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List of Symbols

Memory system parameters:
w word size

p page size

T page-hit read cycle time
T

-
T
T

p/r

o/ page-hit write cycle time

p/m page-miss overhead

oy uniform-accessread cycletime

ww Uniform-access write cycletime
Stream parameters:

v stream start address (vector accessed)
stride of access

d datasize
m mode of access
o number of dataitems referenced per functional iteration

M AP notation:

access to the next element of stream t;

a“ k™ accessfrom t; for agiven access sequence iteration
S set of all streamsin agiven MAP

N number of streamsin S

\% number of different vectors referenced by streamsin S
b depth of loop unrolling

Performance measures:

Tag @averagetime per access

BW  processor-memory bandwidth



General propertiesof stream t;:

E, number of accesses per loop iteration

ei intermix factor

Properties of stream t; for a sequentially interleaved architecture:

W, number of modules referenced

Z; set of modules referenced

& module stride

U maximum number of accesses serviced at any module for a given iteration

Modeling functions:

y(s, d) average number of dataitems per word

(s, d) average number of dataitems per page

n(s d,c, V) average per iteration page miss count

hp(s, d, ¢) average per iteration page miss count for intermixed write stream

w(s, d, ¢) average per iteration page miss count for wrap-around adjacent read stream

imix(s, d, c, h, V) effect of intermixing on average page miss count of write stream
wadj(s, d, c, V) effect of wrap-around adjacency on page miss count of read stream



1 Introduction

SuperscaIaTrpipeIined processors are well suited for meeting the demands of scientific
computing, singly and as components of parallel machines. Hovetweies demonstrate
that for such applications, performance is limited by the processorory bandwidth
[Lee90, Moye9l].

For vector computers, parallel memory modules are employed to incresagetand-

width through concurrent processing of memory requests. Research into parallel memory
systems is generally directed towards developing storage schemes, i.e. mappings of
addresses to memory locations, that reduce module conflict and hence increase concur-
rency Proposed storage schemes include the use of a prime number of modut&2[LaV
skewed storage [BuKu71, HaJu87], and dynamic address transformations [Harp89,
Rau91]. Note that these techniques are dependent on a relatively long sequence of refer-

ences to a single vector

Scalar processors executing scientific codes generate an interleaved sequence of refer-
ences to a set of vector operands. Thus, simply applying a given storage scheme is
unlikely to produce maximum concurrency in a parallel memory system. Furthermore, the
performance of individual modules of modern DRAM components is sensitive to the

sequence of requests; this issue is not addressed in previous parallel memory studies.

In general purpose scalar computing, the addition of cache memory is ofténiarguf
solution to the memory latency and bandwidth problems given the spatial and temporal
locality of reference exhibited by most codes. For scientific computations, vectors are nor-
mally too lage to cache. Iteration space tiling [CaKe8%I{88] can partition problems

into cache-size blocks, however tiling often creates cache conflict§f@aRand the
technique is dffcult to automate. Furthermore, only a subset of the vectors accessed will
generally be reused and hence benefit from caching. Fioatiiing may actually reduce

effective memory bandwidth by fetching extraneous data for non-unit strides. Thus, as

t. Both superscalar and VLIW architectures are suited for scientific applications and place similar demands
on the memory system.



noted by Lanet al [LaRW91], ‘while data caches have been demonstrated tddxie¢
for general-purpose applications..., thefeefiveness for numerical code has not been

established'.

Access ordering [Moye92b] is a compiler technology that addresses the memory band-
width problem for scalar processors executing scientific codes. Access ordering is a loop
optimization that reorders non-caching accesses to better utilize memory system
resources. For a given computation, memory architecture, and memory device type, an
access ordering algorithm determines a well-defined interleaving of vector references that

maximizes dective bandwidth.

In this report, access ordering algorithms are developed for a sequentially interleaved
memory architecture. Interleaving is the most prevalent parallel memory storage scheme

whereby for ai€mm module system, word maps to modulga mod m) .

1.1 Background

This work builds on previous analytic results derived for a single module memory system
[Moye92a]. © make this document self-contained, the necessary analysis from that report
is repeated here. Readers familiar with previous work may skip immediately to the analy-
sis of an interleaved architecture presented in section 5; note: there is an important addi-

tion to the MAP access sequence definition presented in 3.1.

1.2 General System Model

Access ordering algorithms presume a dedicated memory system driven by a single scalar
processaras depicted in Figure The memory system is dedicated in that only one pro-
cessor is serviced, implying that memory state is dependent on a single reference
sequence. This general system model is representative of uniprocessors and single-proces-

sor nodes of distributed memory parallel machines.

The processor is presumed to implement a non-caching load instruction, asa86@|’

[Inte89], allowing the sequence of requests observed by the memory system to be con-



Address Source

Memory System

Data Sink

Figurel General System Model

trolled via software. For access ordering, all memory references are assumed to be non-
caching. Combining caching and non-caching accesses is discussed with other implemen-

tation issues in section 6.

1.3 Access Ordering Observation

Access ordering formalizes the notion of reordering non-caching accesses to exploit mem-

ory system resourceso Tllustrate this concept, a simple example is presented below

Consider a single module pdge-mode DRAMs. Page-mode DRAMS operate as if imple-
mented with a single on-chip cache line, referred tqmgd. An access that does not fall
within the address range of the current DRAM page forces a new page to be accessed,
requiring significantly more time to service than an access that ‘hits’ the cached page.
Thus, the dective bandwidth is sensitive to the sequence of requests. Nearly all DRAMs

currently manufactured implement a form of page-mode operation [Quin91].

Figure2(a) illustrates the ‘natural’ reference sequence for a straight-forward translation of

thevaxpy, vector axpycomputation

b Yi < &% 1Yy,

t. Note that a DRAM page should not be confused with a virtual memory page; this is an unfortunate over-
loading of terms.



For modest size vectors, elements a;, X;, and y; are likely to reside in different pages, so
that alternating accesses to each incurs the page miss overhead; memory references likely

to page miss are highlighted in Figure 2.

In the loop of Figure 2(a), 3 page misses occur for every 4 references; a different ordering
can result in every reference generating a page miss. By unrolling the loop and grouping
accesses to the same vector, as demonstrated in Figure 2(b), page miss cost is amortized
over a number of accesses; in this case 3 misses occur for every 8 references. In reducing

page miss count, processor-memory bandwidth isincreased significantly.

| oop: | oop:

load a load a

| oad x | oad a

| oad y | oad x

stor y | oad x

junp | oop | oad vy
| oad y
stor y
stor y
junp | oop

(a) (b)

Figure2 Vaxpy Code

1.4 Computation Domain

The problem domain to which access ordering is applicableis the class of stream-oriented
computations. A stream-oriented computation interleaves references to some number of
streams, where a stream is defined as a linear sequence of accesses to a given vector of
fixed sized elements, beginning at a known address, and proceeding at a constant stride.
Stream access results in a predictable reference pattern that can be exploited. Processor
instructions and scalar constants are assumed to be cached or held in registers, as appropri-

ate.



For example, a scalar processor performing the well kreoysoperation:
i Y, « ax; +vy,

is assumed to generate three distinguishable access streams, one load stream to each of the

vectorsy andx, and one store stream back to the vegtor

In this report, the computation domain for which access ordering algorithms are developed
is further restricted to the class of vectorizable loops. Since vectorizable loops contain no
loop-carried dependencies, excepting ignorable input dependence and self-antidependence
cycles [WbIf89], reordering accesses within an unrolled loop is simplified. Note that recur-
rence relations can often be eliminated through streaming optimizations [BeDa91], so that

algorithms developed here are actually applicable to a superset of the vectorizable loops.

1.5 Memory Device Types

For stream-oriented computations, access ordering reorders references within an unrolled
loop to exploit features of the underlying memory system. Thusfeaatit access order-

ing algorithm must be derived for eachgeirmemory architecture and device type. Order-

ing algorithms are derived here for each of the two major memory component types:

uniform-access and page-mode.

Uniform-access components are insensitive to the reference sequence, so that the time to
service a given access is not dependent on previous requests; SRAMs are the common
example of this device type. The performance of uniform-access components is parame-

terized by

T,/ the read cycle time, and
T,/w» the write cycle time.
Page-mode components operate as if implemented with a single on-chip cache line, as dis-

cussed in section 1.3; static-column and fast page-mode DRAMs are the common exam-

ples of this device type. The performance of page-mode components is parameterized by



* p, thepagesize,
* Tors the page-hit read cycle time,
* Tpw» the page-hit write cycle time, and

* Torm the additional page access overhead incurred by a page miss; thus, the page-miss

read and write cycletimesare T, + T, and T, + T, ., respectively.

The system word size is defined by w. For systems constructed from page-mode compo-
nents, page size isamultiple of word size; i.e. w | p. Note that for all system parameters,

sizes are in bytes and times are in nanoseconds.

1.6 Performance M odeling
For a given computation, access ordering results in code that generates a well-defined
sequence of vector references. Consequently, for each ordering algorithm, an analytic

model of effective memory bandwidth can be derived.

Models of memory system performance have traditionally been based on the assumption
that individual modules are insensitive to the sequence of access requests. For modern
page-mode DRAM components, this assumption is not correct. Furthermore, memory per-
formance models generally assume a stochastic sequence of references. For stream-ori-

ented computations, thisis not the case.

Developing an access ordering algorithm for a given memory architecture and device type
provides a unique opportunity to derive a precise analytic model of memory system per-
formance for alarge and important class of computations. In developing such models, itis
assumed that the processor is sufficiently fast so that performance is limited by the mem-

ory system. Thus performance models represent maximum effective bandwidth.

2 Previous Wor k

Access ordering spans a number of interrelated topics from compiler optimizations to per-

formance modeling. The following sections provide the minimal level of context neces-



sary to characterize the contributions of this work; a more complete survey of all relevant

topics can be found in [Moye920].

2.1 Stream Detection

Access ordering algorithms derived in this report presuppose the existence of compiler
techniques to detect stream-oriented computations. Benitez and Davidson [BeDa91]
describe a technique for detecting streaming opportunities, including those in recurrence
relations. Callahan et al [CaCK90] present atechnique called scalar replacement that
detects redundant accesses to subscripted variablesin aloop, often transforming a more
complex sequence of referencesto a vector into a single access stream. Finally, as stream-
oriented computations reference vector operands, well known vectorization techniques are
applicable, such as those described by Wolfe [Wolf89].

2.2 Access Scheduling Techniques

Access ordering is a compilation technique for maximizing effective memory bandwidth.
Previous work has focused on reducing load/store interlock delay by overlapping compu-
tation with memory latency, referred to here as access scheduling. Essentially, access
scheduling techniques attempt to separate the execution of aload/store instruction from
the execution of the instruction which consumes/produces its operand, reducing the time

the processor spends delayed on memory requests.

Bernstein and Rodeh [BeR091] present an algorithm for scheduling intra-loop instructions
on superscalar architectures that accommodates |load delay. Lam [Lam88] presents a tech-
nique referred to as software pipelining that structures code such that agiven loop iteration
loads the data for alater iteration, stores results from a previous iteration, and performs
computation for the current iteration. Weiss and Smith [WeSm90] present a comprehen-
sive study in which they classify and evaluate software pipelining techniques imple-
mented in conjunction with loop unrolling. Klaiber and Levy [KILe91] and Callahan et al
[CaKP91] propose the use of fetch instructions to preload data into cache; compiler tech-

nigues are developed for inserting fetch instructions into the normal instruction stream.



Access ordering and access scheduling are fundamentally different. Access scheduling
techniques alow load/store architectures to better tolerate memory latency; however, the
effective memory bandwidth is not considered. Note that access ordering and access
scheduling are complementary. Access ordering can first be applied to a computational
kernel to obtain an ordering of load/store instructions that maximizes effective bandwidth.
Access scheduling can then be applied to reduce interlock delay while maintaining the

specified load/store instruction order.

