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1 Introduction

During the last decade the performance of microprocessors has increased by a factor of
50% to 100% per year. During the same period the performance of affordable (DRAM)
memories has risen less than 10% per year. This growing disparity between processor and

memory speeds will be one of the most pressing problems, and hence most influential fac-

tors in computer architecture, compilers, and algofithms for at least the next decade.

Given the importance of the overall problem, NSF sponsored a workshop to examine the
. full spectrum of relevant issues ~ including chip technology, architecture, caching, new

* concepts in hierarchy, compiler optimization, programming languages and techniques, and
algorithms. Since “memory performance” is not a research area per se it does not have a
single, separate research community. Although many of the important players know each
other and meet pairwise at various conferences, there is no forum for a comprehensive
analysis of the problem. The NSF Workshop on High Performance Memory Systems pro-
vided such a forum. : : ‘

The objective of the workshop was to perform a comprehensive assay of the situation and
- suggest a synergistic research agenda for each of the areas that collectively will make a
significant impact. This report contains the recommendations of the attendees.

The steering committee for the workshop consisted of Bill Wulf (U. Virginia), Jim Aylor -
(U. Virginia), John Hennesy (Stanford), Randy Katz (Berkeley), Ken Kennedy (Rice), Ed
Lazowska (U. Washington) and Alan Smith (Berkeley). The workshop convened in Char-

lottesville Virginia on April 12-13, 1993, |

High Performance Memory Systems 1



2 Background

‘As noted above, although the amount of memory available has increased apace, the grow-
ing disparity between processor and memory speeds is likely to be a dominant concern for
computer architects, compiler writers, algorithm designers, and users for at least the next
decade.

Further compounding the issues is the increasing use of high performance microproces-
sors in scalable parallel systems. Both the absolute performance of these processors and
their phenomenal price/performance ratios make them natural candidates for building
large scientific machines. This use, however, further strains the memory system and adds
the complexity of bandwidth as well as latency, dealing with the interconnection network,
and the possibility of nonuniform access times.

Finally, the memory must be considered in the context of the total system; /O as well as
processor demands on it must be considered. Hence, issues traditionally considered in the
domain of operating systems also play into memory system performance.

~ While it is not clear whether some new, unanticipated approach will arise, it seems more -
likely that the “solution” to these problems will lie in a synergistic interplay of evolution-
ary refinements of existing techniques -- caching, data prefetching, memory conscious
architectures, compiler optimizations, etc. In particular, caching has proven to be a robust,
general mechanism for decades; larger, smarter and multi-level caches will undoubtedly
continue to play an important role. Nonetheless, it is time to consider complementary
-ideas.

3 Workshop Mechanics

The objective of the workshop was to bring together experts on each of the facets of the
problem to formulate a set of recommendations fora research agenda to address an overall
solution (those attending are listed in Appendix A). ‘

Prior to the workshop participants were asked to submit a brief white paper sumimarizing
their perception of (a) the status of their area of research relative to the main topic, and (b)
the potential for future work in the area. Copies of the papers are located in Appendix C.

The format of the workshop was designed to miaximize interaction and facilitate the pro-
duction of this report. Lengthy presentations were avoided in favor of group interaction.
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To stimulate discussion, four plenary panel sessions were organized around topics raised
in the white papers:

+ Session I: General Prqbiem {Chair John Hennessy)
+ Session 2: Software Status (Chair Ken Kennedy)
» Session 3: Research Directions (Chair Alan Smith)

+ Session 4: Memory Systems (Chair Randy Katz)

The participants were then divided into three working subgroups covering software, mem-
ory systerns, and cpu/architecture issues. These subgroups were charged with formulating
ihe-recommendations of the workshop, and the remainder of this report is organized
around their reports. Panelists from the above four sessions were distributed-among the
subgroups to ensure that hardware concerns were represented in the software recommen- -
dations, etc.

In addition to the recommendations, a number of interesting remarks by various atteﬁdees
were recorded; these are assembled in Appendix B. They are not direct quotes, but capture
the essence of the point and provide additional insight into the nature of the problem(s)
and research agenda. |

4 Processor Subgroup Report

Attendees: Keith Cooper, Mike Foster, Ken Kennedy, Howard Sachs, Pen~Chi1ng Yew,
Bill Wulf

Charge:  The group was asked to identify important issues in overall system architec-
. ture, especially including instruction set design, that impact memory perfor-

mance.

4.1 Observations and Recommendations Concerning NSF Funding

Due in large measure to the dynamic nature of the computer field, there has been a closer
relation between the “science” and “technology” of the discipline than in many'other
fields. This close relation is mirrored in a similarly close relation and interaction between
academia and the private sector — between research and development.This relation has
been both intellectually and commercially extremely fruitful.
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The nature of the discipline, and its close relation to practical and even commercial devel-
opment, raises questions about the proper nature and role of NSF funding for the field.
Specifically, NSF has traditionally focused on *“pure”, *basic”, ;‘10ng term” research; thus
one can ask whether the sort of problems discussed at this workshop, and indeed all of -

" those involved is “systems building” are appropriate for NSF support.

The answer is unequivocally yes!

For this discipline, at this time in its development, these issues raise fundamental questions
about the organization of computation and the nature of the engines that can effect that
computation. Specifically, the building and analysis of research prototype systems is an
appropriate research methodology for understanding these questions. |

At the same time, NSF should not fund near term development that duplicates industry.

* Therefore, we recommend:
* NSF’s role is to build research prototypes that will not bé built in industfy.' '

+ NSF should fund research that goes beyond the horizon of industry, and should

explore alternatives not being pursued in industry.

» There should be emphasis on collaboration with industry toensure the relevance of
the project. This type of collaboration could be arranged after an initial exploratory

concept-validation project.

For other disciplines at different stages of their maturity we recognize that this may not be
- the proper role for NSF. For this field it is.

4.2 Observations and Recommendations Concerning Architecture

. The CPU/Architecture subgroup had six “top level” recommendations, with a number of
specific examples of each. We first present the top level recommendations and then dis-
“cuss the specifics.
* NSF should support reséarch into scalable benchmark collections so that perfor-
mance evaluation of architectural schemes can be made independent of advances

in the underlying téchnbiogy.
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»  NSF should support research into methods that expose and give the user or system
software (OS and compiler) more control over the memory hierarchy, including

registers, cache, memory, remote disk cache and mass storage.

»  NSF should support research into architectural, software and programming impli-
cations of quantitative changes in base technology that lead to qualitative changes

in the way that a technology is used.

« NSF should support research into alternatives to conventional memory hierarchy
design as pursued by industry, particularly when a change in technology may obvi-

ate some of the assumptions behind the conventional design.

« NSF should support research that explores the implications of large-scale multi-

processors for the design and management of the memory hierarchy.

. 4.2.1 Scalable Benchmarks

This recommendation was actually first made during one of the plenary panel discussions,
but the CPU/Architecture group felt that it was extremely important that it should be
included among their recommendations. Almost all current benchmarks are static, and
their performance improves with each successive hardware generation. This is, perhaps,
useful for deciding which competing system to buy, but it does not help us to understand
whether that system has effectively exploited the technology advances over its predeces-
SO1S.

A “scalable” benchmark is one whose complexity scales with the technology in such a
way that if it requires unit execution time on one generation’s hardware, one would expect
that it would also require unit execution time on the successor generations. If execution
took less than unit time, the implication is that architectural or software innovation has
exceeded the pure hardware advance. If execution took more than unit time, the implica-
tion is that the underlying hardware advance was not effectively exploited.

4.2.2 Exposing The Architecture

In the past one objective of architectural dé'sigh was to make a machine relatively easy and
safe to use; assembly language programming made this essential. However, few if any
programs are still written in assembly language and compiler technology has become

" much better. It is therefore worthwhile reexamining this premise, and possibly expose
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much more of the underlying operation of the machine in those cases where doing so may

improve performance. Examples possibly worth considering include:

.

prefetch: Prefetch instructions have been discussed in the literature, but only one
extant processor includes such an instruction — and it is a nop in the initial imple-
mentation. Moreover,-expression of intent to prefetch of multiple data items (as

opposed o scalars), should be investigated.

cache management. Modern compilers sometimes know a good deal about when
data will and will not be used. After a step of a blocked algorithm, for example, the
compiler could inform the cache to flush certain data. In other cases, the compilerb

could control a set associative cache to avoid conflicts.

memory map manipulation: A great deal of copying of data might be eliminated if

safe user-level manipulation of the virtual memory map were possible.

These may or may not be good ideas in themselves — the real point is that the traditional

assumption that these kinds of functions should be automatic and invisible to the program-

mer are not necessarily valid any longer.

4.2.3 Implications of Qualitative Changes

. Sufficiently large quantitative change can induce qualitative change. There are enough

quantitative changes happening simultaneously to suggest that we should investigate

whether these are about to either invalidate prior assumptions or provide new opportuni-

ties to improve memory performance. For example:

»

The next generation of processors will clea.riy be true 64-bit machines. This at least
creates the possibility of 64-bit instructions, and raises the question of how so
many bits would be used for a sihgie instruction. For example, one could use a full

64-bit instruction to name very large register sets (effectively a local memory)?

In the same vein, caches were the “right solution™ in an era when compiler technol-
ogy was less sophisticated than now. Is it conceivable that with current or foresee-
able compiler technology, an explicitly managed local memory (or large register -
set) would be more effective? A cache is, after all, a reactive device; in many cases

a compiler knows likely future execution paths and could be proactive.
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»  The broad adoption of object-oriented programming could potentially reduce
locality (at least data locality), and require rethinking caching strategies. Data
derived from traces of “pre-OOP” programs may not be representative of future

program behavior.

Again, these may not be gooci ideas in themselves —- the point is that it is time to examine
some of the generally accepted assumptions.

4.2.4 Alternatives to Conventional Memory Hierarchies

The current memory hierarchy has served us very well indeed, and it may continue to do
s0. Nevertheless, the degree of the growing discrepancy between. processor and memory
speeds suggests that in its role as funder of longer term :esea:ch, the NSF should begin
exploring alternatives. The creativity of the research community is probably the best
source of new ideas, however a few examples might be: |

. Ex'plicitly managed local memories, as discussed above. In particular the trade-off

between cache and large register sets should be explored.

+ Reordering of accesses. Modern DRAM isn’t really “random access” any longer;
that is, the time to access a particular cell now depends upon the prior history of
requests. Thus, to get the most from these devices the order of requests must be
managed — both compile-time and run-time mechanisms to-do this should be

explored.

4.2.5 Implications of Large Scale Multiprocessors

The trend to use production microprocessors as the compute engines of scalable multipro-
cessors will continue. This trend compounds each of the issues mentioned above, plus
adding another set of its own. For example,

» Prefetch doesn’t really work for “do across” concurrency; a form of data fqrwardu

ing is needed. What is the proper architectural support?

* Coherence in a scalable shared memory system can be costly. Perhaps with com-
piler help not all data references need to be kept coherent. Should we consider sep-
arating coherent and non-coherent load/store instructions and permitting the

compiler to emit the latter when it can prove that coherence is not required?
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S Memory System Subgroup Report

Attendees: Jean-Loup Baer, Forest Baskett, Doug Clark, Garth Gibson, Charley Hitch-

cock, Norm Jouppi, David Wood

Charge:  The group was asked to identify important issues in memory systems design,

including storage systems.

The Memory System Subgroup began by asking why anyone, but NSF in particular,

should focus research on the memory problcm, and decided that there are at least three

important reasons.

Intensive applications on current machines can spend 1/2 to 2/3 of their time wait-
ing for memory, e.g., Gray’s sort benchmark on an Alpha system takes under 10
seconds, with 6.5 seconds of that waiting for memory. Future machines will be

worse. This trend hinders the exploitation of rapidly increasing processor speed.

As machines become more capable, we find larger and more complex problems to
solve, e.g., national libraries, human genome, real-time speech and video, etc. Sig-
nificant advances in technology, architecture, software, and algorithms are

required to keep pace with these rapidly changing demands.

The United States is the leading innovator in computer systems. We have a signifi-
cant competitive advantage and should strive to keep it. This advantage has been

fostered by significant government investment in research, and close ties between
academic researchers and industry. NSF needs to continue to encourage cross fer-

tilization between industry and academia.

In order to conduct research on memory systems, there must exist an “infrastructure” that

includes:

[

Application Characterization: Memory system researchers need a deeper under-

standing of key problems, such as national libraries, real time speech, Navier

| Stokes, HD-TV, multimedia, and the human genome project. Classical problems

such as dense linear algebra are relatively well understood throughout the commu-
nity. However, many researchers are unfamiliar with the characteristics of these
other problems, particularly on parallel machines. Work that identifies the essential

nature of these problems to the community at large would be extremely valuable.
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* Design Verification Tools and Techniques: As hardware design becomes largely a
matter of writing software, design verification has emerged as the most time-con-
suming and error-prone part of the process. More powerful design verification
tools and techniques are needed to eliminate this bottleneck and reduce the design

cycle.

* Compiler Infrastructure: Past research has shown that compiler optimizations can
significantly improve memory system performance. However, because a good
optimizing compiler represents many person-years of work, this research has been
limited to those few institutions with mega-funding. Research in compiler/memdry
system interactions could be funded more efficiently by supporting a common
compiler infrastructure, just as Berkeley UNIX and Mach have facilitated operat-

ing system research.

*  Simulation Infrastructure: Studying compiler/memory system interactions requires
both an optimizing compiler and a real or simulated memory system. Simulation
" infrastructure should be supported so that researchers are not forced to replicate

the simulation framework.

Given this infrastructure, the group identified a number of major areas that NSF should
fund or continue funding: DRAM interfaces, Processor/cache interfaces, Cache Hierar-
chies, Shared memory coherency and communication, Virtual memory and translation,
Disk Caching and Parallel Storage, and Prefetching support. Below is a brief discussion of
~ the key needs in each of these major areas.

5.0.1 DRAM interfaces

The standard RAS/CAS DRAM interface was designed with an emphasis on low-cost and
' high-density. As microprocessor cycle times continue to decrease, the Jimited bandwidth
available from this interface becomes an increasing bottleneck. A new DRAM interface is
central to enabling future systems to exploit the potential of next generation processors.
While several new interfaces have been propose to address this problem, it does not
appear that a consensus will soon emerge. The heart of this debate focuses on cost/perfor-
mance trade-off: the PC market--which dominates DRAM sales--is very cost sensitive,
while the workstation and massively-parallel processor markets demand higher band-
width.
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The group felt that academia could play a critical role in analyzing and evaluating the
alternatives, perhaps developihg a new interface that balances the needs of the competing
markets. One reason to believe a compromise may be possible is that future PCs will sup-
port “multi-media” capabilities--such as real-time video--and hence require much higher
bandwidth than current systems.

- 5.0.2 Processor/Cache Interfaces

Current generation microprocessors are designed for PCs or workstations--not high-per-
formance MPP-class machines. These micros tend to be optimized for applications that
exhibit significant locality, and consequently do not provide the bandwidth required by
large-scale scientific computations. Research is needed to find an interface that appropn«-
ately balances cost and bandwidth requirements for diverse appl1cat10ns

5.0.3 Cache Hierarchies

* As transistor densities increase, the role of on-chip and off-chip caches change. For exam-
ple, some researchers have suggested that multiple levels of on-chip cache are neéess’ary
to balance competing demands for bandwidth and capacity. Continued research is required
to understand these trade-off, including traditional issues such as size, associativity, and
write policy, as well as more aggressive techniques such as non-blocking caches, multi-
porting, multiple banked caches, and hardware and software prefetching. In particular,
some industry participants felt that non-blocking caches are difficult to implement and
verify, making this a fertile area for collaboration between academia and industry.

In addition, research is needed to understand how trends in applications will affect cache -
- performance. For example, object-oriented programming results in fundamentally differ-
ent access patterns, which cache designers must take into consideration.

