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Abstract

Most existing integrated circuit (IC) reliability models assume a uniform, typically worst-case, operating temperature, but temporal
and spatial temperature variations affect expected device lifetime. As a result, design decisions and dynamic thermal management (DTM)
techniques using worst-case models are pessimistic and result in excessive design margins and unnecessary runtime engagement of cooling
mechanisms (and associated performance penalties). By leveraging a reliability model that accounts for temperature gradients (dramatically
improving interconnect lifetime prediction accuracy) and modeling expected lifetime as a resource that is consumed over time at a temperature-
and voltage-dependent rate, substantial design margin can be reclaimed and runtime penalties avoided while meeting expected lifetime
requirements. In this paper, we evaluate the potential benefits and implementations of this technique by tracking the expected lifetime of a
system under different workloads while accounting for the impact of dynamic voltage and temperature variations. Simulation results show
that our dynamic reliability management (DRM) techniques provide a 40% performance penalty reduction over that incurred by pessimistic
DTM in general-purpose computing and a 10% increase in quality of service (QoS) for servers, all while preserving the expected IC lifetime
reliability.

I. Introduction

The advance of technology scaling (and the resulting increases in power density) has made thermal-related reliability
one of the major concerns in modern IC design. For example, in the deep sub-micron (DSM) region, electromigration,
which is temperature dependent, is widely regarded as one of the dominant failure mechanisms. Designers must therefore
rely on temperature-dependent reliability models to derive the expected lifetime of their circuits, increasing design margin
(e.g., wire width) as necessary to meet lifetime requirements. Traditionally, a worst-case temperature is used to evaluate
the reliability of the system, often resulting in excessive design margins.

Many post-design solutions are applied to address thermal reliability issues as well, and they can be generally divided
into two categories: 1. passive cooling mechanisms, and 2. active cooling mechanisms. In the first category, designers
pay an extra price for more efficient cooling packages, for example, with smaller convection thermal resistance or thinner
interface spreading material. In the second category, people sacrifice a certain amount of performance to maintain
reliability by reducing circuit speed (resulting in temperature reduction) whenever necessary. Recently developed dy-
namic thermal management (DTM) techniques [15], [5], [16] belong to this category. However, these techniques rely
on worst-case assumptions, typically using a fixed temperature threshold to engage active cooling mechanisms, such as
frequency/voltage scaling and throttling at the expense of degraded performance.

Under such pessimistic assumptions, DTM cooling mechanisms may often be engaged (and performance penalties
incurred) unnecessarily. As a matter of fact, many programs/workloads exhibit temperature fluctuations during their
executions due to inherently phased behaviors. In the paper, we show that the effect of hot (high temperature) phases on
reliability can be compensated by that of cool (low temperature) phases [12]. Existing DTM techniques do not consider
the effects of temperature fluctuations on lifetime and may unnecessarily impose performance penalties for hot phases.
The disadvantages of these techniques become more obvious in server systems such as web servers, in which hot phases
usually imply an increased number of service requests. The engagement of active cooling mechanisms then exacerbate
the QoS provided by the server.

In our previous work [11], we developed a reliability model for IC interconnects under dynamic thermal and electrical
current stresses. In this paper, using electromigration as the targeted failure mechanism, we extend this model and
propose a dynamic reliability management (DRM) technique to dynamically track the “consumption” of chip lifetime
during operation. In general, when temperature increases, lifetime is being consumed more rapidly, and vice versa.
Therefore, if temperature is below the traditional DTM engagement threshold for an extended period, it may be accept-
able to let the threshold be exceeded for a time while still maintaining the required expected lifetime. In effect, lifetime
is modeled as a resource that is being “banked” during periods of low temperature, allowing for future withdrawals to
maintain performance during times of higher operating temperatures. Using electromigration as an example, we show
the benefits of lifetime banking by avoiding unnecessary DTM engagements while meeting expected lifetime require-
ments. The aging process due to many other temperature enhanced failure mechanisms such as gate oxide/dielectric
breakdown is similarly determined by a temperature/voltage dependent rate [20]. Therefore, the results and approach
discussed in this paper can be generalized to incorporate other failure mechanisms. Recently, Srinivasan et al. [17], [19]
proposed a chip level reliability model and showed the potential benefits by trading off reliability with performance for
individual application. They assumed an oracular algorithm for runtime management in their study. In this work, we
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focus on practical runtime management techniques for the worst-case on-chip component (i.e. hottest interconnect) to
exploit both intra- and inter- application temperature variations. The combination of their model and our techniques is
expected to bring more advantages and is open for future investigation.

