
Performance of the iPSC/860 Node Architecture

Steven A. Moyer

IPC-TR-91-007
May 17, 1991

Abstract

Performance of the iPSC/860 Node Architecture

Steven A. Moyer

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, Virginia 22903

(sam2y@virginia.edu)

Intel’s iPSC/860 hypercube is the latest in a series of message-passing multicom-
puters. The performance of individual iPSC/860 computational nodes is the focus of this
report; in particular, the performance of basic computational kernels common in scientific
computing is examined. Understanding the operation of the iPSC/860 node memory sys-
tem is key to achieving maximum node performance; from a comprehensive study of the
processor-memory interrelationship, guidelines are established for implementing opera-
tions in a manner consistent with the processor architecture and memory system perfor-
mance characteristics. It is demonstrated that the iPSC/860 node architecture exhibits a
basic imbalance between processor speed and memory system bandwidth; due to this
imbalance, even for highly optimized hand-coded routines the average performance of
basic computational kernels can be as much as an order of magnitude below peak proces-
sor rate.

This work was supported in part by NASA under grant NAG-1-242.

Performance of the iPSC/860 Node Architecture 3

1.0 Introduction

The iPSC/860 is the latest in a series of parallel computers produced by Intel. Like its pre-
decessors, the iPSC/860 is a distributed memory message-passing multicomputer con-
nected in a hypercube topology; the system can be expanded to a maximum of 128 nodes.

Each computational node of the iPSC/860 system, referred to as an RX-1, consists of an
Intel i860 microprocessor, a memory subsystem, and communication hardware. The iPSC/
860 system incorporates the same communication components as the iPSC/2; this inter-
connection network has been the subject of numerous studies and its performance parame-
ters are well known [2][6].

The performance of individual RX-1 computational nodes is the focus of this report; in
particular, the performance of basic computational kernels common in scientific comput-
ing is examined. Section 2.0 provides a brief overview of the i860 microprocessor. A com-
prehensive performance study of the RX-1 memory system is presented in section 3.0.
Sections 4.0 and 5.0 examine the performance of vector operations and sparse matrix-vec-
tor multiplies, respectively. Section 6.0 summarizes these results.

2.0 i860 Architectural Overview

This section briefly examines features of the i860 architecture that can be exploited to
increase the performance of inner-loop computations; it is not intended to provide a com-
prehensive architectural description. A complete functional overview of the i860 micro-
processor can be found in [4][5].

2.1 General

The i860 is a 64-bit general purpose microprocessor implemented using RISC techniques;
it incorporates on a single chip:

• Core integer/control unit

• Floating-point unit

• Graphics unit

• Memory management unit for protected, paged, virtual memory

• Data, instruction, and page translation caches

Performance is obtained using a combination of wide data paths, on chip data and instruc-
tion caches, pipelined floating-point arithmetic units and bus controller, and instruction
parallelism.

4

2.2 Data Types

Hardware support is provided for the following data types:

• 32-bit integer and ordinal values in the core integer unit; 64-bit integer values in the
floating-point unit.

• 32-bit single-precision and 64-bit double-precision real values in the floating-point unit.

• 8-, 16-, 32-bit pixel values in the floating-point unit.

2.3 Data Paths

Three separate data buses provide data and instruction transport:

• 64-bit external data bus - wide enough to transport up to 2 instructions or 1 double-pre-
cision number.

• 128-bit internal data bus - allows up to 2 double-precision numbers to be fetched from
the data cache with a single instruction, given proper data alignment; this can decrease
the number of inner-loop instructions and, in cases where data can be reused, increase
the effective memory bandwidth.

• 64-bit internal instruction bus - allows two instructions to be fetched from the instruc-
tion cache simultaneously; this is required to support the i860’s dual-instruction mode
as described in 2.6.

2.4 Caches

The i860 contains three separate on-chip caches:

• 8 Kbyte data cache - 2-way set-associative cache with 32-byte line size; cache lines are
aligned on a 32-byte boundary. Cache line fills occur in four 64-bit memory accesses
using a wrap-around technique. The processor reads first the 64-bit entry containing the
data object needed to fulfill the memory request which caused the cache miss; read
requests are then initiated for each of the three remaining 64-bit entries in the cache
line, sequentially by address. If the first entry read falls in the middle of the cache line,
the read addresses wrap around.

The data cache is implemented with a write-back policy to reduce the demand on the
external data bus and memory system.

• 4 Kbyte instruction cache - 2-way set-associative cache with 32-byte line size. The
instruction cache is large enough to allow most inner-loop code to execute without the
delay of instruction loads; memory bandwidth is reserved for data access.

• 64-entry page translation cache (TLB) - 4-way set-associate cache for performing page
translation and access violation checking; up to 256 Kbytes of virtual memory can be
referenced at a time.

Performance of the iPSC/860 Node Architecture 5

All caches operate in parallel and can be accessed once every clock cycle; this allows a
simultaneous instruction cache access, read/write data cache access, and virtual address
translation through the TLB.

Under normal operating conditions a random cache line replacement policy is imple-
mented. Data cache control can be performed by specifying for replacement one of the
two cache line blocks in a set. While this cache control mechanism can be used effectively
to improve performance, it is only available in supervisor mode; this issue is discussed
further in later sections.

2.5 Pipelining

The i860 architecture makes extensive use of pipelining to achieve higher rates of
throughput. The floating-point unit has 4 distinct pipelines:

• Adder - 3-stage pipe at 1 clock per stage.

• Multiplier - 3-stage pipe at 1 clock per stage for single precision; 2-stage pipe at 2
clocks per stage for double-precision.

• Graphics - 1-stage pipe at 1 clock per stage.

• Load - 3-stage pipe; the rate of pipe advancement is determined by the rate at which
memory requests are satisfied. The load pipe functions as a FIFO buffer for the pipe-
lined version of the floating-point load instruction discussed in 3.2.1.

The first three functional units listed above incorporate standard pipelining techniques to
increase throughput. The i860 does not provide any vector instructions; pipeline control
and advancement is handled explicitly via special pipeline instructions which specify a
pair of operand registers to be used as inputs to the first stage of a given pipeline, and a
destination register into which is placed the result of the last stage of that pipeline.
Advancement of a pipeline occurs only during execution of a pipeline instruction. For
example, the code of Figure 1 utilizes the adder pipeline to form three sums from three
operand pairs. Inner-loop code which makes use of floating-point pipelines must fill the
pipelines before entering the loop and drain the pipelines upon exiting. A scalar mode is
available for programming convenience, though at greatly reduced performance.

Bus cycles can also be pipelined to mask memory latency and increase the rate at which
memory requests are satisfied. The bus state machine defines a two level pipeline protocol
whereby a bus cycle can be initiated every other clock cycle with a maximum of three bus

6

cycles outstanding. The pipelining of memory cycles is optional and may not be supported
by all memory systems.

2.6 Parallelism

There are two forms of parallelism in the i860 that can be directly specified by the pro-
grammer: dual-operation instructions and dual-instruction mode.

Dual-operation instructions are the simplest form of parallelism in which a single instruc-
tion initiates both a pipelined floating-point adder and multiplier operation; the instruction
specifies which of a number of possible data paths surrounding the adder and multiplier is
to be used. For example, the instruction r2p1 specifies that a source operand and a con-
stant register are to be used as inputs to the first stage of the multiplier pipeline, the other
source operand and the result from the last stage of the multiplier pipeline are to be used as
inputs to the adder pipeline, and the result from the last stage of the adder pipeline is to be
stored in the destination register. The data flow for the r2p1 instruction is diagrammed in
Figure 2; this instruction represents the standard BLAS axpy operation. In vector
machines, this technique of linking functional units is commonly referred to as chaining.

In dual-instruction mode (DIM), the core execution unit and the floating-point unit can ini-
tiate instructions simultaneously. Utilizing the 64-bit internal instruction bus, one 32-bit

Figure 1 Using the Floating-Point Addition Pipeline

// Operands in fp registers 2-12

// Results in fp registers 20-24

//

// Fill adder pipe

pfadd.dd f2,f4,f0 // f2+f4 : discard last stage

pfadd.dd f6,f8,f0 // f6+f8 : discard last stage

pfadd.dd f10,f12,f0 // f10+f12 : discard last stage

// Drain pipe to obtain results of last three additions

pfadd.dd f0,f0,f20 // f20 = f2+f4

pfadd.dd f0,f0,f22 // f22 = f6+f8

pfadd.dd f0,f0,f24 // f24 = f10+f12

Multiplier

Adder

operand 1 operand 2
constant

result

Figure 2 Data Flow for R2P1 Instruction

Performance of the iPSC/860 Node Architecture 7

instruction can be dispatched to each unit every cycle; instruction execution is limited to
lock-step operation.

2.7 Hardware Optimizations

A number of standard hardware optimizations are employed in the i860; these include:

• Delayed branching

• Register bypassing

• Scoreboarding

• Auto-increment addressing

• Write buffering

This last optimization, write buffering, involves the buffering of write operations to mem-
ory until the memory system has no outstanding requests. Write operations are forced
from the buffers when either the buffers are full and another store instruction is executed,
or when doing so is necessary to maintain data coherence. The i860 has two 128-bit write
buffers.

2.8 Influence of the i860 Architecture on Coding Style

The i860’s pipelined floating-point unit and dual-instruction mode are reflected in the cod-
ing style for operations requiring maximum performance. An effective technique for
maintaining efficient floating-point pipeline operation is to combine loop unrolling with
data prefetching. In unrolling inner-loop computations, the floating-point unit can operate
on data for the current loop iteration while the core execution unit fetches data for the next
iteration; this method of prefetching data items is also referred to as software pipelining.
Dual-instruction mode provides a mechanism whereby floating-point and memory or con-
trol transfer operations can be initiated simultaneously; this technique is used throughout
implementation examples presented in later sections.

3.0 RX-1 Memory Subsystem

Understanding the design and operation of the RX-1 memory system is key to achieving
maximum node performance. It is important that inner-loop computations generate access
patterns amenable to efficient memory system operation. The following examines the
design of the RX-1 memory system and the factors which influence its performance.

3.1 General Specifications

The RX-1 memory system is constructed with fast page-mode DRAMs. DRAM page-
mode allows multiple memory-array column accesses to be performed on a selected mem-
ory-array row, called a page. A memory request which hits in the current page, termed a
near access, can be serviced at a higher rate than one which requires a memory-array row

8

select, termed a far access. Though this is a simplified description of the operation of
page-mode DRAMs, it is sufficient for this discussion; detailed information can be found
in [11][12]. For the duration of this paper the term page refers to a DRAM page, not a vir-
tual memory page, unless otherwise stated.