5.0.4 Shared Memory Communication and Computation

"~ Shared memory is an important paradigm for large-scale parallel machines. However,
researchers have not yet reached a consensus on how this paradigm should be supported.
A key requirement in reaching this consensus is to understand the communication and
computation demands of real parallel programs. While much has been learned about the
behavior of dense linear algebra, there are many other important codes, e.g., Navier
Stokes, that have fundamentally different structure. We need to understand the bandwidth
' requirements, access patterns, and synchronization requirements of these and other sparse

codes. What demands do these applications place on the memory system and interconnec-

High Performance Memory Systems 10



tion network? What are the correct metrics for evaluation? Aggregate memory bandwidth?
Bisection bandwidth?

5.0.5 Virtual Memory and Translation

Microprocessor archifectures are moving rapidlly to support 64-bit virtual addresses. How-
ever, little research has been done to understand the impact of this massive address space
on applications, operating systems, and memory system implementations and perfor-
mance. Does a large address space enable new applications and algorithms, such as study-
ing the human genome? What mechanisms must hardware support to efficiently exploit
these large address spaces, e.g., super-pages? What are the implications of managing very.
large virtual address spaces? Of managing very 1_arge physical memories?

5.0.6 Disk Caches and Parallel Storage systems

Research into redundant disk arrays (or RAID) is not diminishing and should receive con-.
tinued support. Industry is picking up the technology, but the vast majority of participating
companies are too small to be capable of doing or funding broad-based research into this
area. Larger companies have started in-house development groups, but their patenting
efforts seem to limit their ability to foster this fledgling marketplace. There is an industrial
organization, the RAID Advisory Board, that has the goal of developing a RAID market-
place. Unfortunately, this group of mainly technical marketing representatives led by

~ industry consultants, is focusing on standardizing RAID technology rather than encourag-
ing new basic research. Now, as we begin to see a broad spectrum of computer science
researchers address this area, the first performance models and new organizational con-
cepts for on-line transaction processing applications have appeared. Sustained funding for
systems experimentation, theoretical issues in scaling to massive parallelism, and applica-
tions-directed solutions should ensure that basic advances continue to broaden the effec-
tiveness of this new techhology.

5.0.7 Prefetching: Hardware vs Software

Recent research results indicate that software-controlled prefetching can be extremely _
effective in hiding memory latency. Similar results indicate that hardware-initiated
prefetching can also be effective. Determining the proper balance between hardware and ‘
software remains an extremely important research area, because of the significance of the
potential performance improvements. Continued research is needed to determine the
trade-offs of prefetching into different levels of the memory hierarchy, level of hardware
support, granularity of data, and interaction with cache coherence protocols. It is
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extremely-important that this research incorporate realistic implementation factors, mak-
ing it an excellent opportunity for academic/industry collaboration.

6 Software Subgroup Report

Attendees: Susan Eggers, John Hennessy, Randy Katz, Monica Lam, Alan Smith, Steve
Scott | '

Charge: The grbup was asked to identify important issues where software can impact
memory performance, including algorithm design, compilation techniques,

coding practice, etc.

We feel strongly that entire of discipline of software research needs to pursue a more |
uantitative, comparative methodology in the research process. The current state of the
field, by and large, focuses on algorithm development coupled with some limited proto-
type implementations, but little comparative empirical studies are pursued. New work is
not placed in the context of quantitative improvements-to the existing body of knowledge.
Experin‘ients are not._repéatable in a scientifically meaningful way. And all too often,

- experiments lack real and relevant measurements.

To remedy this situation, the Software Subgroup makes the following recommendations:

»  Software researchers should work with real systems, or at the very least, large

pieces of software representing major subsystems.

. Softwaré research should be driven by real world applications and realistic work-

loads.
« To obtain access to these, it is important for software researchers to work with
industry. '

* The research community should demand comparative, quantitative results in its
publications and research proposals. New ides should be evaluated on their ability

to demonstrate a real improvement to the existing state of the art.

» The research community should focus on collecting real system measurements, not
only those that are easy to measure. For example, all too many researchers focus

on miss rates rather than total system performance.
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* The community should support on-going technology exchanges with industry.
Faculty researchers should work actively with industry, either by regular consult-

ing, close collaborative research or “co-op” programs.

Systems research typically falls into two categories: simulation-based studies and proto-
typing activities. Both are important, and should be encouraged, but encouraged for
answering the right questions. '

To facilitate prototyping activities, the community needs substrates upon which to build its
prototypes rather than starting from scratch. In this regard, the operating system commu-
nity is in a stronger situation than the compiler community. V-node file systems and micro-
kemel operating systems make it easier to prototype (and trace) new file systems. A
similar research infrastructure is needed for compiler researchers. Part of the reason for
lack of progress in this regard for the compiler community is that we are just now realizing
that a compiler is a “big program.” The kind of modular decomposition found in modern
operating systems has no analogies in modern, memory conscious compilers.

The Working Group recommends that some research funding should be directed to those
activities that characterized by building infrastructure in support of prototyping activities,
All funded research should be “credible,” along the lines of the criteria described above.
Today, there exists a significant funding hole for medium-scale software projects, at the
level of a few faculty and several grad students. Such projects could be successfully pur-
sued should the appropriate infrastructure be put in place. By focusing on credibility, we
believe that existing research would improve in quality. While the construction of such
research infrastructure may be beyond the usual scope of NSF support, NSF éupport could
complement such activities.

In the above, we have focused on prototyping activities. There continues to be a strong
need for work in fundamental inventions and evaluations across all the software areas.
However, it is important to avoid research on theoretical approaches that are demonstrably
in conflict with reality. |

6.1 Technical Directions

We begin by listing those technical directions that are worthy of continued research sup-
port. Each area is characterized by three metrics: impact, speculativeness, and effort.
Impact qualifies the potential effect on the field of research in this area. To some degree
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we have downgraded impact when we thought that solid research effort in the area were

already underway. Speculativeness qualifies the risk of the area. A highly speculative area

means that some ideas may turn out to be highly useful while many will fail. And finally,

. effort describes the level of funding needed to demonstrate quality of ideas.

The five reséarch areas are the foliowing. The first three are particularly singled out for

high priority efforts:

Architecture-directed Compiler Research

Potential Impact: High; Speculativeness: Low; Effort: High

Research in File and /O Systems |
Im;')act:'High; Speculativeness: Medium-Low; Effort: Medium
Language Research ' )
Impact: Very High; Speculativeness: Very High; Effort: Low-High
Research on Applications Behavior and Improvement

Impact: Medium,; Speculativenesé: Medium,; Effort: Medium

Parallel and Memory Sensitive Performance tools

Impact: Medium; Speculativeness: Low; Effort: Low

These are described in more detail in the following sections.

6.1.1 Architecture-Directed Compiler Research

- There are a catalog of techniques under investigation that have the potential for improving

application performance, both for memory and secondary storage. These include the fol-

lowing:

-

Prefetch

Loop Transformations
Data Restructuring
Coherence Management
Code Scheduling '

Run-time Determination of Compilation
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»  Whole Program Compilation. In particular, we need to understand the behavior of

the whole program in order to do a credible job of data restructuring and extraction

of parallelization.

In general, many of these techniques are well understood for programs that manipulate

arrays. However, they are not understood at all for more application-oriented data struc-

tures.

6.1.2 File and I/0 Systems

The I/O access gap continues to increase, and is likely to continue to widen for the fore-

~ seeable future. The important research issues include the following topic areas:

Disk Cache. In this area, there still exists a need to understand the algorithms for
cache operation, how to exploit parallelism in the design of the disk cache, the
effect of cache parameter choice on total system performance, and the issues of

disk cache consistency in a parallel environment.

Evaluation of new file and I/O techniques. New I/O architectures like RATD and
file system approaches like log structuring need to be evaluated with real work-

Joads, such as production commercial and scientific environments.

Caches and Buffers. The role of disk caches and operating system-managed /O
buffers need to be evaluated within the context of new technologies like RAID
arid/or LCFS. '

File Migration Studies. The studies done in this area are over ten years old, while

" the underlying technologies have undergone radical challenges. They should be

revisited in the context of new workload demands and new multi-level storage

technologies.

Shared data management. New algorithms need to be developed and evaluated for

(real) management of shared data in distributed and MP systems.

6.1.3 Language Research

We believe that there are significant opportunities in developing new language extensions

. (as opposed to new computer languages) that are applications specific. In particular, we

are interested in extensions that ease the expression of parallelism and enhance locality.
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We call these “application structures.” For example, little is known about how to specify
and compile tree data structures in modern compilers. Another example is sparse matrix
support, with the related need to develop compiler algorithms to discover and exploit non-
regular access to data structures. There is a strong relationship between research in com-
piler techniques and research in extending computer languages.

Besides the data structure .speciﬁca‘tions‘, a second area of language research involves the’
specification of the user’s model of the underlying memory system. How much does the

user need to specify? How much does s/he need to know about the details of the memory
hierarchy? An aspect of any such a model must be like an onion skin. In other words, the.
user can exploit more details in order to get more help from the system. The hints that are
specific to a given machine should be discouraged, while hints that are specific to a given
applications should be encouraged. In any event, no hint should change the semantics of

the program.

6.1.4 Applications Behavior and Improvement

Since we can’t fix the application after it is written, an important research direction is to
work on ways to express the algorithm correctly the first time. Such specifications are not
just architecture driven, but should be influenced by applications as well.

A critical need is to find new ways to provide performance feedback to applications devel-
opers. They must understand the behavior of their applications in order to drive the cycle
of improving program performance. '

.6.1.5 Parallel and Memory Sensitive Performdnce tools

Geod work in performance tools is currently underway, but more needs to be done. The
tools are critical if applications designers are to be able to write better programs. They
play a major role in providing the feedback mechanism to users. In particular, applications
developers should be able to use such tools to obtain direct quantitative measures of the
effects of their hints on the performance of the application.

Performance tools make possible the kind of quantitativé, credible research we called for
in Section I above. There should be some emphasis on documentation/distribution of
existing tools, to make them available to a wider research community than the group who
originally developed the tools. This should be considered part of the necessary “infrastruc-
ture” for supporting the software research community.
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7 Summary

A short workshop cannot hope to invent and enumerate all aspects of a research agenda
for a problem as critical and complex as this one. We hope that we have made three essen-
tial points, however:

* The problem is a critical one.
~» Business as usual is unlikely to solve this problem; new ideas are required.

* This is the sort of problem requiring building, measuring and/or experimenting

with “real” systems, and NSF should fund this sort of research.
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Appendix B: Interesting Remarks

. During the workshop, a number of interesting interchanges occurred, and we have tried to
capture a few of them here. These are not direct quotes, but attempt to fairly represent the
point that the speaker made. Have grouped these by topic area.

General Remarks

Howard Sachs: OOP needs simulation and research dollars and it’ll be a big win
for industry since we’re heading down this path. We still don’t know the extent of
the OOP effect on memory systems. '

Ken Kennedy: We should fund more compiler research (said with grin).

- Susan Eggers: In order to determine general fundmg directions, we need to: deter-
mine what the probiems really are (by doing research to explore this). Let thc prob-
lems drive our hardware and software solutions. We need to emphasize “bottom

- line” techhology, use real workloads, use execution time as the performance met-
ric, and develop good software platforms for real measurements and comparison.

Howard Sachs: We need more compiler and language PhD students. Will there
exist a DRAM problem in the year 20007 yes and no. Will 90% of industry have a
problem? no -- because they’ll be using PCs. So where’s the problem? worksta-
tions object-oriented programming multiprocessdrs (not for 8-processor SMPs, but
déﬁnitely for 500-processor MPPs -- and this will be a bandwidth problem, rather
than a latenCy one).

Ken Kennedy: Base technology drives what we’re doing in the architecture com-
munity. Should this also be driven by compiler and applications people?

Ken Kennedy: Our research has to be linked to technological trends in order for it
to have any impact -- if we look ahead too far and technology takes a different
turn, even interesting research might become “useless”.

Alan Smith: The major problem with proposals is reviewing. If you get better
reviewers, better projects will be funded, and better research will be done.’

Alan Smith: A bunch of graduate students usmg a toy file system does not repre-

sent real workloads.
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Alan Smith: We need a co-op program in industry for faculty, similar to one for |
students.

Howard Sachs: We need standards in order to influence semiconductor manufac-
turers. We have to solve problems architecturally at a level above that of the
DRAM cell. ‘

Concerning Research Infrastructure

Dave Wood: How do we evaluate the benefits of hardware support for memory per-
formance? We NEED a simulation platform. We need a standard intermediate form
to communicate much of the compiler analysis to machine-dependent backends in
order-to make use of all the hardware’s resources. Right now it’s hard to separéte
the analysis from the algorithms that make use of that information.

Concerning Benchmarking

Steve Scott: We want benchmarks to scale with the underlying raw technology in

order to gauge how effectively we’re USING that technology. We need to extend

benchmark suites to other areas; for instance, we want a graphics benchmark suite,
or an object oriented benchmark suite.

Concerning Architecture
Pen Yew: Packaging constraints (clusters) correspond well with application code.
The memory hierarchy should be visible to OS, compiler, and user/language.
Bill Wulf: Compiler/architecture interactions are the thing to look at.

Ken Kennedy: Memory organization should only be exposed to the user if the
OS/compiler is lousy. We need to hide the memory hierarchy from users.

John Hennessy: Once you tell user about fnemory hierarchy and locality, what/how
do you tell them? We need a memory model to_explain to programmers.

Bill Wulf: The question is where structurally dissimilar hierarchies can be
described in the same way. -

Susan Eggers: There should be a difference between an actual memory model of a
machihe and an abstract memory model. An abstract memory model should be
used for the programmer -- an actual model is too complicated to explain to a pro-
grammer. |
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John Hennessy: If we tell the user something about the memory hierarchy, it
should be relatively SIMPLE (the same goes for parallelism). “Local” Versus
“Remote” should be a good enough programmer’s model.

Bill Wulf: Don’t forget bandwidth-limited applications. The more improvements
that are made in DRAM organization, page mode; etc., the more important it is to
use these components wisely in order to take advantage of their capabilities to
deliver bandwidth.

John Hennessy: Many techniques to increase bahdwidth also increase latency. We
can buy bandwidth with dollars, but things don’t scale linearly.

Steve Scott: Money can buy bandwidth, but not latency.

Concerning Multiprocessor Architecture

Pen Yew: Designing better memory systems for parallel machines requires better
understanding of parallel program behavior, better benchmarks (we need a com-

" mon suite), more and better performance measures and simulations on future and
existing machines. -

Steve Scott: P < 2M (meaning that the importance of parallelization is less than
twice the importance of memory optimization, in terms of overall importance).

Alan Smith: Bus traffic is so high that multiprocessors are only MARGINALLY -
useful.
Concerning Caches

John Hennessy: There has been more cache research and many more cache papers
{than /O papers) because it’s much easier research to do.

Susan Eggers: Stressing temporal locality isn’t enough. There are too many restric-
tions on how we can use the cache. The user doesn’t get the expected performance.

Steve Scott: We're seeing the same problems with VM -- the user should write
code with locality. "

Garth Gibson: Building larger caches doesn’t scale performance linearly. Doing
this assumes that the workload is constant. The bottom line is that linear increases
in cache size are not sufficient for database and scientific computing applications.
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Alan Smith: Published data indicates that the miss rate goes down with the squére
root of the cache size. Is designing DRAM for use with cache different from
designing DRAM for stand-alone memory systems?

Bill Wulf: (concerning cache coherence) Parts of applications don’t need coher-
ence; can we productively separate access into those that need coherence and those
that don’t? If so, then we needn’t pay for it all of the time. This is another area
where compiler/architecture interaction is important.

Concerning Memory Component Design

Forest Baskett: The biggest thing we need to accomplish is to provide guidance to
DRAM venders. There is a whole set of potential [DRAM organization] improve-
ments posszble (cache, organization, voltage, pmouts, etc.) -- DRAM organization
is a relatively new field.

