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ABSTRACT

Current feature-based image databases can typically perform efficient and effective searches on scalar
feature information. However, many important features, such as graphs, histograms, and probability
density functions, have more complex structure. Mechanisms to manipulate complex feature data are
not currently well understood and must be further developed. The work we discuss in this paper explores
techniques for the exploitation of spectral distribution information in a feature-based image database.
A six band image was segmented into regions and spectral information for each region was maintained.
A similarity measure for the spectral information is proposed and experiments are conducted to test
its effectiveness. The objective of our current work is to determine if these techniques are effective and
efficient at managing this type of image feature data.
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1 INTRODUCTION

Digital imagery is an increasingly important and prevalent form of information. As a result, image
database management systems are more commonly being used to organize large collections of images.
Many of these systems are simple archives while others maintain external information on the images such
as imaging parameters and textual descriptions. More advanced systems attempt to provide a content-
based retrieval capability by extracting and managing image feature data. The term “content-based
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retrieval” occasionally means retrieval of images based on external parameters or textual annotations.
However, we use the term here to mean the searching of image databases using the intrinsic properties
of the images and not just the external parameters or textual description. Content-based retrieval from
image databases is still not well understood and presents a major research challenge.

Current content-based systems, such as QBIC,” Photobook® and the framework proposed by Yazdani
et al.,'? extract a set of features from each image. The feature data is maintained in a data structure
that allows efficient access. Queries on the database are processed by searching the managed features
and are usually similarity based searches and not for exact values. These powerful feature-based systems
show great promise in many applications. However, current systems typically only manage scalar feature
data.

Many important features, such as graphs, histograms, and probability density functions (PDFs),
have more complex structure. Although there has been much recent interest in this area,!%11:9 general
indexing mechanisms for such feature data do not exist or are not well understood. Consequently,
if these features are used in an image database system, they are either searched exhaustively or are
simplified considerably. Exhaustive search quickly becomes infeasible as the size of the database grows
and the effectiveness of a feature is diminished if it is over simplified. Consequently, techniques to
directly manipulate complex data need to be developed.

The work we discuss in this paper is an extension of Barros et al.! and explores techniques for the
exploitation of spectral distribution information in feature-based image databases. The objective of
our current work is to determine if these techniques are effective and efficient at managing this type of
image feature data. An effective technique provides a useful capability to the user and an efficient one
avoids exhaustive search. This paper discusses the effectiveness of our approach. We start in Section
2 by introducing an example feature with complex structure and a similarity metric. In Section 3 we
describe the experiment background. We continue in Section 4 with a discussion of the test queries and
results. We finish with a summary and some directions for future work.

2 SIMILARITY OF SPECTRAL DISTRIBUTIONS

In most feature-based systems, the feature data can be viewed as point data in the feature space. In
these systems, similarity based searches are far more common than searches for exact values. Similarity
is usually calculated as the (weighted) Fuclidean distance between two points in the feature space. To
efficiently process queries, any of several point access methods available, such as B-trees® R-trees* or

vantage-point trees,? can be used.

However, many important features, such as probability density functions (PDFs), have a more
complex structure. PDFs are used wherever there is a need to summarize or approximate underlying
data. For example, PDFs can be used to describe both collections of measurements and measurements
with known errors. PDFs inherently incorporate the notion of area or distance and are thus different
from simple point data and range data. Consequently, the similarity measures and access methods used
should take into account particular aspects of PDFs including their size and shape.

We have been working on an approach to organize PDF's such as those describing spectral distribu-



tions. Our system starts with an image that has been segmented into regions. Each region is composed
of pixels with similar (but possibly identical) values. We model the spectral characteristics of each
region with the mean and variance of its component pixels.
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Figure 1: Region variance plays an important role in similarity judgments.

