Creating a Back End for VPCC
Revised 3/1/91

Jack W, Davidson
David B. Whalley

Computer Science Report No. RM-88-01
March 1, 1991

The C Virtual Machine Instruction Set Definition

1. Retargeting

vpee (Very Portable C Compiler), as its name implies, is very portable. The following steps are required to
retarget vpee for a new machine.

1. Update the SZtypes in the file ““macdefs”™ to define the sizes of C types (e.g. char, int, float,
double, eic.).

2. Update the argsize function in *‘genccode.c” to define the sizes of types when pushed on or popped
off the run-time stack.

3. Define cither RIGHTTOLEFT or LEFTTORIGHT in ‘‘genccode.c™ to select the order of evaluation of
arguments to functions.

2. Expanding the Intermediate Code

To produce a compiler the intermediate language must be expanded to represent instructions on the target
machine, Bach time an intermediate language operator is produced by vpcc, a function is invoked that begins with
‘c_* and usually has the name of that operator. For instance, when an ICON operator is produced the c¢_icon
function is called. Note that the arguments to the intermediate code operators correspond to the arguments in the
functions. For instance, c_icon has the arguments typeid, class,and n. ICON has the same arguments.
The values for the apcode arguments, which represent the intermediate language operators, can be found in the
header file, *‘manifest™. An argument called fypeid indicates a C type. The possible basic types are:

Type Description

UNDEF undefined type such as the type of a void function
FARG function argument

CHAR character

SHORT short integer

INT integer

LONG long integer

FLOAT floating point

DOUBLE double precision floating point
STRTY structure

UNIONTY union

ENUMTY enumeration

MOETY member of an enumeration
UCHAR unsigned character

USHORT unsigned short integer
UNSIGNED unsigned integer

ULONG unsigned long integer

Type values are either 2 basic type or a composite of a basic type with a modifier. The possible values of a modifier
are as follows:

Modifier Description
PTR pointer o type

~ FTN function reuming type
ARY array of type

The modifiers are read right to left in the type value, starting with the field adjacent to the basic type. For instance
ARY + (PTR << 2) + (FTN << 4) + DOUBLE

represents the type of an array of pointers to functions returning doubles. When manipulating type values in vpce

one usually uses macros. The available macros to manipulate type values are:

Macro Description

MODTYPE (t,b) setbasic typeof t to b

BTYPE (t) returns basic type of t

ISUNSIGNED {t) returns true if ¢ is an unsigned type

UNSIGNABLE (t) returns true if t is one of the 4 basic types that can become unsigned
ENUNSIGN (t) retnrns the unsigned type of the signed type t
DEUNSIGN (t) returns the signed type of the unsigned type
ISPTR(t) returns true if ¢ is the type of a pointer

ISFTN(t) returns true if t is the type of a function

ISARY (L) returns true if ¢ is the type of an array

INCREF (t) returns a type representing a pointer to £

DECREF (t) returns a type after removing the first operator from ¢

"The definition of the basic types, modifiers, and type macros are defined in the header file, ““manifest”. An argu-
ment called class indicates the storage class of the value being referenced. The possible values for class are:

Class Description

SNULL Constant value

AUTO Automatic variable

EXTERN Externally defined variable

STATIC Static variable (local or global)
REGISTER Register defined variable (parameter or automatic)
EXTDEF Externally defined and initialized variable
LABEL Label id

MOS Member of a structure

PARAM Parameter variable

STNAME Struciure name

MOU Member of a union

UNAME Union name

TYPEDEF Type definition name

FORTRAN Fortran function

ENAME Enumeration name

MOE Member of an enumeration

UFORTRAN External fortran function

USTATIC Undefined static variable

Class values are defined in the header file “mfilel”’. An argument called blkno indicates a block number used ©
uniquely identify a local variable. An argument called id contains the name of a variable. The following pages give
a description of how each of these routines should be declared, the intermediate language operators o which it
applies, and a written and notational description of the code the routine must generate. The notational description
uses a C-like language with the following conventions:

Notation Description

addr the address of a memory location
addr (x) returns the address x

mem[x] a memory reference at location =
pass (x) pushes x onto the run-time stack
pop pops the value off the top of the CGS
push (x) pushes x onto the top of the CGS
mask (x) generate a x-bit mask of ones

v a value

— assignment

where CGS means the compiler generated stack.

void c_aoper (opcode, typeid)
int opcode;
TWORD typeid:

The appropriate operation is determined by the opcode.