John Hennessy: The problem is getting everyone to agree on what we should do,
and then sell that to the PC market -- if each improvement remains a “niche tech-
nology”, we're doomed. '

Forrest Baskett: In order to influence technology on this huge growth curve, we
have to provide easy, cheap solutions, or else it won’t be worth it for venders to
make changes. Venders need a volume market. '

John Hennessy: IC and DRAM technologies are giving an exponential growth
curve with respect to size -- and we don’t want this to stop.

Steve Scott: We need to sell ideas to customers in order to get DRAM manufactur-
ers to listen. The PC industry drives the DRAM business, and manufacturers are
scared to introduce anything that isn’t standard RAM.

Concerning What Software can Do

Keith C00pér; Hardware design is based on probability, but users care about per-
formance on THEIR code (the characteristics of which may not match the assump-
tions made when the hardware was designed).

Keith Cooper: What can compilers do? change reference patterns, understand spe-
cific locality, change layouts and alignments at runtime. We need to do things dif-
ferently, and stop doing “more of the same” with respect to larger or greater
numbers of caches.
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John Hennessy: People claim every few years that they have understood the com-
piler field completely and there is nothing left there; but then they keep going back
to it. [ feel that there is lot to be understood and done yet. '

Howard Sachs: Industry is desperate for compiler writers.

Concerning 10

Alan Smitﬁ: Research in FILE and I/O gets much less attention than cache mem-
ory systems, but is no less important.
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Tolerating memory latency

High Performance Memory Systems Workshop

Jean-Loup Baer ,
Department of Cotnputer Science and Engineering, FR-35
University of Washington
‘ . Seattle, Wa 98195

March 1993

1 Motivation

Peak processor performance has now surpassed the 100 MIPS level. With the current VLSI de-
velopments, several functional units, instruction and data caches, and further hardware support
functions can be included on a processor chip. Processors are backed up by very large {several
megabytes) second-level caches and main memory. In the case of shared-memory multiprocessors
or distributed memory systems, the connection to memory can be implemented in a variety of ways
(bus, ring, mesh or multi-stage interconnection network, scalable coherent interface) depending on
the size of the systems. With processor speed increasing very rapidly, and memory latency and
bandwidth progressing at a slower pace, we must investigate techniques to reduce the effects of
memory latency, these eflects being exacerbated by physical constraints (e.g., chip crossings, la-
tency in the interconnection networks) and logical constraints (e.g., cache coherence, hot spots,
synchronization).

The introduction of caches, in the late sixties, was motivated by the goal to balance processor
speed and memory access tiine. Caches have been extremely successful since they not only provide
the desired performance enhancements but also they are completely transparent to the software,
i.e., until now, the introduction of a cache has been an organizational matter, not an architectural
decisioh. However, with larger caches, the cache access time again becomes disproportionate with
the processor speed. Today, even with two-level caching, the cost of memory access is significant
enough so that a system approach must be tiken for the management of the cache hierarchy (e.g.,
flush, fence, prefetch, and poststore iustructions).

In order to put these effects in perspective, consider the following table of memory latencies with a
normalized processor cycle time of 1 (C1is a first-level or on-chip cache; C2 is a second-level cache;
MM is main memory).

1 C1| C2 | MM (close) | MM (far)
100 MIPS weorkstation | 1 6 25-60
(best guesses)
Dash- 1 |5-16) 829 26-132
KSR-1 21 20 150 570
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Let us use as metric the average number of cycles per instruction, or CPL. The component of the
CPI due to cache misses depends on two factors: miss ratio and memory latency. Even with the
very small miss ratios that have been recorded on numerous benchmarks, it is not unusual to see
the average CPI due to cache misses be as much as 2 or 3 because of the high latencies. Thus, the
fact that latencies are very large compared to the processor’s speed implies that cache misses have
~still an important impact on the loss of efficiency of the'system. The memory latency problem that
had been “solved” (in uniprocessors) first by the introduction of caches, then by cache hierarchies,
still confronts the designers of high performance machines. This problem is compounded in shared-
memory multiprocessors because latencies are larger if an interconnection network is used, or there
is more resource contention {e.g., access to a shared-bus, hot spots in access to a memory modtle),
or there is extra communication needed because of the cache coherence requirements and inter-
process(or) synchronization. Since the trend is for the decrease in physical memory latency to lag
behind the increase in processor speed, the CPI increment due to cache misses must be reduced by
methods that decrease the miss ratio and/or hide the memory latency. ‘

Looking at the previous table, we see that a memory reference that results in a miss at the first-level
cache and a hit at the second-level has a penalty of roughly one order of magnitude. Any mechanism
that is meant to reduce the latency between the two lowest levels of the memory hierarchy should
then be non-intrusive. This calls for either a hardware scheme that is not on the critical path and
that does not “steal” cycles from the execution of the instruction stream, or for a software scheme
that can run concurrently with the ordinary stream (e.g.; in a super-scalar processor or one with a
load/store unit and multiple instruction issue). Of course, compiler optimizations can be added at
ro run-time cost to both software and hardware schemes.

When the penalty for referencing memory reaches two orders of magnitude, then spending two
or three cycles on an extra instruction and/or associated address computation is not as critical,
Therefore at this level, one can envision using sophisticated software methods and, if proven useful,
hardware assists at the second-level cache.

Among the hardware-based methods that have been used or proposed, we can list:

¢ Cache hierarchies (now present in many medium to high-performance systems) and cache
assists (write buffers, victim caches)

¢ Lock-up. free caches (with various degrees of sophistication).

o Hardware-based prefetching (from simple sequential stream bulfers to cache-like reference
prediction tables).

o Relaxed memory consistency models {and the hardware assists they require).
On the software side, with an emphasis on the multiprocessor case:

¢ Software cache coherence schemes,
e Data placement (increasing locality and reducing false sharing).

¢ Prefetching and poststoring.
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2 Prefetching

" Looking only at prefetching, the previous discussion leads to the following matrix:

Ci-C2 C2-MM
Hardware Yes Maybe
Special sophisticated | Special unsophisticated
functional unit functional unit
Software Yes if : Yes
super-scalar or Sophisticated compiler
multiple issue

Although we intend in the long run to look at the four elements of the matrix, we have concentrated
on the hardware-based prefetching at the C1-C2 level and on some aspects of software prefetching
at the C2-MM level. ‘

Our current and future research plans are as follows:

Level 1 to Level 2: Hardware-based prefetching

At this level of the memory hicrarchy, we do not make any distinction between the single processor
and the multiprocessor case. Coherence effects should not have a great impact on prefetching to the
first-level cache if some form of inclusion is implemented. Hardware prefetching should be useful
in reducing capacity and conflict misses in the (relatively) small and most likely direct-mapped

first-level cache. -

Our approach has focused mainly on loop-domain references in applications. It combines the dy- '
namic determination of stride information and conventional instruction look-ahead. The variations
on a common scheme consists of a support unit for the C1 data cache, consisting of a Reference
Prediction Table (RPT), a Branch Prediction Table, and associated logic. The RPT is organized
as a regular cache and records the referencing patterns. The key to hiding memory latency is to
keep enough distance between the prefetches and the execution stream so that the prefetched data
arrives just, or slightly before, it is needed.

The type of quéstions that can be asked are:
1. llow complex should the associated unit be? [or example, would a complex scheme, akin

to the Two-Level Adaptive Branch Prediction, have a significant impact on non-numeric
applications (we have evidence that a simpler scheme works well for numeric applications)?

2. Should prefetching be done in the D-cache, or in a buffer, or associated with victim caching
to reduce conflicts misses caused by prefetching too early?

3. What significance have the usual cache parameters (capacity, line size, associativity) and the
amount of bandwidth between the first and second level caches (regular or split bus)?
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Level 2 to Main Memory: Aspects of software prefetching

Software-directed approaches rely on data access patterns detected by static program analysis,
Within the context of the interface between a second-level cache and main memory, and most
importantly in the case of a shared-memory multiprocessor but the same analysis will be valuable
for a distributed memory architecture, a prefetching algorithm must answer the following questions:
when to prefetch (certainly quite far in advance for tight loops), what datais a candidate for prefetch
(the penalty of prefetching unused data is high since there is not only pollution in the cache but
also increased utilization of the interconnect), and what is the size of the prefetched data. The
“same type of algorithm could be designed to poststore: which data should be broadcast, to whom,
and when? -

At this point, we are planning.studies on an architecture hased on a tree hierarchy of busses (we
have an instruction level simulator for that system). The main focus of attention will be the
correlation between prefetching and data placement (where in-the hierarchy should we keep the
prefetched data) in the various clusters and levels of the hierarchy. The data placement problem
should also provide some interesting insights of programming machines relying on message passing
between clusters of processors. Our initial approach will be pragmatic and rely on the application
programmer to insert the prefetch operations and do the data placement. In the long run, we might
want to investigate how this fits within languages such as HPF. '

3  Summary

Means to recuice or tolerate memoty latency is a challenge that cannot be avoided if we want to
take full advantage of current technology. We feel that part of the millions of transistors that are
now present in a single chip could be advantageously devoted to a special-purpose functional unit
for prefetching. We also feel that software prefetching, and associated data placement, is crucial
for improving the performance of programs running in either a shared-memory multiprocessor or a
distributed memory machine. ‘
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Compilers, Microprocessors, and Memory Systems

Preston Briggs
Keith D. Cooper

Rice University
Houston, Texas 7T725H1-1802

1 | Introduction

One hey performance problem in today’s microprocessor-hased computers is the shifting balance between
the speed of a floating-point multiply instruction and the speed of a load instruction. A decade ago, load was
fast and multiply was slow. That situation has reversed over the last five years. Within a couple of years, we
may see systems with processors clocked at three nanoseconds talking to fifty or seventy nanosecond memory
chips. To make eflective use of these {ast processors, the combined hardware-software system must hide this
speed misratch. That will require changes in our compilers, our operating systems, our microprocessors,
and our systems architecture,

This white paper tries to assess the state of compiler techiniques for hiding memory latency. It looks
briefly at trends in memory system desng,n Finally, it suggests a strafegy for deploying our resources, in
both software and hardware, to !m;nove our ability to m'magf* latency in real computations.

2  What can compilers do today?

Recent years have seen a large body of work developed around the problem of providing adequate perf’ormance
on cache-based systems. This section tries to assess what’s possible in compiler-based cache management
today.

Any attempt to improve cache behavior through compile-time techniques must begin by trying to un-
derstand when cache misses occur. Several groups have looked at this problem. Porterfield et al. proposed
a simple scheme for discovering the overflow iteration — the iteration ol a loop where a cache miss must
occur [7,1]. Mowry et al. use another scheme to estimate where cache misses must occur [6]. Both tech-
niques rely on dependence analysis to spot temporal reuse. Spatial locality is usually found by looking at
loop strides. Gannon and Jalby proposed a technique based on reference windows that is an alternative to
dependence-based techniques [3]. Their reference windows allow them to notice spatial locality, too.

Discovering where to improve the code is just the first step. To make the code run faster, we must
transform it so that its bebavior better maps onto the memory hierarchy. Work in this area falls into three

- major categories: blocking, copying, and prefetching.

2.1 Cache blocking .

- Cache blocking {also called tiling or strip mining) is a technique for reshaping the iteration space of a loop
to improve its locality [9, 10,8, 2]. Some loops overrun their reuse - they would reuse values from cache
except that those values have been knocked out of the cache by intervening references. Blocking bmproves
the performance of these loops by bringing references to a single location closer together in time. While the
specific transformations involved in blocking varies from paper to paper, they include loop interchange, strip
mining, loop skewing, and loop reversal.

Blocking improves performance in one specific case: when reuse exists, but the combination of cache and
program behavior results in replacement of data hefore its reuse. Such premature replacement comes from -
several sources:

L. Alignment of data can cause interference (both within a single data structure and between multiple
structures), .

This research is supported by ARPA through ONR. grant NOO014-91-J-1089,

Warning: This paper contains strong opinions ou hardware, We have drawn these opinions from reading and listening, We
Lrave not done the extensive simulation studies that would he required to assess completely the practicality of our ideas.
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2. The number of items used between successive references can exceed the cache’s effective size, ensuring
replacement before reuse,

3. The replacement algorithm implemented in the cache can be a poor match to the program’s actual
behavior,

Blocking directly addresses the second problem. By moving successive references closer together, if increases
the likelihood of successfu! reuse — reuse within the cachie. As a side effect, it may decrease the likelihood of
the other two problems, hut this is an indirect effect. Blocking changes neither alignments nor replacement
policies; it reshapes the iteration space.

2.2 Copying

Copying [4] (or streaming 5]} attempts Lo improve behavior by treating the cache as a fast local memory.
In effect, the generated code treats the cache as a single large array. Values are explicitly copied into the
array before use and modified values are copied back to main memory alter their last reuse. This lets the
code sidestep problems of alignment, stride, and replacement policy; the compiler tries to dictate all data
movement in and ont of the cache. As a further, often ignored benefit, copying can remove TLB misses from
inner loops - making performance [ar more slable.

Copying imposes some overhead. Lam et al. show that the benefits of copying often exceed the over-
head [4]. To minimize the overhead, the map from subscripts in the original code to subscript in the
pseudo-array used to represent cache should be simple. A further problem arises if the instructions used

“to load and unload the cache allocate cache lines thomselves. This introduces a subtle problem with self-
interference - the loads required to copy the data inlo cachie can cause replacements of data already moved
into the cache.

2.3  Prefetch (and Hush)

Both blocking and copying work within a given architecture, The use of an advisory prefetch instraction
offers an interesting alternalive, albeit one that requires carefully designed hardware support.

Conceptually, advisory prefetch is simple. We add an additional instruction to the architecture -
prefetch (expr). It initiates a fetch of the cache line containing (expr) into cache. Barring resource
constraints, this allows the compiler to overlap execution with the time required for the fetch operation -
a clear win. The principal drawback of an advisory prefelch scheme is that it requires modifications to the
hardware. \ _ : ’ _

Researchers have shown that even simple schemes for inserting prefetch instructions can be surprisingly
effective [6, 1]. The decreased time spent waiting for a fetch to complete often more than compensates
for the additional instruction issuc slots required. A corresponding flush instruction might be used to
control replacement when there is a2 mismatch between the hardware-enforced policy and the actual reference
patterns.! ) '

2.4 Assessment

Bach of these techniques addresses the problem of mapping program locality onto hardware cache structures.
Bach has strengths: each has weaknesses. Compilers should use these techniques whenever possible; the
payolfs are large enough to compensate for the extra complexity in the.compiler.

Nonetheless, questions remain about the effectiveness of these techniques on production codes. The
examples shown in papers and talks are almost all small loop kernels. The extent to which these techniques
can improve production applications remains Lo be scen.? Today, we are basically limited to improving the
memory performance of stimple loop nests.

IRemember, LRU replacement. is nol necessarily what we want. 16 s simply a compromise based on statistical properties of
programs. For a specific program, other replacament policies may work hetler,

2A particular coucern is that real loops referenve wiore aggregate data Hems that the associativity of real caclies. Loop
distribution may help in such cases ~ when i is sale and legal.
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3 Trends in hardware

Compilers must target specific architectures. A decade ago, compilers largely ignored specific details of the
memory hierarchy. Today, Lthese details are critical. Thus, we should look briefly at trends in the design
and construction of memory systetns. We will focus on cache issues, but register sets and TLBs are equally
important. . '

Trends in cache design are hard to decipher. New machines have large caches (PA-RISC), small caches
(ALPHA & i860), direct-mapped caches (SPARC & PA-RISC), and set-associative caches {(RS/6000 & i860).
“They implement diverse replacement algorithins: pseudo-random (i860XP), pseudo-LRU (i486}, and LRU
(RS/6000). Some even provide prefetch instructions (ALPHA).