3 Modd Access Pattern

For deriving access ordering algorithms and performance models, it is useful to define a
notation for expressing sequences of requests generated by stream-oriented computations.
The Model Access Pattern notation used to denote specific reference sequences is defined
below, along with a set of general definitions and assumptions applicable to all computa-
tions. Access ordering in the presence of wide wordsis also discussed. Finaly, arestric-

tion is placed on stream interaction to simplify optimality results.

3.1 MAP Notation

Two characteristics define the Model Access Pattern (MAP) for a stream-oriented compu-
tation: a set of access streamsto individual vectors, and an interleaving of stream refer-

ences into a merged access sequence.

An access streamis defined by thetuple t; = (v, s, d, m) : o where

v =vector to be accessed = stream starting address
S =stride of access

d =datatypesize

m = access mode, read(r) or write(w)

O =number of data items accessed in asingle functional iteration



An access sequence describes the interleaving of stream accesses within aloop and is

defined recursively asfollows:

let a; denote accessto the ‘next’ element of the stream t;, then
1. {a} isanaccess sequence.

2. {A, ..., A} isanaccesssequencewhere A, ..., A areaccesssequences, A, ..., A,
are performed left to right with al accessesin Aj initiated prior to the initiation of
accessesin A, ;.

3. {A:c} isanaccess sequence where A is an access sequence and c isapositive integer;
Aisrepeated ¢ consecutive times.

4. [Ay ..., Aoy, ..., a ] isanaccesssequencewhere Ay, ..., A, are access sequences
anda,, ..., 0 _arepostiveintegers. A, ..., A, are performed left to right in amodified
round-robin fashion, with a; accessesfrom A; until all accessesin A,, ..., A, have
been initiated. If fewer than o, accessesremainin A;, then only these accesses are
issued. When all accesses specified in A, have been initiated A, is dropped from the
pattern.

A dtrict round-robin selection of accesses from each of the sequences A,, ..., A, is
achievedwhena, = ... = a_ = 1,andisdenoted simply as [A, ..., A]] .

In discussing a particular MAP
* stream parameters are referred to by dot notation, e.g. t;.s is stride, and
« afrefersto the k™ access from t; for a given access sequence iteration.

For visud clarity, {a;} :c= {a,:c} and extraneous brackets are omitted when the mean-
ing is unambiguous. When the access mode is known, an accessis denoted asr; or w; for

t.m = rort.m = w,respectively.
Toillustrate, the MAP notation is applied to the axpy operation
i Y, « ax; +vy,

Three access streams are generated defined by thetuplest, = (X, s, d,, r) :1,
t, = (Y,s,dy,r):1,andt, = (v, s, d,w):1.Thenatural’ access sequence imple-
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menting the axpy computation i§r, Fy Wy } . specifying one read from eachtgfand

ty followed by one write fron’ny , per loop iteration.

The above notation fairds convenient specification of accesses to parallel memory mod-
ules. For example, given an interleaved system and known stream aliﬁrifrmquence

A, represents requests to modMg then [A,, ..., A,_;] specifies an access sequence
that references each module with penritﬁtobnd provides for concurrency among accesses

from different streams.

3.2 Definitions and Assumptions

The following definitions complement the MAP notation:

« S={t; | t; defines an access stream for a given computation§ isethe set of all
access streams for a given MAP

* N=1S, i.e. for a given MAP the total number of access streaisaad

* V=number of uniqué,.v such that, I S, i.e. for a given MAP the number of vectors
accessed 9.

For the set of strean®of a given MAPRIt is assumed that for all ] S

« t.d|w, i.e. for all streams iBword size is a multiple of the data size,
* access stream begins at an address divisible thyd, i.e. data is aligned, and

+ stride of acces§.s is positive; the stream interaction restriction defined below allows

this assumption without loss of generality

3.3 Wide Word Restrictions
For completeness, it is desirable to accommodate wide word access in ordering algorithms
and performance models; a typical example being a 32-bit value referenced from a 64-bit

word. To fully utilize wide words, and simplify modeling, several minor restrictions are

t. Alignment assumed known with respect to modules; i.e. the first module referenced by each stream.
$. Module reference sequence has parididall modules service the same number of accesses per iteration.
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placed on stream parameters and code generation for a computation. Prior to presenting

these restrictions, the following definition is made:

For accessstream t; with s = t;.sand d = t;.d, the average number of dataitems per

word is
01 when Weq
(s d) B .
Y (S =
Dﬂ when W 1
Dsd sd

Then for the set of streams Sof agiven MAR, it is assumed that for all t, 0 S

* access stream t; begins at an address divisible by w, i.e. streams are word aligned, and

 the average number of dataitems per word y (s, d) isan integer, implying that each
word accessed contains exactly the same number of dataitems.

Access ordering employs loop unrolling to increase the number of stream accesses within
aloop that can be reordered, as discussed in section 1.3; b is defined to be the depth of
unrolling. To maximize wide word utilization, an access ordering algorithm must insure
that for a given computation, the depth of loop unrolling is such that the number of data
items referenced from each stream per iteration is a multiple of the number of dataitems
per word; i.e. for stream t; with o = t;.0, y(s, d) | bo. Note that in the most common

case of one dataitem per word per stream, b can be any positive integer.

Given the above restrictions, each access to stream t; references exactly y (s, d) data

items, with the number of accesses per loop iteration defined by

bo

%7 V(s d)

Wide word access is accommodated in a natural, intuitive, and optimal fashion. Each
stream accessis guaranteed to reference a different word, and the number of dataitems per

word is constant.
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3.4 Stream Interaction Restriction

Recall that for amemory module constructed from page-mode components, the time to
complete a given access depends on whether or not the page referenced is the same as that
of the immediately preceding access. If two consecutive accesses are from different
streams, the impact of thefirst on the one that followsis difficult to capture analytically as
they may or may not reference the same page. To smplify analysis, the following restric-

tion is placed on the streams of a given computation:

 streaminteraction restriction - for any two access streams t;, 0 S, t.v# tj.v implies

that the streams have non-intersecting address spaces; in particular, streams reference
no pagesin common. When t,.v = tj.v stream parameters are identical except in
mode, where by definition t;. m# t;.m.

The stream interaction restriction results in stream accesses that interact with memory
architecture featuresin awell defined manner. To illustrate, when two streams have differ-
ent start addresses, i.e. t;.v # t;. v, the stream interaction resfriction states that the streams
reference no pagesin common. Thusit isknown that an access from stream t, preceded by
an access from stream t will cause a page miss. When two streams have the same start
address, i.e. t;.v = t;.v, the stream interaction restriction states that the stream parameters
areidentical except in access mode, accommodating read-modify-write operations. Thus,
within a given loop iteration, the k™" accesses from each of t; and t; reference the same

data item and hence the same page.

Strict adherence to the stream interaction restriction limits the applicability of access
ordering algorithms. However, thislimited problem domain is still large and encompasses
many interesting computations. Furthermore, under the stream interaction restriction, opti-
mality results are obtained for single module access and concurrency is more easily man-
aged in parallel memory systems. Relaxation of this restriction for applying ordering

algorithms to the set of vectorizable loopsis discussed in section 6.
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3.5 MAP Dependence Relations

Access ordering alters the sequence of instructions that access memory. In performing this
reordering, dependence relations must be maintained. As discussed below, the stream
interaction restriction limits the types of dependencies that can exist between accesses
from different streams. Rules are derived for maintaining dependencies during access

ordering.

Briefly, output and input dependence results when two write or two read accesses, respec-
tively, reference the same data item. Antidependence occurs when aread from a dataitem
must precede awriteto that datum. Finally, data dependence occurs when awriteto adata
item must precede aread from the same. A dependence relation between two accesses
from the same instance of aloop iteration is said to be |oop-independent, while a depen-
dence between accesses from different instancesis said to be loop-carried. A detailed

treatment of dependence analysis can be found in [Wolf89].

3.5.1 Output and Input Dependence
Output and input dependence can not exist as aresult of the stream interaction restriction;
two streams of the same mode have a non-intersecting address space. Therefore, depen-

dence relations of thistype need not be considered.

3.5.2 Antidependence

The stream interaction restriction states that two streams referencing the same vector do so
with stream parameters that differ only in access mode. Thus, antidependenceislimited to
loop-independent antidependence between corresponding components of aread stream t;

and write stream t; implementing a read-modify-write. So, if t,.v = t.v, then WJ!‘ Isanti-
dependent on r¥; notationally r¥ & WJ!‘.

Simply specifying t; and t suchthat t,.v = t.v is assumed to imply antidependence; the
only alternative, aloop-independent data dependence, is redundant and the read stream

unnecessary. Compilation is assumed to remove extraneous access streams.
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3.5.3 Data Dependence

Data dependence does not exist between access streams in the usual sense that a memory
location iswritten and later read during the execution of aloop. Loop-independent data
dependence implies an extraneous read stream, as discussed above. Loop-carried data

dependence can not exist as aresult of the stream interaction restriction.

Though data dependence does not exist in the usual context, it is present in the data flow
sensg; that is, as right-hand-side values required in performing a computation. A write
operation represents the assignment of a computation result and as such usually requires
that some set of read operations precede it. In this sense, awrite operation w}‘ is data
dependent on aread operation r{l if r defines avalue used in the computation of the result

assigned by WJ!‘; notationally, ri & WJ!‘.

3.5.4 Dependence Rules

Summarizing the above, dependence between accesses belonging to different streamsis
limited to two types under the stream interaction restriction: loop-independent antidepen-
dence between aread and write streams that access the same vector, and data dependence
in the data flow sense. This observation leads to the following two rules necessary for

maintaining data dependence in access ordering algorithms.

For read stream t; and write stream t;, an access sequence maintains all dependencies if

1 r:‘ precedes w}‘ when rik 5 WJ!‘, i.e. aread precedes its corresponding write in aread-
modify-write operation, and

2. r{1 precedes WJ-k when ri & WJ!‘, i.e. aread operation that defines avalue used in the

computation of aresult precedes the write of that result.

Dependence information is derived from context. As discussed in section 2.1, itis
assumed that stream information has been provided for the access ordering algorithm; it is

assumed that dependence information is provided as well.
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3.5.5 Other Dependencies

The above discussion completely characterizes the dependence that can exist between
accesses belonging to different streams under the stream interaction restriction. However,
two other types of dependence may exist: loop-carried input dependence within asingle

read stream, and control dependence.

L oop-carried input dependence can result from the transformation of a more complex
sequence of read accessesto asingle read stream. Consider the finite difference approxi-

mation to the first derivative

_ (Vie1~Vi-1)

i dv; 5h

Analysis techniques [BeDa9l, CaCK90] can transform the ‘natural’ pattern of accessto
vector v to asimple stream requiring one access per iteration; two values of v are pre-
loaded prior to entering the loop, and each successive value accessed is carried in aregis-
ter for two iterations. The loop-carried input dependence created in the transformation has

no affect on the ordering of memory access instructions.

Control dependence results from branch statements within aloop. When control depen-
denceis present, access ordering can still be applied by considering each path through the
loop body independently. Ordering and code generation is performed for each path, with
the code segment to be executed on each iteration determined dynamically. For the

remainder of this discussion, loops are assumed free of control dependence.

4 Single Module Analysis

Prior to examining an interleaved system, techniques are first presented for minimizing
page overhead at a single module of page-mode DRAMs. Complete ordering algorithms
for asingle module system are not derived; only the tools necessary for analyzing an inter-

leaved system of page-mode components are devel oped.
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4.1 Minimizing Page Overhead
Given a stream not involved in a read-modify-write, minimizing page overhead istrivial.
For streams implementing this operation, page overhead is minimized viaintermixing and

wrap-around adjacency.

Given stream t; [1 S such that t; does not participate in aread-modify-write, i.e. t,.v # tj.v

for all tus, minimum page overhead is achieved by performing a sequence of accesses

a; without an intervening access to a second vector ;. This follows from the observation
that a!‘* 1 only resultsin a page missif it does not reference the same page as a:‘; an inter-
vening access 3 is guaranteed to generate a page miss by the stream interaction restric-

tion.