The design of the DRAM controller also affects the overall performance of the memory
system. For example, the RX-1 DRAM controller supports the pipelining of read requests
to partially mask row select and write-read mode switch latencies. A state transition dia-
gram describing the operation of the RX-1 DRAM controller can be found in [10]; charac-
teristics of the controller which affect memory system performance are discussed in
subsequent subsections.

The RX-1 memory system as a whole has the following specifications:

• 4 Kbyte DRAM page size

• 64-bit near reads at a maximum rate of 1 every 2 clock cycles

• 64-bit near writes at a maximum rate of 1 every 3 clock cycles

• 64-bit far reads and far writes at a maximum rate of 1 every 10 clock cycles

The exact overhead incurred in making a far access is a function of the DRAM controller
state at the time a memory request is issued and the type of request being made. For the
purposes of this discussion it is assumed that a DRAM page miss adds to the near access
time an additional 8 clock cycles overhead; this approximation works well when deriving
performance estimates.

As stated in 2.5, the bus state machine defines a minimum of 2 clock cycles per bus cycle;
this places an upper limit on processor to memory bandwidth. Within this limit, the access
patterns generated by a computation determine the level of memory system performance
which is achieved. As demonstrated in the subsections which follow, “well behaved” oper-
ations which access memory in a manner amenable to its efficient operation can expect to
achieve a level of performance close to the above stated maximums. Operations with
access patterns contrary to efficient memory system operation experience substantially
reduced performance.

3.2 Performance Measurements

The following presents RX-1 memory system performance measurements to demonstrate
clearly those factors which affect its efficient operation. Measurements are made with the
data cache flushed both to eliminate the effects of write-back, and to force all memory
accesses to be satisfied directly by the memory subsystem. Data objects being accessed are
double-precision floating-point numbers, the standard for scientific computation. All data
is properly aligned so as not to trigger a data-access trap. Most performance measurements
presented fall short of the theoretical maximums due to overheads involved in making test
procedure calls, initializing test loops, and performing DRAM refresh cycles.

Performance of the iPSC/860 Node Architecture 9

3.2.1 Pipelined Floating-Point Load Rate

The i860 implements two versions of the load instruction for floating-point values: pipe-
lined floating-point load (pfld) and floating-point load (fld). The fld instruction is a mem-
ory to register load instruction in the traditional sense, whereas the pfld instruction reflects
the i860’s pipelined architecture. Both the functionality and performance of the pfld
instruction are examined here; the fld instruction is discussed further in 3.2.4.

The pfld instruction has two properties which distinguish it from the standard fld instruc-
tion. First, the pfld instruction utilizes the 3-stage load pipe described in 2.5; a pfld returns
the data referenced by the third previous pfld instruction executed. Second, the pfld
instruction has no affect on the contents of the data cache. If the data requested by a pfld
resides in the data cache, it is taken from there; however, a pfld does not update the cache
on a cache-miss.

Memory cycles initiated by any instruction can be pipelined, within the limits discussed in
2.5, if this feature is supported by the memory system; with the exception of the pfld
instruction, memory cycle pipelining is transparent. The pfld instruction semantics reflect
the pipelined nature of the i860’s bus state machine; the 3 stages of the load pipe corre-
spond to the 3 outstanding bus cycles supported by the bus state machine definition.

The graph in Figure 3 demonstrates the measured pfld rate of a single vector for various
strides of access; the theoretical maximum load rate as a function of stride is also pre-
sented. Given that there are no TLB misses and that all virtual memory pages occupied by
a vector reside in physical memory, the theoretical maximum load rate is derived as fol-
lows:

s = stride of access

b = size of floating-point vector elements in bytes, either 4 or 8

n = number of clock cycles for a near access at maximum rate

f = number of clock cycles for a far access at maximum rate

o = number of clock cycles overhead incurred on a DRAM page miss

d = DRAM page size in bytes

h = clock rate in MHz

c(s) = average number of clock cycles per vector element load

r(s) = load rate in Mpfld per second

(EQ 1)

c s()
n

osb
d

+() ����when
sb
d

1<

f����when
sb
d

1≥



=

r s() h
c s()=

10

For the RX-1 memory system, , , , and ; for the pfld
instruction . Since the vector elements being loaded in this example are double-pre-
cision floating-point numbers, .

The graph in Figure 4 demonstrates the effect of TLB misses on pfld rate; each point on
the graph represents the average pfld rate for multiple iterations of a single vector load at a
given stride of access. In measuring the pfld rate of a vector load, the first iteration sets the
TLB so that, given a sufficiently small stride, later iterations will not suffer a TLB miss; as
the length of the stride is increased, a point is reached where all virtual-memory pages
containing elements of the vector can no longer be referenced by the TLB, thrashing
ensues. The approximate TLB thrash point can be determined as follows:

s* = maximum stride of access without TLB thrashing

b = size of floating-point vector elements in bytes, either 4 or 8

l = length of vector (i.e. the number of elements)

t = maximum number of TLB entries

p = page-frame size in bytes

(EQ 2)

f 10= o 8= d 4096= h 40=
n 2=

b 8=

Figure 3 Memory Access Rates

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8

M
i
l
l
i
o
n
s

o
f

A
c
c
e
s
s
e
s
/
S
e
c
o
n
d

Vector Access Stride

(vector length = 4096)

theoretical pfld
measured pfld

theoretical fst
measured fst
measured fld

s*

pt
lb

() ����when l t>() and
pt
lb

() 1≥

always�thrashes����when l t>() and
pt
lb

() 1<

never�thrashes when l t≤()





=

Performance of the iPSC/860 Node Architecture 11

For the i860, and . In the example from Figure 4, and ;
thus, .

The equation (EQ 2) is only an approximation to the TLB thrash point since the i860
implements a random replacement policy for elements of a given TLB cache set. Note that
(EQ 2) can be written to solve for l* in terms of s to determine the maximum length vector
which can be repeatedly accessed at a given stride without TLB thrashing.

For vectors of a given length, the following observations can be made:

• Increasing the stride of access increases the number of DRAM page misses which
results in a decreased pfld rate.

• Increasing the stride of access increases the chance of a TLB miss which in turn results
in a decreased pfld rate.

The first observation is a consequence of the fact that, with increased stride, a greater
number of DRAM pages are required to store the vector. The second observation is a con-
sequence of the vector occupying more virtual memory pages, given that the TLB can
only reference a finite number of page frames.

 Note that the above observations assume the vector is long enough so that an increase in
stride results in an increase in the number of DRAM pages occupied; if this is not the case,
there is no affect on the pfld rate.

t 64= p 4096= l 4096= b 8=
s* 8=

Figure 4 TLB Thrash Point

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
i
l
l
i
o
n
s

o
f

A
c
c
e
s
s
e
s
/
S
e
c
o
n
d

Vector Access Stride

(vector length = 4096)

theoretical pfld
measured pfld

12

3.2.2 Floating-Point Store Rate

The graph of Figure 3 demonstrates the measured floating-point store (fst) rate to a single
vector for various strides of access; the theoretical maximum store rate as a function of
stride is also presented. Given that there are no TLB misses and that all virtual memory
pages occupied by the vector reside in physical memory, the theoretical maximum store
rate is derived in the same fashion as the pfld rate of (EQ 1); for the fst instruction .

The observations made in 3.2.1 concerning degradation in performance with increasing
stride of access, due to TLB and DRAM page misses, apply to the fst as well.

3.2.3 Effects of the DRAM Controller Idle-state Transition

It seems intuitive that the best memory system performance is achieved by minimizing the
demand placed on the memory system; this, however, is not necessarily the case. When
performing near reads or near writes, the best performance is achieved by issuing memory
requests at the maximum rate at which they can be satisfied; not doing so can allow the
DRAM controller to enter into an idle state. Once the DRAM controller has initiated a
transition towards the idle state, the next memory request is handled in the same manner as
a far access.

The length of the delay from the last near access to the DRAM controller idle-state transi-
tion is dependant on the access mode: 4 clock cycles for a near read and 3 clock cycles for
a near write. A near access request issued anytime up to the clock cycle in which the
DRAM controller is to initiate the idle-state transition prevents a far access; a penalty of
approximately 3 additional clock cycles is still incurred if the time between the previous
and current near access requests is longer than required to sustain the maximum access
rate.

 In general, when memory access delay is sufficient to allow the DRAM controller to ini-
tiate an idle-state transition, the net additional penalty to the next memory access is the 8
cycle far access overhead minus the delay between accesses; when the length of the mem-
ory access delay equals or exceeds the far access overhead, no additional penalty is
incurred.

As an example, Figure 5 (a,b) lists the inner-loop codes for two procedures which perform
a pfld on each element of a vector. Loop (a) performs 6 pfld operations per iteration, 4 use-
ful data loads and 2 dummy loads which reread every fourth vector element. The code in
(b) performs 4 pfld operations per iteration, all useful data loads. Both (a) and (b) contain
the same number of instructions and both have the net effect of loading 4 data objects per
iteration; therefore, both have the same theoretical useful load rate. Loop (a) initiates a
pfld instruction every other clock cycle, the maximum rate at which the memory system
can satisfy read requests; in (b) there is a delay of 5 clock cycles after every fourth read.
The memory access delay in loop (b) is sufficient to allow the DRAM controller to initiate
an idle-state transition; as a result, a net penalty of 3 additional clock cycles is incurred by
the pfld instruction which executes immediately after the delay.

n 3=

Performance of the iPSC/860 Node Architecture 13

Table 1 lists the measured pfld rate, the useful pfld rate, and the theoretical useful pfld rate
for each loop (a) and (b); for both performance measurements, vectors accessed are of the
same length and stored with a stride of 1. While the performance of loop (a) is within
4.5% of the theoretical useful load rate, the performance of loop (b) falls short by 26.3%;
however, in terms of memory accesses per unit of time, the demand placed on the memory
system by loop (a) exceeds that of loop (b).

As the results in Table 1 demonstrate, memory access timing influences the overall perfor-
mance of the memory system; careful load/store instruction placement in inner-loop code
can yield an increase in effective memory bandwidth.