Several larger trends do emerge, however. Cache lines are getting longer. Primary caches, in general,
become larger across different generations of the same architecture. Many systems are being designed
with secondary caches {SPARC-10 & ALPHA-based systems). The one dimenston that is not growing is set
associativity — there is a fundamental conflict between updating the context required for LRU replacement
and increasing associativily. If, in fact, a general trend exists in associative cache design, it is away {rom
real LRU replacement. _— *

Each of these trends is an atlempt to increase the likelihood that a given value resides in cache. I
small caches are good, larger caches should . be better. There is substantial justification for this reasoning.
Unfortunately, most of the arguments in favor of these trends ignore one fundamental fact ~ in many cases,
the compiler can analyze reference patterns, recognize broad styles of locality, and provide the hardware
with hints, :

4 A modest proposal

In the semiconductor industry, it is widely accepted that the number of devices on a single integrated circuit -
roughly doubles every eighteen months. Naturally, this trend Thas provoked speculation about how to use
the massive number of transistors available on a single chip by the end of the decade. Current trends would
niove in the direction of larger on-chip caches and integration of multiple chips on a single die.

With all this extra chip real estate available, we propose taking a different approach to designing a
memory hierarchy. The trends cited in Section 3 can be viewed as “more of the same.” Simply put, larger
caches should produce higher hit ratios. Unfortunately, this strategy produces diminighing returns - it
requires ever more cache for an ever smaller improvement in the hit ratio. The other trends — longer lines,
relaxing replacement policies ~ simplify the construction of larger caches. ‘

Instead of building larger caches, we propose that new architectures provide hardware support for other
~ kinds of locality. The support for prefetch in the ALPHA is a step in this direction. We should take it

further. Rather than providing one principal path from main memory to the register set, we should provide
several paths with diflerent properties. Tor example, we should consider

o Lardware support for gather and scatter operations between a small local memory and main memory.
The success of copying (see Section 2.2) argues for this support.

o a small cache (short lines & large associalivily) to support references that exhibit temporal locality
without spatial locality, like poinlers. Such a cache differs from a register in that it provides address
resofution. Analysis of addresses at compile-time is imprecise. ‘

+ a small, fully-associative cache with compiler-contralied replaceinent. Self-interference due to align-
ment is a problem with small caches; it cannot be sidestepped easily. Let the compiler worry about
replacement with flush instructions.

o support for prefetch and flush in each level of the hierarchy. Such support might include a separate
issue slot dedicaled to prefetch and flush operations. ‘

o non-allocating load and store instructions for two reasons: (1) to handle values that exhibit no reuse,
and (2) to let programs avoid easily detectable forms of self-interference. For example, the pfld
operations on the i8GOXT have proven usclul Lo the Portland Group's compiler [5)].
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o programmable fifo’s like those proposed in Wull’s WM architecture [11]. These can be viewed as
sophisticated, programmable gather-scatler operations for non-reused values; an alternative view is
that they are.tools to let the compiler avoid generating prolog and epilog loops

o hardware support for coherence between these structures, where possible.

Of course, none of these make sense without a smart compiler. The classic primary cache cannot simply
disappear, unless we mandate improvements in basic compiler technology. That seems an unlikely scenario.

In short, compilers can discover different styles of locality, Current cache structures support several of
these well, but fail to help with others. Further, by forcing all references through a single structure, we
decrease the cache's effecliveness on those references where it could belp nost. We should build hardware
that offers different paths from main memory to registers — paths that match the different styles of locality
known to a modern compiler. This lets the compiler provide the hardware with contextual information about
locality - information encoded in the choice of instructions.
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A Note on Microprocessors and DRAMs

Douglas W. Clark
Digital Equipment Corporation
doug@ad.enet.dec.com

March 3, 1993

!

The CPU-DRAM performance gap is clearly a problem on the
horizon—Amdahl’s Law warns us what will happen if we ignore
one portion of the computation while trying to speed up the rest.

—Hennessy and Patterson, CA:AQA, 1990

There is great intuitive appeal in the notion that computers made
of rapidly-improving processors combined with slowly-improving memory

should themselves have a performance improvement rate between the two,.

possibly sagging toward the memory rate over time. Although John and

Dave say that this problem is “on the horizon,” it has clearly been with

us for a decade at least. Thus it may be informative to look at the brief

historical record. . _

_ While parallel-processor systems should see this effect, and bandwidth-
limited applications should see this effect, in this note I will ook only at
access-time-limited applications on uniprocessors. [ will also look chiefly at

hardware issues. ‘ :

\/\/ hat we'd like is a time-series of microprocessor implementations of the
same architecture running the same workload, in order to avoid the con-

founding of effects. Each microprocessor should be measured in a computer.

containing contemporaneous DRAMSs. If the Workshop Hypothesis is true,
we would expect to see the rate of performance improvement of the com-
puters lie somewhere between the rates of improvement of the processors
and the DRAMs; perhaps the rate might even decline over fime, as memory
speed came to dominate processor speed.
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The VAX microprocessor family offers an excellent opportunity to ob-
serve this phenomenon empirically. Between 1985 and 1992 a series of eight
comparable VAX minicomputer/server systems employed four major VAX
microprocessor designs in four generations of semiconductor process, plus
several “shrinks” of a design into the next-generation process. The constant
workload will be the SPEC benchmarks, vintage '89. Over the seven years,
the cycle time of the microprocessors improved almost 20-fold, or at an
annual rate of close to 50 percent. The memory subsystem speed barely im-
proved at all during this time (due in part to the steady growth in memory
size). Thus the memory access time for the first VAX microprocessor was
2 or 3 cycles, and for the most recent ones, it was more like 60 cycles. But
contrary to the Workshop Hypothesis, the performance of the computers, as
measured by SPECmarks, improved at an annual rate of 75 percent.

Here’s another piece of data from two non-microprocessor VAXes I stud-
ied during the Reagan era. The VAX-11/780 had a cycle time of 200 nanosec-
onds, and took 6 cycles to access main memory on a cache miss. The more
recent VAX 8800 had a cycle time of 45 nanoseconds and took 18 cycles
to access memory. Yet in comparative measurements of these machines in

timesharing applications, the average number of cycles-per-instruction spent

waiting for memory actually declined.

What goes on here? Both pieces of evidence—the microprocessor bench-
mark time series and the big-machine timesharing comparison—-seem to re-
fute the hypothesis.

The principal and obvious answer is that the use of caches has more
than compensated for the increasing performance gap. Caches, after all,
make most accesses to main (DRAM) memory simply disappear. In the
VAX microprocessor case, the number of cache levels between processor and
main memory increased over the seven-year history from zero to two. At
the same time, cache size and bandwidth increased, and more sophisticated
buffering schemes were used. In the timesharing comparison, the 8800 had
a cache 8 times bigger than the 780’s, with bigger blocks and better write-
buffering.

I suppose one might object to these data on the grounds that VAX is a
high-CPI architecture to begin with, and so the Workshop Effect would be
seen much more weakly than in a proper modern RISC family. One might
further object that the SPEC benchmarks do not seriously challenge the
memory system in any case. Neither objection holds water. The memory-
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waiting component is certainly a smaller portion of average instruction-
" execution time in a VAX than in 2 RISC, but remember that the data didn’t
show weak evidence for the Workshop Effect, they showed contrary evidence!
(Is there a RISC time series that does demonstrate the effect?) And while
a few of the SPEC benchmarks do quite well in modest-sized caches, some
do not; recall also that the VAX microprocessor history includes machines
with trivial caches and one with no cache,

To be sure, if one simply took the microprocessor of 1985 and mapped it
directly into the technology of 1992, changing only its cycle time, the result
would be a computer that spent nearly all of its time waiting for memory.
But technology improvement gives us more than cycle time: it gives us logic
density, and more density leads to bigger caches, more levels of cache, fancier
buffering schemes, and other organizational improvements.

There are serious issues here, of course. The accretion of cache levels and
write buffers adds significantly to the complexity of an implementation, even
as it increases performance. Cost may increase too, as expensive board-level
secondary and tertiary caches become necessary.

But as the VAX history shows, the Workshop problem, while quite real,
has not been so severe as to have required extraordinary efforts in engineer-

ing or research, Indeed, in my view the hardest technical challenge over this

period at Digital has been the steady reduction of the processor cycle time.
Ordinary engineering efforts, chiefly in cache design, have been enough to
enable system performance improvement to surpass processor performance
improvement. Why will caching not continue to work? .

At around the time that DRAMs were first used in main memories,
there was a concern about a different performance gap: the one between the
access times of memory and disks. Several “gap-filling” technologies were
proposed (remember magnetic bubbles? charge-coupled devices?), but the
gap was ultimately filled by greatly increasing the size of DRAM memory,
thanks to its rapidly improving density and cost. The same thing seems
to have happened in the short history of the processor-DRAM performance
gap. Perhaps the future will be different, and radical new approaches will
be needed. But proponents of this view must explain why, at least in the
uniprocessor case, this has not been true in the past. '
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Compiler Support for Reducing, Hiding and Eliminating Memory
Latency

Susan J. Eggers
Department of Computer Science and Engineering
University of Washington -

1 Prefétching

Current compiler algorithms for cache-based prefetching can fairly accurately predict cache misses that
depend on the configiration of the cache, i.e., capacity and conflict misses, by analyzing spatial and temporal
reuse of data. Based on the analysis they only prefetch data that will miss in the cache, never prefetch data
that is not used and isolate loop iterations that require prefetched data from those that don’t via loop
splitting (for example, [7]). They sometimes do less well in prefetching on shared memory machines, because
of their greater sensativity to additional memory traffic and shared data invalidationsf8].

Future work might include the following:

e Since memory latencies will continue to increase relative to CPU speeds, we should pursue compiler-
based, rather than hardware solutions for prefetching. Compiler-based prefetching can better handle
long latencies, because of its ability to examine a Jonger window of both instructions and data. It
should be particularly successful, when coupled with new static branch prediction heuristics{2].

e Reduce. the uniprocessor cache conflicts induced by prefetching via victim caches and increased asso-
ciativity. '

¢ Develop special prefetching algorithms for shared data, because shared data incurs misses caused by
asynchronous (with respect to the CPU) invalidations. For example, exclusive prefetching of shared
"data with tight use-def sequences. ' '

2 Code Scheduling with respect to Loads

Current code scheduling technology, whose purpose is to hide load latencies from the CPU, includes: (1)
techniques that assume load latencies are fixed (such as load delay slot filling), often coupled with optimiza-
tions that separate loads and uses (for example, loop unrolling); and (2) techniques to handle uncertain
latencies, such as balanced scheduling(5].

Future work:

o Extend all techniques that fill load delay slots to analyze code across basic block boundaries.

¢ Use load scheduling heuristics in conjunction with compiler optimizations that increase the size of basic
blocks. ' '

e Ditto with smart cache prefetching.

o Continue work on architectures that expose load latencies to the compiler, e.g., processors with multiple
hardware contexts, lockup-free caches, load lookahead[l], scoreboarding and other technigues that
enable out-of-order execution.
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¢ This (the multiple hardware context part) means pursuing other areas concerned with support for
medium-grained parallelism, for example, thread placement algorithms (both compiler and operating
systems), fast context switching and medium-grained applications.

3 Eliminating Misses to Shared Data

Current work focuses on (1) reordering memory accesses to eliminate cache misses and global references
through loop restructuring {for example, [4]) and loop blocking (for example, [6]); and (2) restructuring
shared data directly (for example, [3]).

Future work should continue on all fronts.

¢ Compiler-based data placement algorith:ﬁs, both those that reorganize control and restructure data.

¢ Language constructs that allow programmers to help the compiler.

4 Compiler Platform

All of this work, and work similar to it, would greatly benefit from a compiler platform, that was modular
enough to allow easy insertion of new techniques, had good uniprocessor and parallel optimizations and was
available to all university researchers. To continue my campaign for this, I'd like to enclose a white paper
}im Larus and I submitted to the 1992 NSF Workshop on Experimental Research.
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A White Paper

Workshop on High Performance Memory. Systems

Garth A Gibson

School of Computer Science
Carnegie Mellon University
Pitisburgh PA 15213

garth.gibson@cs.cmu.edu

Stafement of Position

With today’s rapidly advancing VLSI and multiprocessor technology, memory system
design has become a critically important performance issue. While effective use of
memory has been an important focus for computer systems development for thirty
years, advances in memory performance greatly lag the rate of increase in system pro-
cessing speed and the rate of increase of application memory use. Unchecked, this
growing perforniance gap might lead to reluctance on the part of tomorrow’s custom-
ers to pay for today’s investment in new processor technology.

The importance of memory system performance has not been overlooked; many dis-

parate computer systems research efforts have recently launched fresh efforts targeted

specifically at mechanisms for decoupling overall system performance from the
impact of slower components in the memory hierarchy. However, but for a few notable
exceptions, modem systems as important as the much heralded “killer micros” feature
simple memory system architectures little different from those of twenty years ago and
radically out of balance with their systems’ processing capabilities. Now is a good
time for us to recognize the central role of memory systems research in tomorrow’s
systems development, to foster evolutionary and revolutionary research in memory

systems, and to encourage established systems development not to neglect memory

systems issues. We must do more than identify and overcome a single bottleneck in
memory systems; we must install a broad emphasis on aggressive and continued
developments at all levels of the memory hierarchy. In particular, concurrency at high
- systems levels must be brought to bear on all levels of the memory hierarchy by way
of optimizing compilers, aggressive prefetching, and memory-sensitive algorithms.
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1. Memory System Performance Probleins

The basic operation of a processor calls for at least one memory access per instruction. As modern
processors drive the cycles per instruction to one (or lower) and reduce cycle time by 40% or
more each year [Gelsinger89), it becomes clear that memory bandwidth requirements are rising
dramatically. In the context of multiprocessor systems sharing memory, processing speed, and the
| corresponding aggregate memory bandwidth required, is growing at well over 100% per year
{Bell89}

The primary technology allowing cycle times to be reduced so aggressively, the miniaturization of
circuit devices, provides an increasing amount of fast memory close to computational circuits,
However, the size of this memory remains very limited relative to the size of most program’s
memory needs. The classical mechanism for providing to programs the appearance of large mem-
ory with performance approaching that of the fastest memory is the extensive use of caching
across a memory hierarchy of progressively larger and slower technologies: on-chip 'stbrage,
static RAM, dynamic RAM, and magnetic disk (and sometimes additional levels built of- optical
disk or optical or magnetic tape) [Burks46].

Memory hierarchies can satisfy rapidly growiﬁ g processor bandwidth requirements if slower lev-
els of the hierarchy can compensate for their less aggressive performance improvements with
rapid capacity increases. This works if cache miss ratios (or equivalently page fault frequencies)
at all levels of the hierarchy decrease at the rate that processor memory bandwidth requirements

increase..

Unfortunately there are multiple reasons to be concerned that capacity increases are not adequate
for the task. Broadly, program memory sizes are getting larger at over 50% per year [Hen-
nessy90). In many cases this means that program localities are spread over more data. This tends
to increase miss ratios;. thereby, spending memory hierarchy capacity increases on holding miss
ratios constant rather than decreasing them. In one study of file cache miss ratios over time, an
increase in average file cache size by a factor of about 15 in 6 years delivered vzrtually no
decreasc in miss ratio [Baker91].

In the case of Iarge scientific applications, program size may be largely determined by available
computing resources (processors and memory) [Gustafson89]; that is, the goals of these applica-
tions are constrained by the availability of memory bandwidth and processing power (my thesis
being that the latter is less of a problem).

For scientific computations on data objects whose access patterns are not highly local, the effec-
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tiveness of additiohal memory (at any level of the hierarchy) is even less. Kung has shown that to
decrease miss ratios proportionally to a processing power increase of a factor of S requires mem-
ory capacity to increase by a factor of 52 for Gaussian elimination, and by a power of § for FFT
{Kung86]. '

The range of important, specific applications whose localities are too large or diverse to benefit
from relatively small increases in memory size is broad. Database applications, especially on-line
-transaction processing systems, frequently access customer data from large data sets in essentially
random 'pattems [Garcia-Molina84].

~

T_he problems in the database area are dramatic. Gray has recently found that the database sort
benchmark (until recently minutes on database machines and 30 seconds on multiprocessor super-
computers) can be executed on a “killer micro” (200 MHz Alpha, model 7000) in under 10 sec-
onds: 1 second idle waiting on a disk array, 6 seconds stalled waiting for main memory, and 2.5
seconds computing [Gray93]. Of course, if the main memory stall time was greatly reduced, it
- would certainly expose unoverlapped disk wait time. With applications like this, increasing com-
putation speed by another factor of two might'reduce execution time by as little as 12% -
Amdahl’s law in action. Unchecked, the growing performance gap between processing and mem-
ory access might lead to reluctance on the part of tomorrow’s customers to pay for today’s invest-

ment in new processor technology.