High temperature limits the circuit performance directly by increasing interconnect resistance and reducing carrier
mobility. However, it has been shown that ( [15]) using DTM to compensate the temperature dependency of clock
frequency induces very mild performance penalty. On the other hand, Banerjee et al. [1] showed that temperature
induced reliability issue tends to limit the circuit performance in future technology generations. Therefore, in this
paper, we assume that the temperature threshold is set solely for reliability specification, and circuits can operate
correctly above this threshold whenever allowed by the “banking” opportunities. Although extreme high temperature
may cause immediate thermal damage for IC circuits, in this paper, we study a range of temperatures only with long-
term reliability impacts (i.e. temperature induced aging). We assume that those high temperatures causing immediate
damages are far above the range of temperatures studied here, and a monitoring and feedback mechanism is implemented
to assure that circuits are operated far below those temperatures with short-term damages.

This paper is structured as follows. Section II presents an electromigration model subject to dynamic stress. Using
this model, we propose a simple lifetime-banking-based DRM method (S DRM) in Section III. We implemented this
method in a compact architecture-level thermal model, Hotspot [15], running the Spec2000 benchmarks, with the results
shown in Section IV. In Section V, we extend our study to server workloads, where temperature variation in large
granularities is commonly seen, and propose a profile-based DRM technique (P DRM). We present the results for server
workloads and describe an analytical model to analyze P DRM in Section VI. In Section VII, we discuss how other
failure mechanisms can be possibly incorporated into the reliability banking framework. Finally, we conclude the paper
in Section VIII.

II. Dynamic Electromigration Model

In this section, we briefly describe a dynamic electromigration (EM) model and explain how expected IC lifetime
can be modeled as a resource that is consumed over time. The key to the model is to update the projected lifetime
(or reliability consumption rate) according to the actual dynamic temperature information observed during program
execution. Applying this model to DTM, instead of using a fixed temperature threshold, the cooling mechanisms are
engaged only when the projected lifetime falls below the required lifetime.

Black’s equation [3] is widely used to predict mean time to failure (MTF) due to electromigration.

Tf =
A(kT )
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)
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where Tf is the time to failure, A is a constant based on the interconnect geometry and material, j is the current density,
Q is the activation energy (e.g., 1.0eV for copper interconnect), and kT is the thermal energy. The current exponent,
n, has different values according to the actual failure mechanism. It is assumed that n = 2 for void nucleation limited
failure and n = 1 for void growth limited failure [13]. However, Black’s equation is suitable only for interconnects subject
to constant temperature and current density.

We derived a model to predict interconnect lifetime due to electromigration under simultaneous dynamic thermal and
current stresses [11]. In this dynamic model, Black’s equation is still valid, but one should use reliability-equivalent
temperature Tequivalent and current density jequivalent as defined in the following:
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where E[ ] is the expected-value function, j(t) and T (t) are time-dependent current density and temperature functions,
respectively. Substituting into Black’s equation (1) the above two expressions for reliability-equivalent current den-
sity/temperature and using n = 1 for dual-damascene copper interconnect (widely used in modern chip manufacturing)
[7], the MTF under time-varying current density and temperature stresses can be derived as:
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Or equivalently, by eliminating the expected-value function, One can express the MTF in an integral form:

∫ Tf

0

j(t)

(

exp( −Q
kT (t) )

kT (t)

)

dt = D (4)

where D is a constant determined by the structure of the interconnect.
Equation (4) models interconnect time to failure (i.e., interconnect lifetime) as a resource consumed by the system

over time with a temperature/current dependent rate. Function r(t) =

[
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can be regarded as the

consumption rate. In DSM copper technology, void growth failure (e.g. at vias) is the major EM induced failure
mechanism [7], and r(t) represents the void growth rate in this case. Due to the temporal behaviors of system workloads,
interconnect current density and temperature are time-dependent. Equation (4) provides a model to capture the effect
of transient behaviors on system lifetime.

In our chip-level reliability model, for simplicity, we use the maximum temperature measured across the chip to
calculate the consumption rate. However, the variability of current density across the chip makes it much harder to
track in real-time. Thus, we use the worst-case current density specified at design time in our calculations.

Many commercial processor products (i.e., [9], [10]) use dynamic voltage/frequency scaling (DVS) as an effective
technique for active cooling. In this paper, we adopt DVS as the major guarding mechanism for preventing lifetime
reliability violation. When DVS is applied, the worst-case current density in the IC interconnects should be scaled
according to the voltage/frequency setting used. The relationship between current density, supply voltage and clock
frequency can be modeled by transferred charges per clock cycle [2]:

j ∝
CV

T
= CV f

where C is the effective capacitance. Therefore, when the chip is switched to a new voltage/frequency setting, the
corresponding worst-case current density is scaled by the product of the new voltage and frequency, and we can track
the current density dynamically.

III. Dynamic Reliability Management Based on Lifetime Banking

Recently, many DTM techniques [15], [5], [16] have been proposed to ensure that a chip will never operate above some
temperature threshold. However, these techniques do not explicitly study the effects of transient behaviors on system
reliability, and instead implement a temperature upper-bound at the expense of degraded performance. By modeling
lifetime as a resource to be consumed over time, we can manipulate chip lifetime directly at runtime. In this section, we
present a simple dynamic reliability management (S DRM) scheme built on conventional DTM techniques.