Binary operations:
Opcode Description
PLUS addition
MINUS subtraction
MUL multiplication
AND bitwise and
OR bitwise or
ER bitwise exclusive or
D1V division
MOD remainder
LS left shift
RS right shift

Code is emitted to pop the top two values on the stack, perform the binary operation, and
push the result back onto the stack.

vl ¢« pop;v2 ¢« pop;push(v2 opcode vl);

Unary operations:
Opcode Description
UMINUS unary minus
COMPL bitwise negation

Code is emitted to pop the top value on the stack, perform the unary operation, and push
the result back onto the stack.

v ¢ pop;push{opcode v}
void c_assign(typeid)
TWORD typeid;
ASSIGN - store a value in a memory location

This routine emits code that pops an address off the stack, pops a value off the stack, and stores the
value at the location in memory specified by the address,

addr ¢« pop:;v « pop;memiaddr} ¢« v;
void c_bgnstmt (Lineno)
int lineno;

BGNSTMT - begin a new statement

This routine is invoked before code for a source language statement is emitted. The lineno indicates the
source line number of the statement This routine is useful for outputting debugging information.

void ¢ _call{typeid, nargs, lenargs)
TWORD typeild;
int nargs, lenargs;

CALL - invoke a function
This routine generates code to call a function. fypeid indicates the type of value that is returned by the

-3

function. rargs indicates the number of arguments that have been pushed on the run time stack preceed-
ing the call. lenargs indicates the tota! length of all the arguments in bytes. The address of the routine
to be called is popped off the stack, the call is generated and the return value (if fypeid is not UNDEF
indicating a void function cali) is pushed on the stack.

addr ¢« pop;push(environ);push(retaddr);pc ¢« addr;push(retv}:;

void c¢_casel {start, range)
long start, range;

CASEL - switch statement branch

This routine is invoked to generate code for a switch statement where the value of the switch expression
can be indexed efficiently into the next (range+I) WORD statements. séart indicates the lowest value
of a case label for the switch and range indicates the number of ascending successive values for case
labels within the switch. The value of the switch expression is popped off the stack and is used to
determine the destination of the branch.

v « pop:;pc ¢« (v -~ start) < range ? mem[pct(v - start}] :@: pc;

void ¢_cmpeqg(typeid, n, 1)
TWORD typeid;

int n,

1;

CMPEQ - compare and branch if equal

This routine is invoked to generate code for a switch staiement where the value of the swiich expression
cannot be indexed efficiently. If the constant » is equal to the value on top of the stack then a branch to
the label I will occur.

Vv ¢ pop;pc <~ v==n? 1 : pc;

void ¢ cmpgt (typeid, n, 1)
TWORD typeid;

int n,

i

CMPGT - compare and branch if greater than

This routine is invoked to generate code for a switch statement where the value of the switch expression
cannot be indexed efficiently. If the value on top of the stack is greater than the constant # then a
branch to the Iabel I will occur,

v — pop;pCc «— v > n? 1 pe;

void c_dc (typeid, class, val, flag)
TWORD typeid;
int class, val, flag;

pC - define a constant

This routine is called to generate code to have a memory location initialized with an integer value.
When elass is SNULL and val is UNDEF then val indicates the amount of space to reserve for the vari-
able. When class is SNULL and val is not UNDEF then the val argument represents the initial value,
If class is LABEL, then val is the label number, If class is FIELD, then the field size in bits is found
in the lower six bits of the class. The initializer Tor thie field iy found-in val.The flag is used to-indicate
the end of an initialization. A one indicates the initialization is complete. For example, to initialize a
structure that contains bit fields may require the output of several initializers. It is necessary to indicate
that there are no more, so the assembled bit pattern can be output to the assembly or RTL file. Sec also

¢ _sde.

void c¢_decl (typeid, id, class, size, blkno)
TWORD typeid;

int c¢lass, size, blkno;

char *id;

DECL - define a variable

This routine is invoked 1o generate code for a variable declaration. A variable can be a global, a param-
eter, or a local. The type of declaration can be distinguished by the value of the blkno.

type blkno
global 0
parameter 1
local >=2

This routine can be called to generate code associated with a global declaration. class can be
EXTERN, EXTDEF,or STATIC. If classis EXTDEF orifitis STATIC and id does not begin with
an **', then an initial value for the variable should follow (c_dc, c_fdc, c_sdc). Whether or
not the variable is to be initialized may affect the form of the declaration. If the variable is not initial-
ized then space must be atlocated by the code generated for declaring the variable. If the variable is ini-
tialized then the space allocated may be implicit from the code generated from the initial value that is to
foliow.