The average page miss count for accesses grouped by stream is derived as follows. For

accessstream t; with s = t;.sand d = t;.d, the average number of dataitems per pageis

1 when Py

] sd
¢(s,d) = O

P when P o1

(sd sd

Then arranging accessesfrom t; as { ..., a;:c, ...} , the average per iteration page miss

countis
g Ysd when V=1
N @ (s d)
n(sdcV) =0
0 (c=1)y(sd)
+ when V=2
ot ¢(s d)

That is, when the number of vectors referenced isone, i.e. V = 1, the average page miss
count for ¢ consecutive accessesto t; isthe number of data items referenced divided by
the number of dataitems per page. For V = 2, ail is guaranteed to page miss, so that the
average page miss count is one plus the remaining dataitemsto access, (c—1) y(s, d),

divided by the number of data items per page.
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Note that the average page miss count per access, n(s, d, ¢, V)/ ¢, iseither constant or
inversely proportional to c. In the later case, separating the ¢ accesses must increase the
per reference page overhead. Consequently, minimum page overhead is achieved when

accesses are grouped by stream.

Theorem 1: Given stream t; [J S such that t; does not participate in a read-modify-write,
e t.v# tj.v for all tj O S, minimum average page overhead is achieved by the access

sequence { ..., €, ...} .

4.1.1 Intermixing
For read stream t; and write stream t; that implement a read-modify-write, i.e. t;, t; 'S
and t;.v = t.v, it is often possible to reduce the average page miss count of the write

stream below that achieved by the access sequence { ..., r;:€;, ..., Wi €, I

Consider the general intermix sequence

{..., {ri:c,wj:c} ‘h, ...}

that generates the string of references

c+1

Since r{ and ch refer to the same location, r7™ * will only page miss when referencing a

page different from that referenced by r{". Thus, the average page miss count for the read

(k-1)c+1

stream is unchanged. However, the sequence of accesses w. through wke,

j
(k-1)c+1

1< k< h, suffers apage miss only when r; and r!‘c reference a different page.
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For write stream g with s = tj.s andd = tj.d, the average page miss count in perform-
ing each set of ¢ write accessesin the intermix sequence { ..., {r;:c, wj:c} ‘h, ...} is

derived in Appendix A.1 as

12(c-1)y(s,d)sd

B when (c-1)y(s,d)ysd+d<p
p(sdc) = O P

O -1)y(s d

1 + (c (p()s,Vd()S ) when (c-1y(sd)sd+d>p

Thus, the total average page miss count in performing all ch write operations for agiven
iterationis hp (s, d, c) . The general intermix sequence { ..., {r;:c, WjZC} 'h, ...} is

optimal, as demonstrated in Appendix A.2.

Based on the preceding analysis, for acomputation that references two or more vectorsthe
intermix sequence { ..., {r;:c, wj:c} :h, ...} resultsin alower page overhead for write
operations than the sequence { ..., r;:ch, ...,WjZCh, ...} ifhp(s,d,c) <n(sd,ch,V).
Similarly, for acomputation that references exactly one vector the intermix sequence

{ {r;:c,w;:c} :h} resultsin alower page overhead for write operations than the
sequence {r;:ch, WjZCh} if hp(s,d,c) <p(s, d,ch). Thenfor write stream &, the

affect of intermixing on average per iteration page miss count is computed as

0P (s d,ch) —hp(s,d,c) when V=1
imix(s,d,c,h, V) = o
On (s, d,ch,v) —hp(s,d,c) when V=2

It can be shown algebraically that imix(s, d, ¢, h, V) >0, i.e. intermixing reduces write
access pagemisscount, if ¢ = 1 or ((c—2)h+1)y(s, d)sd<p. Therefore, when
imix(s, d, c, h, V) > 0 the average page miss count in performing each set of c write
accesses, p (s, d, ¢), isdirectly proportional to c. Thus, choosing ¢ as small as possible

minimizes write page overhead.
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4.1.1.1 Intermix Factor

For the general intermix sequence, the values of the intermix parameters ¢ and h that min-
imize page overhead for the write stream are a function of both the stream parameters and
data dependence information. Intuitively, the intermix parameter c is chosen to be the min-
imum value that preserves data dependence while efficiently utilizing wide word access,
when applicable. If write stream t is not data dependent on read stream t;, implying the
computation is not a strict read-modify-write, then ¢ = 1. Otherwise, ¢ isthe minimum
number of accesses required to reference all dataitems for a number of computation itera-
tions such that al dataitemsin the words accessed are consumed; this minimal value of ¢

isreferred to as the intermix factor.

For write stream tj with s = tj.s, d= tj.d and o = tj.o, the intermix factor is com-

puted as
O 1 when t; isnot data dependent on t;
[
6. =
I~ Hem(o, v(s ) .
otherwise
0 vsd

From the derivation of g in section 3.3, it can be seen that the number of accessesto
stream t; per loop iteration is amultiple of the intermix factor ej; i.e ej | g Thus, inter-
mix parameters ¢ = ej and h = aj/ej minimize page overhead if imix(s, d, c, h, V) > 0;

otherwise, intermixing increases page overhead and is therefore not employed.

Theorem 2: For read stream t; and write stream t that specify aread-modify-write, i.e.
t, 4 O Sandt.v = t.v, minimum average page overhead for write stream t isachieved
by the general intermix sequence { ..., {r;:c, WjZC} h, ...} withc = Gj and h = sj/ej
if imix(s, d, c, h, V) > 0. Page overhead for read stream t; is unaffected by intermixing and
equivalent to that achieved by the access sequence { ..., r;:€;, ...} .

Though intermixing minimizes page overhead, the resulting sequence may not be amena-

ble for execution on pipelined processors; thisissue is discussed further in section 6.



20

4.1.2 Wrap-around Adjacency

Given read stream t; and write stream t that specify aread-modify-write, i.e. t, 0 S
and t;.v = t.v, it is often possible to reduce the average page miss count of the read
stream viawrap-around adjacency. Streams t; and tj are wrap-around adjacent if accesses

to each occur at the beginning and end of an access sequence, respectively; i.e.

Note that in the special case where t; and t are the only streams in a computation, the

intermix sequence { {r;:c, wj:c} -h} aso resultsin wrap-around adjacency.

Since rfi and wf" reference the same location, then for a given iteration ri1 will only page
miss when referencing a page different from that referenced by rf‘ on the previous itera-
tion. In terms of page overhead the read stream proceeds asif no other vector is accessed,

so that page miss count is computed by n (s, d, ¢, V) whereV = 1.

Then, for awrap-around adjacent read stream t; with s = t,.sand d = t;.d, the average

per iteration page miss count is

cy(s, d)
@ (s, d)

w(s d,c) =

The affect of wrap-around adjacency on per iteration page miss count for read stream t; is

computed as

wadj (s,d,c,V) =n(sd,c V) —wsd,c)

For a given read stream wrap-around adjacency results in minimum possible page over-

head, as the read stream proceeds without page thrashing.

Theorem 3: For read stream t; and write stream t; that specify aread-modify-write, i.e.
ti, ;0 Sand t;.v = t;.v, minimum average page overhead for read stream t; is achieved

viawrap-around adjacency.
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5 Interleaved Architecture Analysis

Access ordering agorithms and performance predictors are now derived for asequentially
interleaved memory system as depicted in Figure 3. Sequential interleaving is the ‘ stan-
dard’ parallel memory storage scheme whereby for an m module system, word a maps to

module a mod m.

Address Source
-
-

S B | \

Figure 3 Sequentially Interleaved Architecture

Data Sink

The interleaved memory system is defined to function as follows. Access requests are
directed to the appropriate module, as determined by the storage scheme. If input buffer
space is available then the request is queued, otherwise the memory system blocks until a
buffer slot isfreed. Accessrequests are serviced at amodule in the order queued, with data

from read requests placed in the modul€'s output buffer.

Note that in aparallel memory system, accesses may not complete in the order of request.
Read accesses are assumed tagged so that data may be returned in the requested order. The
details of such atagging scheme are not important to the analysis presented here, and as
such are not defined. It is sufficient to assume that results can be returned at the rate satis-
fied. Recall that in modeling maximum effective bandwidth, the request rate is assumed
sufficient such that performance is limited by the memory. These are common assump-

tionsin the study of parallel memory systems.

The following sections discuss the problem space for efficient utilization of sequentially
interleaved memory and present analytic results characterizing the interaction of asingle

stream with an interleaved architecture. Access ordering algorithms and performance pre-



22

dictors are then derived under the assumption of unknown and known stream alignments,

respectively.

5.1 Problem Dimensions

Three features of current parallel memory systems can be exploited to increase processor-
memory bandwidth: module concurrency, page-mode operation (if applicable), and wide-
word access. Note that wide-word access is managed optimally via conditions specified in

section 3.3.

Ordering accesses to maximize concurrency requires knowledge of stream alignment so
that nonconflicting modul e references may be scheduled to proceed in paralel. In the
absence of alignment information, accesses can be ordered to increase the likelihood of

concurrency.

Techniques for minimizing page overhead come directly from analytic results derived in
section 4 for a single memory module. Page overhead at module M, is minimized for a
given iteration if elements of a stream stored at that module are referenced consecutively
without an intervening accessto M, . For two streams that implement aread-modify-write,

page overhead may further be reduced viaintermixing and wrap-around adjacency.

Optimal effective memory bandwidth results from an access sequence that minimizes
completion time for all accessesin aloop. Such a sequence may require a trade-off

between maximum concurrency and minimum page overhead.

5.2 Single Stream Module I nteraction

To devel ope access ordering algorithms, analytic results are first required that characterize
the interaction of a single stream with an interleaved memory architecture. In particular, it
is necessary to model the mapping of accesses to modules and the effective stride of
access at a given module. In doing so, an additional restriction is placed on dataitem,

word and page sizes. d, w, and p are assumed to be powers of 2.
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5.2.1 Access Mapping

For an m module interleaved memory, the mapping of stream accesses to modules is char-
acterized by the number of modules accessed and the distribution of accesses across those
modules. If stream alignment is known, then it can also be determined to which modules

stream accesses map.

For deriving these characteristics, an access cycle is defined as aminimal set of consecu-
tive stream accesses such that the first access in each adjacent cycle referencesasimilarly
aligned data item at the same module. For a stream with stride of access s and datasized,
access cycle length is the least common multiple of the number of bytes traversed per
access sd and the number of bytes across al modules mw; i.e. lcm(sd, mw). Then the

number of dataitems accessed per cycleis

lem(sd, mw) mw
sd ~ ged(sd, mw)

@

If the number of dataitems per word is greater than one, i.e. y(s, d) > 1, then stream
accesses proceed sequentially across all modules so that the number of modules accessed
ism. By assumption streams are word aligned, the number of dataitems per word is con-
stant, and each access references exactly those dataitems within aword. Thus, the

sequence of modules referenced has a period of m.

If the number of dataitems per word equalsone, i.e. y(s, d) = 1, and the number of bytes
traversed per access is amultiple of theword size, i.e. w | sd, then each accessisto the
same relative position in a different word from the previous reference. The number of
modules accessed is equal to the number of dataitems accessed per cycle, as computed in

equation (1), and reduces to

m

sd
ng(W! m)

Each module is referenced exactly once per cycle, resulting in a sequence of module

accesses periodic in the number of modules referenced.
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Finally, consider the case where the number of dataitems per word equals one and the
number of bytes traversed per access is not a multiple of the word size. In computing the
number of accesses per cycle from equation (1), since mw is a power of 2 then the
gcd(sd, mw) isaso apower of 2. Given that y(s, d) = 1 then by definition w < sd, so
that gcd(sd, mw) must be a power of 2 less than w. Thus the number of accesses per cycle
isamultiple of m, so that references are uniformly distributed across all m modules on a

per cycle basis.