3.2.4 Floating-Point Load Rate

Unlike the pfld instruction discussed in 3.2.1, the floating-point load (fld) instruction can
have the side-effect of altering the contents of the data cache. When data requested by a fld
does not reside in the data cache, i.e. a cache-miss occurs, a cache line fill is initiated; four
64-bit memory accesses are made using the wrap-around technique described in 2.3.

Table 1 Effects of the DRAM Controller Idle-state Transition on PFLD Rate

Measured Useful Theoretical Useful

 (a) 19.1 12.7 13.3

 (b) 9.8 9.8 13.3

Rates are in Mpfld/Second

Figure 5 Inner Loop Codes to Test the Effects of the DRAM Controller Idle-state Transition

.a_loop: .b_loop:

// pfld next 4 data items // pfld next 4 data items

nop pfld.d r22(r17)++,f0

pfld.d r22(r17)++,f0 nop

nop pfld.d r22(r17)++,f0

pfld.d r22(r17)++,f0 nop

nop pfld.d r22(r17)++,f0

pfld.d r22(r17)++,f0 nop

nop pfld.d r22(r17)++,f0

pfld.d r22(r17)++,f0 // delay

// dummy loads nop

nop nop

pfld.d 0(r17),f0 nop

bla r20,r21,.a_loop bla r20,r21,.b_loop

pfld.d 0(r17),f0 nop

(a) (b)

14

Referring again to Figure 3, the graph demonstrates the fld rate of a single vector for vari-
ous strides of access. All else being equal, the fld rate at a stride of 1 should be equivalent
to the pfld rate at the same stride; in fact, the measured fld rate is only half that of the mea-
sured pfld rate. The explanation for this discrepancy lies in the implementation of the i860
cache line fill procedure; between the fourth memory access of the previous cache line fill
and the first memory access of the subsequent cache line fill there is a delay of 7 cycles
[14]. As discussed in 3.2.3, this memory access delay between consecutive cache line fills
is sufficient to allow the DRAM controller to initiate an idle-state transition; the net result
is that the first of the 4 memory accesses in each line load is a far read. Thus, for consecu-
tive cache line fills, each individual cache line load requires a total of 16 cycles; an aver-
age fld rate of 4 cycles per double-precision load is achieved.

At strides greater than 1 the fld rate is further degraded by extraneous data loads which
occur as a result of the cache line fill procedure; for double-precision values this reduction
in performance continues up to a stride of 4, from which point on 3 extraneous data loads
occur for every 1 requested.

While the observation made in 3.2.1 relating stride of access and TLB misses applies to
vectors accessed via the fld instruction, the effects are minimal and all but masked by the
factors discussed above; the observation concerning DRAM page misses does not apply
since consecutive cache line fills always begin with a far access.

Note that for the 7 cycles following the fourth memory access of a given cache line fill, no
other memory access can be initiated.

3.2.5 Effects of DRAM Page Misses

As demonstrated in the graph of Figure 3 for pfld and fst, with a single vector and small
strides the effect of DRAM pages misses on memory access performance is minimal; large
strides are required in order to reduce the number of vector elements per DRAM page to
where the cost of a page miss becomes a significant portion of the total time required to
load all vector elements from a given page. Fortunately, since large stride accesses have
traditionally led to reduced performance in vector computers, numerical algorithms are
normally implemented to access data with a stride of 1 whenever possible.

In practice, the effect of DRAM page misses is most strongly felt when performing opera-
tions which require multiple vector operands; operations such as the BLAS routines ddot
and daxpy are typical examples. Given an operation with multiple vector operands, it is
common for an implementation of the operation to alternate reads from, and stores to,
each of the appropriate vectors; for vector operands having no DRAM pages in common, a
page miss occurs with each access to a vector different from the one previously accessed,
performance of the operation is severely degraded.

Table 2 presents pfld rates for two procedures which load two vector operands each. The
first procedure alternates reads from each vector operand; the second reads in sets, loading
4 elements from one vector then 4 elements from the other. To emphasize the reduction in
performance resulting from DRAM page misses, the address of a single vector is passed as

Performance of the iPSC/860 Node Architecture 15

both operands to each procedure. For all performance measurements presented in Table 2,
vectors are of the same length and stored with a stride of 1.

 In implementing operations with multiple vector operands, unrolling inner-loops allows
the cost of a DRAM page miss to be amortized over a number of pfld operations. In the
example from Table 2, loop unrolling to a depth of 4 realizes an almost 250% increase in
memory system performance.

Note that because consecutive cache line fills begin with a far access, as discussed in
3.2.4, the fld rate achieved when alternating cache line loads from multiple vector oper-
ands is the same as the fld rate from a single vector operand given operands of the same
stride.

3.2.6 Effects of the DRAM Controller Read/Write Mode Switch

The RX-1 memory system has two main modes of operation: read and write. Switching
from one access mode to the other can cause a delay as the DRAM controller makes the
transition. For a near access, the mode transition overhead is approximately 4 additional
cycles; a far access incurs no additional penalty, the mode transition delay is masked by
the far access overhead.

While the DRAM controller mode switch delay is relatively short, it can lead to a substan-
tial reduction in performance if read and write operations are intermixed indiscriminately;
Table 3 presents performance results from two procedures which illustrate this effect by
reading and writing each element of a vector. The first procedure alternates access modes,
reading (pfld) a single vector element and immediately performing a write to that element
before reading the next. The second procedure reads (pfld) 4 consecutive vector elements,
writing back to these elements before moving on to read the next set. For both perfor-
mance measures presented in Table 3, vectors are of the same length and stored with a
stride of 1.

Table 2 Effects of DRAM Page Misses on PFLD Rates

Single Vector Two Vectors

Alternating 19.1 3.9

Sets of 4 19.1 9.6

Rates are in Mpfld/Second

Table 3 Effects of DRAM Controller Read/Write Mode Switch on Memory Access Rates

Millions of Accesses/Second

Alternating 6.5

Sets of 4 11.4

16

In grouping like memory operations, the cost of a read/write mode switch is amortized
over a number of accesses; loop unrolling can increase memory system performance by
providing a natural means to achieve such a grouping. In the example from Table 3, loop
unrolling to a depth of 4 realizes a 175% increase in memory system performance.

The buffering of writes, as discussed in 2.7, has negligible affect on the results of this test.
Since the write buffers are full after two fst operations have been issued, each additional
fst forces a write bus cycle.

Note that read and write operations to vectors accessed via the fld instruction are naturally
grouped by the cache line load/write-back procedure, as described in 2.4.

3.3 Memory Access Guidelines

The following summarizes the performance characteristics of the RX-1 memory sub-
system; memory access guidelines are provided for implementing operations to access
memory in a manner amendable to its efficient operation. Due to the nature of the cache
line fill procedure, few of the memory system characteristics discussed throughout 3.2
affect fld performance; the guidelines presented below assume vector operands being
accessed are loaded via the pfld instruction. The caching of vector operands is discussed
further in 4.1.

The following guidelines are made under the implicit assumption that the data being
accessed is not initially resident in the data cache:

• Vectors should be accessed with small strides to reduce the effects of DRAM page and
TLB misses.

• Operations which require multiple vector operands should avoid accessing them alter-
nately. The cost of a DRAM page miss, which is likely to occur with each access to a
vector operand different from the one previously accessed, should be amortized over a
number of pfld operations; loop unrolling can be used effectively to achieve this amor-
tization.

• Like memory operations should be grouped to amortize the cost of a read/write mode
switch; loop unrolling provides a natural means to achieve such a grouping.

• Vectors should be accessed at the maximum rate at which requests can be satisfied, not
doing so may allow the DRAM controller to initiate an idle-state transition; extraneous
data accesses can be used to prevent an idle-state transition, avoiding an unnecessary
far access penalty.

As demonstrated in subsequent sections, an implementation of an operation which adheres
to these guidelines exhibits substantially increased performance over an implementation
of the same operation which does not.

Performance of the iPSC/860 Node Architecture 17

4.0 Vector Operations

Vector operations represent the most basic computational kernels common in scientific
computing; they are the building blocks of most numerical methods. This section exam-
ines the implementation and performance of vector operations on the RX-1 architecture;
two are examined in detail, the BLAS routine daxpy and an operation which we will refer
to as vaxpy.

To distinguish between various implementations of a vector operation, the following nota-
tion is adopted throughout this discussion:

<operation name>{_<cached operand>{*}{< cached operand>{*}}...}{_< version>}

where the arguments enclosed in ‘{}’ are optional. In the naming scheme above, an ‘*’
following the identifier for a cached vector operand specifies that the implementation
assumes the operand to be aligned on either a 16- or 32-byte boundary; a version number
is only appended when required to make the name unique. For example, a daxpy imple-
mentation which does not cache either vector operand is referred to as ‘daxpy’; one which
caches both vector operands is referred to as ‘daxpy_xy’.

4.1 Caching Vector Operands

One of the major factors which affects the performance of a vector operation is the choice
of operands, if any, to cache. Caching a vector operand has both positive and negative
aspects which need to be considered in making this decision.

If a vector operand is to be accessed again in a later operation, a number of benefits are
derived from caching:

• Effective memory bandwidth is increased in later operations by taking advantage of
both the speed of the data cache and the width of the internal data bus. The data cache
can be accessed once every clock cycle; data which is properly aligned can be accessed
in 128-bit blocks.

• Overall memory system performance is improved by reducing the number of DRAM
page misses and DRAM controller read/write mode switches; memory accesses to a
cached operand, regardless of the access pattern, hit in the data cache and therefore
have no potential to generate either effect.

• As demonstrated in 3.2.5, for an operation with multiple vector operands stored at a
stride of 1 and having no DRAM pages in common, the initial fld rate for accessing the
operands alternately is equal to the pfld rate when accessing them in sets of 4; inner-
loop coding is simplified while a reasonable degree of performance is maintained.

18

Caching a vector operand has negative aspects which must also be considered:

• As discussed in 3.2.4, for a single vector of stride 1 the initial fld rate is only half that of
the pfld rate; the effective fld rate is considerably less at larger strides. For caching to be
of any benefit, an operand must be accessed often enough to compensate for the ini-
tially reduced load rate; e.g. at least twice for vectors with a stride of 1.

• The operand being cached displaces the current data cache contents and may generate
cache line write-backs. Write-backs utilize memory bandwidth, further reducing the
initial fld rate.