This routine can be called to generate code for the declaration of an argument. class can either be
PARAM or REGISTER. size indicates the size of the parameter. Typically a symbol will be defined
representing an offset from the argument pointer to allow later access to the argument. A counter
should usually be updated to represent the total size of the argaments encountered so far,

This routine can be invoked to generate code for a Jocal declaration. The possible values for class
include STATIC, AUTO, and REGISTER. I class is STATIC and the first character of id is **',
then the variable is not initialized. Otherwise if class is STATIC then the variable is initialized. This
means that the initialization value will follow the local declaration. This may affect how the declaration
of the static variable is made. For instance, if there is no initial value then size would be used to reserve
space for the static variable. If the class is AUTO or REGISTER (and REGISTER is treated as an
AUTO), then size is used to determine the offset of the local variable. Typically a counter will be
updated to reflect the total size of the local variables so far. blkne can also be used to uniguely identify
the local variable. If blkno > 2 then it is possible that more than one local variable in different blocks in
the function will have the same name. Thus blkne can be appended to the name of the local variable.
The name of the local variable in this routine is typically defined as a symbol representing the offset
from the frame pointer. Note that blkno is not needed for static variables since each local static
identifier is unique. On some machines alignment of local variables on offsets larger than byte boun-
daries may be desired.

void ¢_deref (typeid)
TWORD typeid;
DEREF - indirection

This routine is called to generate code to reference a value at a memory location. The address on top of
the stack is popped off and the value at the memory location of the address is pushed onto the stack.

addr ¢« pop;push (memfaddr]);

void c_dup{typeid)
TWORD typeid;

pur - duplicate the top of the stack
This routine duplicates the value on top of the stack.
v « pop;push(v};push(v};
void c¢_efunc(n)
int n;
EFUNC - end of a function

This routine generates code for the end of a function. It also can be used 1o define symbols such as the
size of the locals for the routine, the register mask, etc.. n represents the number of bytes for the
function’s locals. Usually this value is not used to define the size of the locals since alignment of local
variables may cause additional bytes to be used.

void c¢_end()

This routine is not associated with any intermediate language operator. It is called when the end of the
source file is encountered. If any code needs to be generated at the end of the file, this routine is useful
for that purpose. Often this routine will take no action.

veid ¢ _endinit {typeid)
THWORD typeid;

INIT - global initialization sequence boundary

This routine is invoked at the end of a global variable initialization sequence. This sequence is brack-
eted by the INIT operators. Since this sequence is used to initialize a global variable, only constant
expressions are allowed. Typically the code expander will maintain its own initialization stack to con-
struct this value. In this routine, the actual generation of the code to produce the initial value may be
produced.

void c_epdef ()

EPDEF - end of prologue code for a procedure

"This routine is invoked after code has been generated for the declarations of a function. This may pro-
vide a place where certain actions can be performed such as saving registers. Usually these types of
activities can be done in the ¢_func routine. Consequently, often this routine takes no action.

void ¢ fcon(typeid, class, n)
TWORD typeid;

int class;

double n;

ICON - floating point constant

This routine is invoked to generate code (o generate a floating point constant. #ypeid indicates whether
the constant is to be a float or a double, n is the value of the constant, This value is pushed on the stack.
Often class is not used since this routine only pushes a value.

push(n);

void c_fde(typeid, class, value)
TWORD typeid;

int class;

double value;

DC - define constant

This routine is called to generate code for a memory location to be initialized with an floating point
value. typeid can either be float or double. value is the ficating point constant that is to be loaded into
memory. class may be used to specify the type of the memory address, but ofien this argument is not
used since this routine is called immediately following the declaration of the variable (ex: ¢_gbl).
Note: besides outputting the three arguments passed to this routine, it also outputs a zero word. Some
DC operations (like when outputting a string) require an offsef. See c_sdc.