A. Lifetime banking opportunities

Due to activity variations, the power consumptions of on-chip components (i.e. caches, FP/INT units, branch predic-
tor, etc.) are not constant. Therefore, there exists not only chip-wise spatial temperature gradients but also temporal
temperature gradients for each component. In this paper, we focus on temporal temperature gradients. Though a more
accurate reliability model should incorporate all on-chip components, in this study, for simplicity, we use the temperature
of the hottest unit across the chip.
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Fig. 1. Temporal temperature variation. (a) Single program workload. (b) Two-program workload with context switching
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Figure 1 depicts the temperature profiles for two different workloads that are commonly seen in general purpose
computing. Figure 1(a) represents a single program workload and Figure 1(b) represents a multi-program workload
with context switching. In the single program workload, temperature changes over time due to the phased behavior
in the executed program. In the multi-program workload, besides the execution variations within each program, inter-
program thermal differences also affect the overall thermal behavior of the workload. For example, in Figure 1(b), the
workload is composed of one cold program (applu) and one hot program (gcc). Thus the temperature fluctuation in
Figure 1(b) is quite different with various context switching intervals. Though there are different thermal behaviors for
different workloads, one can still find some common characteristics as compared with server workloads, which we will
discuss in Section V. In Figure 1, temperature variations occur in a manner with small granularity in both magnitude
and time interval. More formally, the temperature profile can be decomposed into a constant temperature component
(steady state temperature) and a high frequency component.

Calculations [11] reveal that the constant temperature component in the temperature profile is approximately equal to
the reliability equivalent temperature (i.e., the lifetime at that constant temperature is equal to the lifetime projection
under the temperature profile), as shown in Figure 1(a). It is the high frequency component that provides opportunities
for lifetime banking. When the actual temperature is under the reliability equivalent temperature, the lifetime is
consumed with a slower speed, which allows subsequent execution above the reliability equivalent temperature.

B. Reliability-aware runtime management

When a chip is designed, usually an expected lifetime (e.g., 10 years) is specified under some operating conditions
(e.g., temperature, current density, etc.). We use rnominal to denote the lifetime consumption rate under the nominal
conditions (e.g. reliability constrained temperature threshold). During runtime, we monitor the actual operating
conditions regularly, calculate the actual lifetime consumption rate r(t) at that time instance, and compare the actual
rate with the nominal rate rnominal by calculating

∫

(rnominal − r(t))dt, which we call the “lifetime banking deposit”.
When r(t) < rnominal, the chip is consuming its lifetime slower than the nominal rate. Thus, the chip’s lifetime deposit
is increased. When r(t) > rnominal, the chip is consuming its lifetime faster than the nominal, and the lifetime banking
deposit will be reduced. According to Equation (4), as long as the lifetime deposit is positive, the expected lifetime will
not be shorter than that under the nominal consumption rate rnominal. Figure 2 illustrates this S DRM technique. For
example, in the interval [t0, t1], the reliability of the chip is banked, while in [t1, t2], the banking deposit is consumed.
At time instance t2, the banking deposit becomes less than some threshold, and a cooling mechanism has to be engaged
to quickly pull down the lifetime consumption rate to the nominal rate, just as is done in conventional DTM techniques.
In other words, our S DRM technique adopts DTM as a bottom-line guarding mechanism.

t0 t1 t2

Actual consumption rate r(t)

Nominal consumption rate rnominal

A

B

 

 
t

Fig. 2. Simple dynamic reliability management (S DRM).

Therefore, the difference between conventional DTM and our S DRM lies in the case where the chip’s instantaneous
consumption rate is larger than its nominal rate. In DTM, the lifetime consumption rate is never allowed to be larger
than the nominal. In S DRM, before we engage thermal management mechanisms we first check to see if the chip
currently has a positive lifetime balance. If enough lifetime has been banked, the system can afford to run with a
lifetime consumption rate larger than the nominal rate. Otherwise, we apply some DTM mechanism to lower the
consumption rate, thus preventing a negative lifetime balance. In this study, we use dynamic voltage/frequency scaling
as the major DTM mechanism. Since S DRM only needs to monitor the actual lifetime consumption rate and to update
the lifetime banking deposit, the computation overhead is negligible compared to that of DTM.

IV. Experiments and Analysis for General-Purpose Computing Workloads

In this section, we present our simulation results for both single- and multi-program workloads using the S DRM
technique explained in the previous section. We compare these results with those obtained using conventional thermal
threshold-based DTM techniques.