Note that each module is not necessarily referenced exactly once for each m consecutive
stream accesses. Figure 4 depicts asingle access cycle for a4 module system, aword size
of 4 bytesand adatasize of 1 bytereferenced at a stride of 6; aligned as shown, each set of

4 accesses maps to 3 modules.

Address

T T | ]| | || | ]

2 111 | || | [ HE

Figure4 Access Mapping Diagram

From the preceding analysis, for stream t; with s = t,.sand d = t;.d, accessesare dis-
tributed uniformly across a number of modules defined by

m when w | sd

U sd
Ui = Dng(W’m)

0 .
m otherwise

Furthermore, when the number of dataitems per word is greater than one or the number of
bytes traversed per accessis amultiple of the word size, then the sequence of modules

accessed by t; hasaperiod of L.
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Let Z; represent the set of modules to which stream t; maps. If the number of modules
accessed by t; islessthan m, then Z, isonly defined if stream alignment is known. For

stream t; aligned to base module Mg, the set of modules referenced is

{Mg....M,,_,} when M, = m
I

0]

0
Z = B

O . sd

D{Mjlj_(Bi"'kW) mod m, Os<ks<p -1}  when H<m

In computing Z;, if the number of modules referenced islessthan mthen Z; isthefirst p,

modules accessed starting from base module My .

Since the number of modules accessed by a stream is a power of 2, then for any pair of
streamst; and t; itmust betruethat Z, n Z; = 0,0r Z;n Z; = Zj,0r Z; n Z; = Z;. Two
streams either reference no modules in common, i.e. are nonconflicting or one stream

accesses a subset of the modules accessed by the other.

5.2.2 Module Stride

To apply functions modeling page overhead derived in section 4 for a single module sys-
tem to individual modules of an interleaved system requires deriving the module striddor
agiven stream. Module stride is defined as the distance between consecutive accesses

from the same stream observed at a particular module.

Forastream t; with s = t;.sand d = t;.d, if the number of dataitems per word is greater
than one, then by assumption t; isword aligned and the number of dataitems per word is
constant. For agiven module M, , accesses from t; reference consecutive words so that the

stride between data items accessed is s.

When the number of dataitems per word equals one and the distance between stream
accesses is amultiple of theword size, i.e. w | sd, then for amodule M, the distance

between consecutive accesses from the same stream is constant. Module stride is com-
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puted as the number of modules accessed multiplied by the actual stride and divided by

the total number of modules; i.e.

WS s

m sd
QCd(W, m)

Finally, if the number of data items per word equals one and the distance between stream
accesses is not amultiple of the word size, then from the analysis of access mapping the

number of accesses per module per cycleis

W

gcd(sd, mw) @)

The number of bytes traversed per module per cycleisthe cycle length divided by the

number of modules; i.e.

lem(sd, mw) sdw
m ~ gcd(sd, mw)

©)
So the average number of bytes traversed per accessistheratio of (3) to (2), or sd, result-

ing in an average module stride of s.

Figure 5 depicts a single access cycle, plus a portion of the adjacent cycle, for a4 module
system with aword size of 4 bytes and a data size of 1 byte referenced at a stride of 5;
strides between individual accesses at a given module take on values of 3 and 11, resulting

in an average module stride of 5.

From the above results, for stream t; with s = t,.sand d = t;,.d, the module stride is

computed as

when w | sd

S otherwise
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Figure5 Module Stride Diagram

For an interleaved system, analytic results for access mapping and modul e stride com-
pletely characterize theinteraction of a single access stream with the memory architecture.

Streams for which

 the number of dataitems per word is greater than one or

» the number of bytes traversed per accessis a multiple of the word size

reference a sequence of modules periodic in the number of modul es accessed with a con-
stant module stride. Access ordering and performance modeling are significantly compli-
cated by streams that do not posses either property. Fortunately, such streams rarely occur
in practice. For the remainder of thisanalysis, all streams are assumed to exhibit one of the

two properties listed above.

5.3 Access Ordering Algorithms for Unknown Alignments
For a sequentially interleaved memory, access ordering algorithms and performance pre-
dictors are derived based on the assumption that stream alignments, with respect to mod-
ules or each other, are unknown. In the absence of alignment information an optimal

solution can not be derived for the general case, as knowledge of stream alignment is
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required to schedule nonconflicting references to proceed in parallel. However, accesses

can be ordered to increase the likelihood of concurrency.

Ordering algorithms and performance predictors are derived below for systems of uni-
form-access and page-mode components, respectively. The effectiveness of access order-

ing and accuracy of performance models are demonstrated via simulation.

5.3.1 Interleaved Storage and Uniform-access Components
For an m module interleaved system of uniform-access components, an access ordering
algorithm need only maximize module concurrency. Asageneral optimal ordering can not

be derived, a heuristic solution is devel oped.

Recall that astream t; references i, modulesin asequence with period ;. If 1, = m, i.e.
all modules are referenced, then maximum concurrency is achieved in performing all

accessesto t; consecutively for agiven iteration. If 1, < m and the number of consecutive
referencesto t; exceeds |;, then m— i, modules are potentially idle for the time required

to initiate accesses to t;.

For a set of N independent streams, consider a sequence that interleaves a number of
accesses from each stream equal to the number of modules referenced (or the number of

accesses remaining, whichever is smaller); e.g.

[agi€p, ooy i€y | Hys ooes By

The above sequence maximizes concurrency for astream t; by issuing sets of (at most)
consecutive accesses to that stream, the maximum number that can proceed in parallel.
Furthermore, sets of accesses from each stream are interleaved to increase the likelihood
of concurrency among accesses from different streams. In the absence of alignment infor-

mation, No sequence can guarantee greater concurrency.

In defining a MAP access sequence for streams S, accesses are performed in two phases: a

read phase and awrite phase. By the stream interaction restriction, streams associated with
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each phase are independent. If streams t; through ty, are assumed to be read streams and

ty, +1 through ty are write streams, then the access sequence employed is

{[ryeg .. N EN | My oo “Nr]’ [WNT+1ZENr+1, oy W EY NIRRT My}

In the sequence above, accesses from each phase are ordered to maximize concurrency for
individual streams and increase the likelihood of concurrency among accesses from differ-
ent streams. Dependencies are maintained as all read accesses are initiated prior to thefirst

write.

5.3.1.1 Performance Predictor

Given aMAP for a set of streams Swith an access sequence as defined above, a perfor-
mance predictor is derived for the average time per access Tavg and processor-memory
bandwidth BW. Because alignments are unknown, it must be assumed that accesses from
different streams can not be serviced concurrently. Thus, the models represent alower

bound on performance.

The maximum number of accesses from stream t; serviced at any module for agiven iter-
ation isthe ceiling of the number of accesses ¢, divided by the number of modules
accessed; i.e.

For aread stream t;, if the number of streams N is greater than one then the time to com-
plete all accesses for agiven iteration is the maximum number of references at any given
module g; multiplied by the uniform-access read cycletime T, . For the special case of
N = 1, the average time to complete all reads is the product of the number of accesses ¢

and the average time per access, i.e.
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Let T, be the time required to complete all read accesses for agiven iteration. Then T, is

computed as the sum of the timesto complete accesses for each individual read stream, i.e.

T
0 siJ/r when N=1and O(t 0S) suchthat t.m = r
0 i
T. =0
- YTy, when N=2
s
t.m=r

T,, is defined as the time to complete all write accesses for agiven iteration and is com-

puted analogously to T, so that

S when N=1and O(t; 0S) suchthat t.m = w
D |
Ty, = 0O
0 W Tyw When Nz2
U tTs
t.m=w

Then the average time per access Tavg isthetimeto complete all accessesin agivenitera-

tion divided by the number of dataitems referenced, resulting in

T +T,

) btigsti .0

avg

The effective memory bandwidth BW, in megabytes per second, isthe number of bytes of

relevant data transferred per iteration divided by the time to complete all access; i.e.

10%b t..d) (t..
. tgs[(' ) (t.0)]

T.+T,
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5.3.2 Interleaved Storage and Page-mode Components

For an interleaved memory constructed from page-mode components, optimal perfor-
mance results from an access sequence that balances maximizing concurrency with mini-
mizing page overhead to achieve minimum completion time. In the absence of alignment
information, ageneral optimal ordering algorithm can not be derived. A heuristic solution

is presented below.

In the sections that follow, an access strategy isfirst developed for computations that do
not specify aread-modify-write. Intermixing and wrap-around adjacency are then
employed to reduce the page overhead for computations implementing this operation.
Finally, the general ordering algorithm is presented and a performance predictor derived

for the ordered accesses.

5.3.2.1 A General Access Strategy

Consider aset of streams Swith no pair of streamsimplementing aread-modify-write. By
Theorem 1, page overhead at module M, is minimized when elements of stream t, 0 S
stored at that module are referenced consecutively without an intervening accessto M, .
Then for N independent streams, page overhead is minimized by performing all accesses

to each stream consecutively for a given iteration, asin the sequence

{ajie), ... ayieyt

Alternatively, as in the ordering algorithm derived in 5.3.1, potential concurrency can be
maximized by interleaving a number of accesses from each stream equal to the number of

modules referenced; e.g.

[ai€), oo aniey | By oo By ]

The above sequences address conflicting requirements. The first minimizes page overhead
at the cost of potentially decreased concurrency. The second increases potential concur-

rency at the cost of increased page overhead.
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In choosing a general method of access, the following observations are made. First, the
most common stride of accessis 1. At astride of 1, or any stride that resultsin all modules
being referenced, performing accesses to each stream consecutively results in maximum
concurrency and minimum page overhead. Conversely, interleaving accesses from differ-
ent streams results in maximum page overhead without an increase in concurrency. Sec-
ond, in the absence of alignment information, interleaving references can not guarantee

concurrency among accesses from nonconflicting streams.

Based on these observationsit is concluded that performing all accesses to each stream
consecutively constitutes a better access strategy than an interleaved sequence of refer-
ences. Essentially, a guaranteed minimization of page overhead for al streamsis chosen
over a potential increase in concurrency for nonconflicting streams. Thus, the access
ordering algorithm derived below specifies an access sequence consisting of (potentially

intermixed) accesssets {a;:€} , t; U S.

5.3.2.2 Intermixing and Wrap-around Adjacency

For streams Swith one or more pair of streamsthat implement aread-modify-write, access
sets can be ordered to reduce page overhead via intermixing and wrap-around adjacency.
In the absence of alignment information, it must be assumed that all access setsin a
sequence are conflicting. Thus, ordering access sets to exploit intermixing and wrap-

around adjacency is analogous to that for a single module system as discussed bel ow.

Consider aread stream t; and write stream t implementing a read-modify-write. Wrap-
around adjacency results when accessesto t; and t; occur at the beginning and end of a
sequence, respectively. Within a given iteration, writesto g reference the same vector ele-
ments read from t; so that for each subsequent iteration, reads from t; proceed asif no

other vector is referenced.

The effect of wrap-around adjacency is analogous to that for a single module system, and
reduction in page overhead for the read stream is model ed by the function wadj(s, d, c, V)
derived in 4.1.2. In employing this function for an interleaved system, wadj(s, d, c, V)

must model the reduction in page overhead achieved at the module servicing the greatest



33

number of accesses. Stride s is module stride and the number of accesses ¢ is the maxi-
mum number at any module; for read stream t;, s = &, and ¢ = ;. The number of vec-

tors V isthe number referenced by all streamsin S

Note that for an interleaved system, more than one pair of streams may exhibit wrap-
around adjacency. This can occur when two or more sets of streams implementing a read-
modify-write are nonconflicting. However, in the absence of alignment information, itis
assumed that every pair of streams conflict so that wrap-around adjacency benefits at most

one.