void c¢_fld({typeid, n)
TWORD typeid:
long n;

FLD - extract field of bits

This routine will generate code to cause an address to be popped off the stack, the extraction of a set of
bits from the memory location pointed to by the address, and these bits to be pushed back onto the
stack. typeid will indicate an integral type. n indicates how the bits are to be extracted. The six least
significant bits of the value in » represent the number of bits to extract. The remaining bits are used to
indicate the offset in bits from the start of the memory location that the field structure occupies. This bit
offset indicates the least significant bit of the desired bit field.

addr ¢« pop:;v « memiaddr];offset ¢ n >> 6;numbits ¢ n & 077;
v ¢« v >»> offset;v « v & mask{numbits);push(v);

veid ¢ _func{typeid, id, class)
TWORD typeld;

int class;

char *id;

FUNC - beginning of a function

This routine is called to generate code for the start of a function. There are several actions that could
occur in this routine. Code should be generated declaring the function so that the function may be
called. elass indicates whether the function can be called from an external file. If not then class would
be STATIC or USTATIC. Registers that the functon uses should be saved if a callee save model is
being used. Also counters representing the space used by the arguments and local variables for the
function need to be initialized.

void c_goto(n)
int n;

GOTO - unconditional branch

This routine is called to generate code for a goto statement and is sometimes used in the generation of
other control constructs. Code is generated that causes a unconditional branch to the label indicated by
n. Often the top of the stack needs to be popped if the stack is not empty. This is in support of con-
structs such as the <“? :” operation. (A register holds the value of the true part of the "? :" operation.
The false part will assign a value to the same register.)

pc « n;

void ¢_icon(typeid, class, n)
TWORD typeid;
int class, n}

ICON - integer constant

This routine is invoked to generate code for an integer constant. class can either be SNULL or
LABEL. If SNULL then n is the value of the constant. This value is pushed on the stack. If it is
LABEL then # identifies a label that has the address of the value, Typically an ““L”” is used as a prefix
to the label identifier, indicating it is a local static. The address of the label is pushed onto the stack.

push({n}; oxr push(addr{Ln));

void c¢_ifld{typeid, n)
TWORD typeld;
long n;

IFLD - insert a field of bits

This routine will generate code fo cause the insertion of a set of bits into memory. The address of the
memory location is popped off the stack. A value containing the field of bits is then popped off the
stack. The bits are inserted into the memory location. typeid will represent an integral type. » indicates
how the bits are to be inserted, The six least significant bits of the value in # represent the number of
bits to insert. The remaining bits are used to indicate the offset in bits from the start of the memory
location that the field structure occupies. This bit offset indicates the least significant bit of the desired
bit field.

addr ¢ pop;bitfield ¢« pop:;offset ¢« n >> 6;numbits -n & 077;
dstv ¢« mem{addzr];dstv ¢« dstv & (mask({numbits) << offset);
bitfield « bitfield << offset; dstv ¢« dstv | bitfield;
memfaddr] <« wv;

volid c¢_initaoper (opcode, typeid)
int opcode;
TWORD typeid;

PLUS - addition
MINUS - subiraction

This routine is invoked to generate an arithmetic operation involving initializing a global variable. The
only values allowed at this time for epcode are PLUS and MINUS. Such operations occur when a glo-
bal variable is initialized with the offset of the address of another global variable. This routine will only
be called at some point following the call of c¢_startinit. The routines, c¢_startinit and
c_endinit, bracket the global initialization operation. This routine will vsually take a different
action than its counterpart ¢_aoper. This is because the initial value must be calculated at compile
time and thus registers cannot be used. Typically, a stack is maintained and an assembly-time expres-
sion is constructed.

void ¢ _initicon({typeid, class, n)
TWORD typeid;
int class, n;

ICON - integer constant

This routine is invoked to generate an integer constant used in an arithmetic operation involving the ini-
tialization of a global variable. The integer constant is pushed on an internal initialization stack. See
c_startinit, c_endinit,and c_initaoper for more details on initializing global variables.

veoid ¢_initname (typeid, id, class, blkno)
TWORD typeid:

int class, blkno;

char *id;