5

A. Experimental set-up

We run a set of programs from the Spec2000 benchmark suite on a processor simulator (SimpleScalar [6]) with the
characteristics similar to a 0.13µm Alpha 21364. We simulate each program for a length of 5 billion instructions,
and obtain both dynamic and static (leakage) power traces, which are fed as inputs to a chip-level compact thermal
model Hotspot [15] for trace-driven simulation. In our trace-driven simulations, we include the idle penalty due to
frequency/voltage switching, which is about 10us in many real systems [15]. Furthermore, since leakage power is strongly
dependent on temperature, we scale the leakage power trace input dynamically according to the actual temperature
obtained during runtime, using a voltage/temperature-aware leakage model [22]. Since the Hotspot model is highly
parameterized, one can easily run experiments on a simulated processor with different thermal package settings. In
order to obtain meaningful results, one should carefully choose the initial temperature setting for the Hotspot model.
For each new thermal package setting, we obtain its initial temperatures by repeating the trace-driven simulations until
the steady temperatures of the chip are converged, as suggested in [15].

We implement both DTM and S DRM in the Hotspot model and set 110◦C as the temperature threshold for both
runtime management techniques. Both schemes use a feedback controlled dynamic voltage/frequency scaling mechanism
to guard the program execution. For example, in DTM, when the actual temperature is above a certain temperature
threshold, a controller is used to scale down the frequency/voltage, ensuring the program will never run at a temperature
higher than 110◦C. Our S DRM scheme uses 110◦C as the nominal temperature for the lifetime consumption rate. If
the program never runs at a temperature less than that of the nominal (i.e., without banking opportunity), our S DRM
scheme will perform the same as thermal threshold-based DTM as the DTM policy is always engaged. On the other hand,
if the program never exceeds the nominal temperature with full CPU speed, neither mechanism is engaged. Finally, we
record the simulated execution times for fixed length power traces as the system performances under the two runtime
management techniques, and use “performance slow-down” , defined as

(simulated time w/ runtime management−
simulated time w/o runtime management)
simulated time w/o runtime management

as the metric to compare both techniques.

B. Single-program workload

Figure 3 shows the performance penalty for both DTM and S DRM with the same thermal configuration. Only those
benchmarks subject to performance penalties due to runtime management are shown here. As clearly indicated in the
figure, performance penalty with the S DRM scheme is always less than that with DTM scheme, when the thermal
configuration is the same. On average, the S DRM technique reduces the performance penalty by about 40% of that
due to DTM (from 7% to 4%). Also shown in the figure is the performance of DTM with a more expensive thermal
package whose convection thermal resistance is only one third of the others. As one can expect, a more expensive
thermal package can reduce the performance penalty. Figure 3 shows that, on average, S DRM with a higher thermal
resistance can achieve a performance very close to that of DTM with a lower thermal resistance. These results imply
that, if the tolerable performance lost is fixed, the application of S DRM allows the usage of a much cheaper thermal
package than that required by the conventional DTM technique.
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Fig. 3. Performance comparison of DTM and the proposed S DRM. The results for S DRM are based on high convection thermal resistance
configuration. The results for DTM include two different thermal configurations.

In addition, using the S DRM technique, one can explicitly trade-off reliability with performance by targeting different
lifetime budgets. That is one can increase the nominal lifetime consumption rate when lifetime target is allowed to be
reduced. Figure 4 plots the performance of S DRM averaging over all benchmarks at different lifetime budgets, with
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shorter expected lifetimes enabling faster execution. However, reducing lifetime by 10% only increases the performance
by about 1%.
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When compared with the conventional thermal threshold-based DTM, a distinct feature of S DRM is its ability to
“remember” the effects of previous behaviors. If the lifetime balance is high due to previous deposits, S DRM will be
more tolerant of higher operating temperatures for longer time intervals, thus reducing the performance penalties due
to conventional DTM slow-down mechanisms. In summary, the advantage of S DRM over DTM is largely dependent on
the inherent variations in the temperature profile of the workload.

C. Multi-program workload

Another interesting program execution scenario is a workload of multiple programs with context-switching between
them. When a hot benchmark and a cold benchmark are executed together, the average operating temperature should
be between the individual benchmarks operating temperatures. For example, gcc’s own operating temperature is around
115oC and applu’s is around 70oC. Figure 1(b) plots the temperature profile of a hybrid workload composed of gcc

and applu, with different context-switch time intervals. Note that, in our simulation, the multi-program workload is
constructed using the power trace of the individual program, and the overhead of context-switching is not modeled and
simulated. Since we are only interested in the relative performance of different runtime management technique, such
simplification should not affect the final conclusions.
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Fig. 5. Average performance comparison of DTM and DRM on a multi-program workload with different context-switch intervals ((a) 50µs,
(b) 5ms, and (c) 25ms).

