Perfor mance of the iPSC/860 Node Architecture

Steven A. Moyer

IPC-TR-91-007
May 17, 1991

Performance of the iIPSC/860 Node Axhitecture

Steven A. Moyer

Institute for Parallel Computation
School of Engineering and Applied Science
University of Mrginia
Charlottesville, fginia 22903
(sam2y@viginia.edu)

Abstract

Intel's IPSC/860 hypercube is the latest in a series of message-passing multicom-
puters. The performance of individual iPSC/860 computational nodes is the focus of this
report; in particulgrthe performance of basic computational kernels common in scientific
computing is examined. Understanding the operation of the iPSC/860 node memory sys-
tem is key to achieving maximum node performance; from a comprehensive study of the
processomemory interrelationship, guidelines are established for implementing opera-
tions in a manner consistent with the processor architecture and memory system perfor-
mance characteristics. It is demonstrated that the iPSC/860 node architecture exhibits a
basic imbalance between processor speed and memory system bandwidth; due to this
imbalance, even for highly optimized hand-coded routines the average performance of
basic computational kernels can be as much as an order of magnitude below peak proces-
sor rate.

This work was supported in part by NASA under grant NAG-1-242.

1.0 Introduction

The iIPSC/860 is the latest in a series of parallel computers produced by Intel. Like its pre-
decessors, the iPSC/860 is a distributed memory message-passing multicomputer con-
nected in a hypercube topology; the system can be expanded to a maximum of 128 nodes.

Each computational node of the iIPSC/860 system, referred to as an RX-1, consists of an
Intel 860 microprocesspa memory subsystem, and communication hardware. The iPSC/
860 system incorporates the same communication components as the iPSC/2; this inter-
connection network has been the subject of numerous studies and its performance parame-
ters are well known [2][6].

The performance of individual RX-1 computational nodes is the focus of this report; in
particular the performance of basic computational kernels common in scientific comput-

ing is examined. Section 2.0 provides a brief overview of the i860 microprac&sson-
prehensive performance study of the RX-1 memory system is presented in section 3.0.
Sections 4.0 and 5.0 examine the performance of vector operations and sparse matrix-vec-
tor multiplies, respectivel\Section 6.0 summarizes these results.

2.0 1860 Architectural Overview

This section briefly examines features of the i860 architecture that can be exploited to
increase the performance of indeop computations; it is not intended to provide a com-
prehensive architectural description. A complete functional overview of the i860 micro-
processor can be found in [4][5].

2.1 General

The 1860 is a 64-bit general purpose microprocessor implemented using RISC techniques;
it incorporates on a single chip:

» Core integer/control unit

* Floating-point unit

» Graphics unit

* Memory management unit for protected, paged, virtual memory

» Data, instruction, and page translation caches

Performance is obtained using a combination of wide data paths, on chip data and instruc-

tion caches, pipelined floating-point arithmetic units and bus contrafidrinstruction
parallelism.

Performance of the iPSC/860 Node Architecture 3

2.2 Data Types

Hardware support is provided for the following data types:

32-bit integer and ordinal values in the core integer unit; 64-bit integer values in the
floating-point unit.

32-bit single-precision and 64-bit double-precision real values in the floating-point unit.
8-, 16-, 32-bit pixel values in the floating-point unit.

2.3 Data Paths

Three separate data buses provide data and instruction transport:

64-bit external data buswide enough to transport up to 2 instructions or 1 double-pre-
cision number

128-bit internal data bus allows up to 2 double-precision numbers to be fetched from
the data cache with a single instruction, given proper data alignment; this can decrease
the number of innelloop instructions and, in cases where data can be reused, increase
the efective memory bandwidth.

64-bit internal instruction bus allows two instructions to be fetched from the instruc-
tion cache simultaneously; this is required to support thes&G@il-instruction mode
as described in 2.6.

2.4 Caches

The i860 contains three separate on-chip caches:

8 Kbytedata cache 2-way set-associative cache with 32-byte line size; cache lines are
aligned on a 32-byte boundaache line fills occur in four 64-bit memory accesses
using a wrap-around technique. The processor reads first the 64-bit entry containing the
data object needed to fulfill the memory request which caused the cache miss; read
requests are then initiated for each of the three remaining 64-bit entries in the cache
line, sequentially by address. If the first entry read falls in the middle of the cache line,
the read addresses wrap around.

The data cache is implemented with a write-back policy to reduce the demand on the
external data bus and memory system.

4 Kbyteinstruction cache 2-way set-associative cache with 32-byte line size. The
instruction cache is lge enough to allow most innkErop code to execute without the
delay of instruction loads; memory bandwidth is reserved for data access.

64-entry page translation cache (TLB3-way set-associate cache for performing page
translation and access violation checking; up to 256 Kbytes of virtual memory can be
referenced at a time.

All caches operate in parallel and can be accessed once every clock cycle; this allows a
simultaneous instruction cache access, read/write data cache access, and virtual address
translation through the TLB.

Under normal operating conditions a random cache line replacement policy is imple-
mented. Data cache control can be performed by specifying for replacement one of the
two cache line blocks in a set. While this cache control mechanism can befestdebf

to improve performance, it is only available in supervisor mode; this issue is discussed
further in later sections.

2.5 Pipelining

The 1860 architecture makes extensive use of pipelining to achieve higher rates of
throughput. The floating-point unit has 4 distinct pipelines:

* Adder- 3-stage pipe at 1 clock per stage.

» Multiplier - 3-stage pipe at 1 clock per stage for single precision; 2-stage pipe at 2
clocks per stage for double-precision.

» Graphics- 1-stage pipe at 1 clock per stage.

» Load- 3-stage pipe; the rate of pipe advancement is determined by the rate at which
memory requests are satisfied. The load pipe functions as a FlfeDfbuthe pipe-
lined version of the floating-point load instruction discussed in 3.2.1.

The first three functional units listed above incorporate standard pipelining techniques to
increase throughput. The i860 does not provide any vector instructions; pipeline control
and advancement is handled explicitly via special pipeline instructions which specify a
pair of operand registers to be used as inputs to the first stage of a given pipeline, and a
destination register into which is placed the result of the last stage of that pipeline.
Advancement of a pipeline occurs only during execution of a pipeline instruction. For
example, the code of Figure 1 utilizes the adder pipeline to form three sums from three
operand pairs. Inndoop code which makes use of floating-point pipelines must fill the
pipelines before entering the loop and drain the pipelines upon exiting. A scalar mode is
available for programming convenience, though at greatly reduced performance.

Bus cycles can also be pipelined to mask memory latency and increase the rate at which
memory requests are satisfied. The bus state machine defines a two level pipeline protocol
whereby a bus cycle can be initiated every other clock cycle with a maximum of three bus

Performance of the iPSC/860 Node Architecture 5

cycles outstanding. The pipelining of memory cycles is optional and may not be supported
by all memory systems.

Figure 1l Usingthe Floating-Point Addition Pipeline

/1 Operands in fp registers 2-12
/1 Results in fp registers 20-24
/1

/1 Fill adder pipe

pfadd.dd f2,f4,f0 [l f2+f4 . discard | ast stage
pfadd.dd f6,f8,f0 /1 f6+f8 : discard | ast stage
pfadd. dd f10,f12,f0 /1 f10+4f12 : discard |ast stage

/!l Drain pipe to obtain results of |last three additions

pfadd. dd f0,f0,f20 [l 20 = f2+f4
pfadd.dd fO,fO0,f22 /1 22 = f6+f8
pfadd.dd f0,f0,f24 /1 24 = f10+4f12

2.6 Parallelism

There are two forms of parallelism in the i860 that can be directly specified by the pro-
grammer:dual-operation instructionanddual-instruction mode

Dual-operation instructions are the simplest form of parallelism in which a single instruc-
tion initiates both a pipelined floating-point adder and multiplier operation; the instruction
specifies which of a number of possible data paths surrounding the adder and multiplier is
to be used. For example, the instructidpl specifies that a source operand and a con-

stant register are to be used as inputs to the first stage of the multiplier pipeline, the other
source operand and the result from the last stage of the multiplier pipeline are to be used as
inputs to the adder pipeline, and the result from the last stage of the adder pipeline is to be
stored in the destination regist&éhe data flow for the2p1linstruction is diagrammed in

Figure 2; this instruction represents the standard B&4&yoperation. In vector

machines, this technique of linking functional units is commonly referreddioaasing

Figure2 Data Flow for R2P1 Instruction

operand 1 operand 2
|$|— constant l
Multiplier
v v
Adder
result

In dual-instruction mode (DIM), the core execution unit and the floating-point unit can ini-
tiate instructions simultaneouslytilizing the 64-bit internal instruction bus, one 32-bit

instruction can be dispatched to each unit every cycle; instruction execution is limited to
lock-step operation.

2.7 Hardware Optimizations

A number of standard hardware optimizations are employed in the i860; these include:
» Delayed branching

» Register bypassing

» Scoreboarding

» Auto-increment addressing

» Write bufering

This last optimization, write bfdring, involves the bééring of write operations to mem-

ory until the memory system has no outstanding requesit® ¥perations are forced

from the bufers when either the bigr's are full and another store instruction is executed,

or when doing so is necessary to maintain data coherence. The i860 has two 128-bit write
buffers.

2.8 Influence of the i860 Achitecture on Coding Style

The 18605 pipelined floating-point unit and dual-instruction mode are reflected in the cod-
ing style for operations requiring maximum performance. Agcéte technique for
maintaining eficient floating-point pipeline operation is to combine loop unrolling with

data prefetching. In unrolling inndémop computations, the floating-point unit can operate

on data for the current loop iteration while the core execution unit fetches data for the next
iteration; this method of prefetching data items is also referredsoftage pipelining
Dual-instruction mode provides a mechanism whereby floating-point and memory or con-
trol transfer operations can be initiated simultaneously; this technique is used throughout
implementation examples presented in later sections.

3.0 RX-1 Memory Subsystem

Understanding the design and operation of the RX-1 memory system is key to achieving
maximum node performance. It is important that idnep computations generate access
patterns amenable tofiefent memory system operation. The following examines the
design of the RX-1 memory system and the factors which influence its performance.