NAME ~ identifier reference

This routine is invoked to generate the address of a variable name referenced in an arithmetic operation
involving the initialization of a globat variable. The address of the name is pushed on an internal ini-
tialization stack. See ¢_startinit, ¢_endinit,and ¢_initaoper for more details on initial-
izing global variables.

volid c_initsconv({oldtype, newtype)
TWORD oldtype, newtype;

SCONV - convert

This routine is invoked 10 generate a conversion in an arithmetic operation involving the initialization of
a global variable. Typically no action would occur unless conversions were allowed in assembly time
expressions. Usually the conversion would be from an integer to a pir type. See c_startinit,
c_endinit,and c_initaopex for more details on initializing global variables.

void ¢ _jmp{opcode, typeid, label)
int opcode, label;
TWORD typeid;

JMPEQ - jump if equal

JMPGE - jump if greater than or equal
JMPGT - jump if greater than

JMPLE - jumnp if less than or equal
JMPLT - jump if less than

JMPNE - jump if not equal

This routine is invoked to generate code for a conditional jump. The opcode represents the type of con-
ditional jump (the intermediate opcodes listed above). The label represents the destination of the condi-
tional jump if the comparison is true. Two values are popped off the stack and code is generated to
compare the two values and perform the conditional jump.

vl & pop:v2 « pop:pc <« (v2 opcode vl) ? label : pc;

void ¢ _llabel {(n)
int n;

LLABEL - generate local label

This routine is called to generate code for a label. These labels are generally targets of branches and
thus are referred to as local labels, » identifies the label. A label may typically be prefixed with a "L’.
This depends on the target assembly language.

vold c¢_name (typeid, id, class, blkno)
TWORD typeid;

int class, blkno;

char *id;

NAME i - reference an identifier

This routine is called to generate code for the address of the name of an identifier that is referenced.
The address of the name should be pushed on the stack. The form of the name will depend upon the
value of class. blkne may be used to help uniquely identify variables having an AUTO class (sec

c_lcl).
push{addr (id));
vold ¢_pconv{cldtype, newtype)
TWORD oldtype, newtype;
PCORV - poinier conversion

This routine is called to generate code to convert a pointer of one type to a pointer of a new type. The
value on the top of the stack is converted and remains on top of the stack. On many machines no action
is required to do this conversion.

void c_pusha (typeid)
TWORD typeid;

PUSHA - push an address

This routine is called to generate code that pops an address off the code generator stack and pushes it
onto the run-time stack.

addr ¢« pop;pass (addr):

vold ¢_pushv(typeid)
TWORD typeid;

PUSHV - push a value

This routine is called to generate code to push a value. The value on top of the stack is popped off and
pushed onto the run-time stack. The value may need to be converted to a different type before it is
pushed on the run-time stack. For instance most implementations of C require that a float be converted
10 a double before it is passed. The size of the values being passed need not be calculated since this is
done by vpce in the argsize routine in the file “‘genccode.c’ and the total will be passed to
c_call,

v ¢ pop:pass(v);
vold c_reasgl (typeid)
THORD typeid:
REASGO - reassign special register

This routine reassigns a special register created using USEOQ to a standard pseudo register (a register on
the compiler-generated stack). Often no action is required when a register is popped off the stack in
c_goto.

void c¢_rel (opcode, typeid)
int opcode;
TWORD typeld;

EQ - set if equal

NE - set if not equal

LE - set if less than or equal
LT - set if less than

GE - set if greater than or equal
GT - set if greater than

This routine emits code to pop the top two values off the stack, compare the values according to opcode
(which can have the intermediate code values listed above), and push a 1 on the stack if the comparison

-10-

is true or a 0 if it is not,

vl ¢« pop;ve ¢« pop;push(vZ opcode vl ? 1 : 0);
void ¢ _return(typeid)
TWORD typeid;

RETURN - return to caller

This routine is called to generate code for a return statement. If fypeid is not UNDEF denoting a void
function, the value on top of the stack is popped off and placed in a location that is known to the caller.
Code is also generated (o cause a return o the caller, The exact set of activities required depends upon
the calling sequence. Usually these activities are shared between the ¢ _call, ¢ func, and
¢_return routines.

v ¢ pop;addr ¢« pop;pop(environ);push(v) ;pc ¢« addr;
void ¢_reusel (typeid)
TWORD typeid;