As one expects, the smaller the context-switch interval, the less temperature fluctuation, with the thermal package
of the chip working as if a low-pass filter. When the context-switch interval is increased, individual benchmarks can
show their hot/cold properties, and the temperature variation in the workload becomes obvious. In order to investigate
how multi-program workloads affect the performance of DTM and DRM, we reduced the temperature threshold of
the targeted lifetime from 110◦C to 90◦C. Figure 5 shows the performance penalties of DTM and S DRM for this
multi-program workload with different context-switch intervals. We observe a similar trend shown in the single-program
workload. S DRM outperforms DTM with the same thermal package configurations. As the context-switch interval
increases, the performance of S DRM becomes closer to that of DTM with a much smaller convection thermal resistance
(three-fold smaller).
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V. Dynamic Reliability Management for Server Workloads

In Sections III and IV, we investigated the application of DRM in workloads for general-purpose computing. In this
section, we discuss some distinct characteristics of server workloads in terms of both thermal behaviors and performance
requirements. We propose a profile-based dynamic reliability management (P DRM) technique that can extract more
benefits from lifetime banking for those server workloads.

A. Characteristics of server workloads

In general-purpose computing, the temperature variations of workloads are largely due to the inherent phased behaviors
(i.e. phased activities or context-switches). These variations usually occur in a very small-scale time interval, which
is comparable to the thermal constant of chip thermal package. Server workloads, in contrast, are dependent on user
requests, which vary with a much larger time scale. Figure 6 presents some examples extracted from [8], [4]. Figure 6(a)
shows user requests distribution over time for the web servers for the 1998 Winter Olympic Games, and Figure 6(b)
presents a real power measurement of the processor for a single node web server processing requests similar to those in
Figure 6(a).
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Fig. 6. Web server workload variation. (a) User requests distribution (Extracted from [8]). (b) Processor power consumption variation in a
web server (Extracted from [4]).

There are several observations which can be drawn from Figure 6. First, there is clearly a cool phase and a hot phase
in the workload distribution, and the cool phase occupies most of the time. The difference in computation requirements
between the cool phase and the hot phase is very large. For example, the request rate increases from around 50
(req./s) in the cool phase to above 400 (req./s) in the hot phase, an eight-fold difference. Second, as a consequence of
the workload and associated processor utilization variation, the power consumption of the processor varies greatly (a
two-fold difference), which implies a large variation in temperature. Third, each phase sustains for a very long time
interval. Thus one can expect that each phase reaches its steady-state temperature and stays at that temperature for
most time of the phase interval. This is quite different from general-purpose computing, where the interval for each
thermal phase is very short and the steady-state temperature is seldom reached before the next phase arrives. We
believe these distinct thermal characteristics make our lifetime-banking-based reliability management more suitable for
server workloads. Note that the power number shown in Figure 6 represents the averaged power consumption over time
intervals and each individual request will still cause power consumption peak momentarily. However, the negative effects
on lifetime banking by these power peaks in the cool phase will be diluted because of two reasons: 1. The corresponding
temperature peaks are small due to the filtering effect of the large thermal constant of the processor package. 2. Our
analysis [11] reveals that reliability banking is mostly determined by the average temperature.

As one can see from the workload distribution in Figure 6, the performance bottle-neck of a server exists in the hot
phase, which is associated with high temperature. Conventional thermal threshold-based DTM clamps the maximum
temperature to a predefined threshold by slowing down the processor, thus possibly exacerbating the situation. In
contrast, banking-based runtime management can exploit the banking effects of the long cool phase and delay or reduce
the performance loss due to engagement of an active cooling mechanism. From an average user’s point of view, the
QoS provided by the server is largely dependent on its performance in the hot phase, as most requests are made during
that time. Therefore, in the following study, we use the performance of the hot phase as our performance metric for

comparison.
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B. Dynamic reliability management for server workloads

In order to evaluate our runtime management technique on server workloads, we construct a hybrid workload in a way
similar to that of the multi-program workload discussed in Section IV, but with a much longer context-switch interval.
This synthetic workload is composed of a cool phase and a hot phase, running Spec2000 benchmarks applu and gcc

respectively. Figure 7 shows the temperature profile of the synthetic workload we use to mimic the thermal behavior
of server workloads. From various experiments, we find that the thermal time constants of our simulated system are in
the range of tens of milliseconds. Therefore, by simulating workloads in a time scale of several seconds, we can ensure
that the portion of time in the profile spent on the transient behaviors from one phase to another is minimized, just
like one may see in a temperature profile for server workloads. Although the total simulated time is short (i.e., about
one second) compared to a real server workload, Figure 7 indicates that the time interval for each phase is long enough
to reach the steady-state operating temperature of the individual program. The temperature variations within each
program also mimic the workload variations in both the cool and hot phases of a real server workload. Therefore, the
time units shown in Figure 7 could be interpreted as scaled down from a much longer time interval (e.g. several hours).
One disadvantage of our synthetic workload is that power peaks due to individual requests in the cool phase are not
modeled. However, as discussed previously, the effect of those intermittent power peaks on reliability banking is not
significant.

