from which we can calculate the next 
expected periodic down time.  The next expected 

periodic down time for a periodic event type (ai.time , 
pk) is: 

 
Next expected periodic down time = 

min(ai.time + n·pk)  > current wall clock time, 
where n=1,2,3… 

 
5.3. Modeling of non-periodic availability 
 
Once the failure history has been filtered and periodic 
events are removed, a model is built from the 
remaining non-periodic events.  For our research, a 
simple Markov chain as in Figure 8 is used for 
modeling and prediction. 

The reliability of a resource is calculated as the 
following equation if a client requests to execute a job 
on it. 

reliabilityprediction from filtered Markov model(h) =(Ph)up,up  
 

The monitoring interval should be chosen to 
balance between the modeling accuracy and the 
computational cost.  While we may have a more 
accurate model with a shorter monitoring interval, the 
cost of monitoring and computation increase.  In our 
experiment, a 5-minute interval is used to monitor the 
resources and the chain has only two states; up and 
down. 

The assumption behind the Markov chain is that 
sojourn time in each state follows exponential 
distribution and the parametric modeling in the 
previous section shows that exponential distribution is 
less accurate than Weibull.  However, we assume 
exponential distribution because of its analytical 
tractability.  The shortcomings of the exponential 
distribution, such as memory-less property, is 
complemented using periodicity information which 
tells the wall-clock time of the next periodic failure.  If 
more accurate modeling is required, then FFP can be 
combined with a semi-Markov model which has a 
different state sojourn time distribution such as 
Weibull or hypo-exponential with additional 
computational cost and complexity [23]. 

 
6. Experiment and Results 

 

ai ai+1 ai+2

p
δ

p
δ

ai+3

p

ai ai+1 ai+2

p
δ

p
δ

ai+3

p

 
Figure 7.  The sequence of “down” events. p is period and δ is time 
tolerance 

up downp q 1

 =
10

qp
P  

Figure 8.  State transition diagram and its probability matrix 



In this section, we compare the prediction accuracy 
of FFP and traditional techniques and analyze the 
impact of periodicity on statistical modeling. 

 
6.1. Experiment on prediction accuracy 
 

To investigate the effectiveness of the FFP 
described in the previous section, we compare the 
predictive accuracy of an FFP to the ordinary Markov 
model which does not detect and filter periodic 
failures.  We call this ordinary Markov model a non-
filtered failure prediction (NFFP) hereafter.  A 
representative machine was chosen from the machines 
described in Section 3, and the trace of 3 months from 
the machine is divided into two parts, one month for 
training and the remaining two months for validation.  
Empirical reliabilities are calculated by observing the 
2-month validation data.  In the case of FFP, empirical 
reliability is calculated from the same 2-month 
validation data but from which periodic failures are 
removed.  The predicted and empirical reliabilities as 
a function of time are shown in Figure 9.  The upper 
two lines are the predictions from FFP and the 
empirical reliabilities from a trace from which 
periodic failures are removed, and the two lines below 
are the predictions from NFFP and the empirical 
reliabilities from an original trace respectively. 

While the prediction from NFFP tells the 
probability that no failures will happen during a given 
time interval without consideration of periodic 
failures, the prediction from FFP is the conditional 
probability that no failures will happen if the time 
window does not span the next periodic failure point. 

The gaps between the empirical reliabilities and 
predicted reliability from each model, NFFP and FFP, 

are the prediction error that indicates their prediction 
inaccuracy.  As expected, FFP is much more accurate 
than the ordinary Markov model.  For instance, the 
prediction error at 15 hours in NFFP is more than 
10% compared to less than 3% in FFP.  Moreover, this 
gap widens rapidly as the time increases in the 
ordinary Markov model.  In contrast, the increase of 
the gap is much slower in FFP. 