Given this representation, we require a way of measuring the similarity between a region and a
query point. Initially, it seems reasonable to use the Fuclidean distance between the query point and
the region mean as a measure of similarity. The Fuclidean distance works well as a similarity measure
for many applications. However, the Euclidean distance can be an ambiguous metric. It is not always
clear how the distance in feature space relates to the user’s concept of similarity or how to choose an
appropriate threshold distance. Additionally, a similarity measure would preferably take into account
the individual region variances. The variance information can be useful when comparing distances. For
example, in Figure 1, the query point is approximately the same distance from the means of the two
distributions. However, region A has a larger variance. This suggests that we can consider points at a
greater distance to the mean of region A to be similar to region A. Consequently, we consider the query
point to be more similar to region A than to region B.

We capture this idea and measure similarity with a normalized distance measure. In this measure
the distance between a query point and a distribution mean is normalized by the distribution’s standard
deviation. The measure we use is:

(1)

Where ¢ is the query point, X; is the mean of region 7, and s; is the standard deviation of region 7. In
other words, M; is the number of region standard deviations between the query point and the mean of
region z.

To use this similarity criterion a user selects a point ¢ as the query point and a threshold value M.
Fach region i in the database is then examined. If M; < M then region i is judged to be similar to ¢.
The set of all such regions is returned to the user as the answer set. This set contains all the regions
that are within M standard deviations of the query point.

As presented so far, we must apply the similarity criterion sequentially to each region in the database.
However, the test can be modified to be more efficient in many situations, where efficiency is with respect



to the number of comparisons required. The efficiency can be realized through an indexing structure
that yields the answer sets without directly calculating M, for each region 1.

This is possible when we notice that the similarity criterion can be written as

X, —

—M< T <M (2)
S
or

q— Ms; < X; <q+ Ms, (3)

In this form we notice that the region mean X; must fall in the range between ¢ — Ms; and ¢ + M s;.
The query point ¢ specifies the center of the range and M and s; specify the size of the range. Since
q and M are fixed at the beginning of the query the only unknown is the value of s;. Again, the value
s; changes with each individual region ¢. When processing the query the largest range is calculated by
using the largest s;, Sz, in the database. All candidate regions, regions that could possible pass the
similarity criterion, lie in this calculated query range.
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Figure 2: The calculated query range using s4 as Syqx

The next step in taking advantage of this information is to create an index of the regions means.
The index is created when the database is initialized and is updated each time a new region is added
to the database. The index will be used to find regions with means falling within a particular range.
Consequently, the index structure used must allow quick updates and efficient range searches. Several
acceptable indexing structures, such as the B-tree, are available.

Then, for each query, we calculate the query range, using Equation 4, and use it to perform an
efficient range search on the region means. This step retrieves the candidate set which contains all the
candidate means. The similarity test, Equation 1, can then be performed sequentially on this subset of
regions. The set of regions that pass the similarity criterion is then returned to the user as the answer
set. It is important to observe that since s,,,, is used for Equation 4, the answer set returned by this
two stage process is guaranteed to be the same as that returned by the initial method. For example,
Figure 2 shows four regions, a query point, and a calculated query range. The regions with means



within the range, i.e., regions 1 and 2, constitute the candidate set returned by the indexing structure,
and only these two regions need to receive any further consideration. All other regions can be safely
ignored.

The savings realized by this process depends on the size of the candidate set returned by the
calculated range search and the degree to which the cost of initially creating the indexing structure can
be amortized across multiple queries. If the returned candidate set includes all regions in the database,
then we have only incurred additional overhead. However, considerable savings may be realized if this
set is significantly smaller than the database. The size of the candidate set, and thus the efficiency of the
procedure, is affected by three factors. The first factor is the magnitude of the largest variance. If there
is even one region with large variances the size of the query range will be large. The query range may
then include a large percentage of the database. In this situation it might be beneficial to use a smaller
value than s,,,, in Equation 4. The smaller value would relax the guarantee that the candidate range
will contain all regions that should be considered. However, the loss of a few answer regions might be
acceptable if the candidate set is significantly smaller than the overall database, yet still contains most
of the answer regions. The second factor is the relative positions of the means in the spectral space. If
the means are concentrated in a small area, then all queries in this area may retrieve a large percentage
of the database. The third factor is the number of queries that can benefit from the indexing structure
and thus help amortize the cost of the indexing mechanism. Therefore, the best savings is realized by a
database with a relatively small s,,,,, with means that are uniformly distributed throughout the space,
and with a high number of queries that can take advantage of the indexing mechanism.