Intermixing reduces page overhead for write operations by interleaving accesses from a
pair of streamsimplementing a read-modify-write. Recall that for a single module, the

general intermix sequence asderived in section 4.1.1is
{...,{ri:c,wj:c}:h,...} (4

For an interleaved system, the above sequence is modified to maximize concurrency as
well as minimize page overhead. However, the pattern of access observed at individual

modulesis till that of the general intermix sequence.

For read stream t; and write stream t;, if the number of modules accessed equals one then
the optimal intermix sequence and intermix parameters are those derived in Theorem 2 for

asingle module system.

If the number of modules accessed is greater than one, an optimal intermix sequence must
maximize concurrency and minimize page overhead. Recall that for the general intermix
sequence, the intermix parameter ¢ must be a multiple of the intermix factor to maintain
data dependence. Then if the number of modules accessed by t (t;) isamultiple of the

intermix factor Gj, i.e. ej | b the optimal intermix sequenceis

{..., [ri:ei,wj:sj | 1y uj] i



Page overhead for write operationsis O, as corresponding read and write accesses occur
aternately at each module referenced. Concurrency is maximized as the number of con-
secutive accessesto t; and t isequal to the number of modules accessed (or the number of
accesses remaining, whichever is smaller). Data dependence is maintained as the number
of consecutive accesses to each stream is a multiple of the intermix factor. Note that indi-
vidual modules observe the general intermix sequence (4); intermix parameter cis 1, as
read and write operations are initiated alternately at each module referenced, and his lij

(g;) at the module servicing the maximum number of accesses.

If the number of modules accessed by read stream t; and write stream t is greater than

one but not a multiple of the intermix factor Bj , then the intermix sequence employed is
{...,{ri:si,wj:sj},...} (5)

Concurrency is maximized for each stream as each of the K modules referenced is
accessed with period b However, as discussed below, page overhead is not guaranteed to

be minimal.

By definition, if intermixing reduces page overhead for write operations then minimum
page overhead is achieved when the intermix parameter c is equal to the intermix factor
ej. As discussed above, if ej divides the number of modules referenced K then accesses
tot, and tj can be issued so that page overhead is 0 and concurrency is maximized. Other-
wise, interleaving sets of ej accesses from each of t; and g minimizes page overhead but
results in some of the K, modules referenced remaining idle with each set of GJ. reads and
writes. Thus, optimal intermix performance resultsin atrade-off between minimum page

overhead and maximum concurrency.

For small strides, the additional page overhead for performing all g (¢,) read and write
accesses consecutively in an intermix sequence is minimal; for strides of sufficient size
such that each access will page miss, minimizing page overhead is moot. Thus, for the
intermix sequence (5), concurrency is chosen over page overhead in a potentially subopti-

mal solution. Again, note that individual modules observe the general intermix sequence
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(4); intermix parameter cis W, for the module servicing the maximum number of

accesses, and his 1.

Given an intermix sequence defined as above, the reduction in page overhead for the write
stream is modeled by the function imix(s, d, ¢, h, V) derived in section 4.1.1 for asingle
module system. In employing this function for an interleaved system, imix(s, d, c, h, V)
must model the reduction in page overhead achieved at the module servicing the greatest
number of accesses. Stride sis module stride so that for write stream tj,s = & i Theinter-
mix parameters ¢ and h are dependent on the intermix sequence, and are derived in the

preceding analysis. The number of vectorsV is the number referenced by al streamsin S

Note that for an interleaved system, two or more pair of streams may benefit from inter-
mixing when each write stream is data dependent on each read stream. This can occur
when sets of streamsimplementing read-modify-writes are nonconflicting. For example, if
streamst, and t, and streamst, andt, aretwo pairsof corresponding read and write
streams, with t, and t, eachdatadependentont, andt, ,thenbotht, andt, canben-
efit from intermixing if they are nonconflicting. However, it is assumed that every pair of
streams conflict. Thus, for this example, at most one of ty. and t, may be considered to

benefit from intermixing.

5.3.2.3 Access Ordering Algorithm
For a set of streams Swith no pair of streams implementing aread-modify-write, ordering
istrivial. Let t; through ty, beread streamsand ty, , ; through t, be write streams. A

MAP access sequence that minimize page overhead while preserving dependenceis

{rie, ..., INEN W+ 178N 41 e Wy €t

For streams Swith one or more pair of streams implementing a read-modify-write, aMAP

access sequence is defined by the following algorithm:
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Determine the total ordering of accesssets { a;:¢;} , t; U S, that maximizes the reduc-
tion in page overhead achievable viaintermixing and wrap-around adjacency and that
maintains the partial ordering of access sets defined by the dependence relations.
Reduction in page overhead for a particular ordering is calculated by the functions
wadj(s, d, ¢, V) andimix(s, d, c, h, V) asdiscussed in 5.3.2.2.

Though the algorithm is exponential in the number of streamsin S the stream count N
tends to be small, dependencies reduce the number of total orderings, and access sets not
involved in aread-modify-write may be coalesced by mode. Theresult is an efficient algo-

rithm.

5.3.2.4 Performance Predictor

For aMAP consisting of a set of streams Sand an access sequence defined by the algo-
rithm above, a performance predictor is derived for the average time per access Tavg and
the processor-memory bandwidth BW. As alignments are unknown, it is assumed that
accesses from different streams do not exhibit concurrency. Thus, the models represent a

lower bound on performance.

Functions modeling page overhead derived in section 4 for a single module system are
applicable to accesses at individual modules of an interleaved system. Recall that in gen-
eral, average page overhead is modeled by the function n(s, d, ¢, V). For aread stream
that iswrap-around adjacent, average page overhead is modeled by the function (s, d, c).
Finally, for an intermixed write stream, average page overhead is modeled by the function
p(s, d, c). Note that in employing these functions for an interleaved system, stride sis

module stride.

Let P represent an access sequence over the set of streams S Then P is composed of some
number of component sequences P;, where the subscript is defined to be that of the stream
referenced; for an interleaved sequence the subscript is defined to be that of the read

stream. For accesses ordered by the algorithm of 5.3.2.3, P, must be in the form of

 aread accessset {r;:g},
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+ awriteaccessset {w;: g}, or
+ anintermix sequence { {r;:c, WjZC} ‘h} or { [ri:si,wj:sj | 1, uj]} :

If P, = {r;:g;} andthenumber of streamsN is greater than onethen T (P;) , thetime to
complete the sequence P;, is the sum of the maximum number of references at any mod-
ule Y, multiplied by the page-hit read cycle time Torr and the average page overhead at
that module multiplied by the page misstime T, ... For the special caseof N = 1, the
average time to complete all readsis the product of the number of accesses ¢; and the

average time per access so that

(I i M, 0

U
T(P;) = .
(P B%Tp/r + (&, t.d, W) Ty, when N2 2 and t; wrap-around adj.

when N =1

DllJiTp/r +n(;. 4.d, W, V)T, when N2 2 and t; not wrap-around adj.

Asdiscussed in section 5.3.2.2, at most one read access set may be considered wrap-
around adjacent and must be the first access set in the sequence P. Note that in the page
overhead modeling function n(s, d, ¢, V) the number of vectorsV is the number refer-

enced by all streamsin S asit isassumed that all access sets conflict.

Similarly, if P; = {w;:¢;} and the number of streams N is greater than one then T (P;)
is the sum of the maximum number of references at any module i, multiplied by the
page-hit write cycle time Toiw and the average page overhead at that module multiplied
by the page misstime To/m- FOr the special caseof N = 1, the average time to complete
al writesis the product of the number of accesses €, and the average time per access so

that

T orw+ NE -4 LTy
T(P) = O i M 0
DT+ N 6 W Ty When N22

when N = 1
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Finally, if P, isone of the two possible intermix sequences { {r;:c, Wj:c} ‘h} or
{ [r:e, Wi | 1, uj]} then the pattern of reference observed at individual modulesis
the general intermix sequence { {r;:c, WjSC} -h} . Intermix parameters c and h are

derived in 5.3.2.2 for the module servicing the maximum number of accesses.

Then T (P;) isthe sum of the maximum number of accesses ¢, (sj) at any module multi-
plied by the sum of the page-hit read and page-hit write cycle times and the sum of the
average page overheads for read and write operations at that module multiplied by the

page misstime To/m SO that

T(P|) = qu (Tp/r + Tp/w) + (n(Ep ti'd’ llJi’ \/) + hp(EJ! td’ C)) Tp/m

From the preceding analysis, the time to complete an iteration of the access sequence P is

the sum of the times required to complete each component sequence P;; i.e.
Tiot = Z T(P)
PP

Then the average time per access Tavg isthetimeto complete all accessesin agivenitera-

tion divided by the number of data items referenced, resulting in

T’[Ot

i btigsti .0

Tavg

The effective memory bandwidth BW is the number of bytes of relevant data transferred

per iteration divided by the time to complete all access; i.e.

10%b t..d) (t..
_ tiZS[(I ) (t.0)]

BW T

tot

All times are in nanoseconds and bandwidth is measured in megabytes per second.
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5.3.3 Simulation Results

For an interleaved memory system, access ordering can significantly increase effective
memory bandwidth over that achieved by the natural sequence of references through bet-
ter management of concurrency and minimization of page overhead. Thisistrue even for
the case when stream alignment is unknown. To illustrate the improvement in perfor-
mance achieved via access ordering, and to validate performance models, ssmulation and

analytic results are presented for arange of scientific kernels.

5.3.3.1 Uniform-access Components
Results are first presented for a non-buffered 4 module interleaved system of uniform-
access components. Module parameters are defined in Table 1, with sizesin bytes and

times in nanoseconds. Timing parameters are typical of commercially available SRAMS.

Table1 Module Parameters (Uniform)

Parameter Value
w 8
Tur 40
Tuw 40

Table 2 compares effective memory bandwidth achieved by the natural versus ordered
access sequence for arange of scientific kernels. For all computations the depth of loop

unrolling is 4, datais double-precision, and vectors are aigned to module M,,.

The daxpy and dvaxpy computations are double-precision versions of the axpy and vaxpy
computations, respectively, discussed earlier. The remaining computations are selections
from the Livermore Loops [Mcma90]. This set of scientific kernels serves as the bench-

mark suite for all subsequent simulations.
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Table 2 Natural vs Ordered Performance (Uniform)

Computation NaBt\l;\r/al Org\e;rved % Increase
daxpy 299.4 800.0 167.2
dvaxpy 399.2 800.0 100.4
LL-1 300.0 800.0 166.7
LL-3 400.0 800.0 100.0
LL-4 398.4 800.0 100.8
LL-5 200.0 800.0 300.0
LL-7 266.7 800.0 200.0
LL-11 200.0 800.0 300.0
LL-12 398.4 800.0 100.8
LL-20 450.0 800.0 77.8
LL-21 300.0 800.0 166.7
LL-22 333.3 800.0 140.0

Access ordering improves performance over the natural access sequence for the given
computations from 78% to 300%. Where memory bandwidth is the bottleneck, computa-

tion rate increases accordingly.

Table 3 compares performance of ordered accesses as calculated analytically and mea-
sured via simulation. Recall that analytic results represent alower bound. For the compu-
tations and conditions modeled, analytic results accurately predict performance; however,

thisis not necessarily the case.
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Table 3 Analytic vs Simulation Results (Both)

Uniform-access Page-mode
Computation Analysis Simulation Analysis Simulation
BW BW BW BW
daxpy 800.0 800.0 127.9 127.9
dvaxpy 800.0 800.0 121.8 121.8
LL-1 800.0 800.0 100.9 100.9
LL-3 800.0 800.0 106.5 106.5
LL-4 800.0 800.0 106.3 106.1
LL-5 800.0 800.0 100.9 101.0
LL-7 800.0 800.0 102.3 102.3
LL-11 800.0 800.0 98.3 98.3
LL-12 800.0 800.0 98.3 98.3
LL-20 800.0 800.0 102.7 102.7
LL-21 800.0 800.0 124.7 1234
LL-22 800.0 800.0 99.9 99.9

5.3.3.2 Page-mode Components

Simulation results are presented for a non-buffered 2 module interleaved system of page-
mode components. Module parameters are defined in Table 4 and are representative of the
|PSC/860 node memory system [Moye91].