The large prediction error from NFFP is 
problematic in job scheduling.  For instance, when we 
include periodic failures, the empirical reliability after 
24 hours is almost 0.  However, the predicted 
reliability from NFFP is about 18%.  The scheduler 
may decide to give high redundancy to increase the 
reliability because the probability that at least one of 
them survives after 15 hours is more than 90%.  
However, this decision is wrong if we are aware of the 
fact that all computing resources are going to fail at 
some specific period, particularly in 24 hours in this 
experiment.  In the case of FFP, the scheduler can 
make a more accurate prediction because it knows the 
time when a resource is going to periodically fail and 
the fact that the statistical reliability only has meaning 
when the expected run does not span over the next 
periodic failure point. 

This prediction accuracy difference between FFP 
and the ordinary Markov model is not particular to 
one machine but can be found over all machines in the 
experiment.  The average and 95% confidence 
intervals of a relative prediction error from 519 
machines which have periodic failures are shown in 
Figure 10.  The relative prediction error is defined as 
follows: 

 

predicted

predictedempirical
relative yreliabilit

yreliabilityreliabilit
errorprediction

−
=_

 
Figure 10 is the relative prediction errors from 

NFFP and FFP respectively.  We again see that the 
relative prediction error of an unfiltered model is 
significant compared to the filtered model.  The 
confidence interval is very small because all machines 
used in the experiment are homogeneous and under 
the same management policy.  The confidence interval 
is likely to be larger in other environments. 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (in hours)

Re
lia

bil
ity

 

 
NFFP
empirical−without periodic failures
FFP
empirical−with periodic failures

 
Figure 9.  Empirical reliabilities and predicted reliabilities of FFP and 
NFFP over time 



 
 

6.2. Analysis 

To understand the effect of periodic resource 
unavailability on predictability, we did the same 
analysis as in [27]. 

We first plot the autocorrelations of filtered and 
unfiltered time-to-fail series from a managed machine 
in Figure 11. 
The autocorrelation as a function of previous lags 
reveals how time-to-fail changes over time.  The 
autocorrelation of an unfiltered series is much higher 
than the filtered series and this implies that the time-
to-fail changes relatively slowly.  This slow decay in 
the autocorrelation can be useful for models as the 
linear time series model in [8] which uses the 
relationship between current and previous lags.  
However, most other statistical models including the 
Markov model relies on the fact that a current state 
and next state have very limited dependence.  
Therefore, we believe that the high autocorrelation 
spoils the predictability of models which assumes 
limited dependence between lags.  We do not consider 
using linear time series models because even though 
the model shows good performance in short-term 
prediction, its prediction accuracy deteriorates rapidly 
as the length of time window to predict increases [23].  
For reliability prediction, long-term prediction, for 
example reliability after 24 hours, is very typical, and 
this makes a linear time series model less suitable. 

We can also think predictability in terms of self-
similarity.  As stated in [27], high autocorrelation 
often implies self-similarity which often is the 
manifestation of an unpredictable chaotic series. 

Figures 12 and 13 shows pox plot [17] for 
unfiltered and filtered time-to-fail series respectively.  
The respective Hurst parameters from the pox plots 
are 0.79 and 0.66.  A series is more self-similar if its 
Hurst parameter is closer to 1.  The higher Hurst 
parameter of the original time-to-fail series without 
filtering suggests to us that the series can be more 
chaotic than the filtered.  One interesting 
characteristic of chaotic series is that, even though the 
series looks similar to random series, a pattern exists 
in the series.  However, a series with high self-
similarity seems more chaotic at first glance.  As a 
consequence, the series is less predictable in practical 
viewpoint [22].  On self-similarity, see [7, 9, 10, 11, 
17, 26, 2]. 
 
7. Summary and Future Work 

Accurate prediction of resource availability is 
critical to providing completion time, availability, and 
other quality of service guarantees.  Accurate 
prediction using statistical methods is difficult in the 
presence of periodic events.  While periodic, some 
resources may claim a particular behavior – it may not 
always be prudent to trust the information. 