2. Research Strategies for Memory Systems

The range of current research that is explicitly or implicitly addressing the memory system perfor-
mance problem is already broad, though it needs to be both broader and deeper.

The most evoiﬁtionary approaches certainly deserve careful examination. Into this class 1 place
memory device research: faster SRAM and DRAM, greater RAM parallelism, faster disk technol-
0gYy, iechnologies for new levels in the memory hierarchy (perhaps holographic storage or flash
EEPROM). While some of these approaches will yield concrete alternatives, the impact on cost is
crucial and unclear. I believe that in the absence of impending and ongoing device technology
solutions, higher level approaches offer the best chance of keeping up with processor technology.

I am not confident of processor architecture solutions to memory system performance. Compress-
ing the bandwidth needed per instruction (perhaps by a variety of encoding schemes) seems too
likely to either slow down the rate of processor cycle time decreases (a big lose for applications
relatively insensitive to memory performance) or to slow down the rate that processors apply
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transformations on data; that is, do work. Certainly latency tolerant architectures, the subject of
research and development efforts spanning the last twenty years, deserve continued support. The
critical issues here are 1) identifying the minimal functionality that must be provided in commod-
ity processors to achieve latency tolerance and 2) ensuring that sufficient parallelism is available
with minimal overhead penalties. I am concerned that latency tolerance requires nimble proces-
_sors (lightweight state) but that fast processor designs extensively leverage data proximity
(heavyweight state).

Not surprisingly, the stress applied to a memory system by an application can vary widely with
different but equally correct algorithms. Blocking and tiling of large matrix computations provide
this kind of leverage. The key to making this more widely successful is programming paradigms
that either work well over a wide range of memory system designs or allow automated specializa-

tion to a specific memory system design.

The mechanism that I feel is most promising is aggressive prefetching. If data can be prefetched
sufficiently early, application programs may not perceive substantial stalling. Once read latency is
dealt with, the issue becomes one of providing enough bandwidth to efficiently satisfy the request . -
stream. Although bandwidth is a substantial problem in non-sequential request streams, increas-
ing device parallelism and interleaving data can be quite effective for a wide range of applica-
tions. The major challenges in aggressive prefetching is to break free of readahead, avoiding
excessive overhead costs associated with wild-guesses, and automating the extraction of prefetch

requests.

I believe that the best paradigm for aggressive prefetching is as hints. In this way the memory sys-
" tem can make dynamic resource availability decisions that simplify complexity and avoid conges-
tion without sacrificing prefetching benefits when adequate resources are available.

'Finally, static analysis of program behavior in optimizing compilers is likely to be the vehicle for
maximizing the effectiveness of most other memory system improvement techniques. The above
mentioned automation of memory-sensitive algorithms and prefetching hint extraction are clearly
components of an optimizing compiler’s toolkit. But 6ptimizing compilers have the opportunity
to be much more effective — data organizations can be manipulated to reduce cache pollution, to
increase data uses during cache residency, and to aggressively eliminate state as it becomes no
longer useful. The challenge for optimizing compilers may well be to raise the level of under-
standing of a program’s task sufficiently to see appropriate opportunities and to develop cost ben-
efit models powerful enough to trade additional processor cycles and instructions for probable

memory system benefits.
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John L. Hennessy
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Stanford University
Stanford, CA 94305

The Nature of the Problem

' There are actually two separate problems that occcur in memory
systems: supplying sufficient bandwidth and maintaining low
latency of access. In both cases, standard memory technology is not
scaling with current processor technology. In the bandwidth case, -
this is because the density of memory devices continues to grow
much faster than the bandwidth into or out of a device. In the case
of latency, processor cycle times continue to decrease at a much
faster rate than to memory access times. These comments apply for
both main memory technoclogy (DRAMs) as well as for on-line storage
technology (disks). '

Potential Solutions

Bandwidth: while there are likely to be some one-time improvements
from this technology (e.g. synchronous DRAMs or RAMBUS}), overallthe
only long-term solution is to array the devices to increase the

" memory bandwidth. This is what an a multiple bank interleaved
memory system, as well as a RAID both do. It has some dilsadvantages,
since continuing increases in density of memory devices make it
more difficult to build a memory system that is wide enough to
supply the required bandwidth without making the memory system
larger than desired (since the growth in density usually is created
by making the devices are deeper rather than wider) . Note that this
approach is not free--generally increasing bandwidth takes more
dollars.

In addition, caching (as well as possibly compression) provide
techniques that can decrease the bandwidth requirements for lower
levels of the hierarchy. Though they cannot reduce the bandwidth
requirements that come directly from the pProcessor.

software also has a role: blocking, for example, reduces. the
‘bandwidth requirements onh the memory system. The question is
whether this technique is effectively limited to a small class of
applications (dense linear algebral.

Two additional developments in processor design will also push the

bandwidth requirements. First, there are geveral new
microprocessors that can support more than one memory reference per
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clock cycle. These machines increase the cache and memory system
demands. Second, as miss penalties scale up and CPIs scale down the
cost of a blocking miss in terms of lost bandwidth increases. Thus,
nonblocking caches, which supply higher bandwidth, are becoming a
necessity. Although such caches. require processor changes, the
major implementation burden falls on the memory system, which must
"handle multiple outstanding requests.

Latency: I consider this problem to be at least as difficult if not
more difficult than the bandwidth problem. The potential
contributions from technology towards reducing the latency gap are
smaller.

There is no silver bullet here, instead a combination of techniques
are required to keep pushing this preoblem back. Today these
solutions include: multilevel cache hierarchies and prefetching.
In the future, I expect that other solutions such as multithreading
or shared cache (or some other form of processor-memory system
overlap) will be needed. Nonblocking caches also improve latency
by reducing the miss cost.

Multilevel hierarchies are perhaps one of the most important ideas,
since they allow us to design two levels in a hierarchy to address
different concerns {access time for the upper level and miss rate
for the lower level).

In addition, tc improving bandwidth by allowing hits under misses,
nonblocking caches also can reduce miss.latency. Such a reduction
occurs because misses can be overlapped providing the opportunity
to pipeline memory requests thus avoiding serialization of
requests.

Some form of multiprocessing, whether it be multiple processors
sharing parts of a memory hierarchy or'a multiple context processor
that switches on a miss, will help to hide latency as well. The
challenge lies in combining this techniques so that latency is
reduced and performance is increased without the requirement for a
costly increase in memory .and interconnection bandwidth.

Finally, prefetching is one of the most promising ideas. It will

probably be more applicable than blocking, though unlike blocking

requires hardware support. The range of programs for which compiler
directed prefetching can help remains a significant open issue.
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Nature and Severity of the Disparity between Modern
| Microprocessors and
Memory Systems

Charlie Hitchcock
Thayer School of Engineering
Dartmouth College

While the growing disparity between processor and memory speeds is
cause for concern, there is some good news. Many applications
perform well on modern microprocessors with traditional, if larger
than ever, caches. Cache designs have benefited from sophisticated
tools that track real application data streams, and from multi-
ievel and other advanced caching techniques. Even as cache miss
penalites increase, means of increasing hit ratios are created and
microprocessors with every higher clock rates are supported.

But -there is bad news, too. Not all applications exhibit great
temporal and spacial data locality, and some applications have
enormous data set sizes, well beyond the capacity of existing cache
systems. Many of these applications are scientific calculations
that perform calculations of regular streams of data. For such
calculations, the latencies involved in fetching data from main
memory can be larger than the inherent calculations latencies

in the processor, so memory delays dominate. Another set of
applications that suffer from memory delays are those that depend
on "random" pointer chasing, such as event~-driven simulators. Here
there is little data reuse and again memory delays can dominate.

The underlying natures of applications programs and DRAMs shape the
possible solutions to the problem of processor and memory speed
disparity. While "slow"™ DRAM access times are the main cause of
concern, DRAMs also have features which could be exploited to
advantage.

The organization of a typical 16M bit DRAM includes 64 internal
256k bit DRAM arrays, each organized as 2k rows by 128 bits per
row. FEach of these 256k bit arrays uses the same row decoding
logic, so they effectively form a 16M bit DRAM with 2k rows of B8k
bits per row. Yet the 64 internal arrays could have their own row
buffers providing 64 independent active rows. In effect, there is
the potential to have many sections of a DRAM be active, either for
accessing operands now or to prepare for future accesses, reducing
latency and increasing bandwidth. Recent synchronous DRAMs have
taken a first step in this direction, providing two "independent"
banks of memory on a single die,allowing the overlapping of
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refreshing, page accessing, and reads and writes. But how to
structure DRAMs and computer systems to take advantage of this?

DRAM architecture is not a great academic sandbox. DRAM design
remains an extremely expenszve and specialized field. New DRAM
deSLgns will continue to be dominated. by mass market concerns, with
innovation applied only when strongly. justified (not for
experimental purposes). At best, academics can simulate new DRAM
architectures, hoping to create structures that have some
possibility of being implemented. By contrast, compiler and
computer architecture research are furtile academic ground.

Many research efforts are avallable to build from: improved
caching, memory-conscious compiling, data prefetching, advanced
RAM archtiectures, cache blocking, etc. Somewhere in a mix of this
technology lies better solutions still:
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Some Thcughts on Memory System Research

Norman P. Jouppi
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Problem statement

Memory system performance is becoming the most important factor in processor performance.

Table 1 lists some cache miss times and their cost in terms of instruction execution times. Over the
last decade, cycle time has been decreasing much faster than main memory access time. The average
number of machine cycles per instruction has also been decreasing dramatically, especially when the
transition from CISC machines to RISC machines is included. These two effects are multiplicative and
result in fremendous increases in miss cost. For example, a cache miss on a VAX 11/780 only costs 60%
of the average instruction execution. Thus even if every instruction on a VAX 11/780 had a cache miss,
the machine performance would slow down by only 60%! However, if recent RISC machine like the
DECstation 5000/200 has a mriss, the cost is over 10 instruction times. Moreaver, these trends seem to
be continuing, especiény the increasing ratio of memory access time to machine cycle time. In the future
a cache miss all the way to main memory on a supérscaiar machine exscuting two instructions per cycle
will cost welt over 100 instruction times! Even with careful application of well-known cache design
techniques, machines with main memory latencies of over 100 instruction times can easily lose over half .
of their potential performance to the memory hierarchy. This makes both hardware and software
research on advanced memory hierarchies increasingly important.

cycles per’ cycle men miss miss

| instr. with time time cost cost
Machine ne misses (ns) (ns) (cycles) (instr.)
VAX11/780 10.0 200 1200 6 6
DECstation 5000/200 1.4 40 640 16 114
? 0.5 4 280 70 140.0

Table 1: The increasing cost of cache misses

~ Aithough multiple-instruction issue machines are a very popular topic of research, cache memory
hierarchies are a much more important area of research due to Amdahf's Law. Recent research on cache
hierarchies has largely focused on cache consistency issues for multiprocessors. ‘This is a very important
area of work, but for at least the next decade the vast majority of computer systems (not embedded
systems) will be uniprocessor workstations and PC's. Other factors which discourage cache research are
the impression in many people's minds that caches are "old ideas” and not interesting from a research
standpoint, even though the base technology assumptions have changed by orders of magnitude since
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the early research was done. Moreover, there is lots of room for innovative rasearch in memory
hierarchies, not only with new hardware techniques, but especially in areas which involve tradeoffs
between compiters, hardware, and operating systems.

Current research

A current area of my research involves tradeoffs in two-level on-chip caching. There are a number of
potential advantages of two-level on-chip caching with a mixed second-level cache over single-level on-
chip caching. First, primary caches usually need to be split into separate instruction and data caches to
support the instruction and data fetch bandwidths of modern processors. Many programs would benefit -
from data caches that are larger than their instruction caches, while some would benefit from instruction
caches that are larger than their data caches. By having a two-levei hierarchy on-chip where the majority
“of the cache capacity is in a mixed second-level cache, programs can allocate the majority of on-chip
cache lines either to instructions or data depending on their requirements, as opposed to living with a
static partition given by single-level on-chip cache sizes chosen at design time.

A second potential advantage of two-levet on-chip caching is an'improvement in cache access time.
As existing processors with single-levet on-chip caching are shrunk to smaller lithographic feature sizes,
" the die area typically needs to be held constant in order to keep the same number of bonding pads.
When processors are initially designed, their on-chip cache access times are usually well matched to their
cycle times. If the additional area available due to a process shrink is used to simply extend the first-ievel
cache sizes, the caches will get slower relative to the processor datapath. instead, if a second-level
cache is added on-chip, the primary caches can scale in access time along with the datapath, white
additional cache capacity is still added on-chip. l

Perhaps the biggest potential disadvantage of two-level on-chip caching is that if the ratio in size
between first-level caches and the second-level cache is small, much of the second-level cache will
consist of instructions and data which are already in the primary caches. Then, most misses in the
primary caches will also miss in the second-level cache. In this situation adding & second-level cache can
"get in the way" by adding delay between a first-level cache miss and an off-chip access more than it
helps by reducing the off-chip miss rate. In order to mitigate problems of dupfication in on-chip multi-level
‘caching a new technique called exclusive two-level caching has been developed.

in two-level exclusive caching, when a reference migses in the first level and hits in the second, the
contents of the first-level cache line are transferred to the second-level cache while the second-level
cache line is refilling the tirst-level cache. This resulis in a swap if the curfent confents of the first-level
cache line and the desired contents of the first-level cache fine map to the same second-fevel cache fine.
When a reference also misses in the second level, the line off-chip is loaded directly into the first level,
while the first-fevel victim is sent to the second level.

Note that exclusive caching only occurs in this system if mapping conflicts occur in the second-level
cache. Thus mapping conflicts in the first-level cache that do not conflict in the second-level cache da not
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have exclusion. Consider Figure 1-a. This system shows an direct-mapped first-level cache with four
lines and a direct-mapped second-level cache with 16 fines. If address A s referenced, followed by a
reference to address B, swapping data at address A back to the second-level cache will teave the
second-level cache unchanged {If both caches are write-back, then the contents of address A in the
second- level cache will be updated from the contents of the first, but the address mapping will stay the
same.) Similarly, if references are made to addresses C and D, inclusion will still occur between the
first-level cache and the second-level cache.

"
A 13 E 3
9
1 X . 5 9 1 B
, First-level '
First-level ; C 5
cache (4 lines) C 5 cache (4 lines)
o 1 b1
Second-level cache,
Second-level cache, 4X size of first-level
4X size of first-level (16 lines)
{16 lines)

a) First-level cache conflict=>inclusion b) Second-level cache conflict=>exclusion

Figure 1: Exclusion vs. inclusion during swapping

Only references that are made to addresses that map to the same second-leve! cache line create
exclusion {see Figure 1-b.} For example, if a reference is made to address A which maps to fine 13 in the
second-level cache, followed by a reference to address £ which also maps to fine 13 in the second-level
cache, then both lines A and £ can be stored in the first and second—!évei caches, while a conventional
system could only store either A or E. If references to A and E alternate, they will repeatedly exchange
places between the first and second-level caches.

Thus exclusive caching has two advantages over conventional replacement policies:

« Conilict misses in the second level cache are reduced since two lings can be present in the
first two levels of the hierarchy that map to the same line in the second level cache. This
provides a limited form of associativity.

« The capacity of the limited on-chip area is better utilized since there wili be less duplication
between the contents of the first and second leve! cache.