3.1 General Specifications

The RX-1 memory system is constructed with fast page-mode DRAMs. DRAM page-
mode allows multiple memory-array column accesses to be performed on a selected mem-
ory-array row called gpage A memory request which hits in the current page, termed a
nearaccess, can be serviced at a higher rate than one which requires a memory-array row

Performance of the iPSC/860 Node Architecture 7

select, termed far access. Though this is a simplified description of the operation of
page-mode DRAMs, it is slifient for this discussion; detailed information can be found
in [11][12]. For the duration of this paper the tguagerefers to a DRAM page, not a vir-
tual memory page, unless otherwise stated.

The design of the DRAM controller alsdexdts the overall performance of the memory
system. For example, the RX-1 DRAM controller supports the pipelining of read requests
to partially mask row select and write-read mode switch latencies. A state transition dia-
gram describing the operation of the RX-1 DRAM controller can be found in [10]; charac-
teristics of the controller whichfact memory system performance are discussed in
subsequent subsections.

The RX-1 memory system as a whole has the following specifications:

* 4 Kbyte DRAM page size

* 64-bit near reads at a maximum rate of 1 every 2 clock cycles

* 64-bit near writes at a maximum rate of 1 every 3 clock cycles

* 64-bit far reads and far writes at a maximum rate of 1 every 10 clock cycles

The exact overhead incurred in making a far access is a function of the DRAM controller
state at the time a memory request is issued and the type of request being made. For the
purposes of this discussion it is assumed that a DRAM page miss adds to the near access
time an additional 8 clock cycles overhead; this approximation works well when deriving
performance estimates.

As stated in 2.5, the bus state machine defines a minimum of 2 clock cycles per bus cycle;
this places an upper limit on processor to memory bandwidthir/this limit, the access
patterns generated by a computation determine the level of memory system performance
which is achieved. As demonstrated in the subsections which folel behaved” oper-

ations which access memory in a manner amenable tdidiemtf operation can expect to
achieve a level of performance close to the above stated maximums. Operations with
access patterns contrary tli@ent memory system operation experience substantially
reduced performance.

3.2 Performance Measuements

The following presents RX-1 memory system performance measurements to demonstrate
clearly those factors whichfatt its eficient operation. Measurements are made with the

data cache flushed both to eliminate tHeat$ of write-back, and to force all memory

accesses to be satisfied directly by the memory subsystem. Data objects being accessed are
double-precision floating-point numbers, the standard for scientific computation. All data

is properly aligned so as not to trigger a data-access trap. Most performance measurements
presented fall short of the theoretical maximums due to overheads involved in making test
procedure calls, initializing test loops, and performing DRAM refresh cycles.

3.2.1 Pipdlined Floating-Point L oad Rate

The 1860 implements two versions of the load instruction for floating-point values: pipe-
lined floating-point loaddfld) and floating-point loadl¢l). Thefld instruction is a mem-

ory to register load instruction in the traditional sense, wheregdlthastruction reflects

the 18605 pipelined architecture. Both the functionality and performance giffthe
instruction are examined here; tiietinstruction is discussed further in 3.2.4.

Thepfld instruction has two properties which distinguish it from the starftthimistruc-
tion. First, thepfld instruction utilizes the 3-stage load pipe described in 8daeturns
the data referenced by the third previpild instruction executed. Second, tbféd
instruction has no &dct on the contents of the data cache. If the data requestaufldy a
resides in the data cache, it is taken from there; howapéd does not update the cache
on a cache-miss.

Memory cycles initiated by any instruction can be pipelined, within the limits discussed in
2.5, if this feature is supported by the memory system; with the exceptionpiifcthe
instruction, memory cycle pipelining is transparent. pfieinstruction semantics reflect

the pipelined nature of the i8&us state machine; the 3 stages of the load pipe corre-
spond to the 3 outstanding bus cycles supported by the bus state machine definition.

The graph in Figure 3 demonstrates the measftédate of a single vector for various

strides of access; the theoretical maximum load rate as a function of stride is also pre-
sented. Given that there are no TLB misses and that all virtual memory pages occupied by
a vector reside in physical mempgptige theoretical maximum load rate is derived as fol-

lows:

s = stride of access

b = size of floating-point vector elements in bytes, either 4 or 8

n = number of clock cycles for a near access at maximum rate

f = number of clock cycles for a far access at maximum rate

0 = number of clock cycles overhead incurred on a DRAM page miss
d = DRAM page size in bytes

h = clock rate in MHz

c(s) = average number of clock cycles per vector element load

r(s) = load rate in Mpfld per second

f when ==21 (EQY)

Performance of the iPSC/860 Node Architecture 9

For the RX-1 memory systerh,= 10, 0 = 8, d = 4096, andh = 40; for thepfld
instructionn = 2. Since the vector elements being loaded in this example are double-pre-
cision floating-point numberg, = 8.

Figure 3 Memory Access Rates

16

14

B S SR L

104

theoretical pfld —
measured pfld —-—-

M1 1lions of Accesses/ Second

81 N theoretical fst ---
N neasured fst -+--
N, measured fld = -
6- N
\
B
4 ~
~
.
TieE— e — - B g = o[- f

(vector length = 4096)
T T T T

1 2 3 4 5
Vector Access Stride

o
~
ee]

The graph in Figure 4 demonstrates tHeatfof TLB misses opfld rate; each point on

the graph represents the averpfidrate for multiple iterations of a single vector load at a
given stride of access. In measuringpfid rate of a vector load, the first iteration sets the
TLB so that, given a sfi€iently small stride, later iterations will not $eifa TLB miss; as

the length of the stride is increased, a point is reached where all virtual-memory pages
containing elements of the vector can no longer be referenced by the TLB, thrashing
ensues. The approximate TLB thrash point can be determined as follows:

s* = maximum stride of access without TLB thrashing

b = size of floating-point vector elements in bytes, either 4 or 8
| = length of vector (i.e. the number of elements)

t = maximum number of TLB entries

p = page-frame size in bytes

pt pt
0 (R when (>ped ()21

b
0

* 7 Hhwaysthrashes when (I>1) and (%)q Q3
0

never thrashes when (I<t)

10

For the i860f = 64 andp = 4096. In the example from Figure #,= 4096 andb = 8;
thus,s* = 8.

The equation (EQ 2) is only an approximation to the TLB thrash point since the i860
implements a random replacement policy for elements of a given TLB cache set. Note that
(EQ 2) can be written to solve figrin terms ofsto determine the maximum length vector
which can be repeatedly accessed at a given stride without TLB thrashing.

Figure4 TLB Thrash Point

14 -

12

104

theoretical pfld —
nmeasured pfld ——-

M1 lions of Accesses/ Second

(vector length = 4096)
T T T T T T T T T T T T

T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Vector Access Stride

For vectors of a given length, the following observations can be made:

* Increasing the stride of access increases the number of DRAM page misses which
results in a decreasedld rate.

* Increasing the stride of access increases the chance of a TLB miss which in turn results
in a decreasepifld rate.

The first observation is a consequence of the fact that, with increased stride, a greater
number of DRAM pages are required to store the vettaw second observation is a con-
sequence of the vector occupying more virtual memory pages, given that the TLB can
only reference a finite number of page frames.

Note that the above observations assume the vector is long enough so that an increase in
stride results in an increase in the number of DRAM pages occupied; if this is not the case,
there is no déct on thepfld rate.

Performance of the iPSC/860 Node Architecture 11

3.2.2 Floating-Point Store Rate

The graph of Figure 3 demonstrates the measured floating-pointfsforaté¢ to a single
vector for various strides of access; the theoretical maximum store rate as a function of
stride is also presented. Given that there are no TLB misses and that all virtual memory
pages occupied by the vector reside in physical meri@ytheoretical maximum store

rate is derived in the same fashion aspterate of (EQ 1); for théstinstructionn = 3.

The observations made in 3.2.1 concerning degradation in performance with increasing
stride of access, due to TLB and DRAM page misses, apply fetdmwell.

3.2.3 Effectsof the DRAM Controller |dle-state Transition

It seems intuitive that the best memory system performance is achieved by minimizing the
demand placed on the memory system; this, howevaot necessarily the case. When
performing near reads or near writes, the best performance is achieved by issuing memory
requests at the maximum rate at which they can be satisfied; not doing so can allow the
DRAM controller to enter into an idle state. Once the DRAM controller has initiated a
transition towards the idle state, the next memory request is handled in the same manner as
a far access.

The length of the delay from the last near access to the DRAM controller idle-state transi-
tion is dependant on the access mode: 4 clock cycles for a near read and 3 clock cycles for
a near write. A near access request issued anytime up to the clock cycle in which the
DRAM controller is to initiate the idle-state transition prevents a far access; a penalty of
approximately 3 additional clock cycles is still incurred if the time between the previous
and current near access requests is longer than required to sustain the maximum access
rate.

In general, when memory access delay ifceht to allow the DRAM controller to ini-

tiate an idle-state transition, the net additional penalty to the next memory access is the 8
cycle far access overhead minus the delay between accesses; when the length of the mem-
ory access delay equals or exceeds the far access overhead, no additional penalty is
incurred.

As an example, Figure 5 (a,b) lists the inlo@p codes for two procedures which perform
apfld on each element of a vectboop (a) performs pfld operations per iteration, 4 use-

ful data loads and 2 dummy loads which reread every fourth vector element. The code in
(b) performs 4ofld operations per iteration, all useful data loads. Both (a) and (b) contain
the same number of instructions and both have the fieet ef loading 4 data objects per
iteration; therefore, both have the same theoretical useful load rate. Loop (a) initiates a
pfld instruction every other clock cycle, the maximum rate at which the memory system
can satisfy read requests; in (b) there is a delay of 5 clock cycles after every fourth read.
The memory access delay in loop (b) idisignt to allow the DRAM controller to initiate

an idle-state transition; as a result, a net penalty of 3 additional clock cycles is incurred by
the pfld instruction which executes immediately after the delay

12

Table 1 lists the measurefld rate, the usefyfld rate, and the theoretical usejidild rate

for each loop (a) and (b); for both performance measurements, vectors accessed are of the
same length and stored with a stride of 1. While the performance of loop (a) is within

4.5% of the theoretical useful load rate, the performance of loop (b) falls short by 26.3%;
howeverin terms of memory accesses per unit of time, the demand placed on the memory
system by loop (a) exceeds that of loop (b).