• If the operand being cached has a stride greater than 1, then extraneous data loads occur
as a result of the cache line load procedure. Extraneous data can occupy as much as
three-fourths of the total data cache capacity.

• As is standard for processors with a set-associative data cache, i860 memory accesses
are mapped to data cache sets via the low order address bits. Given the i860’s 128 data
cache sets and a cache line size of 4 double-precision values, a stride of access s such
that and reduces the effective cache size to maximum
capacity; the potential for data cache thrashing is increased accordingly.

The decision concerning which vector operands to cache depends on the context in which
the vector operation is to be used. Only those operands of a vector operation which will be
accessed repeatedly before being displaced should be considered as candidates for cach-
ing. Often it is best to implement multiple versions of the same vector operation which
cache different operands, allowing one to choose the version most suited to the context in
which it will be used. Because of the reduced effective load rate, inefficient use of data
cache space, and increased potential for data cache thrashing it is generally recommended
that vector operands with stride greater than 1 not be cached. For the remainder of this
paper, all references to cached vector operands assume the vector to be stored with a stride
of 1.

As stated in 2.4, in user mode the i860’s 2-way set-associative data cache implements a
random cache line replacement policy. Under a random replacement policy, vector opera-
tions with a single cached operand can fill only half the data cache before earlier accessed
vector elements become subject to possible displacement by later accessed elements of the
vector; vector operations with multiple cached operands have no control over data cache
thrashing. In the i860’s supervisor mode, data cache control can be performed by specify-
ing for replacement one of the two cache line blocks in a set. This cache control mecha-
nism allows up to two vector operands to reside in the data cache simultaneously; vector
operations with more than 2 cached operands will still experience data cache thrashing.

4.2 Vector Operation Performance Measurements

Two measures of performance are defined for use in this discussion: static performance
and asymptotic performance. Static performance is the measure of the performance given
a flushed data cache; i.e. at the initiation of the operation no data which is to be accessed
resides in the data cache and no cache lines require write-back. Asymptotic performance is
the average performance of a large number of consecutive applications of an operation to

s 2q= 8 s 512≤ ≤ 1 2q 2−⁄

Performance of the iPSC/860 Node Architecture 19

the same operands. In measuring asymptotic performance, the content of the data cache is
unaltered between successive iterations.

For a given implementation of a vector operation which caches a subset of its operands,
the static performance measurement represents the performance of an initial iteration of
the operation for which none of its operands reside in the data cache; the asymptotic per-
formance measurement represents the theoretical maximum performance of subsequent
iterations for the same cached operands. In performing actual computations, asymptotic
performance can be achieved when a problem is strip-mined in such a way that inner-loop
computations reuse cached operands for some number of consecutive iterations.

Achieving theoretical maximum asymptotic performance requires eliminating data cache
thrashing when the total number of vector operand elements cached does not exceed data
cache capacity; in this case, the data cache control mechanism described in 4.1 can elimi-
nate thrashing for up to 2 cached vectors. Because supervisor mode is not available to gen-
eral users of the iPSC/860 system, performance measurements presented throughout this
paper reflect the effects of the random cache line replacement policy. Under a random
replacement policy, the measured asymptotic performance of a vector operation with at
most two cached operands converges to the theoretical maximum asymptotic perfor-
mance; given a sufficient number of iterations, all pairs of cache lines which map to the
same data cache set will be placed in different blocks and thrashing will cease. For prob-
lems which employ strip-mining to promote reuse of cached operands, the random cache
line replacement policy prevents inner-loop computations from achieving the theoretical
maximum asymptotic performance in early iterations; as a result, the effective computa-
tion rate is generally well below that achievable when utilizing the data cache control
mechanism. The degradation in performance which results from strip-mining computa-
tions without data cache control is demonstrated in 5.1 for a diagonally sparse matrix-vec-
tor multiply operation.

In measuring static performance, data cache control only affects vector operations which
modify a cached operand; for these operations, static performance can be improved by
employing the data cache control mechanism to prevent cache line write-back prior to
reaching data cache capacity.

For vector operations which do not cache operands, asymptotic performance is equivalent
to static performance; only static performance measurements are presented. Both static
and asymptotic performance measurements are given in terms of millions of floating-point
operations per second (Mflops).

20

4.3 DAXPY Operation

The BLAS routine daxpy [7] implements a double-precision vector operation of the form:

where x and y are vectors and a is a scalar. The graph of Figure 6 depicts the asymptotic
and static performance of the vector operation daxpy_y* and the static performance of the
vector operations daxpy_1 and daxpy_2. Recall from the notation definition that the dax-
py_y* implementation caches the y vector; daxpy_1 and daxpy_2 are different implemen-
tations, neither of which caches either vector operand. For all performance measures,
vector operands are stored with a stride of 1.

Given that in pipelined mode the i860 can produce one double-precision multiply result
every 2 clock cycles, as described in 2.5, the upper-bound on processor performance for
the daxpy operation is at a clock rate of . Due to the insufficient band-
width of the RX-1 memory system, the measured performance of a daxpy operation which
accesses a vector operand not resident in the data cache will be below peak processor rate.
For the daxpy implementations of Figure 6, specific RX-1 memory system characteristics
which affect daxpy performance are discussed in later subsections.

y ax y+←

40�Mflops 40�MHz

Figure 6 Performance of Various DAXPY Implementations

5

10

15

20

25

30

32 256 512 768 1024 1280 1536 1792 2048

M
f
l
o
p
s

Vector Length

(x,y: stride 1 access)(x,y: stride 1 access)(x,y: stride 1 access)

asymptotic daxpy_y*
static daxpy_y*
static daxpy_1
static daxpy_2

Performance of the iPSC/860 Node Architecture 21

4.3.1 DAXPY Performance Curves

The shape of the curves for the daxpy_y* implementation of the daxpy operation are char-
acteristic of operations which cache one or more vector operands. For asymptotic perfor-
mance, the curve clearly shows the point at which the total number of operand elements
cached in performing an operation exceeds data cache capacity; performance degrades
rapidly as cache-misses, and potentially write-backs, begin to have a substantial effect.
Given the i860’s 8 Kbyte data cache and 8-byte double-precision values, cache capacity is
reached at a vector length of 1024 with one cached operand or 512 with two. On the
asymptotic daxpy_y* curve of Figure 6, the point plotted at vector length 1024 exhibits
somewhat degraded performance even though the vector length appears to be within data
cache capacity; this effect is a result of the cached vector’s alignment. If a double-preci-
sion vector of length l such that (l mod 4)=0 is not aligned on a 32-byte boundary, then it
will span one more than the minimum number of lines required to cache it.

Asymptotic performance degrades to the level of static performance as vector lengths
increase; earlier accessed vector elements are displaced by later accessed vector elements
and the percentage of data reuse from one iteration of the vector operation to the next
decreases. The asymptotic and static curves tend to come together in the area of twice data
cache capacity, the point at which a subsequent iteration of the operation no longer bene-
fits from the data residing in the cache. For vector operations which modify cached oper-
ands, asymptotic performance drops somewhat below the level of static performance; this
effect results from a combination of low data reuse between consecutive iterations of the
operation, and the initiation of consecutive iterations with the data cache in a state where
cache lines require write-back.

Static performance curves for operations which modify cached operands, while generally
flat, exhibit somewhat better performance prior to reaching data cache capacity due to the
lower probability of cache line write-backs.

For static measurements and asymptotic measurements prior to reaching data cache capac-
ity, the performance of vector operations is generally lower for shorter vector lengths due
to the fixed costs involved in making a procedure call, initializing loops and filling pipe-
lines; as vector lengths increase, these costs are amortized over a larger number of arith-
metic operations. In addition, vector operations which incorporate loop unrolling often
require a minimum vector length before arithmetic operations are pipelined; below this
minimum arithmetic operations are performed in scalar mode.

4.3.2 DAXPY_1

The inner-loop code for the daxpy_1 implementation of the daxpy operation is listed in
Figure 7; each set of DIM instruction pairs is labeled for reference. The daxpy_1 inner-
loop is unrolled to a depth of 4; each iteration performs pipelined arithmetic operations on
the 4 sets of {xi,yi} operand pairs loaded by the previous iteration while simultaneously
prefetching the next 4 sets of operand pairs for the next iteration. All memory references
in the daxpy_1 implementation conform to the memory access guidelines of 3.3; accesses
to each vector operand are performed in sets, like memory operations are grouped and all

22

accesses are performed at the maximum rate at which they can be satisfied by the memory
system.

Based on the memory system performance data of 3.2, it is possible to analyze the
daxpy_1 code and derive an approximation for its execution rate; the assumption is made
that vector operands have no DRAM pages in common. Beginning with line 4, there are 4
fst operations to the y vector performed at the maximum rate of 1 every 3 cycles; the store
instruction at line 4 incurs a far access penalty of 8 additional cycles for accessing a vector
different from the one previously accessed in line 2. Lines 16-22 perform 4 pfld operations
from the y vector at the maximum rate of 1 every 2 cycles; the load instruction at line 16
incurs a DRAM controller read/write mode switch penalty of 4 additional cycles as a
result of reading from the same vector written to by the previous memory access instruc-
tion at line 13. Finally, lines 24-2 perform 4 pfld operations from the x vector at the maxi-
mum rate of 1 every 2 cycles; the load instruction at line 24 incurs a far access penalty of
8 additional cycles for accessing a vector different from the one previously accessed in
line 22.

Summing together access times, far access penalties and read/write mode switch penalties
yields a total of 48 cycles per daxpy_1 inner-loop iteration; at 8 floating-point operations
per 48 cycles, this is an estimated computation rate of at . The esti-
mated computation rate for the daxpy_1 operation compares favorably to the measured
rates found in the graph of Figure 6.