A
We are currently evaluating the performance of two-level exclusive ¢aching for a number of system
configurations.
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Position Paper: Workshop on Memory Systems
On 1/0 and Memory Systems in Massively Parallel Multiprocessors

Randy H. Katz and Ethan L. Miller
Computer Science Division
Electrlcal Engineering and Computer Science Department
University of California, Berkeley
Berkeley, CA 94720

The performance of conventional processors depends critically on
the concept of memory hierarchy to hide latency between memory
access levels. Hardware designers (and more recently, compiler
writers) think of the memory hierarchy extending from the reglster
set to the instruction/data caches to the main memory system. Of
course, operating system designers focus on the rest of the
hierarchy, from OS-maintained file caches to disk~oriented
secondary memory. In large-scale supercomputer centers, the memory
hierarchy beyond the disk drives is even more complex, as it

- incorporates remote disk drives on storage servers connected to
tape robots and cother exotic tertiary memory technology. We argue
‘that massively parallel machines have too long focused on the
issues of local vs. remote memory without adequate attention to the
issues of data storage beyond semiconductor memory.

Many commercially available massively parallel systems segregate
disk and processing nodes. In other words, a node in a MPP may store
data or perform computation, but not both. Examples include the CM-
2, CM-5, and the Touchstone Delta. These tend to have large numbers
of computation nodes matched to small numbers of I/0 nodes, the-
latter with high bandwidth connections to local disks and the
outside world.

This kind of architecture adds complexity to managing the memory
hierarchy. Not only is semiconductor memory local and remote, but
so is disk memory. For out-of-core computations, data must be
staged from disk to the computatiocn nodes before computation can
begin. The algorlthm developer must carefully consider the process
of staging data to and from disk as well as managing the distributed
mEemory.

Contrast the structure of a massively parallel machine with a
distributed system of processors on a computer network. The
hierarchy spans local and long-latency remote memory. It is not
uncommon for software to choose between moving the computation to
the data or the data to the computation. If these kinds of
algorithms are to find application in MPPs, it will be important
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that each node be symmetric, with the same kinds of computational,
memory, and storage capabilities. '

Programs running on massively pérallel systems use disk I/0 for two
main purposes -- checkpoints and as a kind of virtual memory. In
‘the former, disks are used as a write-once medium to store
intermediate results that are rarely re-read. In general,
checkpoints do not yield very hlgh sustained 1/0 rates, though
burst rates may be. high.

In the latter, disks are used to hold data sets that cannot fit in
core. In esgsense, this memory space can be viewed as virtual memory
(a concept not supported in CRAY-style supercomputers). A reference
to non-resident memory generates a request to a remote CPU, which
may be for a page from disk {(either local or remote), or a page
from local semiconductor memory. The the regquesting CPU and the
interconnection network, both kinds of reguests are almost
identical. The sole difference is the latency between the request
and the response. For the interconnection network, the added delay
is unimportant as long as the link is not blocked while waiting for
a response.

As link interconnection speeds increase, the difference between
memory and I/0 requests will further shrink. In current practice,
programmers cleverly place data within memory so that transmission
between nodes is efficient, using as few links as possible. Faster
link speeds will permit programmers to pay less attention to actual
. data placement., When combined with a global address space, faster
network links will permit each processor to view the entire MPP's
memory as a single entity, using virtual memory techniques to
access non-local data. Of course, MPP programmers will still
continue to need to maximize their use of local memory. The key
point is that non-~local data resident in another processor's memory
and data on-disk can be made transparent. '

At the moment, little is known about the interaction between I/0
and processor/memory capabilities within MPPs. For example, ‘
Amdahl's famous I/0O rule states that 1 Mbit/second of I/0 bandwidth
is required for each per MIPS of CPU. Therefore, a 100 GFLOPs
machine (which is just around the corner) will demand 10 GBytes
second of I/0 bandwidth. How is this to be provided? How can enough
physical devices be attached to the processor's interconnect? How
can distributed memory system mitigate this demand for growth in
I/0 capabilities?
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Some scientists claim that data sets size grows slightly slower
than the number of FLOPS, increasing the demand for I/0. Others
claim that the complexity of the calculations will grow, by factors
of from two to five, thus I/0 demands will not grow linearly with
pcheSSing power. Once. again, scaling is not well understood.

Methods need to be developed for parallelizing an application's I/
0. A conventional single I/0 stream is replaced by interleaved
parallel streams. Thus logically sequential access, and its usual
performance-improving mechanisms for caching and prefetching, will
be disrupted when the actual stream pecomes physically random.
Finally, the effects of moving computation to data rather than data
to computation are unknown.

Finally, applications developer's will need to consider disk and
tape ag part of the application's memory hierarchy when solving
very large out-of-core problems. For example, some very large
systems of dense linear equations (75,000 by 75,000 double
precision matrices) have recently been solved on a CM-5 coupled to
multiple DataVaults.
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Software/Hardware Techniques for
Improving the Memory Hierarchy Performance

Monica S. Lam

Computer Systems Laboratory
Stanford University

Abstract

As memory speeds continue to lag behind processor speeds, the need and opportunity for program optimizations
~ shift from minimizing instruction execution cycles to minimizing memory access cycles. Microprocessor systems
generally rely on using a memory hierarchy to minimize the average memory access time. Caches, however, tend o
perform quite poorly on those applications that operate on large aggregate data structures.  An effective solution for '
managing the memory hierarchy of uniprocessors and shared memory multiprocessors is to complement the general-
ity of hardware cache mechanisms with compiler optimizations targeted to specific aggregate data structures. These
software optimizations include locality improving techniques such as blocKing, and latency hiding techniques such as
soltwarc prefetching. Large paralle] systems with long remote memory access times both need and can afford more
aggressive software optimizations. Locality optimizations are very specific to the high-level structure of the data.
While automatic compilation techniques may suflice for dense matrix computations in the future, research into lan-
guage designs that cleanly expose the high-level design of data structures is necessary.

I Different Levels of Memory Hierarchy

This paper addresses the problem of how to improve the performance of the memory subsystem for both uniproces-
sors and parallel systems. Traditionally, compilers are responsible for managing registers, hardware manages the
caches, and finally operating systems, with the assistance of hardware, manage the primary memory. This partition-
ing of responsibility needs to be re-examined as the ratio of memory access and instruction execution time continues
t0 increase. There is less consensus on how to delegate the management of remote memory in paraliel systems:
Cache-Only Memory Archilectures (COMA), such as the KSR machine, cache data at the processor memory level in
hardware; the Stanford DASH multiprocessor has a shared address space but does not support caching at the local
memory level; finally machines with distributed address spaces rely completely on software to manage the local
address space explicitly. While a network of computers may not be the best configuration for parallel computation,
they are readily available and represent a resource that should be considered. Naturally, as the scale of a system
increases, the scope of applications for which the system is effective will decrease. We envision that future systems.
will employ all levels of memory hierarchy: registers, caches, local memory, remote memory in a shared address
space, and also remote memory in distributed address spaces. Thus, we need to develop a range of techniques to han-
dle alt the different fevels of the memory hicrarchy.

Memory hierarchies can be managed by hardware and/or software. Hardware and software techniques each have
their advantages and disadvantages. Hardware cache designs tend o use simple and fast algorithms. .For example,
caches have a small set associativity and data are manipulated in fixed size units. Cache conflicts and false sharing
can cause unnecessary data traffic. In particular, matrix computations can have a very high cache miss rate; the work-
ing set of these computations is Jarge, and once a cache conflict occurs, it is often repeated many times because of the
regular addressing pattern in these codes. Unless the cache miss penalty is very low, caching alone will not be effec-

.tive on matrix computations. On the other hand, software can tailor the communication and memory allocation algo-
rithriis to a particular application at the cost of higher overhead. However, ensuring data coherence at the software
level is difficult for programmers, and so far, only matrix computations are amenable to automatic technigues.

We should choose the best combination of hardware and software techniques for each level of the memory hierar-
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chy. For example, we advocate caches be used for uniprocessors and shared memory multiprocessors. Even though
caches may not perform well for matrix code, they are effective for many other applications, many of which cannot be
-analyzed and optimized by compilers. We can complement the hardware cache algorithm with compiler optimiza-
tions. Many of the trans{ormations previously developed for vectorizing and parallelizing compilers can be used to
improve the cache performance of scientific code. This combination of software and hardware will help deliver a
robust performance across a large suite of applications. For systems with a very long remote memory access time,
e.g. workstations farms, explicit software control over the communication and management of the local memories.

* will play a bigger role in these systems. In general, we expect the need for software intervention to increase as the
memory higrarchy latency increases.

2 A Research Approach _

Much of the necd and opportunitics to improve the memory performance lies in the manipulation of aggregate data
structures. These has been a lot of research on understanding how to parallelize and optimize the memory hierarchy
performance on matrix computations, The results indicate that high-level information on the structure of the data and
computation is necessary for optimization. For example, if we access arow ina column-major matrix, only one word
in each cache line transferred is uscd: changing the organization of the matrix in this case can significantly improve
the program’s locality. Trees are another important data/computation structure that has received a lot of altention
fately. It is important that we continue to accumulate knowledge on how to design and manipulate data structures in a
way that uses the memory hierarchy effectively. ‘

The next challenge is to encapsulate this knowledge in a reusable manner. An effective approach is to embed these
optimization algorithms in the implementations of high-level programming languages. The programming language
thus becomes an interface with which a novice user can gain access to the optimization algorithms. The array data
structures are explicit in many conventional programming languages, and various memory hierarchy optimizations
. have been implemented in compilers for these machines, Unfortunately, it is very difficult to extract the high-level
structure of user-defined data types in programming languages we have loday. Future language research should aim
to capture the high-level design of the data structures to make memory hierarchy optimization possible.

The rest of the paper will focus on the domain of matrix computations. It is an important domain that does not run
well on caches, but it is also a domain for which effective software optimizations exist. We will discuss the range of
hardware and software techniques useful for different levels of the memory hierarchy. _

There are two facets to oplimizing the memory hicrarchy performance: the first is to improve a program’s data
locality, and the second is to optimize the remaining data transfers. Important techniques for improving data locality
are data and loop transforms such as foop interchange and blocking. They are useful for all levels of the. memory
hierarchy, from improving register efficiency on uniprocessors to minimizing communication on message passing
machines. These techniques not only reduce the effective memory access latency, but also reduce the bandwidth
required between adjacent levels in the hierarchy. 'To optimize the data transfers, systems of different latencies
require different techniques. Software prefetching is particularly promising for optimizing the memory hierarchy on
uniprocessors and multiprocessors. On machines with long communication latencies, more explicit control is neces-
sary (o obtain an acceptable performance. We have developed algorithms that can compile dense matrix code into
optimized communication code on distributed address space machines. As can be expected, our software prefetching
algorithm is applicable to many more programs than our distributed memory compiler aigorithm. '

3 Increasing Locality through Loop and Data Transformations ,

The goal of loop and data transformalions is to increase the number of times a data itemn at each level of the hierar-
chy is used before it is displaced. A uscful optimization in dense matrix code is to change the organization of a
matrix, or the order in which the iterations in a loop are executed. Unimodular transformations (such as loop inter-
change) try 1o schedute the computation so that iterations in the innermost loop nest reuse the same data or the same
cache line. Blocking (also known as tiling, unroll-and-jam, and stripmine-and-interchange) is a particularly impor-
tant transform for computation that operates on matrices. Programs that process large matrices a row, or a column, at
a time tend to suffer from poor locality between the row, or column, operations. Blocking rewrites the loops so that
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the program processes the data a sub-block at a time, thus increasing the "dimensionality” of the locality. Once
brought into-a fevel of memory hierarchy, a data item is reused multiple times before it is displaced. Blocking thus
not only reduces the data fetch latency, it also reduces the required data bandwidth. The technique is applicable to all
memory hierarchy levels: registers, caches, local memories on multiprocessors, translation lookaside buffers, second-
ary storage and remote memories on paraliel systems. Blocking for registers has the additional benefi that it reduces
the total number of instructions to be executed.

We have developed an algorithm that combines unimodular loop transforms (interchanges, skews and reversals)
with blocking 10 optimize for locality and parallelization in a loop nest{WL91]. We have imptemented the algorithm
in the SUIF (Stanford University Intermediate Format) compiler. The applicability of data and loop transformations
is limited to linear algebra kernels that operate on arrays with at least two dimensions. -‘When loop transformations are
applicable, their effect can be very dramatic. Our algorithm is successful in blocking a variety of numerical kernels
such as matrix multiplication, LU decomposition (without pivoting), Givens QR decomposition, and successive over-
relaxation algorithms, Some performance data are shown in Figure 1. We have recently developed an algorithm that
analyzes multiple loop nests and distributes the data and computation across the processors with the objective of min-'
imizing communication while supporting parallelism{ AnL93}. ‘
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Figure 1: Performance of blocking on an SG14D/380 machine: (a) 500 x 500 double precision matrix multiplication,
(b) 500 x 500 double precision LU factorization without pivoting, '
(¢) 30 iterations of a 500 x 500 double precision SOR (successive over-relaxation) step.

Most microprocessors have direct-mapped caches or caches with a small degree of associativity, Conflict misses
can severety degrade the performance of a cache in scientific computation[LRW90], Increasing the associativity by a
small degree; or using a victim cache, can aid those cases where multiple vector operands happen to map to the same
locations. These techniques are inadcquate for bocked algorithms where we wish (o hold a reasonably large set of
data that are separated by a regular steide. Conflict misses in this situation are highly sensitive to the stride. A solu-
tion is 10 copy the submatrix we wish 1o reuse into a contiguous space. The copying cost is acceptable as the copied
data are often reused many times. On parallel systems, it is often useful for the compiler to rearrange the data organi-
zatiomand to map the data used by a processor to its local memory. This type of optimization.is particularly important
on systems with a high communication cost.

4 Reducing and Hiding the Communication Latency

After reducing the bandwidth requirement between the different levels of the memory hicrarchy, we next try o
optimize the remaining data accesses. One important technique is to overlap the data accesses with computation on
other data. Previous architectural proposals include using vector instructions, data streaming support, decoupling
" computation from memory accesses, hardware prefetching, software-directed prefetching, and pipelined load/store
instructions. We have experimented with software prefetching and found the technique to be very promising. When
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the data access latency is very long, more aggressive opttmwauons, such as minimizing extraneous traffic, aggregat-
ing messages, and reducing the round-trip data access delays, are necessary. In the following, we first discuss some of
our results on software prefetching, then some compiler optimizations for handling long latencies.

4.1 Software prefetching

We advocate that future microprocessors have fock-up free caches, caches that allow multiple outstanding cache
misses. This is the basic functionality that must be provided for all latency hiding optimizations. We advocate that
the instruction set architecture include explicit software prefetch instructions. The compiler inserts explicit instruc-
tions to prefetch a cache line and the cache serves-the function of a large data buffer. However, unlike registers or
local memories, caches allow their data be accessed by their original physical addresses. The comptler need not
determine if the prefetched data are aliased with other data written during the prefetch interval. This is significant
because it is often nontrivial or impossible to prove that two accesses are not aliased.

We have developed a prefetch algorithm for both dense and sparse matrix code, implemented the algorithm in our
SUIF compiler, and simulated the performance of prefetching across a number of applications|MLG92}. Our algo-
rithm analyzes the data usage in loop nests (using the same analysis we used for blocking) and issues prefetches only
for those accesses that are likely to miss. This is important because prefetching incurs both an instruction and a cache
access bandwidth overhead; this overhead can negate the benefit of prefetching, if we prefetch indiscriminately. To
hide the long memory latency, the algorithm "software pipelines" the prefetches with the computation. That is, the
compiler generates a prolog, some steady state code and an cpilog. Within the steady state, each iteration of the loop
would prefetch the data needed in some future iteration.