Table 5 compares effective memory bandwidth achieved by the natural versus ordered
access sequence for the benchmark kernels. The depth of loop unrolling is 4, datais dou-

ble-precision, and al vectors are aligned to module M.

For this system, access ordering improves performance over the natural access sequence

for the given computations from 60% to 189%.
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Table4 Module Parameters (Page)

Parameter Value
w 8
p 4096
Toir 50
Torw 75
Tom 200

Table 3 compares effective memory bandwidth for ordered accesses as cal culated anal yti-
cally and measured via simulation. Once again, analytic results represent alower bound
on performance. However, for the computations and conditions modeled, analytic and
simulation results differ by less than 1%. Note that as aresult of start-up transientsin the
simulation, measured performance falls below the theoretical lower bound for several

computations.

5.3.4 Summary

Section 5.3 devel ops access ordering algorithms for ainterleaved system of uniform-
access and page-mode components under the assumption that stream alignment is
unknown. Performance predictors are derived for the effective memory bandwidth

achieved by ordered accesses.

For a system of uniform-access components, access ordering attempts to maximize mod-
ule concurrency. The algorithm divides references into two phases: aread phase and a
write phase. Accesses from each phase are ordered to maximize concurrency for individ-
ual streams and increase the likelihood of concurrency among accesses from different
streams. Ordering istrivial, with atime complexity linear in the number of accesses. Per-
formance predictors assume that accesses from different streams can not be serviced con-

currently, and thus represent alower bound.
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Table5 Natural vs Ordered Performance (Page)

Computation NaBt\l;\r/al Org\e;rved % Increase
daxpy 48.0 127.9 166.5
dvaxpy 42.7 121.8 185.2
LL-1 48.0 100.9 110.2
LL-3 63.9 106.5 66.7
LL-4 63.9 106.1 66.0
LL-5 48.0 101.0 1104
LL-7 42.7 102.3 139.6
LL-11 60.9 98.3 61.4
LL-12 60.9 98.3 61.4
LL-20 35.6 102.7 188.5
LL-21 77.3 1234 59.6
LL-22 39.0 99.9 156.2

For a system of page-mode components, the access ordering algorithm resultsin a
sequence consisting of (potentially intermixed) access sets arranged to maximize reduc-
tion in page overhead achievable viaintermixing and wrap-around adjacency. No attempt
is made to increase potential concurrency. The access ordering algorithm has a time com-
plexity exponential in the number of streams. Again performance predictors assume no

concurrency between access from different streams and thus represent alower bound.

Simulation results are presented for interleaved systems of both uniform-access and page-
mode components. Access ordering is shown to significantly increase effective memory
bandwidth over that achieved by the natural sequence of reference for arange of scientific

kernels. Performance models are validated.



Recall that modules in an interleaved system may be buffered, as depicted in Figure 3.
Buffering potentially improves performance by alowing accesses from nonconflicting
streamsto be initiated under conditions that would otherwise result in the processor block-
ing on a busy module; i.e. buffering may increase concurrency among accesses from dif-
ferent streams. The effect of buffering on reference sequences generated by the ordering

algorithms presented above is not studied here.

5.4 Access Ordering Algorithmsfor Known Alignments

For a sequentially interleaved memory system, access ordering algorithms and perfor-
mance predictors are derived based on the assumption that stream alignments are known
at compile time. In this context, stream alignment refers to the module that services the
first access to agiven stream. Note that if relative aignment is known, one stream can be
assumed aligned to a specific module with the remaining streams aligned appropriately;
relative alignment is sufficient to completely define module contention between accesses
from different streams. For a system of page-mode components, ho assumption is made

concerning stream alignment with respect to pages.

Results for the optimal access of independent streams are first derived for usein the gen-
eral ordering algorithms. Access ordering algorithms and performance predictors are then
developed for systems of uniform-access and page-mode components, respectively. The
effectiveness of access ordering and accuracy of performance models are demonstrated

viasimulation.

5.4.1 Optimal Accessof Independent Streams
Given aset Sof independent streams, knowledge of stream alignments allows for the
specification of an access sequence that resultsin optimal effective memory bandwidth. A

methodology for generating such a sequence is presented below.

In generating an optimal sequence of accesses, the depth of loop unrolling b isrestricted to

values such that for each successive loop iteration, the first access to each stream refer-



45

ences the same module as the first access from the previous iteration. Restricting b in this

manner guarantees a repetitive sequence of module references.

For stream t;, if the number of accesses €, isamultiple of the number of modules refer-
enced |, then each module referenced services ), accesses per iteration in arepetitive
sequence. Thus, in generating an optimal access sequence for streams S, b is restricted

such that
O 09 M| g (6)

For most scientific codes, the number of accesses per iteration to a given stream equalsthe
depth of loop unrolling. Given aset of streams S if €, = b for all t; [J S then substitution
into (6) yieldsthe restriction

O0(0S kb

Since the number of modules referenced by a given stream is apower of 2, asderived in
section 5.2.1, bisrestricted to amultiple of the maximum number of modul es accessed by

any stream; i.e.

b = k(max(iy, ..., 1)) <km kOz*

In the context of scalar microprocessor systems, the number of modulesin an interleaved
memory is expected to be modest. Thus, while the loop unrolling restriction potentially

resultsin alarge value of b, for most codes thisis not the case.

For N independent streams S and a depth of loop unrolling b satisfying the restriction (6),
an optimal access sequence is derived as follows. Consider the mapping of stream
accesses to modules that results from a single loop iteration when all accesses from each

stream are initiated consecutively, asin the sequence

{aie, ....ayey
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At each module M, ..., M, _, therelative sequence of accesses serviced can be repre-
sented by A, ..., A, _, respectively. Sequences A, ..., A,,,_; arerelativein the sense
that the order in which stream accesses are serviced is specified, not the particular stream
accessesin agiven loop iteration. For example, Ay = {a;:y,, a3 P, a4 Y,} specifies
that module M, setisfies Y, accesses from stream t,, followed by ), accesses from
stream t, followed by U, accesses from stream t; the specific accesses serviced from
each of the three steams, e.g. a¥, isalignment dependent. Note that A, ..., A, _ , are con-

stant for all iterations as aresult of the loop unrolling restriction.

Figure 6 presents the Module Sequence Algorithm (MSA) for defining the sequences
Ay ..., A, _ that result from a consecutive access sequence. The algorithm defines

Ay ..., A~ 1 by mapping streams in decreasing order of number of modul es accessed,
i.e. t; ismapped prior to t; if u > by Forming A, ..., A,,_; inthismanner leads to the

following result, derived in Appendix B.1:

Theorem 4: For aset of streams Sand sequences A, ..., A, _, derived viathe Module

Sequence algorithm, each round robin selection of accessesfrom A,,, ..., A,,_; hasthe
property that for each stream t; referenced: there are exactly |, accessesto t;, and

accesses from different streams do not conflict.

From Theorem 4 it iseasily seenthat given A, ..., A,,_; asderived viathe MSA, opti-

mal accessis defined by the sequence

[Ag - Ayl

Accessesfrom A, ..., A,,_, areinitiated round robin, and for each round robin sequence

of accesses it is observed that

» for each stream t; referenced p; accesses areinitiated, maximizing concurrency for
Stream t;,

» accesses from different streams do not conflict, maximizing concurrency between
accesses from different streams, and
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Il for each streamt, in the set of streams S selected
/1 in decreasing order of nunber of nodul es referenced.

for all t;JS selected in decreasing order of H;
/1 for each nodul e Mj accessed by t
for all Mj [z,
/'l concatenate access to t; to the sequence Aj

A - ADO{a:y)

Figure6 Module Sequence Algorithm

» thetotal number of accessesisequal to the number of modules that service the remain-

INg accesses, maximizing module utilization.

Furthermore, for a given iteration, accesses to a stream t; are serviced consecutively at

each module referenced, minimizing page overhead when applicable.

Theorem 5: For a set of independent streams Sand sequences A,,, ..., A,,_; derived via

the Module Sequence algorithm, [A,, ..., A,,_ 4] isan optimal access sequence.

Toillustrate, an optimal access sequenceis derived for 3 read streams t,, t, and t,. For
each stream data size equalsword size, stride of accessis 2 and the number of accesses per

iteration is equal to the depth of loop unrolling; i.e. ¢ = ¢ = €, = b. Assume a4 mod-

y
uleinterleaved system with stream t, aligned to module M3, and streams t, and t, aligned
to module M. Then each stream accesses 2 modules, so that by the loop unrolling restric-

tion bisamultiple of 2.
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For b = 2, assume the MSA defines the following sequences: Ag = {r,,r;} ,
A= {r} A = {ry, r,} and A; = {r,} . Theresulting optimal access sequence

[Ag A A, Ag] defines the sequence of references

{r(Ag: Mg), 1 (A1, My), 1 (Ag M), T((Ag, My), T (Ag, Mo), T (Ay Mp)}

The above sequence is annotated to illustrate both the round robin selection of accesses
[Ag A, Ay Ag] and the specific mapping of accesses to modules as determined by align-
ment; e.g. r,(A;, M) specifies r, chosen from sequence A, generates areference to mod-
ule M. Note that in the general case of mapping [A,, ..., A,,_;] toalinear sequence of
references, aparticular access a; selected from arelative sequence A, does not necessarily
specify areference to module M, ; a; may in fact specify access to any modulein Z;, the
set of all modules referenced by stream t;. Thisis demonstrated in the example above for

accesses to stream tx‘

5.4.1.1 Request Buffering

For an interleaved system, modules may be buffered as depicted in Figure 3. Ordering
accesses as above results in a sequence that references each module at most once per
round robin selection of accesses [A,,, ..., A,,_,] . If individual accesses require an equal
amount of time to complete, then the sequence [A,, ..., A,,_ ;] achievesoptimal effec-
tive memory bandwidth without the need for request buffering. Thisisthe case for asys-

tem of uniform-access components and streams of the same mode.

If individual accesstimes vary, then the sequence [A,,, ..., A,,_ ;] providesoptimal band-
width only if buffering is sufficient to eliminate access gaps that result in increased com-
pletion time for all accessesin aloop. An access gap is defined as a period of time during
which amodule is idle due to the memory system blocking on a busy module. Such isthe
case for an interleaved system of page-mode components. For this analysis, buffering is

assumed sufficient so that the sequence [A,, ..., A,,_ 4] resultsinoptima performance.
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5.4.2 Interleaved Storage and Unifor m-access Components

For an interleaved system of uniform-access components, an access ordering algorithm
need only maximize module concurrency. Unfortunately, in the presence of dependencies,
determining an access sequence that maximizes concurrency is NP-complete with atime
complexity exponential in the number of accesses; this result is obtained by restriction to
precedence constrained scheduling [Galo79]. As an optimal solution is intractable, a heu-

ristic solution is presented below.

In defining a MAP access sequence for streams S, accesses are performed in two phases: a
read phase and awrite phase. By the stream interaction restriction, streams associated with
each phase are independent. Thus, an optimal access sequence can be derived for each

phase based on the results of section 5.4.1.

For aset of streams S, S, is defined as the subset of all read streams, S, the subset of all
write streams and b a depth of loop unrolling that satisfies the restriction defined in 5.4.1
for all streamsin S Sequences P, ..., P,,_; and Q,, ..., Q,,_; are defined by the MSA
for S and S, respectively. Then the access sequence employed is

{[P01"'1Pm—1]1 [QO!---!Qm—l]} (7)

In the above sequence, accesses associated with each phase are ordered to maximize con-
currency, resulting in optimal effective memory bandwidth for that phase. However, the
aggregate solution is likely suboptimal as potential concurrency among read and write
accesses is not exploited. Dependencies are maintained as all read accesses are performed

prior to any writes.