REUSEQ - place value in special register assigned using USEQ

This routine pops the top of the stack and assigns that value to a special register assigned in ¢_use(.
As in c_reasg0 often no action is required if c_goto can pop the top of the stack. See c_goto
for more information.

void ¢_rotate (typeid)
TWORD typeid;
ROTATE - rotate 3rd element on stack to the top of the stack

This routine rotates the item that is two clements below the top of the stack up to the top of the stack.
This is sometimes used in augmented assignments, post increments and decrements, etc.

vl « pop:v2 <« pop:v3 « pop;push(v2);push(vl) ;push(v3};
void c_sconv{ocldiype, newtype)
TWORA oldtype, newtype;
SCONV - convert
This routine generates code to convert the value on top of the stack from the old type to the new type.

void c_sde (typeid, class, id, 0)
TWORD typeld;
int class;
char *id;
DC - define constant

This routine generates code to place the address of a string in memory. class indicates how to reference
the address of the string. The steing will either be some global class or a static {(ex:£519). id contains
the name of that string, This routine is called immediately following the generation of code for the
declaration of a variable. Note: the zero argument is to maintain compatibility with the other DC calls.

void c_setc()

SETC - setup for call
This routine is invoked just before code is generated that pushes arguments onto the run-time stack for a

-11-

call. Any actions that need to be taken before the arguments are pushed on the stack can be generated
by this routine.

vold ¢_slabel (n)
int n;
SLABEL - siring label

This routine generates code to declare a string label. » identifies the label. Typically “1.S"" may
preceed the value of n as the name of the string label to indicate that it is a local static.

void c_sseg(n)
int n;
SSEG - Set segment

This routine issues code to change the segment. The segment types for n are defined in the file mfilel.
They are as follows:

Code Name Description

0 PROG program

1 DATA standard data

2 ADATA array data

3 STRNG nonglobal string definition
4 ISTRNG global string definition

5 STAB symbol table

Often machines will not distinguish between any of these segments except the program segment,

void ¢_starg(typeid, size)
TWORD typeid;
int size;
STARG - structure argument

This routine generates code to pop the address of a structure argument off the stack and push the value
of the structure argument onio the run-time stack, size indicates how many bytes are o be passed.

addr ¢ pop;strancpy (v, addr, size) ;pass {v);
void ¢_startinit (typei&)
TWORD typeid;
INIT - globat initialization sequence boundary

This routine is called to indicate the start of a global variable initialization sequence, This sequence
will continue until the c_endinit routine is invoked. Since the constant expression is typically
maintained on an internal stack, this routine usually will initialize that stack.

void ¢_stasg(typeid, size)
TWORD typeid;
int size;
STASG - structure assignment

This routine generates code for a structure assignment. It first pops the destination address off the
stack. It then uses the source address on the top of the stack to copy size bytes from the source location
to the destination location in memory.

daddr ¢« pop;saddr « pop;strncpy{daddr, saddr, size):

-12-

void c¢_swap({typeid)
TWORD typeid;
SWAP - swap top two elements on stack

This routine swaps the top two values on the stack. This is used by vpce to sometimes accomplish aug-
mented assignments, post increments and decrements, etc.

vl « pop;vZ « pop:;push(vl);push(v2);
void c¢_switchs (typeid, n, st, 1)
TWORD typeid;
int n, st, 1l:
SWITCHS - start of switch environment

This routine generates code for the start of the switch statement. The switch consists of » cases, the
first case being st, and the range of values between cases is I. Often no action is needed in this routine.
This will of course depend on the target machine.

void c_switchv (typeid)
TWORD typeid;
SWITCHV - switch value

This routine will generate code to pop the top value off the stack and assign it to a special location to be
used as a switch value. Depending upon how the switch can be implemented in the target machine, this
may require converting the value to a different type.

void c_usel {typeid)
TWORD typeid;
USEQ - place value in special register

This routine will generate code to pop off the value on the top of the stack and place it into a special
register. As with c_reuse0 and c_reasg0, often no action is required. See ¢_goto.

void c_word(n)
int n;
WORD - address of case label for a switch statement

This routine will generate code to cause a definition to hold the address of the label #. Usually the
definition will be the size of a word. This Iabel address is used in conjunction with the ¢ _casel rou-
tine,

-13 -