Table 1 Effectsof the DRAM Controller Idle-state Transition on PFLD Rate

M easured Useful Theoretical Useful
(a 19.1 12.7 133
(b) 9.8 9.8 13.3

Rates are in M pfld/Second

As the results indble 1 demonstrate, memory access timing influences the overall perfor-
mance of the memory system; careful load/store instruction placement wiadope&ode
can yield an increase infettive memory bandwidth.

Figure5 Inner Loop Codesto Test the Effects of the DRAM Controller 1dle-state Transition

.a_l oop: .b_l oop:

/1 pfld next 4 data itemns /1 pfld next 4 data itemns
nop pfld.d r22(r17)++,f0
pfld.d r22(rl7)++,f0 nop
nop pfld.d r22(rl7)++,f0
pfld.d r22(rl17)++,f0 nop
nop pfld.d r22(rl7)++,f0
pfld.d r22(rl7)++,f0 nop
nop pfld.d r22(r17)++,f0
pfld.d r22(rl7)++,f0 /1 del ay

/1 dumry | oads nop
nop nop
pfld.d o(r17),f0 nop
bl a r20,r21,.a_l oop bl a r20,r21,.b_I oop

pfld.d o(rl7),fO0 nop

(a) (b)

3.2.4 Floating-Point Load Rate

Unlike thepfld instruction discussed in 3.2.1, the floating-point Idkl) {nstruction can

have the side-&dct of altering the contents of the data cache. When data requestid by a
does not reside in the data cache, i.e. a cache-miss occurs, a cache line fill is initiated; four
64-bit memory accesses are made using the wrap-around technique described in 2.3.

Performance of the iPSC/860 Node Architecture 13

Referring again to Figure 3, the graph demonstrateficthate of a single vector for vari-

ous strides of access. All else being equalfltheate at a stride of 1 should be equivalent

to thepfld rate at the same stride; in fact, the measiidadte is only half that of the mea-
suredpfldrate. The explanation for this discrepancy lies in the implementation of the i860
cache line fill procedure; between the fourth memory access of the previous cache line fill
and the first memory access of the subsequent cache line fill there is a delay of 7 cycles
[14]. As discussed in 3.2.3, this memory access delay between consecutive cache line fills
is suficient to allow the DRAM controller to initiate an idle-state transition; the net result

is that the first of the 4 memory accesses in each line load is a far read. Thus, for consecu-
tive cache line fills, each individual cache line load requires a total of 16 cycles; an aver-
agefld rate of 4 cycles per double-precision load is achieved.

At strides greater than 1 tfid rate is further degraded by extraneous data loads which
occur as a result of the cache line fill procedure; for double-precision values this reduction
in performance continues up to a stride of 4, from which point on 3 extraneous data loads
occur for every 1 requested.

While the observation made in 3.2.1 relating stride of access and TLB misses applies to
vectors accessed via tfié instruction, the éécts are minimal and all but masked by the
factors discussed above; the observation concerning DRAM page misses does not apply
since consecutive cache line fills always begin with a far access.

Note that for the 7 cycles following the fourth memory access of a given cache line fill, no
other memory access can be initiated.

3.2.5 Effectsof DRAM Page Misses

As demonstrated in the graph of Figure 3¢fid andfst, with a single vector and small
strides the dééct of DRAM pages misses on memory access performance is minimgal; lar
strides are required in order to reduce the number of vector elements per DRAM page to
where the cost of a page miss becomes a significant portion of the total time required to
load all vector elements from a given page. Fortunateige lage stride accesses have
traditionally led to reduced performance in vector computers, numerical algorithms are
normally implemented to access data with a stride of 1 whenever possible.

In practice, the ééct of DRAM page misses is most strongly felt when performing opera-
tions which require multiple vector operands; operations such as the BLAS ralatoties
anddaxpyare typical examples. Given an operation with multiple vector operands, it is
common for an implementation of the operation to alternate reads from, and stores to,
each of the appropriate vectors; for vector operands having no DRAM pages in common, a
page miss occurs with each access to a vecferetit from the one previously accessed,
performance of the operation is severely degraded.

Table 2 presentgsfld rates for two procedures which load two vector operands each. The

first procedure alternates reads from each vector operand; the second reads in sets, loading
4 elements from one vector then 4 elements from the. dinemphasize the reduction in
performance resulting from DRAM page misses, the address of a single vector is passed as

14

both operands to each procedure. For all performance measurements preseiedin T
vectors are of the same length and stored with a stride of 1.

Table 2 Effectsof DRAM Page Misses on PFLD Rates

Single Vector Two Vectors
Alternating 191 39
Setsof 4 19.1 9.6

Rates are in M pfld/Second

In implementing operations with multiple vector operands, unrolling loogs allows

the cost of a DRAM page miss to be amortized over a numipfidaiperations. In the
example from @ble 2, loop unrolling to a depth of 4 realizes an almost 250% increase in
memory system performance.

Note that because consecutive cache line fills begin with a far access, as discussed in
3.2.4, thdld rate achieved when alternating cache line loads from multiple vector oper-
ands is the same as tifetrate from a single vector operand given operands of the same
stride.

3.2.6 Effectsof the DRAM Controller Read/Write M ode Switch

The RX-1 memory system has two main modes of operation: read and write. Switching
from one access mode to the other can cause a delay as the DRAM controller makes the
transition. For a near access, the mode transition overhead is approximately 4 additional
cycles; a far access incurs no additional pentileymode transition delay is masked by

the far access overhead.

While the DRAM controller mode switch delay is relatively short, it can lead to a substan-
tial reduction in performance if read and write operations are intermixed indiscriminately;
Table 3 presents performance results from two procedures which illustratdetigf
reading and writing each element of a vecide first procedure alternates access modes,
reading pfld) a single vector element and immediately performing a write to that element
before reading the next. The second procedure rpflds4 consecutive vector elements,
writing back to these elements before moving on to read the next set. For both perfor-
mance measures presentedabl€ 3, vectors are of the same length and stored with a
stride of 1.

Table 3 Effectsof DRAM Controller Read/Write Mode Switch on Memory Access Rates

Millions of Accesses/Second

Alternating 6.5
Setsof 4 11.4

Performance of the iPSC/860 Node Architecture 15

In grouping like memory operations, the cost of a read/write mode switch is amortized
over a number of accesses; loop unrolling can increase memory system performance by
providing a natural means to achieve such a grouping. In the exampledbden3T loop
unrolling to a depth of 4 realizes a 175% increase in memory system performance.

The bufering of writes, as discussed in 2.7, has negligibecabn the results of this test.
Since the write bdiérs are full after twdst operations have been issued, each additional
fstforces a write bus cycle.

Note that read and write operations to vectors accessed Vid ithgruction are naturally
grouped by the cache line load/write-back procedure, as described in 2.4.

3.3 Memory Access Guidelines

The following summarizes the performance characteristics of the RX-1 memory sub-
system; memory access guidelines are provided for implementing operations to access
memory in a manner amendable to ifscafnt operation. Due to the nature of the cache
line fill procedure, few of the memory system characteristics discussed throughout 3.2
affectfld performance; the guidelines presented below assume vector operands being
accessed are loaded via fifldl instruction. The caching of vector operands is discussed
further in 4.1.

The following guidelines are made under the implicit assumption that the data being
accessed is not initially resident in the data cache:

» Vectors should be accessed with small strides to reducdehbtseff DRAM page and
TLB misses.

» Operations which require multiple vector operands should avoid accessing them alter-
nately The cost of a DRAM page miss, which is likely to occur with each access to a
vector operand diérent from the one previously accessed, should be amortized over a
number ofpfld operations; loop unrolling can be usefietively to achieve this amor-
tization.

» Like memory operations should be grouped to amortize the cost of a read/write mode
switch; loop unrolling provides a natural means to achieve such a grouping.

» Vectors should be accessed at the maximum rate at which requests can be satisfied, not
doing so may allow the DRAM controller to initiate an idle-state transition; extraneous
data accesses can be used to prevent an idle-state transition, avoiding an unnecessary
far access penalty

As demonstrated in subsequent sections, an implementation of an operation which adheres
to these guidelines exhibits substantially increased performance over an implementation
of the same operation which does not.

16

4.0 Vector Operations

Vector operations represent the most basic computational kernels common in scientific

computing; they are the building blocks of most numerical methods. This section exam-
ines the implementation and performance of vector operations on the RX-1 architecture;
two are examined in detail, the BLAS routuoexpyand an operation which we will refer

to asvaxpy

To distinguish between various implementations of a vector operation, the following nota-
tion is adopted throughout this discussion:

<operation name{_ <cached operaref{*{< cached operarel*}}...{ < versiorr}

where the gguments enclosed in ‘{}’ are optional. In the naming scheme above, an *
following the identifier for a cached vector operand specifies that the implementation
assumes the operand to be aligned on either a 16- or 32-byte boundary; a version number
is only appended when required to make the name unique. For example, a daxpy imple-
mentation which does not cache either vector operand is referred to as ‘daxpy’; one which
caches both vector operands is referred to as ‘daxpy_xy’.

4.1 Caching \éctor Operands

One of the major factors whichfafts the performance of a vector operation is the choice
of operands, if anyto cache. Caching a vector operand has both positive and negative
aspects which need to be considered in making this decision.

If a vector operand is to be accessed again in a later operation, a number of benefits are
derived from caching:

» Effective memory bandwidth is increased in later operations by taking advantage of
both the speed of the data cache and the width of the internal data bus. The data cache
can be accessed once every clock cycle; data which is properly aligned can be accessed
in 128-bit blocks.

» Overall memory system performance is improved by reducing the number of DRAM
page misses and DRAM controller read/write mode switches; memory accesses to a
cached operand, regardless of the access pattern, hit in the data cache and therefore
have no potential to generate eithdeetf

» As demonstrated in 3.2.5, for an operation with multiple vector operands stored at a
stride of 1 and having no DRAM pages in common, the irfldakte for accessing the
operands alternately is equal to giflel rate when accessing them in sets of 4; inner
loop coding is simplified while a reasonable degree of performance is maintained.

Performance of the iPSC/860 Node Architecture 17

Caching a vector operand has negative aspects which must also be considered:

» Asdiscussed in 3.2.4, for a single vector of stride 1 the ifilliedte is only half that of
thepfld rate; the déctivefld rate is considerably less atdar strides. For caching to be
of any benefit, an operand must be accessed often enough to compensate for the ini-
tially reduced load rate; e.g. at least twice for vectors with a stride of 1.