In our synthetic workloads, the cool phase is followed by the hot phase, and lifetime will be banked first and then
withdrawn. In other workloads where the hot phase is followed by the cool phase, DTM can be applied in the hot
phase if there is no previous lifetime banking, and lifetime will be banked in the following cool phase and prepared
for withdrawal in the future hot phase. Thus, our lifetime banking based approach is effective in spite of the detail of
workloads (i.e. the order of cool and hot phases). We define the duty cycle of the cool phase as the portion of time the
cool phase occupies in the whole length of simulation. For example, in Figure 7, the duty cycle of the cool phase is equal
to 0.5. In our experiments, we also construct workloads with different duty cycles of the cool phase (e.g., 0.6 and 0.75),
and in all of these workloads, individual programs reach their own steady-state temperatures.
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Fig. 7. A constructed workload used to mimic the thermal behavior of server workloads.

The application of the S DRM technique to server workloads is straightforward, just like in the context-switched
multi-program workload studied above. However, our simulation results reveal that S DRM is not the best choice for
server workloads. In the workloads of general-purpose computing, since each phase is very short, the lifetime balance
deposited in the previous cool phases can support the subsequent over-consumption of lifetime for an interval comparable
to that of the hot phase. S DRM can minimize the impacts on the phase within these workloads. However, in the server
workloads similar to that shown in Figure 6, the interval of the hot phase is much longer, and temperature rises steadily
towards the hot phase steady-state temperature. At the same time, due to the exponential dependence of lifetime
consumption rate on temperature, the lifetime balance is consumed more and more rapidly, despite a previous long cool
phase. Figure 8 demonstrates such a process in the time interval [0.6s, 0.68s]. After 0.68s, the lifetime balance becomes
zero. S DRM performs during the rest of the hot phase just as it behaves in the single program workload. Therefore,
only a small portion of the execution in the hot phase benefits from the lifetime banking by the cool phase.

Due to the above reason, one should find a more strategic way to spend the lifetime balance in order to maximize
the performance in the hot phase. Since in steady state, temperature can be modeled as a function of the operating
frequency, one can find the relationship between lifetime consumption rate and operating frequency. Let f(t) denotes the
operating frequency curve in the hot phase, and r(f(t)) be the corresponding lifetime consumption rate. The problem
to find the maximum performance operating scheduling while satisfying the reliability constraint can be formulated as
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Fig. 8. S DRM (simple dynamic reliability management) on the synthetic workload shown in Figure 7.

a constrained optimization problem as follows.

Max(E[f(t)]), subject to E[r(f(t)] = R, t ∈ hot phase

where E[ ] is the expected-value function, and R is a constant in the hot phase that is determined by the lifetime balance
deposited during the cool phase as well as the nominal lifetime consumption rate. We assume that, in the hot phase,
system performance is proportional to the clock speed.
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Fig. 9. Relationship between clock frequency and lifetime consumption rate.

Figure 9 plots clock frequency as a function of the lifetime consumption rate. It is obvious that the relationship
between clock speed and lifetime consumption rate forms a convex curve. According to Jensen’s inequality, it follows
that (as shown in Figure 9) f(E[r(t)]) ≥ E[f(r(t))], which implies that, in order to obtain the best performance, one
should operate with a constant consumption rate. In other words, one should distribute the lifetime balance evenly
across the hot phase. In order to calculate the desired consumption rate in the hot phase, one has to know the duration
of the hot phase. Currently we assume that this information can be obtained through profiling technique thanks to the
high regularity of the workload distribution for servers.

With the optimal operating condition in mind, we introduce our (P DRM, profile-based dynamic reliability manage-
ment) technique, which is a natural extension of our S DRM with the awareness of the optimal operating points in
the hot phase. When the server is running in the cool phase, P DRM works the same way as S DRM with lifetime
balance banked. When the server enters the hot phase, P DRM calculates a new nominal lifetime consumption rate
based on the lifetime balance and the duration of the hot phase (obtained through profiling). Then P DRM acts just
like S DRM, with the new calculated nominal consumption rate, which can further exploit some banking opportunities
due to temperature variations within the hot phase.

The profiling only provides a prediction that allows the CPU to jump to the best operating point during a hot phase.
In some cases we might not be able to obtain accurate workload profiles. However, with our P DRM technique, the
inaccuracy of workload profiles only affects the the performance optimality, and does not result in violations to the
lifetime budget. That is because our technique always tracks the actual reliability consumption rate and compares it
with the nominal lifetime consumption.
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Fig. 10. Performance comparison of different runtime management techniques on the synthetic workload shown in Figure 7 with different
duty cycles of the cool phase: (a) 0.5, (b) 0.6 and (c) 0.75.