On the whole; our evaluation of prefetching indicates that the algorithm is successful in reducing the memory stall
time significantly over a wide range of scientific code. Figure 2 shows the results of simulating a collection of scien-
tific programs on a system patterned after the MIPS R4000. The processor runs at a 100 Mhz intemal clock. The pro- .
cessor has an 8 Kbytes first level cache and a 256 Kbytes secondary cache. Both caches are direct-mapped and use 32
byte lines. The penally of missing in the primary cache is 12 cycles, and the penalty of missing in both caches is 75
cycles. The collection of programs includes the kernels of Nasa7 and the Tomcatv program from the SPEC bench-
marks, Ocean from the Splash benchmark, and the rest are from the NAS Parallel Benchmark. Note that we have
manually changed the alignment of some of the matrices in the Nasa7 and Tomcatv programs (o reduce the number of
cache conflicts. As discussed above, a small set associativity or data copying to contiguous locations is useful in
eliminating conflict misses in the program. Results from experimenting with both Joop transforms and prefetching
indicate that they are complementary techniques. For example, a loop interchange may enhance the spatial locality of
the progmm and prefetching can further improve the performance by hiding the latency of the remaining cache
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Figure 2: Performance of our software prefetch algorithm (N= no prefetching and § = selective prefetching),
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Our results suggest that software prefeiching is effective and that complicated hardware support is unwarranted.
First, soltware can exploit the higher level program semantics in calculating the addresses of complicated data access
patterns. The data address calculations need not be completely data independent before software prefetching is appli-
cable. Even if the prefeich address depends on an earlier memory access, the prefetch latency can be hidden as long
as there are other opefations that can exccute in parallel. This is much more powerful than alternatives such as vector
instructions and hardware prefetching, Sccond, the overhead of prefetching is tolerable; a compiler can selectively
prefetch only data that are likely to miss, and it can use the same sct of registers to calculate the addresses for both
prefctches and the actual uses. Since software prefetching uses general processor cycles, the effect of the instruction
overhead will decrease with faster processor implementations. This is superior 1o using dedicated hardware with lim-
iled generality.

4.2 Hiding Long Latencies

Implicit in the design of software prefeiching is the assumption that the data transfer latency is relatively short
compared to the amount of computation in a loop. Furthermore, since prefetching initiates a message transfer every
cache line, the overhead in initiating a data wansfer must necessarily be small for this method to succeed. With long
communication latencies, prefetching would degenerate to fetching all input data for the entire loop before any com-
putation can start. Under such circumstarices, we necd to employ more expensive techniques to soive the probiem.

The shared virtual memory approach of caching at the page level is unlikely to perform well on, for example,
matrix computations. The scenario of accessing a row of a column-major mairix, as discussed earlier, may cause a
page to be brought in for cvery data accessed. For matrix computations to execute efficiently, software techniques to
optimize the data transfers are essential, One important optimization usefu for many matrix computations is to stati-
cally determine the nccessary communication, Instead of having the process that needs the data request the data
transfer, the sender initiates the data transfer as soon as the data are available. This technique cuts down’ the round-
trip communication latency by a factor of two. Another important optimization is to amortize the communication
overhead by aggregating the data transfer into larger messages.

The algorithm for generating efficient distributed memory code relies on a deeper analysis than that used in either
the loop transform algorithm or the software prefetching algorithm, Within the domain of dense matrix computation
where the data addresses are affine functions of loop indices, we now have accurate data {low analysis algorithms that
relate all the dynamic instances of data accesses (0 the very instance that produces the value[F91]{MAL93]. This-
analysis provides the information necessary for generating optimized communication code for distributed memory
machines|AmL93). We expect that automatic techniques will be able to handle this, albeit narrow, domain ade-
quately in the future. Cooperation between the programmer and the compiler will expand the scope of the techniques.

5§ Concluding Remarks

To optimize the memory hierarchy, we must design hardware and software solutions that cooperate to provide a
robust performance for all programs. Hardware caches provide a basic mechanism that can exploit locality of refer-
~ence in all programs, without any software intervention. While caches do not perform well on computations that
operate on large aggregate data structures, such compuiations are, fortunately, more amenable to compiler analysis
and optimizations. We show that matrix computations can run well on uniprocessors and shared memory machines
by using the techniques of loop transformations and software prefetching. Systems with long latencies, such as work-
station farms, require more sophisticated software techniques. Again, fortunately, the domain of applications that can
exploit such parallelism is also narrower and is more susceptible to soltware optimizations. We bélieve that this
approach of developing combinations of simple hardware support and inteHigent software algorithms is the key to
‘solving the memory hierarchy problem. ' :
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ABSTRACT

It has been proposed that the performance of microprocessors has increased by a factor of 50%
to 100% per year, and during that time, DRAM has only increased at 10% per year and that this
disparity will increase with time causing a bottleneck for further performance improvements in

the next decade.

This paper examines the proposed disparity and suggests that large Level 1 Caches and large
Level 2 Caches buffer this disparity quite effectively for general-purpose workstation-class
uniprocessors, which will offer a 9x performance improvement in the year 2000.

However, these large L1 and L2 Caches allow only a small number of processdrs to operate on a
comimon or disu'ibutcd memory system. In order to build systems in the year 2000 that are 100
to 1000 times faster than today’s machines, new techniques are required to solve the memory bot-
tleneck. One hardware approach is proposed that seems to offer some promise.
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- BACKGROUND

Computer architecture has evolved each decade by overcoming bottlenecks (such as packaging,
logic density), and now it appears that memories may be limiting performance.

Today (1993), a typical microprocessor architecture could be characterized as follows:

Clock Rate L= 100 Miz

Instructions/Clk (IPC) = 1

L1 Cache = 16 KBI/16KBD 2.4% MR/100 instructions
L.2 Cache = IMB 0.3% MR/100 instructions

L2 Access Time = 4 clocks

MM Access Time = 25 clocks

If this machine had no miss in the L1 Cache, the performance would be limited only by the inter-
nal logic of the CPU. In reality, the miss rate using SPEC92 integer and floating-point codes -
runs approximately 2.4% per 100 instructions. So thé performance degradation attributed to the
L1 Cache is 2.4% * 4 clocks = 0.10 clocks, and the secondary miss rate is 0.3% yielding

0.3% * 25 = 075 clocks. Therefore, the total time attributed to cache misses is 0.10 +.075 =
0.175 clocks, which is a 17.5% performance reduction over our ideal machine with no cache
misses. This is not a great penalty, and most architects do not spend much effort to drive this
penalty lower. |

In order to achieve higher performance than is available in today’s uniprocessor systems, many
types of multiprocessors have been constructed. For general-purpose applications, I will only
consider symmetric multiprocessing (SMP) with a common main memeory. There are two gen-
eral bottien'ecks: one in the DRAM memory system and the other being the bus interconnecting
the processor and memory system. With today’s technology, we could build a bus system that
could transfer up to 64 bytes in one 100 ns clock cycle yielding a maximum bandwidth of 640
MB/sec. A one-bank memory systam can be built which will achieve 640 MB/sec, and certainly

~ multiple banks can easily dcllver the required bandwidth.

Each proccssor requires:
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= 100 MHz * 1 IPC * 0.3% MR * 64 Byte Line = 20 MB/sec per Processor
So, with a 640 MB/sec Bus, we can easily build a system with

640 MB/sec

32 Processors
20 MB/sec

However, for supercomputer applications, in the order of 300 processors would be required, not"
32. This presents a clear problem for a single bus with 300 processors connected to main mem-
ory. The clock rate for 300 processors would be:

- 300 * 20 MB/sec
100 MHz

i

" 64 B bus

Four- to-five feet of system bus with over 300 discontinuities (caused by the attached microproc-
essors) would raise significant signal integrity issues if a 10 ns clock were required. The mem-
ory system would also requite up to 64 banks for a total of 4 GB. Using 4 Mb chips would yield
64 MB or 128 chips per bank for a total of 8192 chips.

This system is not feasible to build today because of the interconnect problems which are exacer-
bated by the large number of banks required. ‘

PERFORMANCE IN THE YEAR 2000

Process technology, as well as architecture, dramatically affects processor perfoﬁnanc;e. DRAM-
driven process technology has doubled the gate density and increased the effective gate spéed by
50% every two years over the past decade. In the next ten years, the mdusiry wili not be able to
keep up this pace because of device physics limitations and huge cap1ta1 equipment costs. So it -

is expected that new generations will appear every three years, and we can expect 2x in den31ty
and a 50% transistor speed improvement every three years, It should be pointed out that the
bandwidth of the interconnect system will be dramatically reduced because the resistance of the
interconnect will go up faster than the capacitance goes down. Assuming that architectures will
work around the intérconnect problems, we can expect clock rates in the range of 225 MHz.
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Clearly, higher clock rates can be achieved with technigues such as superpipelining; however,
the IPC would be reduced below 1.

Archﬂccture improvements will be as dramatic as process 1mpr0vements running at 2x every

three years, or 4 IPC in the year 2000. Wide- word architectures with up to ten independent
functional units will be cost-effective even if their utilization is low. In addition, new compller
techniques, such as predicated execution that reduce branch latencies, will be employed requir-
ing many functional units in order to be efficient. In order to achieve 4 IPC, however, it will be
necessary to execute two loads and a store in the same clock cycle, which causes the L1 Cache to
be dual-ported and, in essence, 1.5 the size of a single-ported SRAM. Non-blocking loads will
become more important, and significant logic will be required, in addition to high bandwidth 1.2
Caches with synchronous SRAMs.

CACHES

Currently, cache 6T (transistor) cells are about IOOu in most logic processes Special SRAM
processes are, of course, much denser. By the year 2000, a cell of 15u in this logic process
should be achievable.

If we take the 15u2 cell and assume a 40% array efficiency, the total memory size per cell would
be 37 .5;{2. For a 256 KB dual-ported RAM, the area would be

(256 KB * 37.51% #1.5) = 115 mm®

~ Since the maximum die area is 20mm x 20mm = = 400 mm, the 256 KB D-Cache will occupy -
115/400 = 29% of the die area. This 256 KB L1 Cache wouid have a miss rate of 0.6% or less
per 100 instructions.

L1-L2 BANDWIDTH CONSIDERATIONS

The average bandwidth the secondary cache sees is calculated as follows:
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BW =225 MHz * 4 instructions/clock = 900M Inst/sec

With a 256 KB L1 Cache, a 0.6% miss rate is to be expected on average per 100 instructions.
The bandwidth that is required by the L2 Cache is:

BW =900 M Inst/sec * 0.6% * 64 Byte line = 346 MB/sec

High performance requires a 4- clock latency with a 1-clock synchronous RAM and 256 data
lines. As a result of this very low latency, we have a very high bandwidth.

BW L2 = 256/8 # 225 % 10° = 7.2 GB/sec

This bandwidth is actually 20 times the required 346 MB/sec and, therefore, not a consideration.

WORKSTATION SYSTEM 2000

If we look at our workstation system in the year 2000, it will have the following characteristics:

Micro 2000
Clock Rate = 225 MHz
IPC = 4
L1 Cache ' = 'Dual-ported 256 KB 0.6%/100 units
L2 Cache = 16 MB .05% miss rate '
1.2 Access Time = 4 clocks
MM Access Time = 50 clocks - 512 MB (72 chips)

Our machine is nine times faster than the 1993 machine, not considering cache misses.

225 MHz 41PC
s —— * —_— = 9

100 MHz 11PC

Calculating the effects of cache misses on overall performance yields a 20% degradation similar
to our 1993 system. The calculations are as follows:

0.6% L1 MR * 4 Clks = 0.05% L2 MR * 50 Clks = .05 Clks
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With an IPC of 4, the CPI=0.25, so:
25+ .05

= 1.20
.25

If we now take a look at our Micro 2000 from an SMP perspective, our problems that were un-
“solvable in 1993 have just gotten worse by 50%. While each Micro 2000 processor is 9x faster
than the current model, the large L2 Cache has buffered some of the bandwidth required.

1993 Micro BW = 100 MHz * 1 IPC * 0.3% MR # 64 ~ 20 MB/sec
Micro 2000 - BW=225 MHZ * 4 IPC * 0.05% MR * 64 ~ 30 MB/sec

So the bandwidth required from our memory system in the year 2{}00 is now 50% greater. There-
fore, our interconnect system will require a 6.6 ns bus, definitely requiring a different approach.

POSSIBLE SOLUTIONS

The memory interconnect System using a bus is not a good solution because it does not lend it-
self to modern chip technology. It requires lots of power and space and many chip I/O pins
which are also inefficient. Solutions similar to the RAMBUS™ memory approach probably
offer the most promise.

If each Micro 2000 had two wires (one for data and one for address) and all information was
transmitted bit serial at high rates ~ 30 MB/sec, each processor’s bandwidth would be satisfied
easily, and all 300 processors could have their addresses concentrated into one chip to then
-access a 32-bank memory system. Each bank would be one-to-four 64 Mb DRAM chips. Each
DRAM chip could then drive another concentrator chip which would route the data from a
DRAM to the appropriate prdces'sor. ' '

~ In the year 2000, chips will be running at 2.5 volts, and if these off-chip signals are iow-voltage
at ~ 1 volt, we could run dual-rail or perhaps single-ended point-to-point at the 500 MB/sec with
little difficulty. The power consumed at these low voltages is minimal and the interconnect sys-
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tem very simple. The concentrator chips will be large high-pin-count devices probably requiring

area bumping.

SUMMARY

While initially it appeared that the computer industry would have a problem with the lack of
DRAM performance on architectures in the year 2000, it is now clear, with very large 256 KB
on-chip L1 Caches and 16 MB 1.2 Caches, the effects of main memory in the system are negli-
gible.. We will, therefore, see factors of 9x in performance at the same prices of today’s micro-

processor workstations.

There is a serious problem, however, in multiprocessor systems, interfacing a large number of
processors to the memory subsystems. The problem is very difficult today and will continue to |
_ get worse as processors get faster. The main problem i is the interconnect between DRAM and

' processors.

One approach has been discussed which will solve this problem, but it requires significant
research and design effort to perfect.
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White Paper for NSF workshop on High Performance Memory Systems
April 12-13, 1983 '

Steve Scott, Cra§ Researeh

" There is no getting around the facts that (1) large memory access times
are increasing. rélative to processor speeds and (2), as parallelism
increases, communication times are increasing relative to processor speeds,
We should do the best we can to slow the widening of these speed gaps, but’
basic physics imply that they. will continue to grow, ,

So, we have two choices for dealing with this problem. The first is to
build memory hierarchies that exploit locality of reference (both spatial
and temporal) and massage programs to increase their locality. Programs
will perform better with low-latency access to memory, and can depend upon
this if they are well structured, because data will typically be found
close to the processor in the memory nierarchy. In addition, since the
inner layers of the hierarchy (registers, first level cache) service most
of the requests, the memory bandwidth provmded by the hardware can diminish
substantlaily in. the outer layers.

‘This first approach works very well (at least most of the time) for
gerial codes, and even works pretty well fdr some parallel codes. We
should continue to push this technique, inserting additional layers (egq.
second- or third-level caches) as needed to minimize average memory latency
subject to cost constraints. Unfortunately, this approach does *not* work
well for many parallel codes, and parallel codes are the only game in town
“when it comes to future high performance computing. Moreover, even where
this technique works, we are slowly losing ground as the speed gaps widen.

The second approach for dealing with the speed gaps is to provide *lots*
of bandwidth in hardware, and massage programs to tolerate latency.. This
can be diffieult to do, but bandwidth is what really matters when it comes to
sustained performance on many real production codes. In particular,
scientific codes often display reference patterns that -are not amenable
to memory hierarchies due to large strides through memory or very
large working sets. Many parallel algorithms have inherent interprocessor
communication requirements that also llmlt the effactiveness of memory
hlerarchles

At Cray Research, we have always designed systems with an empliasis on
the second approach (using the first approach where appropriate). This is
clearly the case with our line of parallel vector supercomputers, and is
now the case with our MPP eéfforts as well. The Cray T3D uses a three
dimensional torus interconnect to provide very high interprocessor
‘bandwidth, and places a shell around a high performance miCcroprocessor to
help it cope with relatlvely longer delays to global memory. These efforts
are being further extended in the second generation MPP now under design.

In iight of these approaches, I see several avenues of research that

should play a critical role in the development of future computing
platforms that cope well with the widening speed gaps.
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First, compilers: keap up the good work. In the past decade, we have
seen significant advances in the capabilities of parallel compilers,
relieving programmers from much of the burden of shaping code to fit the
form and function of the machines on which it runs., We will be
particularly helped by further advances in the following areas:

* putomatic detection of parallelism (not really the gscope of
this workshop).