» The operand being cached displaces the current data cache contents and may generate
cache line write-backs. k¥e-backs utilize memory bandwidth, further reducing the
initial fld rate.

* If the operand being cached has a stride greater than 1, then extraneous data loads occur
as a result of the cache line load procedure. Extraneous data can occupy as much as
three-fourths of the total data cache capacity

* As is standard for processors with a set-associative data cache, i860 memory accesses
are mapped to data cache sets via the low order address bits. Given thé286adata
cache sets and a cache line size of 4 double-precision values, a stride of agchss
thats = 2% and8 < s< 512 reduces the &ctive cache size tb/ 2%~ 2 maximum
capacity; the potential for data cache thrashing is increased accaordingly

The decision concerning which vector operands to cache depends on the context in which
the vector operation is to be used. Only those operands of a vector operation which will be
accessed repeatedly before being displaced should be considered as candidates for cach-
ing. Often it is best to implement multiple versions of the same vector operation which
cache diferent operands, allowing one to choose the version most suited to the context in
which it will be used. Because of the reducddative load rate, inétient use of data

cache space, and increased potential for data cache thrashing it is generally recommended
that vector operands with stride greater than 1 not be cached. For the remainder of this
paper all references to cached vector operands assume the vector to be stored with a stride
of 1.

As stated in 2.4, in user mode the i8P‘way set-associative data cache implements a
random cache line replacement palioynder a random replacement poliegctor opera-

tions with a single cached operand can fill only half the data cache before earlier accessed
vector elements become subject to possible displacement by later accessed elements of the
vector; vector operations with multiple cached operands have no control over data cache
thrashing. In the i868’supervisor mode, data cache control can be performed by specify-
ing for replacement one of the two cache line blocks in a set. This cache control mecha-
nism allows up to two vector operands to reside in the data cache simultaneously; vector
operations with more than 2 cached operands will still experience data cache thrashing.

4.2 \kector Operation Performance Measuements

Two measures of performance are defined for use in this discusisitperformance
andasymptotigperformance. Static performance is the measure of the performance given
a flushed data cache; i.e. at the initiation of the operation no data which is to be accessed
resides in the data cache and no cache lines require write-back. Asymptotic performance is
the average performance of ag@amumber of consecutive applications of an operation to

18

the same operands. In measuring asymptotic performance, the content of the data cache is
unaltered between successive iterations.

For a given implementation of a vector operation which caches a subset of its operands,
the static performance measurement represents the performance of an initial iteration of
the operation for which none of its operands reside in the data cache; the asymptotic per-
formance measurement represents the theoretical maximum performance of subsequent
iterations for the same cached operands. In performing actual computations, asymptotic
performance can be achieved when a problem is strip-mined in such a way thitapner
computations reuse cached operands for some number of consecutive iterations.

Achieving theoretical maximum asymptotic performance requires eliminating data cache
thrashing when the total number of vector operand elements cached does not exceed data
cache capacity; in this case, the data cache control mechanism described in 4.1 can elimi-
nate thrashing for up to 2 cached vectors. Because supervisor mode is not available to gen-
eral users of the iIPSC/860 system, performance measurements presented throughout this
paper reflect the f&fcts of the random cache line replacement poliyder a random
replacement poligthe measured asymptotic performance of a vector operation with at
most two cached operands cormges to the theoretical maximum asymptotic perfor-

mance; given a sfi€ient number of iterations, all pairs of cache lines which map to the
same data cache set will be placed ifedént blocks and thrashing will cease. For prob-

lems which employ strip-mining to promote reuse of cached operands, the random cache
line replacement policy prevents indeop computations from achieving the theoretical
maximum asymptotic performance in early iterations; as a result,féoti\ed computa-

tion rate is generally well below that achievable when utilizing the data cache control
mechanism. The degradation in performance which results from strip-mining computa-
tions without data cache control is demonstrated in 5.1 for a diagonally sparse matrix-vec-
tor multiply operation.

In measuring static performance, data cache control diglgtafvector operations which
modify a cached operand; for these operations, static performance can be improved by
employing the data cache control mechanism to prevent cache line write-back prior to
reaching data cache capacity

For vector operations which do not cache operands, asymptotic performance is equivalent
to static performance; only static performance measurements are presented. Both static
and asymptotic performance measurements are given in terms of millions of floating-point
operations per seconiflops.

Performance of the iPSC/860 Node Architecture 19

4.3 DAXPY Operation

The BLAS routinedaxpy[7] implements a double-precision vector operation of the form:

Yy «~ax+y

wherex andy are vectors and is a scalarThe graph of Figure 6 depicts the asymptotic

and static performance of the vector operation daxpy_y* and the static performance of the
vector operations daxpy_1 and daxpy_2. Recall from the notation definition that the dax-
py_y* implementation caches tlyerector; daxpy_1 and daxpy_2 arefeient implemen-
tations, neither of which caches either vector operand. For all performance measures,
vector operands are stored with a stride of 1.

Given that in pipelined mode the i860 can produce one double-precision multiply result
every 2 clock cycles, as described in 2.5, the uppand on processor performance for

the daxpy operation 40 Mflops at a clock rate o0 MHz. Due to the insticient band-

width of the RX-1 memory system, the measured performance of a daxpy operation which
accesses a vector operand not resident in the data cache will be below peak processor rate.
For the daxpy implementations of Figure 6, specific RX-1 memory system characteristics
which afect daxpy performance are discussed in later subsections.

Figure 6 Performance of Various DAXPY Implementations

30

asynptotic daxpy_y* —-—

static daxpy_y* —+—-
static daxpy_1 & -
25 static daxpy_2 -x--

20

15

M| ops

10+

(X, y: stlri de 1 agcess) , , , , ,
32 256 512 768 1024 1280 1536 1792 2048

Vector Length

20

4.3.1 DAXPY Performance Curves

The shape of the curves for the daxpy_y* implementation of the daxpy operation are char-
acteristic of operations which cache one or more vector operands. For asymptotic perfor-
mance, the curve clearly shows the point at which the total number of operand elements
cached in performing an operation exceeds data cache capacity; performance degrades
rapidly as cache-misses, and potentially write-backs, begin to have a subst@ctial ef

Given the 186035 8 Kbyte data cache and 8-byte double-precision values, cache capacity is
reached at a vector length of 1024 with one cached operand or 512 with two. On the
asymptotic daxpy_y* curve of Figure 6, the point plotted at vector length 1024 exhibits
somewhat degraded performance even though the vector length appears to be within data
cache capacity; thisfekct is a result of the cached vec¢soalignment. If a double-preci-

sion vector of lengthsuch thatl(mod 4)=0 is not aligned on a 32-byte bound#rgn it

will span one more than the minimum number of lines required to cache it.

Asymptotic performance degrades to the level of static performance as vector lengths
increase; earlier accessed vector elements are displaced by later accessed vector elements
and the percentage of data reuse from one iteration of the vector operation to the next
decreases. The asymptotic and static curves tend to come together in the area of twice data
cache capacitythe point at which a subsequent iteration of the operation no longer bene-

fits from the data residing in the cache. For vector operations which modify cached oper-
ands, asymptotic performance drops somewhat below the level of static performance; this
effect results from a combination of low data reuse between consecutive iterations of the
operation, and the initiation of consecutive iterations with the data cache in a state where
cache lines require write-back.

Static performance curves for operations which modify cached operands, while generally
flat, exhibit somewhat better performance prior to reaching data cache capacity due to the
lower probability of cache line write-backs.

For static measurements and asymptotic measurements prior to reaching data cache capac-
ity, the performance of vector operations is generally lower for shorter vector lengths due

to the fixed costs involved in making a procedure call, initializing loops and filling pipe-

lines; as vector lengths increase, these costs are amortized oger alanber of arith-

metic operations. In addition, vector operations which incorporate loop unrolling often
require a minimum vector length before arithmetic operations are pipelined; below this
minimum arithmetic operations are performed in scalar mode.

4.3.2 DAXPY_1

The innefloop code for the daxpy_1 implementation of the daxpy operation is listed in
Figure 7; each set of DIM instruction pairs is labeled for reference. The daxpy -1 inner
loop is unrolled to a depth of 4; each iteration performs pipelined arithmetic operations on
the 4 sets ofX;,y;} operand pairs loaded by the previous iteration while simultaneously
prefetching the next 4 sets of operand pairs for the next iteration. All memory references
in the daxpy_1 implementation conform to the memory access guidelines of 3.3; accesses
to each vector operand are performed in sets, like memory operations are grouped and all

Performance of the iPSC/860 Node Architecture 21

accesses are performed at the maximum rate at which they can be satisfied by the memory
system.

Based on the memory system performance data of 3.2, it is possible to analyze the
daxpy_1 code and derive an approximation for its execution rate; the assumption is made
that vector operands have no DRAM pages in common. Beginning with line 4, there are 4
fst operations to thg vector performed at the maximum rate of 1 every 3 cycles; the store
instruction at line 4 incurs a far access penalty of 8 additional cycles for accessing a vector
different from the one previously accessed in line 2. Lines 16-22 perfpfichaperations

from they vector at the maximum rate of 1 every 2 cycles; the load instruction at line 16
incurs a DRAM controller read/write mode switch penalty of 4 additional cycles as a
result of reading from the same vector written to by the previous memory access instruc-
tion at line 13. Finallylines 24-2 perform pfld operations from the vector at the maxi-

mum rate of 1 every 2 cycles; the load instruction at line 24 incurs a far access penalty of
8 additional cycles for accessing a vectofedént from the one previously accessed in

line 22.

Summing together access times, far access penalties and read/write mode switch penalties
yields a total of 48 cycles per daxpy_1 infaop iteration; at 8 floating-point operations

per 48 cycles, this is an estimated computation raé7d¥flops at 40 MHz. The esti-

mated computation rate for the daxpy_1 operation compares favorably to the measured
rates found in the graph of Figure 6.