VI. Experiments and Analysis for Server Workloads

A. Simulation results

We simulate the synthetic workload shown in Figure 7, which mimics the thermal behaviors of the real server workload,
with different runtime management techniques. We change the program switching time so that we can test on 3 workloads
with different duty cycles of the cool phase. We compare the performance slow-down in the hot phase and the results
are presented in Figure 10. Both DRM techniques outperform DTM, and P DRM performs the best. The performance
of S DRM is slightly better than that of DTM and much worse than P DRM due to the reasons discussed in above.
On the other hand, P DRM can fully exploit the banking benefits of the cool phase. For example, when the cool phase
occupies 60% of the total time (i.e. as indicated by (b) in Figure 10), P DRM can reduce the performance penalty from
16%(DTM) to only 6% (or equivalently, the execution speed of the hot phase is increased by P DRM by about 9.5%
over DTM). Interestingly, for the case when the cool phase occupies 75% of the total time (i.e., (c) in Figure 10), no
performance slow-down is incurred for both DRM techniques, because the reliability equivalent temperature for that
workload is less than the reliability nominal temperature. Thus, in that case, the lifetime balance banked in the cool
phase is enough to support the full speed execution in the hot phase, while DTM clamps the hot phase temperature to
the reliability temperature, resulting in about a 13% performance penalty in the hot phase.

B. Analysis using an analytical model

In order to fully understand the potential benefits of p DRM on server workloads, we present a first order analytical
model, providing some insights of our proposed runtime techniques. In this model, we approximate server workloads
using square waveforms as shown in Figure 11. The solid blue line represents the temperature/performance profile
with DTM. The temperature profile with P DRM in the cool phase overlaps with that of DTM. And P DRM allows
operating points above the reliability temperature in the hot phase, as presented by the dotted green line in the figure.
We want to find out what is the allowable performance difference between the dotted green line and the solid blue line
(i.e., the performance gain of P DRM over DTM), subject to a fixed lifetime budget. Here we make an assumption
that the processor can operate at a clock frequency higher than that clamped by the thermal threshold. There are
two aspects to this. First, temperature excursions will require a reduction in frequency, thus reducing performance
somewhat, but should still outperform a strict, temperature-limited form of DTM because the temperature dependence
of frequency is mild [15]. Second, many ICs are actually under-clocked due to thermal limitations. In both cases, there
exist possibilities that we can over-drive the processor in the hot phase to meet the QoS requirements without sacrificing
reliability lifetime.
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Fig. 11. Modeling thermal behaviors of server workloads using square waveforms.
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As one can see from Figure 11, two factors might affect the potential performance boost by P DRM over DTM: 1. the
difference between the steady-state temperatures in both the hot phase and the cool phase, and 2. the duty cycle of the
cool phase. Borrowing some data from the ITRS [14], we set the reliability temperature Tn = 105oC, associated with the
clock frequency fn = 3.0GHz. This setting means that in the hot phase, the maximum performance achieved by DTM
is to operate at 3.0GHz. If we can assume that the dynamic power consumption of the processor is proportional to the
cubic of clock frequency, the steady state temperature can be denoted by T (f) = Kff3 + T0, where Kf is a constant
and T0 represents the ambient temperature of the thermal package. Accounting for the contribution of static power
consumption to temperature, we set a higher ambient temperature T0 = 55oC, and obtain Kf = 1.85K/GHz3. Let ∆T
denote the temperature difference between the hot phase and the cool phase, f2 the allowable operating clock frequency
in the hot phase by P DRM, and α the duty cycle of the cool phase. The following equation should be satisfied to retain
the same lifetime budget with P DRM:

[rn(Tn) − r1(Tn − ∆T )]α = [r2(f2, T (f2)) − rn(Tn)](1 − α) (5)

where rn is the nominal reliability consumption rate at temperature Tn, r1 is the consumption rate in the cool phase, and
r2 is the consumption rate in the hot phase with clock frequency f2 and temperature T (f2). The lifetime consumption
rate is discussed in Section II. The left hand side of the above equation represents the reliability balance banked during
the cool phase and the right hand side represents the banking deposits to be consumed in the hot phase. Although
the temperature dependence of static power is not taken into account in this model, we feel that it captures the key
relationships between performance, operating temperature and reliability consumption rate, and is thus sufficient for
our purposes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Duty cycle of the cool phase

S
pe

ed
−

up
 o

f t
he

 h
ot

 p
ha

se

Temp. Diff. 5 oC
Temp. Diff. 10 oC
Temp. Diff. 20 oC
Temp. Diff. 30 oC
Temp. Diff. 40 oC
Simulation Results

Fig. 12. Performance speed-up due to lifetime banking on different workload characteristics.