3 EXPERIMENT BACKGROUND

For the experiments described in this paper we used six of the seven spectral bands (the thermal
infrared band was ignored) of a 3351 x 2501 Landsat image. The image pixels were clustered into 241
clusters based solely on their spectral values by a modified k-means® clustering procedure. The clusters
were then manually classified into eleven ground cover classes by an analyst. This was done by visually
inspecting the image as well as the cluster spectral information. The classes were chosen by analysts
independently of this work and are listed in Table 1. The image was then divided into twenty four
512 x 512 sub-images for purely logistical reasons. The images were median filtered and segmented into
regions using a connected components algorithm on the class labels. All regions greater than a minimum
size of 25 pixels were kept and used in the database. Several features, including area, center, bounding
rectangle, and spectral distribution information, were extracted for each region. For this study, only
the spectral information is relevant.

The spectral information was calculated for each individual region by pooling the values of the
clusters of the pixels that make up that region. In other words, the region mean and variance is the
weighted average of the cluster means and variances. Each region weights the cluster information by
the number of pixels in that region from that cluster.

Table 1 shows the number and percentage of regions and pixels of each class in the database. For
example, there were a total of 22,856 regions accounting for the 5,355,122 pixels in the database. Of
these, 2,919 regions accounting for 233,010 pixels were classified as cropland. Additionally, the cropland
regions are 12.8% of the regions and 4.4% of the pixels.



Number | Number of | Percentage | Percentage

Class | of regions of pixels | of regions of pixels
Residential 462 46,398 2.1 0.9
Cropland 2,919 233,010 12.8 4.4
Grassland 4,898 837.881 21.4 15.6
Forest deciduous 4,118 1,552,255 18.0 28.9
Forest evergreen 3,205 1,594,049 14.0 29.8
Scrub/shrub 3,309 202,844 14.5 3.8
Water 186 275,280 0.8 5.1

Wetland 99 5,630 0.4 0.1
Fxposed Land 3,024 500,502 13.2 9.3
Artificial surface 460 96,210 2.0 1.8
Exposed surface w/veg 176 11,063 0.8 0.2

Table 1: Number and percentage of regions and pixels of each class in the database.

4 TEST QUERIES AND RESULTS

So far, we have presented a feature and a similarity measure but no method to gauge its effectiveness.
Designing such a benchmark is more difficult than it might first appear. We keep in mind that the
semantics of the similarity criterion are “find all regions which are spectrally similar to a query point”.
Unfortunately, there is no way to independently decide which regions actually are “spectrally similar”.
Consequently, there is no obvious non-circuitous way to evaluate the resultant set of regions.

As an approximation, we settled on a query that could be easily and directly evaluated. The query
semantics are “find all regions of the same class as the query point by using only the spectral infor-
mation”. Tt is not possible to correctly classify all the regions based solely on the spectral information
alone. Additionally, there is no reason to believe that all regions of a particular class are more similar
to each other than they are to regions of another class. Consequently, the semantics of the similarity
criterion and the query are subtly but significantly different. The class labels of the regions are used
for evaluation only and are not used during the queries at all.