6.7�Mflops 40�MHz

Figure 7 DAXPY_1 Inner Loop Code

// (prev) - refers to a value associated with the previous iteration
// prime(‘) - refers to a value associated with the next iteration

.inner_loop:

1) d.pfmul.dd f12,f30,f2 // a * x3 : ax1
nop

2) d.pfadd.dd f18,f2,f10 // y1 + ax1 : s3 (prev)
pf ld.d r20(r24)++,f24 // x’0 & load x’3

3) d.fnop // pause for data
nop

4) d.fnop
fst.d f4,r20(r26)++ // store s0 (prev)

5) d.fnop // pause for data
nop

6) d.fnop // pause for data
nop

7) d.fnop
fst.d f6,r20(r26)++ // store s1 (prev)

8) d.fnop // pause for data
nop

9) d.fnop // pause for data
nop

10) d.fnop
fst.d f8,r20(r26)++ // store s2 (prev)

11) d.fnop // pause for data
nop

12) d.fnop // pause for data
nop

13) d.fnop
fst.d f10,r20(r26)++ // store s3 (prev)

14) d.fnop // pause for data
nop

15) d.fnop // pause for data
nop

Performance of the iPSC/860 Node Architecture 23

4.3.3 DAXPY_2

Figure 8 lists the inner-loop code for the daxpy_2 implementation of the daxpy operation.
Like the daxpy_1 implementation, daxpy_2 is unrolled to a depth of 4 and performs pipe-
lined operations and data prefetching. However, memory references in the daxpy_2 imple-
mentation do not conform to the memory access guidelines of 3.3; though like memory
accesses are grouped and performed at the maximum rate at which they can be satisfied,
pfld requests from the x and y vectors are alternated.

Referring to Figure 8, and again assuming that vector operands have no DRAM pages in
common, a performance estimate for the daxpy_2 implementation can be derived. Begin-
ning with line 4, there are 4 fst operations to the y vector performed at the maximum rate
of 1 every 3 cycles; the store instruction at line 4 incurs a DRAM controller read/write
mode switch penalty of 4 additional cycles as a result of storing to the same vector read by
the previous memory access instruction of line 2. Lines 16-2 perform pfld operations alter-
nately from the x and y vectors for a total of 8 loads; all loads incur a far access penalty,
requiring a total of 10 cycles each.

Summing together access times and penalties yields a total of 96 cycles per daxpy_2
inner-loop iteration; at 8 floating-point operations per 96 cycles, this is an estimated com-

16) d.fnop
pf ld.d r20(r25)++,f26 // x’1 & load y’0

17) d.fnop // pause for data
nop

18) d.fnop
pf ld.d r20(r25)++,f28 // x’2 & load y’1

19) d.fnop // pause for data
nop

20) d.fnop
pf ld.d r20(r25)++,f30 // x’3 & load y’2

21) d.fnop //pause for data
nop

22) d.pfmul.dd f12,f24,f2 // a * x’0 : ax2
pf ld.d r20(r25)++,f16 // y’0 & load y’3

23) d.pfadd.dd f20,f2,f0 // y2 + ax2 : 0
nop

24) d.pfmul.dd f12,f26,f2 // a * x’1 : ax3
pf ld.d r20(r24)++,f18 // y’1 & load x’’0

25) d.pfadd.dd f22,f2,f4 // y3 + ax3 : s0
nop

26) d.pfadd.dd f0,f0,f6 // push : s1
pf ld.d r20(r24)++,f20 // y’2 & load x’’1

27) d.pfmul.dd f12,f28,f2 // a * x’2 : ax’0
bla r17,r23,.inner_loop // branch to top of loop

28) d.pfadd.dd f16,f2,f8 // y’0 + ax’0: s2
 pf ld.d r20(r24)++,f22 // y’3 & load x’’2

24

putation rate of at . The estimated computation rate of the daxpy_2
operation compares favorably to the measured rates found in Figure 6.

3.3�Mflops 40�MHz

Figure 8 DAXPY_2 Inner Loop Code

// (prev) - refers to a value associated with the previous iteration
// prime(‘) - refers to a value associated with the next iteration

.inner_loop:

1) d.pfmul.dd f12,f30,f2 // a * x3 : ax1
nop

2) d.pfadd.dd f18,f2,f10 // y1 + ax1 : s3 (prev)
pf ld.d r20(r25)++,f24 // x’0 & load y’1

3) d.fnop // pause for data
nop

4) d.fnop
fst.d f4,r20(r26)++ // store s0 (prev)

5) d.fnop // pause for data
nop

6) d.fnop // pause for data
nop

7) d.fnop
fst.d f6,r20(r26)++ // store s1 (prev)

8) d.fnop // pause for data
nop

9) d.fnop // pause for data
nop

10) d.fnop
fst.d f8,r20(r26)++ // store s2 (prev)

11) d.fnop // pause for data
nop

12) d.fnop // pause for data
nop

13) d.fnop
fst.d f10,r20(r26)++ // store s3 (prev)

14) d.fnop // pause for data
nop

15) d.fnop // pause for data
nop

16) d.fnop
pf ld.d r20(r24)++,f16 // y’0 & load x’2

17) d.fnop // pause for data
nop

18) d.fnop
pf ld.d r20(r25)++,f26 // x’1 & load y’2

19) d.fnop // pause for data
nop

20) d.fnop
pf ld.d r20(r24)++,f18 // y’1 & load x’3

21) d.fnop //pause for data
nop

22) d.pfmul.dd f12,f24,f2 // a * x’0 : ax2
pf ld.d r20(r25)++,f28 // x’2 & load y’3

23) d.pfadd.dd f20,f2,f0 // y2 + ax2 : 0
nop

24) d.pfmul.dd f12,f26,f2 // a * x’1 : ax3
pf ld.d r20(r24)++,f20 // y’2 & load x’’0

25) d.pfadd.dd f22,f2,f4 // y3 + ax3 : s0
nop

26) d.pfadd.dd f0,f0,f6 // push : s1
pf ld.d r20(r25)++,f30 // x’3 & load y’’0

27) d.pfmul.dd f12,f28,f2 // a * x’2 : ax’0
bla r17,r23,.inner_loop // branch to top of loop

28) d.pfadd.dd f16,f2,f8 // y’0 + ax’0: s2
 pf ld.d r20(r24)++,f22 // y’3 & load x’’1

Performance of the iPSC/860 Node Architecture 25

4.3.4 DAXPY_Y*

Figure 9 lists the inner-loop code for the daxpy_y* implementation of the daxpy opera-
tion. In contrast to daxpy_1 and daxpy_2, the daxpy_y* implementation caches the y
operand; it is assumed that this operand is aligned on either a 16- or 32-byte boundary,
allowing two double-precision values to be loaded with a single fld instruction. Like
daxpy_1 and daxpy_2, the daxpy_y* implementation is unrolled to a depth of 4 and per-
forms pipelined operations and data prefetching. Though it is not immediately obvious
from the listing, all memory references in the daxpy_y* implementation conform to the
memory access guidelines of 3.3; this will become apparent as the daxpy_y* code is
examined.

Referring to Figure 9, line 5 issues a fld request for the next two elements of the y vector;
on a cache hit this instruction executes in a single cycle, a cache miss initiates a cache line
load of the next 4 elements of y. In performing a cache line load, a cache line write-back
may occur; if this is the case, 4 elements of the y vector are written back to main memory.
Once the fld instruction of line 5 has completed, lines 6-4 perform 5 pfld operations from
the x vector at the maximum rate of 1 every 2 cycles; note the use of the dummy load on
line 2 to prevent the DRAM controller from initiating an idle-state transition, as described
in 3.2.3. The instructions referencing the y vector, which are interleaved with the instruc-
tions reading the x vector, will all be cache hits and as such will not interfere with the
loading of x elements; this is an important aspect of the daxpy_y* inner-loop code. Thus,
the daxpy_y* operation adheres to the guidelines of 3.3 as accesses to each vector operand
are performed in sets, like memory operations are grouped and all accesses are performed
at the maximum rate at which they can be satisfied by the memory system.

A performance estimate can be derived for the daxpy_y* implementation in the same
fashion as for daxpy_1 and daxpy_2; in doing so, one must take into account both the
cache line load and write-back which may occur with the execution of a fld instruction.

In the description above, all cache line operations occur as a result of the fld instruction of
line 5; this is the case when the y vector is aligned on a 32-byte boundary. When y is
aligned on a 16-byte boundary only the first cache line operation is initiated at line 5, all
others result from the fld instruction of line 7; in this case, lines 8-6 perform the 5 pfld

26

operations from the x vector without interference. The performance of the daxpy_y* oper-
ation is the same for either y vector alignment.

4.4 VAXPY Operation

A routine which we will refer to as vaxpy, standing for vector axpy, implements a double-
precision vector operation of the form:

where a, x, and y are vectors and ax implies elementwise vector multiplication; as demon-
strated in 5.1, the vaxpy operation is useful in implementing matrix-vector multiplication
for diagonally sparse matrices. The graph of Figure 10 depicts the asymptotic and static
performance of the vaxpy implementations vaxpy_x*y*, vaxpy_xy, and vaxpy_y; the
curves for all three have the characteristic shape associated with operations which cache
one or more vector operands, as described in 4.3.1. Both the vaxpy_x*y* and vaxpy_xy
implementations cache the x and y operands, the vaxpy_y implementation caches only the
y operand; vaxpy_x*y* assumes cached vector operands to be aligned on either a 16- or
32-byte boundary, allowing two double-precision values to be loaded with a single fld
instruction. For all performance measures, vector operands are stored with a stride of 1.

Implementing vector operations with more than two vector operands, at least one of which
is cached, often requires compromise in attempting to adhere to the memory access guide-
lines of 3.3; coding is further complicated when trying to implement an operation which

Figure 9 DAXPY_Y* Inner Loop Code

// (prev) - refers to a value associated with the previous iteration
// prime(‘) - refers to a value associated with the next iteration

.inner_loop:

1) d.pfmul.dd f12,f30,f2 // a * x3 : ax1
fst.q f4,r27(r26)++ // store s0, s1 (prev)

2) d.pfadd.dd f18,f2,f10 // y1 + ax1 : s3 (prev)
pf ld.d 0(r24),f26 // x’1 & RE-load x’3

3) d.pfmul.dd f12,f24,f2 // a * x’0 : ax2
fst.q f8,r27(r26)++ // store s2, s3 (prev)

4) d.pfadd.dd f20,f2,f0 // y2 + ax2 : 0
pf ld.d r20(r24)++,f28 // x’2 & load x’’0

5) d.pfmul.dd f12,f26,f2 // a * x’1 : ax3
f ld.q r27(r25)++,f16 // y’0 & y’1

6) d.pfadd.dd f22,f2,f4 // y3 + ax3 : s0
pf ld.d r20(r24)++,f30 // x’3 & load x’’1

7) d.pfadd.dd f0,f0,f6 // push : s1
f ld.q r27(r25)++,f20 // y’2 & y’3

8) d.fnop
pf ld.d r20(r24)++,f0 // ditch dummy & load x’’2

9) d.pfmul.dd f12,f28,f2 // a * x’2 : ax’0
bla r17,r23,.inner_loop // loop test - exit when 4 remain

10) d.pfadd.dd f16,f2,f8 // y0 + ax0 : s2
 pf ld.d r20(r24)++,f24 // x’’0 & load x’’3

y ax y+←

Performance of the iPSC/860 Node Architecture 27

performs well under conditions of both asymptotic and static performance. The following
examines the vaxpy_x*y* implementation and discusses these issues.