Using the above analytical model (i.e. Equation ( 5), we can calculate the performance speed-up by P DRM (i.e. f2

fn

in the hot phase) as a function of ∆T and the duty cycle of the cool phase. The results are presented in Figure 12,
which shows that the performance speed-up is highly dependent on the duty cycle of the cool phase. The increase of
the speed-up vs. the duty cycle is more than linear. This is understandable, because larger cool phases produce more
reliability balance, thus enabling higher execution points in the hot phase. When the duty cycle of the cool phase is fixed,
the increase of temperature difference will also increase the speed-up. However, after some value (e.g. about 20oC),
the temperature difference has a minor effect on the speed-up, due to the exponential dependence of the reliability
consumption rate on temperature. Because the extra reliability balance brought by further lowering the temperature
in the cool phase is negligible when compared to the very high consumption rate in the hot phase. This figure suggests
that the “sweet spot” for performance speed-up with P DRM lies in the case when the duty cycle of the cool phase is
more than 50% and the temperature difference is more than 20oC, and we can expect more than 5% of performance
speed-up. Fortunately, as shown before, many server workloads satisfy these requirements.

The simulation results of DTM and P DRM from Figure 7 are re-plotted in Figure 12. The workloads for these
data are similar to that shown in Figure 7, with the cool phase duty cycle equal to 0.5, 0.6 and 0.75 respectively.
The reliability temperature is set to 90oC, while the temperature of the cool phase in these workloads is about 70oC.
These simulation results show a similar trend to that predicted by our simple analytical model, though our analytical
model is not calibrated against any specific simulation data. Therefore, these simulation results confirm the applicability
of our analytical model. Compared with the simulation results, it seems that the analytical model underestimates the
performance speed-up by P DRM. Two major reasons might help explain the discrepancy. First, in our analytical model,
we use a cubic relationship between power and operating frequency, which exaggerates the effect of clock frequency on
the temperature, leading to a more conservative estimate of the performance speed-up. Second, in the simulations,
we include the idle penalties for frequency/voltage transitions due to dynamic frequency/voltage scaling, while in the
analytical model, we do not assume any extra performance penalty for DTM.
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VII. Discussion

Recent researches on material/device reliability illustrated that other failure mechanisms, for example, Negative
Bias Temperature Instability (NBTI) and gate oxide breakdown, are also governed by temperature/voltage dependent
dynamic processes [21], [20]. Therefore, consumption rate-based dynamic reliability models for these failure mechanisms
could be derived just as the case for electromigration. A simple and yet conservative way to incorporate multiple
failure mechanisms in the reliability banking framework will be like this: lifetime banking is applied for each individual
failure mechanism, and the allowable operating point for each mechanism is obtained using the techniques presented
in this paper. The safest one among those allowable operating points (e.g. lowest operating frequency) is then chosen
for circuit operation. In this way, no violation in reliability budget will occur for each individual failure mechanism,
however, performance gain will be minimized. A more complicated approach should be able to trade off the reliability
budgets among different failure mechanisms while the system reliability is not compromised.

The banking techniques presented in this paper focus on the worst-case component (i.e. the hottest interconnect
metal in the chip). Since, using our techniques, we guarantee that the worst-case component will satisfy its reliability
constraint, we can safely claim that the system reliability is not violated. Nevertheless this approach is conservative, since
the temperature distribution is not even across the chip, and the chip can be modeled as a system constituted of serial
and parallel components. A more sophisticated approach would trade off the reliability between different components
while the system reliability is not violated. In order to do so, a complex reliability model such as the one in [18] has to
be used.

VIII. Conclusion

Variations in operating temperature have a major impact on the expected lifetime of an IC. By taking such variations
into account, we can model lifetime as a resource that is consumed over time at a temperature- and voltage-dependent
rate.

In this paper, we detailed the use of the temperature variability and lifetime resource models to develop novel DRM
techniques that reduce the performance penalties associated with existing DTM techniques while maintaining the re-
quired expected IC reliability lifetime. When the operating temperature is below a nominal temperature (i.e., the
threshold temperature used in DTM techniques), lifetime is being consumed at a slower than nominal rate, effectively
banking lifetime for future consumption. A positive lifetime balance allows the nominal temperature to be exceeded
for some time (thus consuming lifetime at a faster than nominal rate) instead of automatically engaging DTM and
unnecessarily suffering the associated performance penalties.

We discussed the applications of DRM in both general-purpose computing and server workloads, using interconnect
electromigration as the temperature-dependent failure mechanism. For general-purpose computing, simulation results
revealed that S DRM provides performance improvements over traditional threshold-based DTM without sacrificing
expected lifetime, or allows the usage of cheaper thermal package without sacrificing performance. In addition, we
showed the relationship between performance and expected lifetime, revealing how one can be traded off for the other,
thus providing another design optimization and runtime management dimension. For server workloads, simulations
on synthetic workloads demonstrate the possibility to increase server QoS by using P DRM when service requests are
aggregated. A conservative analytical model further identifies the “sweet spots” of server workloads that benefit from our
P DRM. Future work will include incorporating other thermal related failure mechanisms such as gate oxide/dielectric
breakdown into the DRM framework, and implementing our DRM techniques in practical systems.
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