The test queries are posed against multiple bands by querying each band individually and intersecting
their answer sets. We chose to use two bands since two dimensions are easy to visualize and give
reasonable performance. Figure 3 is a scatter plot of the regions means in the two dimensions selected.
Selecting the number and combinations of bands that give the best results is difficult. We chose to use
bands four and five by visually inspecting the projection of the class means on all combinations of two
dimensions. This was done to find two dimensions that provide the greatest separation of the classes.
We are investigating ways to automate this process.

To measure the effectiveness of the similarity criterion, queries were posed against bands 4 and 5
with varying values of M for each of the classes in the database. The class means were used as the
query points during each set of queries. The value of M was varied in steps of .25 from .25 up to at
most 10. For each value of M, the query is performed and the results are inspected. If a query achieved
100% recall, the query process was stopped and no further values of M were used.



255

Band 5

0

Band 4

Figure 3: The means of regions projected on bands 4 and 5.
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Multiple Forest Artificial Exposed Scrub/ Forest Exposed

of M Water evergreen Wetland surface land shrub deciduous Residential Cropland surf w/veg Grassland
0.25 2/100 0/100 1/100 5/95 1/95 1/53 0/100 9/100 1/49 2/100 1/89
0.50 5/100 0/100 9/100 13/95 2/92 2/60 1/100 27/95 3/50 8/100 2/85
0.75 6/100 0/100 16/100 26/93 5/92 5/57 2/95 45791 7/53 14/86 4/83
1.00 8/100 0/80 34/100 37/90 10/90 8/55 3/94 58/83 12/58 31/80 7/82
1.25 11/100 1/76 46/98 48/89 15/92 11/49 6/93 68/75 20/59 44/57 12/84
1.50 16/100 1/76 56/96 58/86 20/93 15/46 8/93 74/68 28/59 55/44 16/84
1.75 18/100 1/81 72/95 70/85 26/93 19/43 12/92 79/58 35/58 64/30 21/84
2.00 20/90 2/82 78/93 78 /84 32/93 23/39 16/91 84/51 43757 69/20 26/85
2.25 25/88 2/85 82/91 84/81 38/93 28/37 21/89 87/44 49/55 77/16 31/85
2.50 30/89 3/84 89/91 89/78 45793 33/36 25/88 91/40 55/53 84/12 36/85
2.75 35/90 4/87 90/86 93/74 52/92 38/35 30/86 94/35 61/51 92/10 40/84
3.00 42/92 6/88 92/82 96/69 58/92 42/34 35/84 94/31 66/48 96/8 45/84
3.25 48792 7/85 95/77 97/62 65/91 46/33 40/80 95/27 70/45 98/7 49/83
3.50 54/92 9/82 97/72 98/56 70/91 50/32 45777 97/25 74/43 99/6 54/81
3.75 60/93 10/78 97/68 99/48 77/91 54/31 50/72 98/23 77/39 99/5 58/80
4.00 66/93 13/76 98/65 99/43 81/90 58/30 54/68 100/21 81/36 99/4 62/78
4.25 72/94 16/75 99/59 99/37 85/89 61/29 59/63 100/19 84/33 100/4 66/76
4.50 78 /94 19/74 99/53 99/33 87/88 64/27 62/57 85/30 69/73
4.75 81/93 24/75 99/47 100/30 90/87 68/26 65/52 87/28 72/70
5.00 85/91 28/76 100/42 100/27 92/85 71/25 69/49 89/26 76/67
5.25 89/89 33/76 100/25 93/84 75/24 72/46 90/25 80/64
5.50 94/85 38/76 100/23 94/82 77/23 75/43 91/23 83/62
5.75 95/83 43777 95/80 80/22 77/41 92/22 86/60
6.00 96/77 49/78 96/78 82/21 79/39 93/21 89/58
6.25 96/73 55/78 97/76 84/21 81/38 93/20 91/56
6.50 98/69 60/78 98/73 87/20 83/37 94/20 94/55
6.75 99/67 65/78 98/71 89/20 85/35 95/19 95/53
7.00 99/62 70/78 99/67 91/20 87/33 96/18 96/51
7.25 99/57 7477 99/64 92/19 89/32 96/18 97/49
7.50 100/54 78/76 99/61 94/19 90/30 96/17 97/48
7.75 81/76 99/57 95/19 92/28 96/17 98/46
8.00 84/75 99/53 96/18 93/27 96/17 98/45
8.25 87/74 99/50 97/18 94/25 97/16 99/43
8.50 89/72 99/46 98/18 95/24 97/16 99/42
8.75 91/70 100/ 44 98/18 96/24 97/16 99/41
9.00 93/68 100/41 99/18 97/23 97/15 99/39
9.25 94/66 100/39 99/17 98/22 97/15 99/38
9.50 96/64 100/37 99/17 98/22 97/15 100/37
9.75 97/62 100/35 100/17 99/21 97/15 100/36
10.00 98/59 100/34 100/17 99/21 100/15 100/35