Figure7 DAXPY_1Inner Loop Code

/I (prev) - refers to a value associated with the previous iteration
Il prime(") - refers to a value associated with the next iteration

.inner_loop:

1) d.pfmul.dd f12,f30,f2 Ila*x3:axl
nop

2) d.pfadd.dd f18,f2,f10 /'yl + ax1 : s3 (prev)
pf Id.d r20(r24)++,f24 /I'x'0 & load x'3

3) d.fnop /I pause for data
nop

4) d.fnop
fst.d f4,r20(r26)++ /I store sO (prev)

5) d.fnop /I pause for data
nop

6) d.fnop /I pause for data
nop

7) d.fnop
fst.d 6,r20(r26)++ /I store s1 (prev)

8) d.fnop /I pause for data
nop

9) d.fnop /I pause for data
nop

10) d.fnop
fst.d 8,r20(r26)++ /I store s2 (prev)

11) d.fnop /I pause for data
nop

12) d.fnop /I pause for data
nop

13) d.fnop
fst.d f10,r20(r26)++ /I store s3 (prev)

14) d.fnop /I pause for data
nop

15) d.fnop /I pause for data

nop

22

16) d.fnop

pf Id.d r20(r25)++,f26 /I xX'1 & load y'0
17) d.fnop /I pause for data
nop
18) d.fnop
pf Id.d r20(r25)++,f28 /I x'2 & load y'1
19) d.fnop /I pause for data
nop
20) d.fnop
pf Id.d r20(r25)++,f30 /I x'3 & load y'2
21) d.fnop /Ipause for data
nop
22) d.pfmul.dd f12,f24,f2 /la*x0:ax2
pf Id.d r20(r25)++,f16 /1'y'0 & load y'3
23) d.pfadd.dd f20,f2,f0 Ily2 +ax2:0
nop
24) d.pfmul.dd f12,f26,f2 /la*x'1:ax3
pf Id.d r20(r24)++,f18 /l'y'1 & load x"0
25) d.pfadd.dd f22,f2,f4 /I'y3 +ax3:s0
nop
26) d.pfadd.dd 0,f0,f6 /I push : s1
pf Id.d r20(r24)++,f20 /1'y'2 & load x"1
27) d.pfmul.dd f12,f28,f2 la*x2:ax0
bla r17,r23,.inner_loop /I branch to top of loop
28) d.pfadd.dd f16,f2,f8 /I'y'0 + ax'0: s2
pf Id.d r20(r24)++,f22 /1'y'3 & load x""2
4.3.3 DAXPY 2

Figure 8 lists the inndoop code for the daxpy_2 implementation of the daxpy operation.
Like the daxpy_1 implementation, daxpy_2 is unrolled to a depth of 4 and performs pipe-
lined operations and data prefetching. Howenemory references in the daxpy_2 imple-
mentation do not conform to the memory access guidelines of 3.3; though like memory
accesses are grouped and performed at the maximum rate at which they can be satisfied,
pfld requests from the andy vectors are alternated.

Referring to Figure 8, and again assuming that vector operands have no DRAM pages in
common, a performance estimate for the daxpy_2 implementation can be derived. Begin-
ning with line 4, there aref4t operations to thg vector performed at the maximum rate

of 1 every 3 cycles; the store instruction at line 4 incurs a DRAM controller read/write
mode switch penalty of 4 additional cycles as a result of storing to the same vector read by
the previous memory access instruction of line 2. Lines 16-2 pepitdroperations alter-
nately from thex andy vectors for a total of 8 loads; all loads incur a far access pgnalty
requiring a total of 10 cycles each.

Summing together access times and penalties yields a total of 96 cycles per daxpy_2
innerloop iteration; at 8 floating-point operations per 96 cycles, this is an estimated com-

Performance of the iPSC/860 Node Architecture 23

putation rate oB.3 Mflops at 40 MHz. The estimated computation rate of the daxpy_2
operation compares favorably to the measured rates found in Figure 6.

Figure8 DAXPY_2Inner Loop Code

I (prev) - refers to a value associated with the previous iteration
/I prime() - refers to a value associated with the next iteration

.inner_loop:
1) d.pfmul.dd f12,f30,f2 /la*x3:axl
nop
2) d.pfadd.dd 18,f2,f10 /'yl + ax1 : s3 (prev)
pf Id.d r20(r25)++,f24 /X0 & load y'1
3) d.fnop /I pause for data
nop
4) d.fnop
fst.d f4,r20(r26)++ /I store sO (prev)
5) d.fnop /I pause for data
nop
6) d.fnop /I pause for data
nop
7) d.fnop
fst.d 6,r20(r26)++ /I store s1 (prev)
8) d.fnop /I pause for data
nop
9) d.fnop /I pause for data
nop
10) d.fnop
fst.d 8,r20(r26)++ /I store s2 (prev)
11) d.fnop /I pause for data
nop
12) d.fnop /I pause for data
nop
13) d.fnop
fst.d f10,r20(r26)++ /I store s3 (prev)
14) d.fnop /I pause for data
nop
15) d.fnop /I pause for data
nop
16) d.fnop
pf Id.d r20(r24)++,f16 /l'y'0 & load x'2
17) d.fnop /I pause for data
nop
18) d.fnop
pf Id.d r20(r25)++,f26 /I'x'1 & load y'2
19) d.fnop /I pause for data
nop
20) d.fnop
pf Id.d r20(r24)++,f18 /l'y'l & load x’'3
21) d.fnop /Ipause for data
nop
22) d.pfmul.dd f12,24,f2 /la*x0:ax2
pf Id.d r20(r25)++,f28 /Ix2 &load y'3
23) d.pfadd.dd f20,f2,f0 /ly2 +ax2:0
nop
24) d.pfmul.dd f12,f26,f2 /la*x1:ax3
pf Id.d r20(r24)++,f20 /l'y'2 & load x”0
25) d.pfadd.dd f22,f2,f4 /1'y3 +ax3:s0
nop
26) d.pfadd.dd 0,f0,f6 /I push : s1
pf Id.d r20(r25)++,f30 /I x'3 & load y”0
27) d.pfmul.dd f12,f28,f2 /la*x2:ax0
bla r17,r23,.inner_loop /I branch to top of loop
28) d.pfadd.dd 16,2,f8 /I'y'0 + ax'0: s2
pf Id.d r20(r24)++,f22 /l'y'3 & load x"1

24

4.3.4 DAXPY_Y*

Figure 9 lists the inndobop code for the daxpy_y* implementation of the daxpy opera-
tion. In contrast to daxpy_1 and daxpy_2, the daxpy_y* implementation caches the
operand; it is assumed that this operand is aligned on either a 16- or 32-byte houndary
allowing two double-precision values to be loaded with a siitdjlastruction. Like

daxpy_1 and daxpy_2, the daxpy_y* implementation is unrolled to a depth of 4 and per-
forms pipelined operations and data prefetching. Though it is not immediately obvious
from the listing, all memory references in the daxpy_y* implementation conform to the
memory access guidelines of 3.3; this will become apparent as the daxpy_y* code is
examined.

Referring to Figure 9, line 5 issuefidrequest for the next two elements of yheector;

on a cache hit this instruction executes in a single cycle, a cache miss initiates a cache line
load of the next 4 elementsyfin performing a cache line load, a cache line write-back

may occur; if this is the case, 4 elements ofytkiector are written back to main memory

Once thdld instruction of line 5 has completed, lines 6-4 perforpil&operations from

thex vector at the maximum rate of 1 every 2 cycles; note the use of the dummy load on
line 2 to prevent the DRAM controller from initiating an idle-state transition, as described

in 3.2.3. The instructions referencing theector which are interleaved with the instruc-

tions reading th& vector will all be cache hits and as such will not interfere with the

loading ofx elements; this is an important aspect of the daxpy_y* iloogr code. Thus,

the daxpy_y* operation adheres to the guidelines of 3.3 as accesses to each vector operand
are performed in sets, like memory operations are grouped and all accesses are performed
at the maximum rate at which they can be satisfied by the memory system.

A performance estimate can be derived for the daxpy_y* implementation in the same
fashion as for daxpy_1 and daxpy_2; in doing so, one must take into account both the
cache line load and write-back which may occur with the executioficbirestruction.

In the description above, all cache line operations occur as a resulfldfitis¢ruction of

line 5; this is the case when theector is aligned on a 32-byte boundaiheny is

aligned on a 16-byte boundary only the first cache line operation is initiated at line 5, all
others result from thiéd instruction of line 7; in this case, lines 8-6 perform tipél&

Performance of the iPSC/860 Node Architecture 25

operations from thg vector without interference. The performance of the daxpy_y* oper-
ation is the same for eithgvector alignment.

Figure9 DAXPY_Y* Inner Loop Code

I (prev) - refers to a value associated with the previous iteration
/I prime() - refers to a value associated with the next iteration

.inner_loop:
1) d.pfmul.dd f12,f30,f2 /la*x3:axl

fst.q f4,r27(r26)++ /I store s0, s1 (prev)
2) d.pfadd.dd 18,f2,f10 /'yl + ax1 : s3 (prev)

pf Id.d 0(r24),26 /I x'1 & RE-load x'3
3) d.pfmul.dd f12,f24,f2 /la*x0:ax2

fst.q 8,r27(r26)++ /I store s2, s3 (prev)
4) d.pfadd.dd f20,f2,f0 Ily2 +ax2:0

pf Id.d r20(r24)++,f28 /I x'2 & load x"0
5) d.pfmul.dd f12,f26,f2 /la*x1:ax3

fld.q r27(r25)++,f16 I1y0&y1l
6) d.pfadd.dd f22,f2,f4 /l'y3 +ax3:s0

pf 1d.d r20(r24)++,f30 /' X'3 & load x"1
7) d.pfadd.dd fo,f0,f6 /I push : sl

fld.q r27(r25)++,f20 1y2&y'3
8) d.fnop

pf Id.d r20(r24)++,f0 /I ditch dummy & load x"2
9) d.pfmul.dd f12,f28,f2 Ila*x2:ax0

bla r17,r23,.inner_loop /I'loop test - exit when 4 remain
10) d.pfadd.dd 16,12,f8 //'y0 + ax0 : s2

pf Id.d r20(r24)++,f24 /' Xx"0 & load X3

4.4 \AXPY Operation

A routine which we will refer to agaxpy standing fovector axpyimplements a double-
precision vector operation of the form:

Y «ax+y

wherea, X, andy are vectors andx implies elementwise vector multiplication; as demon-
strated in 5.1, the vaxpy operation is useful in implementing matrix-vector multiplication
for diagonally sparse matrices. The graph of Figure 10 depicts the asymptotic and static
performance of the vaxpy implementations vaxpy_Xx*y*, vaxpyaxyl vaxpy_y; the

curves for all three have the characteristic shape associated with operations which cache
one or more vector operands, as described in 4.3.1. Both the vaxpy_x*y* and vaxpy_Xxy
implementations cache tlxeandy operands, the vaxpy_y implementation caches only the

y operand; vaxpy_x*y* assumes cached vector operands to be aligned on either a 16- or
32-byte boundaryallowing two double-precision values to be loaded with a siijle
instruction. For all performance measures, vector operands are stored with a stride of 1.