We have developed FFP – the Filtered Failure 
Prediction method that extends traditional statistical 
methods by first filtering out periodic events.  FFP 

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

Re
la

tiv
e 

Pr
ed

ict
io

n 
Er

ro
r

Time (in hours)

NFFP
FFP

 
Figure 10.  Relative prediction errors with 95% confidence intervals 

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
original
filtered

 
Figure 11.  Autocorrelations of filtered and unfiltered time-to-fail series 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

log n

log
 R

/S

 
Figure 12.  Self-similarity of unfiltered time-to-fail series 

1 1.2 1.4 1.6 1.8 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

log n

log
 R

/S

 
Figure 13.  Self-similarity of filtered time-to-fail series 



outperforms both exponential and Weibull 
distributions by more than a factor of 10 in predicting 
whether a resource will be available for a particular 
interval.  The improvements are particularly 
pronounced as the time interval approaches the 
periodic failure interval. 

We next plan to integrate FFP into the Genesis II 
[1] grid system being developed at the University of 
Virginia.  FFP will be integrated into the Genesis II 
implementation of the OGSA Basic Execution 
Services (BES)[12] activity factory.  BES activity 
factories take activity documents as parameters.  Each 
activity document contains a JDSL [3] document that 
describes the job (including optionally the amount of 
time the job will consume).  Activity documents may 
also contain other sub-documents as extensibility 
elements.  We will extend the BES activity document 
to contain a dependability document that specifies 
both the “price” the user is willing to pay as well as 
the reliability they require.  FFP will allow us to make 
those guarantees. 

 
8. References 
 
[1] http://vcgr.cs.virginia.edu/genesisII/, Genesis II project 
homepage, 2006. 
[2] A. Adas and A. Mukherjee, On resource management 
and QoS guarantees for long range dependent traffic, 
INFOCOM '95: Proceedings of the Fourteenth Annual Joint 
Conference of the IEEE Computer and Communication 
Societies (Vol. 2)-Volume, IEEE Computer Society, 
Washington, DC, USA, 1995, pp. 779. 
[3] A. Anjomshoaa, F. Brisard, M. Dresher, D. Fellows, A. 
Ly, S. McGough, D. Pulsipher and A. Savva, Job 
Submission Description Language(JSDL) Specification, 
Version 1.0, Open Grid Forum, 2005. 
[4] W. J. Bolosky, J. R. Douceur, D. Ely and M. Theimer, 
Feasibility of a Serverless Distributed File System Deployed 
on an Existing Set of Desktop PCs, SIGMETRICS, 2000. 
[5] J. Brevik, D. Nurmi and R. Wolski, Automatic methods 
for predicting machine availability in desktop Grid and peer-
to-peer systems, CCGrid, IEEE, 2004, pp. 190-199. 
[6] R. M. Bryant and R. A. Finkel, A stable distributed 
scheduling algorithm, 2nd International Conference on 
Distributed Computing Systems, 1981, pp. 314-323. 
[7] M. Crovella and A. Bestavros, Self-Similarity in World 
Wide Web Traffic: Evidence and Possible Causes, 
Proceedings of SIGMETRICS'96: The ACM International 
Conference on Measurement and Modeling of Computer 
Systems., Philadelphia, Pennsylvania, 1996. 
[8] P. A. Dinda and D. R. O'Hallaron, An Evaluation of 
Linear Models for Host Load Prediction, HPDC '99: 
Proceedings of the The Eighth IEEE International 
Symposium on High Performance Distributed Computing, 