Table 2: Recall and Precision percentages

for queries against bands 4 and 5
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Figure 4: Recall and Precision for queries against bands 4 and 5

Figure 4 and Table 2 show the recall and precision results. Recall is the percentage of desired
regions returned by the query. That is, the number of desired regions returned by the query divided
by the number of desired regions in the database. For the purposes of this evaluation, a desired region
is a region of the same class as the query point. Precision is the percentage of regions returned which
were desired regions. That is, the number of desired regions returned by the query divided by the total
number of regions returned by the query. The markers of the class lines of Figure 4 indicate the different
values of M. Note that since each class will have different recall and precision results the values of M
cannot be compared across classes by simply looking along a horizontal or vertical line. To compare
results across classes for specific values of M we must refer to Table 2.

Figure 4 shows that the effectiveness varies with the value of M as well as with the class involved.
For example, performance for some classes such as water and wetlands is considerably better than
others. In these tests it was possible to get 18% recall of the water and 34% of the wetland regions
while maintaining about 100% precision. That is, at this setting of M, 18% and 34% of the regions
with the desired classification were returned along with few if any regions of an undesired classification.
We can see that it is also possible to raise the recall up to about 78% while only sacrificing precision to
94%. However, to get 100% percent of the desired water regions it was necessary to return an answer
set of 54% precision.

Other classes, such as scrub/shrub, do not perform as well. For example, the precision of the
scrub/shrub answer sets is never better than 60% and to achieve 100% recall the precision drops to
about 17%. We are currently investigating possible reasons for the difference in performance. We



believe that it may be due to the strong spectral similarity between the scrub/shrub and cropland
classes in these two bands. This again brings up the subtle limitation in the test queries. The purpose
of the query mechanism is to find spectrally similar regions; not to make accurate classifications. If in
fact the scrub/shrub and cropland classes are spectrally similar we would expect regions of each class
to be returned by the query process. However, we are evaluating the answer set based on information
not available to the query mechanism. For example the distinction between the two classes may have
been made by another spectral band or by examining the physical shape of the regions. Regular shaped
regions are likely to be cropland while irregular regions are likely to be scrub/shrub. This information
is not available and is not used during the query process. However, it could be included in a more
complete image database system.

5 CONCLUSIONS

In this paper we have stated that mechanisms for managing complex feature data are not currently
well understood and deserve additional research effort. We have introduced the spectral properties
of regions as a type of complex feature. We have introduced a similarity measure and an indexing
mechanism to organize and efficiently use the spectral information. The approach discussed would
work for varying similarity thresholds and for dynamic environments where new image regions are
continuously being added to the system. We have also described an experiment to test its effectiveness.
The experiment demonstrates that reasonable performance can be achieved using these non-standard
features.

Future work will address issues with selecting appropriate bands with which to resolve queries,
modeling the regions spectral information more accurately, resolving multidimensional queries more
effectively, using PDF's as well as points as queries, improving efficiency, and exploring other uses of the
basic mechanism.
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