4.4.1 VAXPY_X*Y*

Figure 11 lists the inner-loop code for the vaxpy_x*y* implementation of the vaxpy oper-
ation. Like the daxpy implementations of 4.3, vaxpy_x*y* is unrolled to a depth of 4 and
performs pipelined operations and data prefetching. The memory access pattern for the
vaxpy_x*y* implementation will not in all cases conform to the memory access guide-
lines of 3.3; this will become apparent as the code is examined. To simplify the discussion
of the vaxpy_x*y* code, the issue of data cache thrashing is ignored.

Given that the x and y vectors for vaxpy_x*y* may each be aligned on either a 16- or 32-
byte boundary, it is not known a priori which fld instructions have the potential to initiate
cache-line loads. Unlike the daxpy_y* implementation of 4.3.4, the vaxpy_x*y* pfld and
fld instructions can not be interleaved indiscriminately; for vector operations with more
than 2 vector operands, doing so can result in more DRAM page misses per inner-loop
iteration than the total number of vectors being accessed. Therefore, a conservative
approach is taken in implementing the vaxpy_x*y* inner-loop code, fld instructions which
reference the same vector operand are grouped.

Referring to Figure 11, lines 7-8 issue fld requests for the next 4 elements of the x vector
and lines 9-10 issue fld requests for the next 4 elements of the y vector; on a cache-hit each
of these instructions executes in a single cycle, a cache-miss initiates a cache line load of 4

Figure 10 Performance of Various VAXPY Implementations

2

4

6

8

10

12

14

16

18

32 256 512 768 1024 1280 1536 1792 2048

M
f
l
o
p
s

Vector Length

(x,y,a: stride 1 access)(x,y,a: stride 1 access)

asymptotic vaxpy_x*y*
static vaxpy_x*y*

asymptotic vaxpy_xy
static vaxpy_xy

asymptotic vaxpy_y
static vaxpy_y

28

elements from the corresponding vector. In performing a cache line load, a cache line
write-back may also occur. Lines 12-6 issue pfld requests for the next 4 elements of the a
vector; the fst instructions of lines 1 and 5 will be cache hits and as such will not interfere
with the loading of a elements. Thus, accesses to each vector operand are performed in
sets and like memory operations are grouped.

Under the conditions for measuring static performance, all memory accesses for the vax-
py_x*y* implementation are performed at the maximum rate at which they can be satis-
fied by the memory system; the 2 consecutive cache line loads from, and potential write-
backs to, the x and y vectors are immediately followed by 4 pfld operations from the a vec-
tor issued at a rate of 1 every 2 clock cycles. Consequently, for static performance the vax-
py_x*y* memory access pattern conforms to all memory access guidelines of 3.3.

In deriving the upper-bound on asymptotic performance for the vaxpy_x*y* implementa-
tion, it is assumed that all x and y vector accesses result in data cache hits; in this case, the
execution of 4 pfld instructions from the a vector is followed by a 5 cycle delay as ele-
ments of x and y are loaded from the data cache and a control-transfer instruction is exe-
cuted. Thus, under conditions for measuring asymptotic performance, vaxpy_x*y*
accesses are not performed at the maximum rate at which they can be satisfied. As dis-
cussed in 3.2.3, this delay in vaxpy_x*y* memory access is sufficient to allow the DRAM
controller to initiate an idle-state transition; the net penalty to asymptotic performance is 3
cycles additional overhead incurred by the pfld instruction at line 12, the 8 cycle far access
penalty resulting from the DRAM controller idle-state transition minus the 5 cycle delay
between accesses.

Figure 11 VAXPY_X*Y* Inner Loop Code

// (prev) - refers to a value associated with the previous iteration
// prime(‘) - refers to a value associated with the next iteration

.inner_loop:

1) d.pfmul.dd f26,f10,f0 // a1 * x1 : 0
fst.q f4,r28(r26)++ // store s0, s1 (prev)

2) d.pfadd.dd f0,f0,f24 // push : s2 (prev)
pf ld.d r20(r27)++,f14 // a3 & load a’2

3) d.pfmul.dd f28,f12,f2 // a2 * x2 : a0x0
nop

4) d.pfadd.dd f16,f2,f26 // y0 + a0x0 : s3 (prev)
pf ld.d r20(r27)++,f8 // a’0 & load a’3

5) d.pfmul.dd f30,f14,f2 // a3 * x3 : a1x1
fst.q f24,r28(r26)++ // store s2, s3 (prev)

6) d.pfadd.dd f18,f2,f0 // y1 + a1x1 : 0
pf ld.d r20(r27)++,f10 // a’1 & load a’’0

7) d.pfmul.dd f0,f0,f2 // push : a2x2
f ld.q r28(r24)++,f24 // x’0 & x’1

8) d.pfadd.dd f20,f2,f0 // y2 + a2x2 : 0
f ld.q r28(r24)++,f28 // x’2 & x’3

9) d.pfmul.dd f0,f0,f2 // push : a3x3
f ld.q r28(r25)++,f16 // y’0 & y’1

10) d.pfadd.dd f22,f2,f4 // y3 + a3x3 : s0
f ld.q r28(r25)++,f20 // y’2 & y’3

11) d.pfmul.dd f8,f24,f0 // a’0 * x’0 : 0
bla r17,r23,.inner_loop // loop test - exit when 4 remain

12) d.pfadd.dd f0,f0,f6 // push : s1
 pf ld.d r20(r27)++,f12 // a’2 & load a’’1

Performance of the iPSC/860 Node Architecture 29

Without data cache control, implementing an efficient vector operation which caches more
than one operand is complicated by data cache thrashing. In the discussion of the dax-
py_y* implementation in 4.3.4 it is assumed that for a single cached operand, fst opera-
tions hit in the data cache when performed on vector elements from the most recent cache
line load; in the case of multiple cached operands, a cache line load from an operand dif-
ferent from a fst instruction’s target operand can potentially force a write-back of the target
cache line prior to the fst instruction’s execution. When implementing vector operations
which modify one of two or more cached operands, the last cache line load prior to the
execution of a fst instruction should be the fst instruction’s target.

4.5 Implementation Guidelines for Vector Operations

As demonstrated in the examples of 4.3 and 4.4, the structure of inner-loop code has a sig-
nificant impact on the overall performance of a vector operation. The following presents
guidelines for implementing vector operation inner-loop code in a manner consistent with
the i860 architecture and RX-1 memory system characteristics:

• Unroll inner-loop code and utilize the i860’s dual-instruction mode to simultaneously
perform pipelined floating-point operations and data prefetching; for implementations
which cache vector operands, unrolling to a depth of 4 is convenient given that a data
cache line accommodates 4 double-precision values.

• Structure inner-loop code around memory access instructions; a vector operation’s
memory access pattern should conform whenever possible to the memory access guide-
lines of 3.3.

• Excepting DRAM page misses which result from cache line write-backs, the number of
page misses in a well structured inner-loop should not exceed the number of vector
operands being accessed. For cached vector operands, if vector alignment is known a
priori then it can be determined which fld instructions have the potential to initiate
cache line operations; in this case, pfld and fld instructions can be interleaved in such a
way so as not to force extraneous DRAM page misses.

• To reduce data cache thrashing in vector operations which modify one of two or more
cached operands, the last cache line load prior to the execution of a fst instruction
should be the fst instruction’s target.

• If a cached vector operand is aligned on either a 16- or 32-byte boundary, two double-
precision values can be accessed with a single fld or fst instruction; this is often conve-
nient for structuring inner-loop code and may improve performance. For a single
cached operand aligned on an 8-byte boundary, the alignment can be adjusted to a 16-
byte boundary by performing the vector operation on the first element of each vector
operand. In the case of multiple cached operands, alignment adjustment can be per-
formed on at least one vector; if a cached vector operand is modified, its alignment
should be adjusted since it will be referenced by both fld and fst inner-loop instructions.

The task of implementing an efficient vector operation is simplified if the context in which
it will be used is known in advance. More often, implementing efficient vector operations
is the art of compromise; whenever possible, inner-loop code should be structured so that

30

under conditions of both static and asymptotic performance, memory access patterns are
consistent with the characteristics of the RX-1 memory system.

5.0 Sparse Matrix-Vector Multiplication

This section examines matrix-vector multiply algorithms which form where A is
a sparse matrix. In particular, algorithms for diagonally sparse and completely sparse
matrices are presented. For each type of matrix, storage schemes and implementation
issues are discussed for optimizing performance on the RX-1.

5.1 Diagonally Sparse Matrix-Vector Multiply

A diagonally sparse matrix is a matrix composed of a relatively few non-zero diagonals;
such matrices arise frequently in practice, for example in the discretization of elliptic par-
tial differential equations [9]. Due to the relatively large percentage of zero elements in
each row and column of a diagonally sparse matrix, it is common practice to store only the
non-zero diagonals; in performing operations involving such matrices, the diagonals
become the natural vectors.

A matrix-vector multiply algorithm which operates on the diagonals of a matrix is
described in [8]; given an matrix A

and a vector x of length n, the product Ax can be represented as:

In (EQ 3), Aix
i+1 and A-ixn-i are elementwise vector multiplications where the vectors Ai

are the diagonals of A; A0 denotes the main diagonal, A1,...,Ar denote diagonals above A0,
and A-1,...,A-q denote diagonals below. For diagonally sparse matrices, only the non-zero
vectors Ai participate in the computation. Since the vectors of (EQ 3) are of different
lengths, the operator <+ is defined as vector addition in which the shorter vector is added

y Ax=

n n×

Ar

A1

A0

A-1

A-q

Ax = A0x <+ A1x2 <+ ... <+ Arx
r+1 +> A-1xn-1 +> ... +> A-qxn-q (EQ 3)

where xi = (xi,...,xn) and xn-i = (x1,...,xn-i)

Performance of the iPSC/860 Node Architecture 31

to the first components of the longer vector; similarly, the operator +> is defined as vector
addition in which the shorter vector is added to the last components of the longer vector.
For example, in the operation A0x <+ A1x2 the vector A1x2 of length is added to the
first components of the vector A0x.