IEEE Computer Society, Washington, DC, USA, 1999, pp. 
10. 
[9] M. W. Garrett and W. Willinger, Analysis, Modeling 
and Generation of Self-Similar VBR Video Traffic, 
SIGCOMM, 1994, pp. 269-280. 
[10] M. E. Gomez and V. Santonja, Analysis of Self-
Similarity in I/O Workload Using Structural Modeling, 
MASCOTS '99: Proceedings of the 7th International 
Symposium on Modeling, Analysis and Simulation of 
Computer and Telecommunication Systems, IEEE Computer 
Society, Washington, DC, USA, 1999, pp. 234. 
[11] S. D. Gribble, G. S. Manku, D. S. Roselli, E. A. 
Brewer, T. J. Gibson and E. L. Miller, Self-Similarity in 
File Systems, Measurement and Modeling of Computer 
Systems, 1998, pp. 141-150. 
[12] A. Grimshaw, S. Newhousr, D. Pulsipher and M. 
Morgan, OGSA Basic Execution Service Version 1.0, Open 
Grid Forum, 2006. 
[13] M. Harchol-Balter and A. B. Downey, Exploiting 
Process Lifetime Distributions for Dynamic Load Balancing, 
ACM Transactions on Computer Systems, 15 (1997), pp. 
253-285. 
[14] H. Huang, J. F. Karpovic and A. S. Grimshaw, A 
Feasibility Study of a New Mass Storage System for Large 
Organizations, Computer Science Technical Report, 
University of Virginia, CS-2005-21 (2005). 
[15] Y. Huang, C. Kintala, N. Kolettis and N. D. Fulton, 
Software Rejuvenation: Analysis, Module and Applications, 
25th Symposium on Fault Tolerant Computing, FTCS-25, 
IEEE, Pasadena, California, 1995, pp. 381–390. 
[16] I. Lee, R. K. Iyer and D. Tang, Error/Failure Analysis 
Using Event Logs from Fault Tolerant Systems, Proceedings 
21st Intl. Symposium on Fault-Tolerant Computing, 1991, 
pp. 10-17. 
[17] W. E. Leland, M. S. Taqq, W. Willinger and D. V. 
Wilson, On the self-similar nature of Ethernet traffic, in D. 
P. Sidhu, ed., ACM SIGCOMM, San Francisco, California, 
1993, pp. 183-193. 
[18] T.-T. Y. Lin and D. P. Siewiorek, Error Log Analysis: 
Statistical Modeling and Heuristic Trend Analysis, IEEE 
Transactions On Reliability, 39 (1990), pp. 419-432. 
[19] S. Ma and J. L. Hellerstein, Mining partially periodic 
event patterns with unkonow periods, 17th International 
Conference on Data Engineering, Heidelberg, Germany, 
2001, pp. 205-214. 
[20] M. Malhotra and A. Reibman, Selecting and 
implementing phase approximations for semi-markov 
models, Stochastic Models, 9 (1993), pp. 473-506. 
[21] J. K. Muppala, G. Ciardo and K. S. Trivedi, Stochastic 
Reward Nets for Reliability Prediction, Communications in 
Reliability, Maintabinabiliity and Serviceability, 1 (1994), 
pp. 9-20. 
[22] J. C. Principe, A. Rathie and J. M. Kuo, Prediction of 
chaotic time series with neural networks and the issue of 
dynamic modeling, Int. J. of Bifurcation and Chaos, 2 
(1992), pp. 989-996. 



[23] X. Ren, S. Lee, R. Eigenmann and S. Bagchi, Resource 
Failure Prediction in Fine-Grained Cycle Sharing System, 
IEEE HPDC, Paris,France, 2006. 
[24] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. 
Moreira, S. Ma, R. Vilalta and A. Sivasubramaniam, 
Critical event prediction for proactive management in large-
scale computer clusters, KDD '03: Proceedings of the ninth 
ACM SIGKDD international conference on Knowledge 
discovery and data mining, ACM Press, Washington, D.C., 
2003, pp. 426-435. 
[25] K. S. Trivedi, Probability and Statistics with 
Reliability, Queuing, and Computer Science Applications, 
John Wiley and Sons, 2001. 
[26] W. Willinger, V. Paxson and M. S. Taqqu, Self-
similarity and heavy tails: structural modeling of network 
traffic,  (1998), pp. 27-53. 
[27] R. Wolski, N. T. Spring and J. Hayes, Predicting the 
CPU availability of time-shared Unix systems on the 
computational grid, Cluster Computing, 3 (2000), pp. 293-
301. 
 
 