Implementing vector operations with more than two vector operands, at least one of which
is cached, often requires compromise in attempting to adhere to the memory access guide-
lines of 3.3; coding is further complicated when trying to implement an operation which

26

performs well under conditions of both asymptotic and static performance. The following
examines the vaxpy_x*y* implementation and discusses these issues.

Figure 10 Performance of Various VAXPY Implementations

asynptotic vaxpy_x*y* ——
static vaxpy_x*y* ——-
asynptotic vaxpy_xy & -
static vaxpy_xy -x--
asynptotic vaxpy_y —=2--
static vaxpy_y —*--

18
164 ¢
144

124

M | ops

(x,y,a: stride 1 access)
T

T T T T T T
32 256 512 768 1024 1280 1536 1792 2048
Vector Length

4.4.1 VAXPY_X*Y*

Figure 1L lists the innetoop code for the vaxpy_x*y* implementation of the vaxpy oper-
ation. Like the daxpy implementations of 4.3, vaxpy_x*y* is unrolled to a depth of 4 and
performs pipelined operations and data prefetching. The memory access pattern for the
vaxpy_x*y* implementation will not in all cases conform to the memory access guide-
lines of 3.3; this will become apparent as the code is examioesimplify the discussion

of the vaxpy_x*y* code, the issue of data cache thrashing is ignored.

Given that thex andy vectors for vaxpy_x*y* may each be aligned on either a 16- or 32-
byte boundaryit is not known a priori whicHd instructions have the potential to initiate
cache-line loads. Unlike the daxpy_y* implementation of 4.3.4, the vaxpy pffgrand

fld instructions can not be interleaved indiscriminately; for vector operations with more
than 2 vector operands, doing so can result in more DRAM page misses pévopner
iteration than the total number of vectors being accessed. Therefore, a conservative
approach is taken in implementing the vaxpy_x*y* inlo&p codefld instructions which
reference the same vector operand are grouped.

Referring to Figure 1, lines 7-8 issufld requests for the next 4 elements ofxhesctor
and lines 9-10 issu& requests for the next 4 elements ofyttvector; on a cache-hit each
of these instructions executes in a single cycle, a cache-miss initiates a cache line load of 4

Performance of the iPSC/860 Node Architecture 27

elements from the corresponding vectorperforming a cache line load, a cache line
write-back may also occutines 12-6 issupfld requests for the next 4 elements ofdhe
vector; thestinstructions of lines 1 and 5 will be cache hits and as such will not interfere
with the loading of elements. Thus, accesses to each vector operand are performed in
sets and like memory operations are grouped.

Under the conditions for measuring static performance, all memory accesses for the vax-
py_x*y* implementation are performed at the maximum rate at which they can be satis-
fied by the memory system; the 2 consecutive cache line loads from, and potential write-
backs to, th& andy vectors are immediately followed bypfld operations from tha vec-

tor issued at a rate of 1 every 2 clock cycles. Consequénthtatic performance the vax-
py_x*y* memory access pattern conforms to all memory access guidelines of 3.3.

In deriving the uppebound on asymptotic performance for the vaxpy_x*y* implementa-
tion, it is assumed that adlandy vector accesses result in data cache hits; in this case, the
execution of 4fldinstructions from tha vector is followed by a 5 cycle delay as ele-
ments ofx andy are loaded from the data cache and a control-transfer instruction is exe-
cuted. Thus, under conditions for measuring asymptotic performance, vaxpy_x*y*
accesses are not performed at the maximum rate at which they can be satisfied. As dis-
cussed in 3.2.3, this delay in vaxpy_x*y* memory access fc&ut to allow the DRAM
controller to initiate an idle-state transition; the net penalty to asymptotic performance is 3
cycles additional overhead incurred by pifiel instruction at line 12, the 8 cycle far access
penalty resulting from the DRAM controller idle-state transition minus the 5 cycle delay
between accesses.

Figure11l VAXPY_X*Y* Inner Loop Code

/I (prev) - refers to a value associated with the previous iteration
/I prime() - refers to a value associated with the next iteration

.inner_loop:
1) d.pfmul.dd 126,f10,f0 /lal*x1:0
fst.q f4,r28(r26)++ /I store s0, s1 (prev)
2) d.pfadd.dd f0,f0,f24 /I push : s2 (prev)
pf Id.d r20(r27)++,f14 /l a3 & load a2
3) d.pfmul.dd 128,f12,f2 /l a2 * x2 : a0Ox0
nop
4) d.pfadd.dd 16,f2,f26 /I'y0 + a0x0 : s3 (prev)
pf Id.d r20(r27)++,f8 /l a0 & load a'3
5) d.pfmul.dd 30,f14,f2 /l a3 * x3 :alxl
fst.q f24,r28(r26)++ /I store s2, s3 (prev)
6) d.pfadd.dd f18,f2,f0 /lyl+alx1:0
pf Id.d r20(r27)++,f10 /l a1 & load a’0
7) d.pfmul.dd f0,f0,f2 /I push : a2x2
fld.q r28(r24)++,f24 /X0 &x'1
8) d.pfadd.dd f20,f2,f0 IIy2 +a2x2:0
fld.q r28(r24)++,f28 1Ix2 &X'3
9) d.pfmul.dd f0,f0,f2 /I push : a3x3
fld.q r28(r25)++,f16 Iy0&y1l
10) d.pfadd.dd f22,f2,f4 /'y3 +a3x3:s0
fld.q r28(r25)++,f20 1y2&y'3
11) d.pfmul.dd 8,f24,f0 //a’'0*x0:0
bla r17,r23,.inner_loop /I loop test - exit when 4 remain
12) d.pfadd.dd f0,f0,f6 /I push : s1
pf Id.d r20(r27)++,f12 /l a2 & load a1

28

Without data cache control, implementing aficednt vector operation which caches more

than one operand is complicated by data cache thrashing. In the discussion of the dax-
py_y* implementation in 4.3.4 it is assumed that for a single cached optsicopmkra-

tions hit in the data cache when performed on vector elements from the most recent cache
line load; in the case of multiple cached operands, a cache line load from an operand dif-
ferent from dstinstructions taget operand can potentially force a write-back of thgetar

cache line prior to thistinstructions execution. When implementing vector operations
which modify one of two or more cached operands, the last cache line load prior to the
execution of dstinstruction should be thstinstructions taget.

4.5 Implementation Guidelines for \éctor Operations

As demonstrated in the examples of 4.3 and 4.4, the structure efanperode has a sig-
nificant impact on the overall performance of a vector operation. The following presents
guidelines for implementing vector operation irte@p code in a manner consistent with
the i860 architecture and RX-1 memory system characteristics:

» Unroll innerloop code and utilize the i8@)dual-instruction mode to simultaneously
perform pipelined floating-point operations and data prefetching; for implementations
which cache vector operands, unrolling to a depth of 4 is convenient given that a data
cache line accommodates 4 double-precision values.

» Structure innefoop code around memory access instructions; a vector opesation’
memory access pattern should conform whenever possible to the memory access guide-
lines of 3.3.

» Excepting DRAM page misses which result from cache line write-backs, the number of
page misses in a well structured int@p should not exceed the number of vector
operands being accessed. For cached vector operands, if vector alignment is known a
priori then it can be determined whifttl instructions have the potential to initiate
cache line operations; in this capld andfld instructions can be interleaved in such a
way so as not to force extraneous DRAM page misses.

» To reduce data cache thrashing in vector operations which modify one of two or more
cached operands, the last cache line load prior to the executidst ofsdruction
should be théstinstructions taget.

 If a cached vector operand is aligned on either a 16- or 32-byte boundadouble-
precision values can be accessed with a sfidyta fstinstruction; this is often conve-
nient for structuring inneloop code and may improve performance. For a single
cached operand aligned on an 8-byte boundiaeyalignment can be adjusted to a 16-
byte boundary by performing the vector operation on the first element of each vector
operand. In the case of multiple cached operands, alignment adjustment can be per-
formed on at least one vector; if a cached vector operand is modified, its alignment
should be adjusted since it will be referenced by Hdthndfstinnerloop instructions.

The task of implementing anfeefent vector operation is simplified if the context in which
it will be used is known in advance. More often, implementifigieft vector operations
is the art of compromise; whenever possible, Mloep code should be structured so that

Performance of the iPSC/860 Node Architecture 29

under conditions of both static and asymptotic performance, memory access patterns are
consistent with the characteristics of the RX-1 memory system.

5.0 Sparse Matrix-Vector Multiplication

This section examines matrix-vector multiply algorithms which fgrm Ax whereA is

a sparse matrix. In particulalgorithms for diagonally sparse and completely sparse
matrices are presented. For each type of matrix, storage schemes and implementation
issues are discussed for optimizing performance on the RX-1.

5.1 Diagonally Sparse Matrix-\éctor Multiply

A diagonally sparse matriis a matrix composed of a relatively few non-zero diagonals;
such matrices arise frequently in practice, for example in the discretization of elliptic par-
tial differential equations [9]. Due to the relativelyg@ampercentage of zero elements in

each row and column of a diagonally sparse matrix, it is common practice to store only the
non-zero diagonals; in performing operations involving such matrices, the diagonals
become the natural vectors.

A matrix-vector multiply algorithm which operates on the diagonals of a matrix is
described in [8]; given an x n matrix A

.
/A

/

and a vector of lengthn, the producAx can be represented as:
AX = Agx <+ Ap® <t L <HAXTTL > Ax g +> A X0 g (EQ 3

where X = (X Xp) @ndXp = (X1,-+-Xn-i)

In (EQ 3),Ax'" ! andA i are elementwise vector multiplications where the vedtors

are the diagonals &f; Ag denotes the main diagonal,...,A denote diagonals aboyg,
andA_y,...,Aq denote diagonals belowor diagonally sparse matrices, only the non-zero
vectorsA; participate in the computation. Since the vectors of (EQ 3) areferfedit

lengths, the operator <+ is defined as vector addition in which the shorter vector is added

30

to the first components of the longer vector; similadHg operator +> is defined as vector
addition in which the shorter vector is added to the Iast components of the longer vector
For example, in the operatidgx <+ Alx the vect0|A1x of lengthn — 1 is added to the

first n — 1 components of the vectdgx.