The formation of an elementwise vector product and its subsequent addition to another
vector is simply the vaxpy operation of 4.4; all implementations of (EQ 3) presented here
incorporate either vaxpy_y or vaxpy_xy as the inner-loop. To distinguish between various
implementations of the multiplication by diagonals algorithm, the following notation is
adopted:

mbd_<cached operand>{<cached operand>}

where ‘mbd’ stands for ‘multiplication by diagonals’; the argument enclosed in ‘{}’ is
optional. In the naming scheme above, the ‘<cached operand>’ is the same operand
cached by the vaxpy inner-loop.

5.1.1 Strip-mining MBD_Y and MBD_XY

In implementing the multiplication by diagonals algorithm of (EQ 3) to form ,
strip-mining is employed to promote reuse of cached data. Dividing the matrix A and the
result vector y into partitions consisting of p rows each allows a portion of y to be cached
as the corresponding portions of Aix

i+1 and A-ixn-i are being computed and summed; this
strip-mining process is represented graphically in Figure 12. Depending on the relative
positions of the non-zero diagonals in A, performance may further be improved by caching
x vector elements as well; this is discussed in detail below.

To facilitate the discussion on strip-mining (EQ 3), the term partition result is defined to
mean the value of a given partition of the y vector resulting from the summation of the
products Aix

i+1 and A-ixn-i computed within the corresponding partition of the A matrix.

Ignoring the issue of cache control, three factors affect performance in computing a given
partition result: the number, length and position of the non-zero diagonal vectors which
pass through the corresponding A partition. The number of non-zero diagonal vectors in a
given A partition places an upper-bound on the number of times a cached y or x vector ele-
ment can potentially be accessed in computing that partition result. The length of a diago-
nal vector in a given A partition places an upper-bound on the maximum computation rate
of the vaxpy inner-loop for which that vector is an operand. Finally, the absolute position
of a diagonal vector in a given A partition determines which elements of y and x are
accessed by the vaxpy inner-loop operating on that diagonal; in computing a partition
result, the relative positions of all non-zero diagonals determines which elements of y and
x are accessed more than once.

Elements of the x vector should only be cached in the case where adjacent non-zero diag-
onals of matrix A are close enough so that vaxpy operations performed in computing a
given partition result access a large percentage of the same x elements; vaxpy inner-loop

n 1−
n 1−

y Ax=

32

operations involving diagonals which are far apart will have few, if any, x elements in
common.

The partition size p is chosen as the largest value such that the total number of vector ele-
ments cached in computing a given partition result does not exceed data cache capacity; if
only elements of y are cached then , when caching both x and y values

. Maximizing p increases the length of the diagonal vectors in a given A partition
and reduces the total number of partitions and any associated bookkeeping overhead.

5.1.2 Effects of Data Cache Thrashing on MBD_Y and MBD_XY

A matrix A is defined as a diagonally sparse matrix such that A-2, A-1, A0, A1 and A2 are
the only non-zero diagonals. Assuming data cache control as described in 4.1, it is possi-
ble to derive an approximate computation rate for the matrix-vector multiply operations
mbd_y and mbd_xy in forming the product . In computing a given partition result,
the first of the vaxpy inner-loop operations executes at approximately the static perfor-
mance rate for vectors of length 2p; this takes into account the initial cache line write-
backs which occur for all but the first partition. The remaining 4 vaxpy inner-loop opera-
tions execute at the theoretical maximum asymptotic performance rate; given the matrix A
defined above, this is true even in the case of a vaxpy_xy inner-loop since products involv-
ing adjacent non-zero diagonals have all but one x vector element in common. Vaxpy per-
formance data is taken from the graph of Figure 10; for simplicity, all diagonal vectors in a
given A partition are assumed to be of length p. Deriving an approximation under the con-
ditions stated above yields a computation rate of for the mbd_y operation, and

 for mbd_xy; actual performance will be somewhat less due to the bookkeep-
ing overhead involved in strip-mining.

The graph of Figure 13 depicts the static performance of the operations mbd_y and
mbd_xy when applied to the matrix A for various dimensions n; these measurements were
made under the random cache line replacement policy described in 4.1. As a result of data
cache thrashing, both operations perform below the projected computation rates derived
above; the difference in projected performance and measured performance for the mbd_y

p 1024=
p 512=

Ar

A1

A0

A-1

A-q

x1

xn

y1

yn

=

2p

p

Figure 12 Strip-mining the Multiplication by Diagonals Algorithm (y = Ax)

y Ax=

8.7�Mflops
13.7�Mflops

Performance of the iPSC/860 Node Architecture 33

operation is approximately 16%, for the mbd_xy operation the difference is approximately
45%.

While the performance of both the mbd_y and mbd_xy operations is below that achiev-
able if it were possible to utilize the data cache control mechanism, it is the mbd_xy oper-
ation which is most adversely affected by data cache thrashing; to achieve theoretical
maximum asymptotic performance the vaxpy_y inner-loop of mbd_y requires 1/3 of the
vector elements accessed to be cache resident, the vaxpy_xy inner-loop of mbd_xy
requires 2/3. Given a matrix consisting of only 5 non-zero diagonals, in computing a given
partition result the vaxpy inner-loop operation is not executed a sufficient number of times
for the ‘cache sorting’ effect described in 4.2 to significantly affect vaxpy performance.
Thus, as demonstrated in Figure 13, caching x vector elements only marginally improves
performance even under optimal conditions in which all adjacent non-zero diagonals
reside at a distance of 1.

5.1.3 Effects of Strip-mining on MBD_Y

The graph of Figure 14 depicts the static performance of the operations mbd_y and
mbd_y_ns when applied to the matrix A defined for 5.1.2; in mbd_y_ns the ‘_ns’ stands
for ‘non-strip-mined’ and signifies that this operation is an implementation of (EQ 3)
which does not employ strip-mining. Both mbd_y and mbd_y_ns incorporate vaxpy_y as
the inner-loop.

The curve for the mbd_y operation in Figure 14 is relatively flat, though performance is
somewhat better in the case where . Since the data cache is flushed prior to per-

Figure 13 Performance of MBD_Y and MBD_XY

2

4

6

8

9

512 1024 1536 2048 2560 3072 3584 4096

M
f
l
o
p
s

Matrix Size (nxn)

(y,x,A: stride 1 access)

mbd_xy
mbd_y

n 2p<

34

forming each mbd_y operation, fewer cache line write-backs occur in computing the ini-
tial partition result than occur in computing subsequent partition results; thus, the
computation rate for the initial partition result is higher. For , the higher performance
experienced in computing the initial partition result is amortized across all partition result
computations.

The mbd_y_ns curve is similar in shape to the asymptotic performance curve for vaxpy_y
depicted in Figure 10; as cache capacity is reached at a diagonal vector length of 1024,
performance drops off rapidly and degrades to a level somewhat below the static perfor-
mance of vaxpy_y.

Strip-mining improves performance of the mbd_y operation by dividing the y vector into
partitions which can be accessed by the vaxpy_y inner-loop for a number of consecutive
iterations without exceeding data cache capacity. Given , strip-mining reduces the
number of times an element of y is loaded from main-memory to the data cache and amor-
tizes the cost of each y element load with every reuse.

5.2 Completely Sparse Matrix-Vector Multiply

A completely sparse matrix is a matrix with no discernible structure and a relatively large
percentage of zero elements in each row and column; such matrices arise frequently in
engineering problems, for example in the analysis of power distribution systems [1]. Stor-
age schemes for completely sparse matrices usually involve the storage of each non-zero
element and its associated row and column position; the data structure used in storing this
information is generally optimized for the matrix operation to be performed [3][13].

n p>

n p>

Figure 14 Performance of MBD_Y and MBD_Y_NS

2

4

6

8

512 1024 1536 2048 2560 3072 3584 4096

M
f
l
o
p
s

Matrix Size (nxn)

(y,x,A: stride 1 access)

mbd_y
mbd_y_ns

Performance of the iPSC/860 Node Architecture 35

Given an completely sparse matrix A with N non-zero elements, in implementing a
matrix-vector multiply on the RX-1, elements of A are stored in a single vector of
triples where ak is a non-zero element of A in position and .
This vector of triples is referred to as t and can be defined in the C programming language
as an array of elements of type

or in Fortran as an equivalence between a double-precision and an integer array. Elements
of t are stored in row order such that given two adjacent elements and

 then ; if then . The vectors x and y are
stored as n element double-precision arrays.

In the storage scheme for the RX-1 defined above, placing non-zero elements with associ-
ated row and column positions in a single vector reduces the total number of vectors
accessed in performing ; consequently, for a single iteration of the matrix-vector
multiply algorithm, the minimum number of DRAM page misses is reduced. An alterna-
tive scheme is to store pairs in one array and define a second array of n elements
pointing to the beginning of each row in the first; the total amount of storage space is
reduced at the cost of increasing the number of vectors to be accessed.

5.2.1 Implementation of CS_MVM

Figure 15 lists the inner-loop code for cs_mvm, standing for ‘completely sparse matrix-
vector multiply’, which implements a matrix-vector multiplication utilizing the
storage scheme described above. For a given row i of matrix A, the inner-loop code of
cs_mvm computes the corresponding value yi; each iteration of the cs_mvm inner-loop
code performs a single operation, the loop executes once for each k in
the set of with the same ik value.

The cs_mvm inner-loop performs data prefetching in the same manner as the daxpy and
vaxpy operations of 4.3 and 4.4, respectively. However, since the number of elements in a
given row is unknown, the cs_mvm inner-loop is not unrolled; a test is performed after
reading each to detect a change in rows. In addition, floating-point operations
are performed in scalar rather than pipelined mode; this avoids having to drain the float-
ing-point pipelines with each row change. The ratio of core instructions to floating-point
instructions is sufficiently large so that core instructions can be executed during the time
periods in which the floating-point unit is engaged in performing a scalar operation.