5.4.2.1 Performance Predictor

For aMAP consisting of streams Sand an access sequence as defined above, a perfor-
mance predictor is derived for the average time per access Tavg and effective processor-
memory bandwidth BW.
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Let T, define the time required to complete all read accesses for a given loop iteration.
From the sequence (7), Py, ..., P,,_ 1 represent the relative sequence of read operations
serviced at modules My, ..., M, _; respectively. As accesses proceed concurrently at all
modules, the time to complete all readsis equal to the time to complete accesses at the
module servicing the greatest number of reads. Let |P;| define the number of read opera-
tionsin the sequence P;. Then T, isthe maximum number of accesses at any module mul-

tiplied by the uniform-accessread cycletime T, ; i.e.

T = max(\ Po

I:)m—l‘)-ru/r

T,, is defined as the time to complete all write operations for a given iteration and is com-

puted analogously to T, so that

T, = max(\ Qo

1ot Qm—l‘)Tu/W
An upper bound on the time to complete all accesses in a given iteration, and hence a
lower bound on performance, is the sum of the time to complete all read and write

accesses, i.e.
Tiot = T+ Ty

Notethat T, isan upper bound asit assumes no concurrency among read and write oper-
ations at the boundaries between the read and write phases of the sequence (7). An exact

model of performance can not be expressed as a closed form equation.

From the above, the average time per access Tavg is computed as the time to complete all

accessesin agiven iteration divided by the number of dataitems referenced, resulting in

T
T — tot

M Z t.o
tTs
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The effective memory bandwidth BW is the number of bytes of relevant data transferred

per iteration divided by the time to complete all access; i.e.

10%b t..d) (t..
. tiZS[(I ) (t.0)]

TtOt

All times are assumed to be in nanoseconds and bandwidth is measured in megabytes per

second.

5.4.3 Interleaved Storage and Page-mode Components

For an interleaved system constructed from page-mode components, optimal performance
results from an access sequence that balances maximizing concurrency with minimizing
page overhead to achieve minimum completion time. Determining such a sequence is NP-
complete with atime complexity exponential in the number of accesses; thisresult is
obtained by restriction to precedence constrained scheduling [Galo79]. As an optimal
solution isintractable, a heuristic solution analogous to that derived in 5.4.2 is presented
below.

In the sections that follow, a base access sequenceisfirst developed for computations that
do not specify a read-modify-write. Intermixing and wrap-around adjacency are then
employed to reduce page overhead for computations implementing this operation. The

general access ordering algorithm is presented and a performance predictor is derived.

5.4.3.1 A Base Access Sequence
In defining a MAP access sequence for streams S, accesses are performed in two phases: a
read phase and awrite phase. As streams associated with each phase are independent, an

optimal access sequence can be derived for a phase based on the results of section 5.4.1.

For aset of streams S, S, is defined as the subset of all read streams, S, the subset of all
write streams and b a depth of loop unrolling that satisfies the restriction defined in 5.4.1
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for all streamsin S Sequences P, ..., P,,_; ad Q,, ..., Q,,_; are defined by the MSA
for § and S, respectively. Then the base access sequence employed is

{[Pg s Py 1l [Qpr s Q- } 8)

In the above sequence, accesses associated with each phase are ordered to maximize con-
currency and minimize page overhead. Again, the aggregate solution is likely suboptimal
as potential concurrency among read and write accesses is not exploited. Dependencies

are maintained as all read accesses are performed prior to any writes.

5.4.3.2 Intermixing and Wrap-around Adjacency

For streams Simplementing a read-modify-write, intermixing and wrap-around adjacency
may reduce page overhead in each phase of the base sequence, potentially reducing com-
pletion time for all accesses. Note that in this context, intermixing refers to read accesses
immediately preceding corresponding write accesses at a given module; read and write

operations are not interleaved so that accesses associated with each phase remain separate.

In deriving the base sequence (8), sequences P, ..., P,,_; and Q,, ..., Q,,_, aredefined
viathe MSA by mapping streamsin decreasing order of number of modules referenced.
Intermixing and wrap-around adjacency are employed by choosing a legal mapping order

such that one or more pair of streams benefits from these rel ationships.

5.4.3.3 Access Ordering Algorithm
For a set of stream Swith no pair of streams implementing a read-modify-write, aMAP
access sequence is defined by the base sequence (8). Otherwise, a MAP access sequence

in the form of the base sequence is derived as follows:

Given aset of streams Swith read streams S, and write streams S, determine the legal
order for mapping elementsof S, and S, toform Py, ..., P,_; and Q, ..., Q,_ 1.
respectively, that results in the minimum completion time for all accessesin agiven
iteration of the base sequence.
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Note that for a given ordering of stream mappings, simply computing reduction in page
overhead at a particular module is not sufficient as reduction in completion time for all
accesses is not guaranteed. Thus for each ordering, the average time to complete an itera-

tion of the sequence must be computed as derived below in section 5.4.3.5.

Determining the order for stream mappings that results in minimum average completion
time for the base sequence (8) is exponential in the number of streamsin S However, as
stated previously for access ordering algorithms with similar time complexity, the stream
count N tends to be small. Furthermore, the number of legal mappings may be severely
restricted by the requirements of the MSA. Finally, page overhead is only affected by the
relative mapping order of streams involved in read-modify-writes, again reducing the

number of mapping orders that need be considered. The result is an efficient algorithm.

5.4.3.4 Example Problem
The following example illustrates the application of the ordering algorithm defined above.

Consider the vaxpy computation

Oi Y < aX tY,

that generates four streams defined by t, = (a,s,,d,, r):1,t, = (X s,d,,r):1,
tyr = (y, Sy dy, r):1, and tyw = (y, Sy dy, w):1.
For each vector assume data size equals word size and stride of access is defined by

s, = lands, = S, = 2.Assumea?2 module interleaved system with all streams aligned
to module M. The depth of loop unrolling bis 2.

Recall that the MSA maps streams in decreasing order of number of modules accessed.

Thus the ordering agorithm considers two legal forms of the base sequence (8):

o {H{ratehety iyl (rad ] [{w, w}, { 3]} and

C e LT3 T, Wb {3 )



In the first sequence write accesses benefit from intermixing, as the corresponding read
accesses immediately precede at module M. In the second sequence intermixing is not
exploited. Note that wrap-around adjacency can not occur as accesses to stream t, must be

initiated first at both modul es.

Thusthe access ordering algorithm for the vaxpy computation resultsin thefirst of the two

sequences listed above, generating the corresponding linear sequence of references

e Ta T T Ty, Ty Wy, Wy b

5.4.3.5 Performance Predictor
For aMAP consisting of a set of streams Sand an access sequence defined as above, a per-
formance predictor is derived for the average time per access T, , and the processor-

memory bandwidth BW.

Functions modeling page overhead derived in section 4 for a single module system are
applicable to accesses at individual modules of an interleaved system. Recall that in gen-
eral, average page overhead is modeled by the function n(s, d, ¢, V). For stream accesses
that are wrap-around adjacent or intermixed, average page overhead is modeled by the
functions w(s, d, ¢) and p(s, d, ¢) respectively. In employing these functions for an inter-
leaved system, stride sis module stride and the number of accesses ¢ isthe number at each

module; i.e. forastream t;, s = &, and ¢ = ;.

In the base sequence (8), Py, ..., P,,,_ 1 represent the sequences of read accesses serviced

at modules My, ..., M, _,. Each P, serviced at module M, is composed of some number
of component sequences P (i k) where the first subscript i is defined to be that of the
stream referenced. Thus, Pk representsthe read accessset {r;: Y.} . Similarly, Q, is
the sequence of write accesses serviced at M, and Q ; |, represents the write access set
{w;:.} . Recadl that as aresult of the loop unrolling restriction defined in 5.4.1, all mod-
ules referenced by a given stream service the same number of accesses from that stream

each iteration.
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Thetimerequired to complete all accessesin the sequence P ; , isthe sum of the number
of accesses Y, multiplied by the page-hit read cycle time Tp/r and the average page over-
head multiplied by the page misstime To/ms i.e.

T(Piy) = Wyt Ebok(éi, t.d, )T, m  when P iswrap-around adjacent
On, (&, t-d, g, \/)Tp,m otherwise
Note that in modeling page overhead, conditions that determine appropriate use of model-
ing functions must be applied in the context of the module accessed. P (i, K) iswrap-around
adjacent if thereexistsa Q ; |, such that read stream t; and write stream t; implement a
read-modify-write, P ; | isthefirst accesssetin Py and Q ; | isthelast access set in
Qy; then w, (&, t;.d, W;) correctly models page overhead. Otherwise, n, (&, t;.d, W;, V) is
the applicable model where the number of vectorsV is the number accessed at module
M,.. For clarity, functions modeling page overhead are subscripted with the module num-

ber to denote context.

Similarly, the time required to complete all accessesin the sequence Q (i, k) isthe sum of
the number of accesses ; multiplied by the page-hit write cycle time Toiw and the aver-

age page overhead multiplied by the page misstime T so that

p/ m?

0P (&, t.d, W) T, when Q;  isintermixed
T(Q(i,k)) = L|JiTp/w+ 0 K\Sir T i’/ 'p/m | (i, k)
an(ap ti-da L|Ji’ \/)Tp/m Othel’Wlse

Inthis context, Q ; , isintermixed if thereexistsa P\, such that read stream t;, and
write stream t; implement aread-modify-write, P\, isthelast accessset in Py and

Qi K isthefirst accesssetin Q.

From the preceding analysis, thetime to complete all read operationsin the sequence P, is

the sum of the time to complete all accesses in each component sequence; i.e.

T(P) = TP,
(P P(i‘k)gmpk (Pt
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Then the time to complete all read accesses in an iteration of the base sequence (8) isthe

maximum time to complete read operations at any module, so that

T, = max(T(Py), ..., T(Py,_1))

Similarly, the time to complete all write operationsin the sequence Q, isthe sum of the

time to complete all accesses in each component sequence; i.e.

T(Q) = T(Qi )
“ Q(u;ij (9

And the time to complete all write operationsin an iteration of the base sequenceis

T, = Max(T(Qp), ..., T(Qn-1))

Note the tacit assumption in computing T, and T, isthat buffering is sufficient so that
each phase of the base sequence proceeds without access gaps that result in increased

completion time for that phase; thisis discussed in section 5.4.1.1.

An upper bound on the time to complete all accesses in a given iteration, and hence a
lower bound on performance, is the sum of the time to complete all read and write

accesses so that

Tt = T+ Ty,

Tiot ISa@n upper bound as it assumes no concurrency among read and write operations at
the boundaries between the read and write phases. An exact model of performance can not
be expressed as a closed form equation. Note that T, ., isthe value used by the access
ordering algorithm in determining the order for stream mappings that results in minimum

completion time.
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From the above, the average time per access Tavg is computed as the time to complete all

accessesin agiven iteration divided by the number of dataitems referenced, resulting in

Ttot

btgsti .0

The effective memory bandwidth BW, in megabytes per second, isthe number of bytes of

Tavg

relevant data transferred per iteration divided by the time to complete all access; i.e.

10%b t..d) (t.
. tiZS[(I ) (.0)]

Ttot

5.4.4 Simulation Results

For scientific kernels previously simulated, vector strides are such that all mmodulesin a
sequentially interleaved system are referenced by each stream for any m = 2". Thus
ordering algorithms do not benefit from alignment information as all streams are conflict-
ing. Simulation and analytic resultsfor algorithms derived under the assumption of known
alignment are identical to those presented in section 5.3.3 for algorithms that assume

alignment is unknown.
Consider again the vaxpy computation
i Yi < aX tYy,

that generates four streamsdefined by t, = (a,s,,d,, r):1,t, = (X, s,d,r):1,
t, = (Y,s,d,r):1,andt, = (v,5,d,w):1.