The formation of an elementwise vector product and its subsequent addition to another
vector is simply the vaxpy operation of 4.4; all implementations of (EQ 3) presented here
incorporate either vaxpy_y or vaxpy_xy as the iAoep. To distinguish between various
implementations of the multiplication by diagonals algorithm, the following notation is
adopted:

mbd_<cached operaref{<cached operarrel

where ‘mbd’ stands for ‘multiplication by diagonals’; thgwanent enclosed in ‘{}' is
optional. In the naming scheme above, theathed operarwl is the same operand
cached by the vaxpy innéyop.

5.1.1 Strip-mining MBD_Y and MBD_XY

In implementing the multiplication by diagonals algorithm of (EQ 3) to fgrm AX,
strip-miningis employed to promote reuse of cached data. Dividing the riaamx the
result vectow into partitions conS|st|ng qf rows each allows a portion gfto be cached

as the corresponding portlons,thk'+ andA X, are being computed and summed; this
strip-mining process is represented graphically in Figure 12. Depending on the relative
positions of the non-zero diagonalAnperformance may further be improved by caching
x vector elements as well; this is discussed in detail below

To facilitate the discussion on strip-mining (EQ 3), the tpamition resultis defined to
mean the value of a given patrtition of theector resulting from the summation of the
productsA,x'+ andA jx,.; computed within the corresponding partition of Aeatrix.

Ignoring the issue of cache control, three factdiecaperformance in computing a given
partition result: the numbglength and position of the non-zero diagonal vectors which
pass through the correspondis@artition. The number of non-zero diagonal vectors in a
givenA partition places an uppeound on the number of times a cacliexnt x vector ele-
ment can potentially be accessed in computing that partition result. The length of a diago-
nal vector in a giveA partition places an uppeound on the maximum computation rate
of the vaxpy innetoop for which that vector is an operand. Finglhe absolute position

of a diagonal vector in a givexpartition determines which elementsyaindx are
accessed by the vaxpy inAepp operating on that diagonal; in computing a partition
result, the relative positions of all non-zero diagonals determines which elemgiatsdof

x are accessed more than once.

Elements of the vector should only be cached in the case where adjacent non-zero diag-
onals of matrixA are close enough so that vaxpy operations performed in computing a
given partition result access adarpercentage of the samelements; vaxpy inndoop

Performance of the iPSC/860 Node Architecture 31

operations involving diagonals which are far apart will have fieany, x elements in
common.

The partition sizg is chosen as the st value such that the total number of vector ele-
ments cached in computing a given partition result does not exceed data cache capacity; if
only elements of are cached thep = 1024, when caching botk andy values

p = 512. Maximizingp increases the length of the diagonal vectors in a diygartition

and reduces the total number of partitions and any associated bookkeeping overhead.

Figure 12 Strip-mining the Multiplication by Diagonals Algorithm (y = Ax)

L _ N _ L
Y1 Af X1
p .
. A
. e AO :
Al
2p .
Aq
[Yn | | AN _ | Xn_|

5.1.2 Effectsof Data Cache Thrashingon MBD_Y and MBD_XY

A matrix A is defined as a diagonally sparse matrix suchAba# 1, Ag, A; andA, are

the only non-zero diagonals. Assuming data cache control as described in 4.1, it is possi-
ble to derive an approximate computation rate for the matrix-vector multiply operations
mbd_y and mbd_xy in forming the prodyct= Ax. In computing a given partition result,

the first of the vaxpy inndoop operations executes at approximately the static perfor-
mance rate for vectors of lengtp; 2his takes into account the initial cache line write-

backs which occur for all but the first partition. The remaining 4 vaxpy-loongeropera-

tions execute at the theoretical maximum asymptotic performance rate; given theédmatrix
defined above, this is true even in the case of a vaxpy_xylom@since products involv-

ing adjacent non-zero diagonals have all butonector element in commonaxpy per-
formance data is taken from the graph of Figure 10; for simplalitgiagonal vectors in a
givenA partition are assumed to be of lengttDeriving an approximation under the con-
ditions stated above yields a computation rat® ©Mflops for the mbd_y operation, and

13.7 Mflops for mbd_xy; actual performance will be somewhat less due to the bookkeep-
ing overhead involved in strip-mining.

The graph of Figure 13 depicts the static performance of the operations mbd_y and
mbd_xy when applied to the matrix A for various dimensigriiese measurements were
made under the random cache line replacement policy described in 4.1. As a result of data
cache thrashing, both operations perform below the projected computation rates derived
above; the dference in projected performance and measured performance for the mbd_y

32

operation is approximately 16%, for the mbd_xy operation tiferdiice is approximately
45%.

While the performance of both the mbd_y and mbd_xy operations is below that achiev-
able if it were possible to utilize the data cache control mechanism, it is the mbd_xy oper-
ation which is most adverselyfefted by data cache thrashing; to achieve theoretical
maximum asymptotic performance the vaxpy_y iAnep of mbd_y requires 1/3 of the
vector elements accessed to be cache resident, the vaxpy_xioomef mbd_xy

requires 2/3. Given a matrix consisting of only 5 non-zero diagonals, in computing a given
partition result the vaxpy innédoop operation is not executed afstiént number of times

for the ‘cache sorting’ &ct described in 4.2 to significantlyfedt vaxpy performance.

Thus, as demonstrated in Figure 13, cackimngctor elements only nginally improves
performance even under optimal conditions in which all adjacent non-zero diagonals
reside at a distance of 1.

Figure 13 Performance of MBD_Y and MBD_XY

M1 ops

(y,x, A stride 1 access)

T T T T T T T
512 1024 1536 2048 2560 3072 3584 4096
Matrix Size (nxn)

5.1.3 Effectsof Strip-miningon MBD_Y

The graph of Figure 14 depicts the static performance of the operations mbd_y and
mbd_y ns when applied to the matfixdefined for 5.1.2; in mbd_y_ns the *_ns’ stands

for ‘non-strip-mined’ and signifies that this operation is an implementation of (EQ 3)
which does not employ strip-mining. Both mbd_y and mbd_y _ns incorporate vaxpy_y as
the innefloop.

The curve for the mbd_y operation in Figure 14 is relatively flat, though performance is
somewhat better in the case whare 2p. Since the data cache is flushed prior to per-

Performance of the iPSC/860 Node Architecture 33

forming each mbd_y operation, fewer cache line write-backs occur in computing the ini-
tial partition result than occur in computing subsequent partition results; thus, the
computation rate for the initial partition result is higtk@r n > p, the higher performance
experienced in computing the initial partition result is amortized across all partition result
computations.

The mbd_y_ns curve is similar in shape to the asymptotic performance curve for vaxpy_y
depicted in Figure 10; as cache capacity is reached at a diagonal vector length of 1024,
performance drops bfapidly and degrades to a level somewhat below the static perfor-
mance of vaxpy .y

Strip-mining improves performance of the mbd_y operation by dividing t#eetor into
partitions which can be accessed by the vaxpy_y -loogr for a number of consecutive
iterations without exceeding data cache capaGityenn > p, strip-mining reduces the
number of times an elementyfs loaded from main-memory to the data cache and amor-
tizes the cost of eaghelement load with every reuse.

Figure 14 Performanceof MBD_Y and MBD_Y_NS

—+—
e et R

M| ops

nbd_y —-—
nbd_y_ns —+—-
2_
(y,x, A stride 1 access)
T T T T T T T
512 1024 1536 2048 2560 3072 3584 4096

Matrix Size (nxn)

5.2 Completely Sparse Matrix-\éctor Multiply

A completely sparse matrig a matrix with no discernible structure and a relativelydar
percentage of zero elements in each row and column; such matrices arise frequently in
engineering problems, for example in the analysis of power distribution systems [1]. Stor-
age schemes for completely sparse matrices usually involve the storage of each non-zero
element and its associated row and column position; the data structure used in storing this
information is generally optimized for the matrix operation to be performed [3][13].

Given ann x n completely sparse matr&with N non-zero elements, in implementing a
matrix-vector multiplyy = Ax on the RX-1, elements éfare stored in a single vector of
triples (i,.j,, &) Whereay is a non-zero element éfin position (i, j,) and1<ks<N.
This vector of triples is referred to and can be defined in tiEprogramming language
as an array of elements of type

typedef struct {
| ong i,j;
doubl e a;

} t_elenent;

or in Fortran as aequivalencédetween a double-precision and an integer aEigmnents
of t are stored in row order such that given two adjacent elerigfsa,) and
(s s p s) theni iy, 5 if i, =i, thenj, <j,, ;. The vectorx andy are
stored a® element double-precision arrays.

In the storage scheme for the RX-1 defined above, placing non-zero elements with associ-
ated row and column positions in a single vector reduces the total number of vectors
accessed in performing = Ax; consequentlyfor a single iteration of the matrix-vector
multiply algorithm, the minimum number of DRAM page misses is reduced. An alterna-
tive scheme is to stor§,.a,) pairs in one array and define a second arrayetéments

pointing to the beginning of each row in the first; the total amount of storage space is
reduced at the cost of increasing the number of vectors to be accessed.

5.2.1 Implementation of CS MVM

Figure 15 lists the inndoop code for cs_mvm, standing for ‘completely sparse matrix-
vector multiply’, which implements a matrix-vector multiplicatipr= Ax utilizing the
storage scheme described above. For a given obmatrixA, the innefloop code of
cs_mvm computes the corresponding vafueach iteration of the cs_mvm inAeop
code performs a singg = yi, +ay Dkjk operation, the loop executes once for darrh
the set of(i,.j,, a,) with the same, valle.

The cs_mvm inneloop performs data prefetching in the same manner as the daxpy and
vaxpy operations of 4.3 and 4.4, respectivielgwever since the number of elements in a
given row is unknown, the cs_mvm infleop is not unrolled; a test is performed after
reading eaclii,.j,, a,) to detect a change in rows. In addition, floating-point operations
are performed in scalar rather than pipelined mode; this avoids having to drain the float-
ing-point pipelines with each row change. The ratio of core instructions to floating-point
instructions is stiiciently lalge so that core instructions can be executed during the time
periods in which the floating-point unit is engaged in performing a scalar operation.