In performing cs_mvm for the completely sparse matrix-vector multiply , only
elements of x are cached; triple values from the t vector are loaded via the pfld
instruction. Elements of the x vector may be accessed in any order, the reference pattern is
a function of the A matrix structure; since references are not predictable, data cache con-
trol is not an issue. As discussed in 4.1, data cache thrashing can potentially occur for val-

n n×
y Ax=

ik jk ak,(,) ik jk,() 1 k N≤ ≤

typedef struct {

long i,j;

double a;

} t_element;

ik jk ak,(,)
ik 1+ jk 1+ ak 1+,(,) ik ik 1+≤ ik ik 1+= jk jk 1+<

y Ax=

jk ak(,)

y Ax=

yik
yik

ak xjk
⋅+=

ik jk ak,(,)

ik jk ak,(,)

y Ax=
ik jk ak,(,)

36

ues of the matrix size n such that the number of elements in x exceeds one-half data cache
capacity; i.e. .

Of particular interest in the cs_mvm inner-loop code is the manner in which the ik and jk
values of are loaded from the t vector. Referring to Figure 15, the pfld instruc-
tion of line 1 loads ik and jk as a single double-precision value; given that integers require
32 bits, both ik and jk fit in a single floating-point register pair. The fxfr instructions of lines
5-6 transfer the ik and jk values to integer registers in the core unit; once transferred, the
value of jk is used in the fld instruction of line 9 as an offset into the x vector and the value
of ik is used in lines 8 and 10 to test for a change in rows.

The fxfr instruction allows composite values to be accessed via the pfld instruction in an ad
hoc fashion, though the effective load rate is reduced by the overhead incurred in transfer-
ring values to the core unit’s integer registers; a more elegant implementation of the pfld
instruction would allow values from the load pipe to be directed to either the floating-point
or core unit register files.

Based on the memory system performance data of 3.2, an approximate upper- and lower-
bound can be derived for the performance of the cs_mvm inner-loop code; the assumption
is made that the x, y and t vectors do not have any DRAM pages in common. Given that
the fld instruction of line 9 is a cache hit, the execution of 3 pfld instructions from the t
vector is followed by a 6 cycles delay as the appropriate element of x is loaded from the
data cache and a test is made to detect a change in rows. As discussed in 3.2.3, this delay
in cs_mvm memory access is sufficient to allow the DRAM controller to initiate an idle-
state transition; the net penalty is 2 cycles additional overhead incurred by the pfld instruc-
tion at line 1, the 8 cycle far access penalty resulting from the DRAM controller idle-state
transition minus the 6 cycle delay between accesses. Thus, the upper-bound on cs_mvm
inner-loop performance is 13 cycles for 2 floating-point operations, achieving a computa-
tion rate of at .

If the fld instruction of line 9 is a cache-miss then the resulting cache line load requires 13
cycles, a net DRAM page miss overhead of 5 cycles plus 2 cycles for each of the 4 double-
precision floating-point loads. The pfld instruction of line 1 is stalled by the cache-line
load for a net delay of 6 cycles, as discussed in 3.2.4. Summing together instruction execu-
tion times and access overheads yields a lower-bound on cs_mvm inner-loop performance
of 29 cycles for 2 floating-point operations, or a computation rate of at

.

When a change in row values ik is detected in the inner-loop code of Figure 15, the loop
exits; before the inner-loop is reentered the computed value yi is stored, the yi accumula-
tion register is zeroed and a test is performed to detect further values of to pro-
cess. For rows of the matrix A with few elements, the bookkeeping overhead which is
incurred after computing a given value yi can become a significant portion of the yi com-

n 512>

ik jk ak,(,)

6.2�Mflops 40�MHz

2.8�Mflops
40�MHz

ik jk ak,(,)

Performance of the iPSC/860 Node Architecture 37

putation cost; thus, the lower-bound on performance for the entire cs_mvm computation is
below that of the cs_mvm inner-loop of Figure 15.

5.2.2 Performance of CS_MVM

The graph of Figure 16 depicts the static performance of the cs_mvm operation for various
dimensions n of the matrix A. For a given matrix A, the parameter d is defined as the
matrix density where d is the maximum number of non-zero elements which reside in any
given row of A. In generating a matrix for measuring performance, the number of non-
zero elements ak in each row of A is drawn from a uniform distribution over the integers in
the interval ; likewise, the column position jk of each element ak is drawn from a uni-
form distribution over the integers in the interval .

For a given matrix size n, increasing the density d tends to increase reuse of cached xj val-
ues and decrease the number of extraneous xj loads which occur as a result of the cache
line load procedure; the performance of the cs_mvm operation increases accordingly.
Conversely, for a given density d, increasing the matrix size n tends to decrease reuse of
cached xj values and increase the number of extraneous xj loads; the result is a decrease in
cs_mvm performance as demonstrated by the graph of Figure 16 in which for all
values of n. Furthermore, for the number of elements xj cached while perform-

Figure 15 CS_MVM Inner Loop Code

// prime(‘) - refers to a value associated with the next iteration

.while_i_eq_old_i:

1) d.fmul.dd f16,f20,f24 // a * x[j]
pf ld.d r30(r16)++,f18 // t.i_t.j’ & load t.i_t.j’’

2) d.fnop // pause for mult (3)
nop

3) d.fnop // pause for mult (2)
pf ld.d r30(r16)++,f16 // a’ & load a’’

4) d.fnop // pause for mult (1)
nop

5) d.fxfr f19,r19 // transfer to j
pf ld.d 0(r16),f0 // discard & RE-load a’’

6) d.fxfr f18,r20 // transfer to i
nop

7) d.fadd.dd f22,f24,f22 // y + ax
shl 3,r19,r19 // j * sizeof(double)

8) d.fnop // pause for add(2)
xor r20,r21,r0 // i == old_i?

9) d.fnop // pause for add (1)
f ld.d r19(r17),f20 // x[j]

10) d.fnop
bc.t .while_i_eq_old_i // branch to top of inner while

11) d.fnop
 nop

0 d[,]
1 n[,]

d 50=
n 1024>

38

ing cs_mvm may exceed data cache capacity; if this is the case, performance of the
cs_mvm operation degrades as a result of data cache thrashing.

6.0 Summary

From examining the RX-1 processor-memory interrelationship in detail, guidelines have
been established for implementing operations in a manner consistent with the i860 archi-
tecture and memory sub-system characteristics; as demonstrated throughout this paper,
operations which adhere to these implementation guidelines achieve a level of perfor-
mance well above those which do not. It is interesting to note that nearly all of the guide-
lines presented in 3.3 and 4.5 relate to generating access patterns amenable to efficient
memory system operation.

The ability to perform some level of data cache control is important in implementing oper-
ations to make effective use of the data cache; this is well demonstrated in the diagonally
sparse matrix-vector multiply of 5.1 where operating under a random cache line replace-
ment policy reduces performance by as much as 45%. Though the i860 does provide a
data cache control mechanism, it is only available in supervisor mode; this is an unfortu-
nate implementation decision since making data cache control available in user mode
compromises neither system performance nor security.

The RX-1 computational node exhibits a basic imbalance between processor speed and
memory system bandwidth. For example, given that in pipelined mode the i860 can pro-
duce one double-precision multiply result every 2 clock cycles, the upper-bound on per-
formance for the vaxpy operation of 4.4 is at a clock rate of . To

1

2

3

4

5

6

512 1024 1536 2048 2560 3072 3584 4096

M
f
l
o
p
s

Matrix Size (nxn)

(y,x,t: stride 1 access)

cs_mvm

Figure 16 Performance of CS_MVM (d=50)

40�Mflops 40�MHz

Performance of the iPSC/860 Node Architecture 39

sustain a vaxpy computation rate of , the RX-1 memory system must satisfy 60
million load and 20 million store operations per second; this is 4.5 times the bandwidth
available from even the fastest access modes, ignoring DRAM page miss and DRAM con-
troller read/write mode switch overheads.

For a computer system to function efficiently as a whole, a balance must be maintained in
the performance of its individual components. As this study of the RX-1 computational
node suggests, further research is needed to develope memory system architectures which
can better support the demands imposed by high performance processors such as the i860.
Basic scientific computational kernels which operate on vectors tend to generate very reg-
ular access patterns, given the proper memory system architecture it should be possible to
exploit these regular access patterns to increase memory system performance.

40�Mflops

40

Bibliography

[1] Baumann, R. “Sparseness in Power Systems Equations”, Large Sparse Sets of
Linear Equations: Proc. Oxford Conf. Inst. Math. Appl. - April 1970, Aca-
demic Press, New York, NY, 1971, pp 105-126.

[2] Bokhari, S. “Communication Overhead on the Intel iPSC/860 Hypercube”,
ICASE, NASA Langley Research Center, Hampton, VA.

[3] George, A., and Liu, J. “Computer Solution of Large Sparse Positive Definite
Systems”, Prentice-Hall, Englewood Cliffs, NJ, 1981, pp 138-152.

[4] Intel Corporation, “i860 64-Bit Microprocessor Hardware Reference Manual”,
ISBN 1-55512-106-3, 1989.

[5] Intel Corporation, “i860 64-Bit Microprocessor Programmer’s Reference Man-
ual”, ISBN 1-55512-080-6, 1989.

[6] Nugent, S. “The iPSC/2 Direct Connect Communications Technology”, Proc.
3rd Conf. on Hypercube Concurrent Comp. and Appl., ACM, New York,
NY, 1988, pp 51-60.

[7] Lawson, C., Hanson, R., Kincaid, D., and Krogh, F. “Basic Linear Algebra Sub-
programs for Fortran Usage”, ACM Trans. Math. Softw., 5, 3, Sept. 1979, pp
308-323.

[8] Ortega, J. “Introduction to Parallel and Vector Solution of Linear Systems”, Ple-
num Press, New York, NY, 1988, pp 50-53.

[9] Ortega, J., and Poole, W. “An Introduction to Numerical Methods for Differen-
tial Equations”, Pitman Publishing, Marshfield, MA, 1981, pp 268-275.

[10] Scott, D., and Withers, G. “Performance and Assembly Language Programming
of the iPSC/860 System (Preliminary)”, Intel Scientific Computers, Beaver-
ton, OR, 1990.

[11] Sedra, A., and Smith, K. “Microelectronic Circuits”, CBS College Publishing,
New York, NY, 1982, pp 748-753.

[12] Serang, O. “Various Features of Fujitsu DRAMs”, MOS Memory Products,
Fujitsu Microelectronics, 1989, pp 1:3-24.

[13] Tewarson, R. “Sparse Matrices”, Academic Press, New York, NY, 1973, pp 1-11.

[14] Zilka, A., Intel Scientific Computers, personal communication, March 22, 1991.