For each vector assume data size equals word size and stride of access is defined by
s,=1lads, = S = 2. Assume a non-buffered 4 modul e system of page-mode compo-
nents with module parameters as previously defined in Table 4 for the IPSC/860 node
architecture. Streams t, and t, are aligned to module M, and streams t, and t, are

aligned to module M.
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Table 6 presents simulation and analytic results comparing performance of the vaxpy
computation ordered under the assumptions of known and unknown alignment for arange
of loop unrolling depths b. Assuming known alignment, access ordering improves perfor-
mance over the natural reference sequence from 96% to 216%; under the assumption of
unknown alignment performance is improved from 49% to 139%. Note that for unknown
alignment the performance predictor is below the effective bandwidth achieved, as all

streams are incorrectly assumed to be conflicting.

For this example knowledge of stream alignment allows accesses from nonconflicting
streams to be schedule to proceed concurrently, resulting in increased performance over

the case where alignment is unknown.

Table6 Simulation and Analytic Results (Page)

Simulation Analysis
i [0)
Algorithm b Natural Ordered Ordered % Increase
BW BW BW

4 93.0 138.3 127.9 48.7

Unknown 8 93.0 192.9 1825 107.4
Alignment

12 93.0 222.0 212.9 138.7

4 93.0 182.4 1825 96.1

Known 8 93.0 254.9 255.0 174.1
Alignment

12 93.0 293.5 293.9 215.6

545 Summary

Section 5.4 devel ops access ordering algorithms for an interleaved system of uniform-
access and page-mode components under the assumption that alignment is known. Perfor-
mance predictors are derived for the effective memory bandwidth achieved by ordered

accesses.
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For a system of uniform-access components, the ordering algorithm divides accesses into
two phases: aread phase and a write phase. Accesses associated with each phase are
ordered to maximize concurrency, resulting in optimal effective memory bandwidth for
that phase. The aggregate solution is likely suboptimal, as potential concurrency among
read and write accesses is not exploited. Ordering istrivial with atime complexity of
O(N (Ig(N))) where N is the number of streams, representing the implied sort in the
MSA. Performance predictors assume no concurrency at the boundaries between read and

write phases and thus represent alower bound.

For a system of page-mode components, ordering is performed analogous to the uniform-
access case. However intermixing and wrap-around adjacency are employed to reduce
page overhead in each phase, potentially reducing completion time for all accesses. The

ordering algorithm has a time complexity exponential in the number of streams.

Recall that modulesin an interleaved system may be buffered, as depicted in Figure 3. The
tacit assumption for systems of page-mode components is that buffering is sufficient so

that each phase of the sequence proceeds without access gaps that result in increased com-
pletion timefor that phase; thisisdiscussed in section 5.4.1.1. If buffering is not sufficient,
performance is degraded and performance predictors are no longer guaranteed to represent

alower bound.

6 Implementation I ssues

Addressing all the implementation issues associated with access ordering is beyond the
scope of thisreport. However, several important topics are briefly discussed below; amore

complete treatment of these issues can be found in [Moye92b].

Access ordering employs loop unrolling which creates register pressure and has tradition-
ally been limited by register resources. Lee [Lee91] presents a technique that employs
cache memory to mimic a set of vectors registers, effectively increasing register file size
for vector computations. Essentially, storage is defined for a set of pseudo vector registers

and placed in cache via a standard (caching) load instruction. Vector operands are |oaded
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into the pseudo registers, arithmetic operations are performed, and pseudo register results
are stored back to the appropriate vector elements in memory. Vector registers are loaded
by first loading each vector element into a processor register viaa non-caching access, and

then storing the value to the appropriate vector register location in cache.

Intermixing can reduce page overhead for read-modify-writes on systems constructed
from page-mode components. However, alternating read and write accesses can force sca-
lar-mode (non-pipelined) arithmetic operations. Intermixing isjustified if the additional
access time resulting from a non-intermixed reference sequence exceeds the additional

cost of performing scalar-mode computation.

Access ordering employs non-caching memory instructions to control the sequence of
requests observed by the memory system. Though the effectiveness of cache memory for
numeric codesisstill the topic of much research, many codes do benefit from caching with
careful application of iteration space tiling. Thus caching and access ordering should be
used together as complementary techniques, caching multiply accessed blocks of data and

ordering non-caching accesses to single-visit data items.

Finally, to ssimplify analysis and obtain optimality results, ordering algorithms derived
presume access streams adhere to the stream interaction restriction. Minor relaxation of
this restriction to accommodate self-antidependence cycles and read streams with inter-
secting address spaces allows algorithms to be applied to the set of vectorizable loops.
Self-antidependence cycles are accommodated by ordering accesses from each stream
independently and insuring that all reads are initiated prior to the first write. Read streams
with intersecting address spaces are accommodated by simply ordering streams indepen-

dently, asinput dependence can be ignored for non-volatile memory locations.

7 Conclusions
Access ordering, aloop optimization that reorders accesses to better utilize memory sys-
tem resources, is a compiler technology developed in this report to address the memory

bandwidth problem for scalar processors executing scientific codes. For an interleaved
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memory architecture, the access ordering algorithms developed here determine awell-
defined interleaving of vector references that maximizes effective bandwidth for a given
computation and memory device type. Consequently, analytic models of performance can
also be derived. Access ordering algorithms developed are applicable to a superset of the

class of vectorizable loops, an arguably large and interesting problem domain.

Simulation results demonstrate that for a given computation, access ordering can signifi-
cantly increase effective memory bandwidth over that achieved by the natural sequence of

references. Simulation results validate analytic models of performance as well.

Access ordering is fundamentally different from, though complementary to, access sched-
uling techniques that attempt to overlap computation with memory latency but do not con-
sider the performance of the resulting access sequence. Access ordering is also
complementary to caching, and is known to work well with strip-mining and tiling tech-

niques.

Performance modeling based on access ordering has direct application in a number of

evaluation tools, in particular for

» systemevaluation - to provide a benchmark both for cost-performance analysis of dif-
ferent memory systems and for matching memory performance to processor require-
ments, and

 algorithm evaluation - to provide a benchmark for algorithm selection based on effec-
tive bandwidth utilization for a given memory system.

Analytic results presented throughout this work provide a basic and extensible set of tools
for capturing memory system behavior and for understanding the interaction of reference

sequences with memory architecture and component characteristics.
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Appendix A
I nter mix Sequences

A.1 Derivation of p(s, d, ¢

The function p(s, d, ¢) isthe average page miss count in performing each set of c write
accesses in the intermix sequence { ..., {r;:c, wj:c} :h, ...} ,wheret, and t; specify a

read-modify-write operation; i.e. t,.v = fj.v.
Case: y(s, d) = 1 (the number of dataitems per word is exactly one)

In deriving p(s, d, ¢), the following observation is made: in accessing ¢ dataitems the

address space spanned, in bytes, is (c—1) sd +d.

Assume (c—1) sd +d < p, then the address space spanned touches at most two pages. If
p, isthe probability that ¢ accesses touch one page, and p,, is the probability that two
pages are touched, then

p(s.d,c) = py(0) +p,(2) = 2p,

That is, for the access sequence { ..., {r;:c, wj:c} ‘h, ...} , the write operations

wlk-De+1

through WK, 1<k < h, suffer apage miss only when rkTDC* L gng rke rgf
J i i

erence a different page.

The number of d-aligned starting positions in a given page for the ¢ read accessesis

_ P
S_d

The number of starting positions resulting in the ¢ read accesses touching exactly one page
is

s, = p- ((c—dl)sd+d) 1
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Then the probability that a set of ¢ read accesses touch exactly one pageis

S, (c-1)sd
pl §:]_—T

and the probability that two pages are touched is

c-1)sd
p2 = ]_—pl = (p)

Thus, when (c—1) sd + d < p, the average page miss count in performing each set of ¢
write accesses is

2(c-1)sd

p(s,d,c) = 2p, = 5

When (c-1) sd +d > p, the address space spanned touches at least two pages, implying
that each sequence of ¢ write accesses must begin with a page miss and page overhead is
modeled as

c-1
1% o d)

which is one plus the remaining data items to access, ¢ — 1, divided by the number of data

items per page.

Combining the results derived above

(2(c-1
(c-1)sd when (c-1)sd+d<p

p(sdc) =g P
Uq+ c-1 when (c-1)sd+d>p

U™ s, d)



Case: y(s, d) > 1 (the number of dataitems per word is greater than one)

Deriving p(s, d, ) for this case is completely analogous to the previous case, with the
address space spanned being cw = cy(s, d)sd and all accesses being word-aligned, so

that

12 (c—1) y(s, d)sd

0 when cy(s, d)sd<p
p(sdo =g P
Bl + (C(p(g"é()s') when cy(s, d)sd>p

The two cases derived above may be combined into the single modeling function

[12(c—-1) y(s, d)sd

when (c-1)y(s,d)ysd+d<p

0
p(sdc) =0 P
SlJr(C_(p(lg’\é()s’d) when (c-1)y(s,d)sd+d>p

A.2 Proof of Optimal Intermix Pattern

Given: read stream t; and write stream t specifying aread-modify-write, i.e. t,.v = tj.v.
Prove: theintermix sequence { ..., {r;:c, WjZC} :h, ...} istheoptimal interleave pattern.

Proof: Consider the general interleave case
{.oritdg witky, oo 1 dg, Witk

where, by definition, r!‘ must proceed W}‘ and

n n
29 = 2K
=1 =1



65

Then let
A

A
YazS ad  Yk=§

| =1 =1

Itiseasily seenthat for A <n, S, 2,S,. If thereexistsa g, # k; then there must exist at

least one u such that qSu > kSu, in which case

letuy = ,§, and u, =, §,, then

» the page miss count in performing the read sequence { ..., r,:q, .4, ...} canbegreater

than in the case where qSu =S, since WJ-uk may access a sequentially earlier page than

u
q.
r™

o similarly, thepagemisscountinperformingthewritesequence{...,Wj:k ...} can

u+l

be greater than in the case where qSu =S, 8 wj““ ! may access a sequentially earlier
page than riuq+ '

Thus, the minimum page miss count is achieved when qSu =S, forusn;i.e when

q =k forl<l<n.
o{....,{rc, WJ-ZC} 'h, ...} istheoptimal intermix pattern.

QED
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Appendix B
M odule Sequence Algorithm

B.1 Propertiesof the MSA
Given: Nstreamst,, ..., ty such p, = ... = g, mapped to sequences A, ..., A,,_, viathe

Module Sequence algorithm.

Prove: each round-robin selection of accessesfrom A, ..., A, _; hasthe property that for

each stream t; referenced:

1. there are exactly |, accessesto t;, and

2. accesses from different streams do not conflict.

Proof of property 1.

Let U = {t;1ZnZ=2Z,40{t;,....t; _1} } . Assumethat U # [J. Then there exists
at O Usuchthatforal t; U, L2j. Accessesto t, immediately precede accessesto t;
in the sequences A, such that M, [0 Z;. If each round-robin selection of accesses from

Ags s Ay 1 that references t, initiatesexactly 4, = |Z | accessesto t, , then each sub-

sequent round-robin selection of accessesthat references t; must initiate exactly |, = |Zj|

accesses to t;.

Ifforall t, 00 {ty,....t; 4} itistruethat Z; n Z; = O, then t; isthefirst stream mapped
to sequences A, such that M, [1 Z;; thisisthe default when i = 1. Inthiscaseit iseasily
seen that each round-robin selection of accesses that references t; must initiate exactly

M, = |Z;| accessesto t;.

0 By induction, each round-robin selection of accessesfrom A, ..., A,,_; that refer-

ences t; must initiate exactly p, accessesto t;.
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Proof of property 2:

Property 2 isadirect result of property 1. Since each round-robin selection of accesses that
references t; must initiate exactly [, = |Z;| accessesto t;, then sequences A, such that

M, 0 Z; can not simultaneously specify referencesto any other stream.

O Inagiven round-robin selection of accesses from A, ..., A,,,_ 1, references from dif-

ferent streams do not conflict.

QED
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