In performing cs_mvm for the completely sparse matrix-vector muliipty Ax, only

elements ok are cached; triple valudg,j,, &) from thet vector are loaded via thpéld
instruction. Elements of thevector may be accessed in any ortlez reference pattern is

a function of theA matrix structure; since references are not predictable, data cache con-
trol is not an issue. As discussed in 4.1, data cache thrashing can potentially occur for val-

Performance of the iPSC/860 Node Architecture 35

ues of the matrix size such that the number of elements iexceeds one-half data cache
capacity; i.en>512.

Of particular interest in the cs_mvm indleop code is the manner in which thendjy
values ofi,.j,, &) are loaded from thievector Referring to Figure 15, thgfld instruc-

tion of line 1 loadsy andjy as a single double-precision value; given that integers require
32 bits, both andj fit in a single floating-point register paliefxfr instructions of lines

5-6 transfer the andjy values to integer registers in the core unit; once transferred, the
value ofj is used in théld instruction of line 9 as anfskt into thex vector and the value

of iy is used in lines 8 and 10 to test for a change in rows.

Thefxfr instruction allows composite values to be accessed vi#lthestruction in an ad

hoc fashion, though thefettive load rate is reduced by the overhead incurred in transfer-
ring values to the core urstinteger registers; a more elegant implementation qfftde
instruction would allow values from the load pipe to be directed to either the floating-point
or core unit register files.

Based on the memory system performance data of 3.2, an approximateanpdewer

bound can be derived for the performance of the cs_mvmiooeicode; the assumption

is made that the, y andt vectors do not have any DRAM pages in common. Given that
thefld instruction of line 9 is a cache hit, the execution pfl@instructions from thé

vector is followed by a 6 cycles delay as the appropriate elemen$ tdaded from the

data cache and a test is made to detect a change in rows. As discussed in 3.2.3, this delay
in cs_mvm memory access isfatient to allow the DRAM controller to initiate an idle-
state transition; the net penalty is 2 cycles additional overhead incurreddfigtistruc-

tion at line 1, the 8 cycle far access penalty resulting from the DRAM controller idle-state
transition minus the 6 cycle delay between accesses. Thus, theboppdron cs_mvm
innerloop performance is 13 cycles for 2 floating-point operations, achieving a computa-
tion rate of6.2 Mflops at 40 MHz.

If the fld instruction of line 9 is a cache-miss then the resulting cache line load requires 13
cycles, a net DRAM page miss overhead of 5 cycles plus 2 cycles for each of the 4 double-
precision floating-point loads. Tipdld instruction of line 1 is stalled by the cache-line

load for a net delay of 6 cycles, as discussed in 3.2.4. Summing together instruction execu-
tion times and access overheads yields a kinwend on cs_mvm inndoop performance

of 29 cycles for 2 floating-point operations, or a computation ra2e88dfflops at

40 MHz.

When a change in row valuggs detected in the inndoop code of Figure 15, the loop
exits; before the inndoop is reentered the computed vajyes stored, thg; accumula-
tion register is zeroed and a test is performed to detect further valligg oé,) to pro-
cess. For rows of the matmxwith few elements, the bookkeeping overhead which is
incurred after computing a given valyecan become a significant portion of theom-

36

putation cost; thus, the lowbound on performance for the entire cs_mvm computation is
below that of the cs_mvm inn&rop of Figure 15.

Figure1l5 CS MVM Inner Loop Code

Il prime(") - refers to a value associated with the next iteration

.while_i_eq_old_i:

1) d.fmul.dd 16,f20,f24 Il'a* x[j]
pf Id.d r30(r16)++,f18 /lti_tj &load t.i_t.j”
2) d.fnop Il pause for mult (3)
nop
3) d.fnop Il pause for mult (2)
pf Id.d r30(r16)++,f16 /l @’ & load a”
4) d.fnop Il pause for mult (1)
nop
5) d.fxfr f19,r19 I transfer to j
pf Id.d 0(r16),f0 / discard & RE-load a”
6) d.fxfr f18,r20 /l transfer to i
nop
7) d.fadd.dd f22,f24,f22 Il'y + ax
shl 3,r19,r19 /I j * sizeof(double)
8) d.fnop /I pause for add(2)
xor r20,r21,r0 /l'i==old_i?
9) d.fnop /I pause for add (1)
fld.d r19(r17),f20 11 x[j]
10) d.fnop
bc.t .while_i_eq_old_i /I branch to top of inner while
11) d.fnop
nop

5.2.2 Performance of CS MVM

The graph of Figure 16 depicts the static performance of the cs_mvm operation for various
dimensions of the matrixA. For a given matrid, the parametet is defined as the

matrix densitywhered is the maximum number of non-zero elements which reside in any
given row ofA. In generating a matrix for measuring performance, the number of non-
zero elementgy in each row oA is drawn from a uniform distribution over the integers in

the interval[0,d] ; likewise, the column positigp of each elemergy is drawn from a uni-

form distribution over the integers in the inter{ah].

For a given matrix size, increasing the densitytends to increase reuse of cackedhl-
ues and decrease the number of extrame]duads which occur as a result of the cache
line load procedure; the performance of the cs_mvm operation increases accordingly
Converselyfor a given densitg, increasing the matrix sizetends to decrease reuse of
cachedq values and increase the number of extrangjdoads; the result is a decrease in
cs_mvm performance as demonstrated by the graph of Figure 16 indvkics0 for all
values ofn. Furthermore, fon > 1024 the number of elementscached while perform-

Performance of the iPSC/860 Node Architecture 37

ing cs_mvm may exceed data cache capacity; if this is the case, performance of the
cs_mvm operation degrades as a result of data cache thrashing.

Figure 16 Performanceof CS MVM (d=50)

cs_nvm —o—

M| ops
w
1

(y,x,t: stride 1 access)

512 1024 1536 2048 2560 3072 3584 4096
Matrix Size (nxn)

6.0 Summary

From examining the RX-1 processoemory interrelationship in detail, guidelines have
been established for implementing operations in a manner consistent with the i860 archi-
tecture and memory sub-system characteristics; as demonstrated throughout this paper
operations which adhere to these implementation guidelines achieve a level of perfor-
mance well above those which do not. It is interesting to note that nearly all of the guide-
lines presented in 3.3 and 4.5 relate to generating access patterns amengédikento ef
memory system operation.

The ability to perform some level of data cache control is important in implementing oper-
ations to make &ctive use of the data cache; this is well demonstrated in the diagonally
sparse matrix-vector multiply of 5.1 where operating under a random cache line replace-
ment policy reduces performance by as much as 45%. Though the i860 does provide a
data cache control mechanism, it is only available in supervisor mode; this is an unfortu-
nate implementation decision since making data cache control available in user mode
compromises neither system performance nor security

The RX-1 computational node exhibits a basic imbalance between processor speed and
memory system bandwidth. For example, given that in pipelined mode the i860 can pro-
duce one double-precision multiply result every 2 clock cycles, the-bpped on per-
formance for the vaxpy operation of 4.44i3Mflops at a clock rate o0 MHz. To

38

sustain a vaxpy computation rated®fMflops, the RX-1 memory system must satisfy 60
million load and 20 million store operations per second; this is 4.5 times the bandwidth
available from even the fastest access modes, ignoring DRAM page miss and DRAM con-
troller read/write mode switch overheads.

For a computer system to functiorigéntly as a whole, a balance must be maintained in

the performance of its individual components. As this study of the RX-1 computational
node suggests, further research is needed to develope memory system architectures which
can better support the demands imposed by high performance processors such as the i860.
Basic scientific computational kernels which operate on vectors tend to generate very reg-
ular access patterns, given the proper memory system architecture it should be possible to
exploit these regular access patterns to increase memory system performance.

Performance of the iPSC/860 Node Architecture 39

Bibliography

[1] Baumann, R. “Sparseness in Power Systems Equationge Sgrarse Sets of
Linear Equations: Proc. Oxford Conf. Inst. Math. Appl. - April 1970, Aca-
demic Press, Nework, NY, 1971, pp 105-126.

[2] Bokhari, S. “Communication Overhead on the Intel iPSC/860 Hypercube”,
ICASE, NASA Langley Research Centelampton, WA.

[8] Geoge, A., and Liu, J. “Computer Solution of garSparse Positive Definite
Systems”, Prentice-Hall, Englewood @ifNJ, 1981, pp 138-152.

[4] Intel Corporation, “i860 64-Bit Microprocessor Hardware Reference Manual”,
ISBN 1-55512-106-3, 1989.

[5] Intel Corporation, “i860 64-Bit Microprocessor Programiaéteference Man-
ual”, ISBN 1-55512-080-6, 1989.

[6] Nugent, S. “The iPSC/2 Direct Connect Communicatiethmology”, Proc.
3rd Conf. on Hypercube Concurrent Comp. and Appl., ACM, Nevk,Y
NY, 1988, pp 51-60.

[7] Lawson, C., Hanson, R., Kincaid, D., and Krogh,Basic Linear Algebra Sub-
programs for Fortran Usage”, ACMans. Math. Softw5, 3, Sept. 1979, pp
308-323.

[8] Ortega, J. “Introduction to Parallel anddtor Solution of Linear Systems”, Ple-
num Press, Newofk, NY, 1988, pp 50-53.

[9] Ortega, J., and Poole,.\WAn Introduction to Numerical Methods for Déiren-
tial Equations”, Pitman Publishing, Marshfield, MA, 1981, pp 268-275.

[10] Scott, D., and \thers, G. “Performance and Assembly Language Programming
of the iPSC/860 System (Preliminary)”, Intel Scientific Computers, Beaver-
ton, OR, 1990.

[11] Sedra, A., and Smith, K. “Microelectronic Circuits”, CBS College Publishing,
New York, NY, 1982, pp 748-753.

[12] Serang, O. “drious Features of Fujitsu DRAMs”, MOS Memory Products,
Fujitsu Microelectronics, 1989, pp 1:3-24.

[13] Tewarson, R. “Sparse Matrices”, Academic Press, Nefk, WY, 1973, pp 1-1.
[14] Zilka, A., Intel Scientific Computers, personal communication, March 22, 1991.