* Loop transformations to reduce the number of memory references per
floating point operation. This includes cache- conscious design, and
techniques such as unroll-and-jam that allow greater register reuse

of coperands.

* Prefetch, prefetch, prefetch!

Second, mlcroprocessors we're.not *all* buildlng workstations. While
the rapid increase in mlcroprocessor power is impressive, processors are
being optimized for use in workstations and bus-based servers, not MPP's
This is certainly understandable, given that the workstation market dwarfs
‘the MPP market, but nevertheless, it is a basic stumbling block to the
realization of efficient, powerful, highly parallel computers. Research
{and plain engin€ering in some cases) that would lead to the following
would be particularly helpful:

* More address bits, both virtual and phy31cal, to support the very
large address spaces required in high-end MPP’s,
* More bandwidth! We need pipelined interfaces capable of
sustaining bandwidth on the order of a word per flop.
* More control of on-chip caches, including prefetching,
invalidation, and external control signals,
* More outstanding loads. Caches should be lock-up free, and .
loads should be limited only by the number of available target reglsters
(and perhaps not even by that}.

. Third, system design: don’t forget the bandwidth. Recent trends in DRAM
design (Rambus, RAM Link) are encouraging. It appears that the need for
~ additional DRAM bandwidth is finally overcoming the inertia of the past.
Future research should focus on ways to improve memory bandwidth while
attempting to keep latency low. The interconnection network is xeriticalx.
Again, the focus of research must be to increase bandwidth, while at the
‘same time keeping latency low. Interesting topics include the introduction
of adaptability and fault toclerance, while not detracting from basic
network performance. Ancther research topic that could help fight the
speed gaps is. how to provide (and use) cheap, efficient synchronization
mechanisms. Finally, there is the issue of cache coherence. We know that
coherence can be provided, it’s just that it costs us something {(design
time and complexity, additional hardware, and run time). Recent research
has focussed on how we can provide coherence. I would suggest that an
equally (if not more) useful topic would be: do we *need* it?, and if so,
for what types of applications?
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White Paper -
Workshop on High Performance Memory Systems

Alan Jay Smith
Computer Science Division
EECS Department
University of California
Berkeley, CA 94720
smith@cs.berkeley.edu

Introduct:on

Microprocessor performance is doubling every year or two. The various parts of the com-
puter memory system are not increasing in performance at the same rate. Improvements in
design and performance are needed for various aspects of the computer memory system. These
aspects are listed below, grouped by category.

Uniprocessor Cache Memories

Current and coming generation uniprocessors will have on-chip caches of 8Kbytes to
64Kbytes. These microprocessors will be highly parallel, will have cycle times of in the neigh-
borhood of 5ns, and will place enormous demands on the first level cache. There are a number of
research problems of interest: (a) How to get enough bandwidth out of the cache. (b) How to
predict cache performance as a function of cache parameter selection. (Much as has already been
done to quantify the effect of line size and associativity.) (c) How to properly implement pre-
fetching so as to minimize the frequency of demand misses. (d) How to best maintain con-
sistency between the first and second level caches, (e) What write policy (write through, copy
back, etc.) to use for the first level cache. (f) See if there is any way to improve cache perfor-
mance for supervisor. workloads. (g) Quantify the performance of TLBs as a function of their
design {associativity, page size, TLB size). (h) How to generate code that separates as far as pos-

sible the request for data (e.g. a load) and the use of the data, so that dependence on cache perfor—

mance is mmimlzed

Multiprocessor Cache Memories

There is a steady and persistent shift towards obtaining high performance by building
shared memory multiprocessors. The problem with such systems is to maintain cache con-
sistency (coherence). Studies by the author and his students have suggested that for shared bus
consistency protocols, little improvement is possible beyond that available from known algo-
rithms. Those studies have also shown that parallel programs that have not been optimized for
shared memory caching have very high levels of memory consistency traffic; such programs
obtain very poor speedups in multiprocessors because of memory system bottlenecks. We
believe that there are some important research problems in this area: (a)-Study the effect of
recoding applications on the MP cache system performance. (b) Develop guidelines for the cod-
ing of MP applications so that they will run on shared memory systems with caches. (c) Design
and evaluate practical interconnection schemes and cache consistency algorithms for multiproces-
sors with large numbers of processors.

High Performance Memory Systems
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File and I/O Systems ‘

The performance of file and /O systems has been increasing only very slowly, although the
capacity of storage devices has been doubling every two to three years. The traditional "access
gap" thus gets wider every day. Further, the shift to single user workstations makes it more and
more difficult to overlap /O activity with multiprogramming. These observations suggest a
number of significant research problems: (a) Design improved algorithms for disk caching, so as
to minimize the probability of /O wait. (b) Develop algorithms for disk caching in a multipro-
cessor distributed environment, in which cached copies must be kept consistent. Such systems
must also be recoverable after failure, which limits the ability of the cache to indefinitely hoid
dirty copies of the disk contents. (c) Evaluate the performance of new file system techniques (e.g.
RAID, LSFS) in production environments. (d) Develop algorithms for the optimal management
of file migration in systems with large optical jukeboxes and/or huge tape libraries. (e) Develop
and evaluate algorithms for the management of databases shared among processors in distributed
systems.
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A Case for Memory Performance Models

David A, Wood
University of Wisconsin

The disparity between processor and memory speeds is a problem that will only be exacerbated by on-
going technology trends. To illustrate the scope of the problem, Table 1 below presents execution time
and speedup results for several of the SPEC92 benchmarks[3} for two models of the DECStation 5000, the
5000/125 and 5000/200. These two models have the same speed processor (26Mhz Mips R3000) and same
size caches (64 Kbyte split 1/D) but have different main memory access times: 400ns on the 5000/200 and
800ns on the 5000/125'. Thus compating the slower Model 125 with the faster Model 200 will illustrate the
effects of the anticipated technology changes. Table 1 shows that the slower memory makes a significant
difference: speedups range from 0.72 to 0.87 for these well-known benchmarks, with a geometric mean of
0.78 (the speedups are less than one, since the Model 125 is slower than the Model 200). '

If processor speed increases ab 50% per year and DRAM speed increases at only 10% per year, then the
ratio of processor speed to memory speed will double every 2.25 years. After 6 years, the performance of
these henchmarks will only be half what it would have been had memory speed increased proportionally to
the processor—all else being equal. Of course computer architects won't sit idle and some of this difference
will be mitigated through standard techniques such as multi-level caches and prefetching, as well as more

_aggressive &echmques such as lock-up free caches. However, I believe that hardware remedies are insufficient;
software assistance is necessary to fully deal with the problem.

To support this view, Table 2 presents results comparing restructured versions of the benchmarks above
with the originals. This subset of the SPEC92 benchmarks were modified to improve their cache performance
using CPROF[2], a cache profiler we have developed that annotates source lines and data structures with
Lhe corresponding number of cache misses, These results show that simple cache-conscious changes to
the application programs can result in major performance improvements: vpenta, one of the kernels in
Lthe dnasa? henchmark, achieves a speedup of 3.44 on a DECstation 5000/240. Over all applications, the
speedups ranged from 1.03 to 3.44 on a DECstation 5000/240, using programn meodifications that included
array merging, padding and aligning structures, structure and array packing, loop merging, and blocking.

As the ratio of processor speed to memory speed increases, the importance of cache-conscious program-
ming also increases. Table ! clearly shows that our modifications have greater effect on the 5000/125 and
50007240 than on the 5000/200, due to the greater miss penalties of these machines. However, while cache
profiling can help improve cache performance and reduce execution time, it only provides information about
the memory system performance of a particular machine. Optimizations made for one implementation may
in fact hurt performance on another.

These results indicate that the problems caused by the speed gap should be addressed by software and
hardware together. I believe the solution lies in delining memory performance models that abstract away the
details of particular implementations, yet capture essential features such as temporal and spatial locality.
In addition, the models should provide annotations to allow programmers and compilers to identify access
patterns that the hardware can exploit. By defining a performance contract between software and hardware,
programimers and compilers can predict when loads and stores will be fast or slow, allowing them to
optimize their code accordingly. Conversely, the models identify the cases that computer architects and
hardware designers should spend time optinizing.

As a concrete example, consider the Check_in/Check out {CICO) model proposed for Cooperative Shared
Memory[1l]. The CICO model tries to identify data sharing patterns and exploit temporal locality for shared-
memory multiprocessors. Programmers bracket data usage with check.out and check.in annotations, to

!The 5000/200 also has a deeper writebuller than the 5000/125
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Machine

Program || 5000/200 5000/125

Seconds | Seconds | Speedup
conipress 20.42 25.80 0.79
dnasa7 904.74 | 1213.72 0.75
eqntott - 58.70 §67.56 0.87
spice 1762.34 | 2242.10 | 0.79
tomcaty 160.24 | 221.04 0.72
xhsp 286.56 385.24 0.74

Table 1: Execution time speedup for SPEC benchmarks

identify when they expect to begin using a datum and when they believe they are done with it. By using
CICO annotations, programiners can reason about temporal locality and sharing patterns, thereby reducing
communication. In addition, hardware can use these annotations as directives to improve performance.
For example, the check_in directive causes the hardware to ftush a block [rom the cache, so that another
processor finds it in main memory. :

[ believe that memory performance models must be generalized o capture not only temporal locality, but
lack of temporal locality, spatial locality, and structured access patterns. For example, many scientific codes
reference large matrices using highly structured access patterns. A memory performance model should not
only encourage programmers and compilers to increase temporal and spatial locality (e.g., using blocking},
but permit annotations to identily data that will not exhibit locality, aliowing the hardware to prevent cache
pollution. Similarly, the model should support annotations to identify structured access patterns, such as
sequential, strided, and block-strided patterns, so thal aggressive hardware may prefetch it.

Many machines have provided directives and other mechanisms [or improving memory system perfor-
mance. Many programmers and compiler writers have worked on optimizing memory system performance.
What is needed is a common memory performance model, so that programmers, compiler writers, and
computer architects have a common interlace.
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Execution Time Speedup

Muachine
Program 5000/125 i 50G0/E60 5600/340 Modiftcation
“Seconds | Speedup | Seconds | Speedup | Seconds | Speedup

BErtx 114,06 . 114,14 82572 original

10%.50 1.32 90,20 1.3% 55.04 1 .48 loop merging
chotesky" 188 90 140,98 97,14 ariginal

16216 1.40 124.88 1.13 73.66 1.32 transpose array
compress 25.8¢ 20.42 20.38 original

23.48 P10 18.98 1.08 17.66 1.15 merged key and value arrays

dnasat 1213.72 a04.74 815.22 original
eqntott 57.56 58.70 39.96 origimat

63 98 1.11 55.40 1.06 38.92 1.03 i} changed short to char
gmtry 177.06 142.04 128.42 original

FL9.78 1.48 05.88 t.A8 50.92 2.52 swap indicies
matrix mudtiply 218 4 18462 91.36 nakve .

122.06 2.04 0616 1.74 656.08 1.38 SPEC column blocked
spice 224210 6234 1557.80 original

- 17872 1.26 1-1406.04 £.25 § 116342 1.34 merged pointer and number

tomeaty 22104 16024 14G.08 original

166.16 1.33 t32.50 1.m 93.G60 1.50 merged artays X and Y

150.96 1.46 125.34 1.28 88.76 1.58 +loop merging
vpenta 264.78 169.76 205.96 original .

174.38 2.10 01.74 1.85 70.48 2.92 merged arrays and swap indices

i 104.54 2.53 79.44 214 59.80G 3.44 +loop merging

xhisp 385.24 286.56 200.72 original

361.96 1.06 277.18 1.03 190.30 1.08 pradded node to 16 bytes

Table 2: Execution
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Not Only Is DRAM Slow, It Isn't Even RAM

‘ Wm. A. Wulf
University of Virginia

It is widely recognized that there is a growing disparity between the speed of
microprocessors and that of affordable (and cool) DRAM.

Less widely discussed is the fact that DRAM isn't really "random" anymore; the cost to
access elements is not uniform. The potential concurrency in multibank memory systems
is a familiar example of non-uniform access costs, but newer memory components also
exhibit nonuniform cost. Modern DRAMs have increasingly sophisticated "page mode",
"burst mode", and other features that make the cost sensitive to the prior history of
accesses. ‘

It would appear that the trend is toward greater sophistication, and hence even greater
sensitivity to the order of requests. In the new JEDEC standard for synchronous DRAM,
for example, the cost differs by a factor of ten. RAMBUS has, in effect, two cache lines
on chip and is best used in burst mode. Other, more exotic proposals are in the wings.

To take full advantage of these components, one must adapt the pattern of accesses to
account for the nature of the non-uniorm costs (mostly this means maximizing the
locality). There are a number of obvious ways to do this — for example simply
increasing the line size of a cache increases the number of references to the same page in
a page-mode DRAM and thus amortizes the initial page-miss cost. In the past the relation
between line size and total cache size has been studied, but the effect of nonuniform

- access needs to be factored into these studies. :

Of course, not all programs exhibit the sort of locality that benefits from a cache —
scientific vector and string processing being the prime examples. Fortunately, these are
also the style of computations in which it is possible at compile time to predict the pattern
of accesses. It is possible to use this information to improve performance substantially.

For example, one can simply unroll a vector loop and group access to the same vector;
this will increase the probability of consecutive accesses to the same DRAM page, and

thus amortize the page miss cost. The thesis of one of my student's! provides an
encyclopedic analysis of what can be done at compile time to exploit non-uniformity.

Compile time exploitation of current components is, unfortunately, limited in a number of
ways:

— the lack of run-time information such as precise alignment, and
- & limited number of registers in which to buffer data

We at Virginia are therefore looking into mixed compile-time/run-time approaches. At
compile time we detect the pattern of vector accesses; this information is then passed to a
run-time mechanism that reorders the accesses to optimize memory performance while
buffering data so that the processor can continue to access operands in an order that is
natural to the algorithm. Simulation results to date indicate that this scheme can
<consistently deliver over 90% of the effective peak bandwidth of a memory system.

ISteve Moyer, "Access Ordering and Effective Memory Bandwidth", 1693
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- Potential Research Areas in Memory-Conscious System Organization
and Compiler Support for Multiprocessors
Pen-Chung Yew
Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign

The following is a short list of potential research areas in high-performance memory

systems for multiprocessors.
{I) Clustered Memory Systems

In -addition to tﬁe challenge posed by ever-increasing speed differentials between
processors and memories, researchers are facing the physical constraints imposed by the
packaging technologies. Those technologies usually impose an inherenf hierarchical structhr-c on
a targc system. For example, an MCM modulé may accommédate several processors that i;ornl a
small cluster, a multi-layer mother board may hold several such clusters, and several such bcards
may be coﬁtained in a chassis. Signal lazency across packaging boundaries is significantly longer
than the latency within a boundary. Also, because of the pin and wire constraint, the bandwidth
that could be prov.ided within a package is much larger than that between packages. In view of
such packaging constraints, it is often more practical to use different interconngction schemes at-
different levels than to choose a single scheme for the entire system. For example, within a
cluster we may use a crossbar switch or a fast bus, because scalability is not an issue there.
Among clusters,. we can then use moré sophisticated interconnection networks such as high-

dimensional meshes or multistage networks.

Interestingly,r in most appiicaﬁ_on programs, we can observe a‘simikar. hierarchical structure.
They can be structured into micro-tasks, macro-tasks, and heavy-weight processes. The
communication bandwidth required within a task is much larger than that required between tasks

]

or processes. This program structure maps very well on the physical hierarchy mentioned
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above; that is, we can schedule a micro-task on a processor or a macro-task on a cluster.

The following describes a few of the many interesting research problems related to such a

hieraréhy.

-

(A) How do we design a memory system that reflects such a hierarchy in physical layout
and 'brogram structure? We may include a cluster memory shared by processors within a cluster,
followed by a global memory shared by processor clusters at the next level. Differént
cache/memory coherent protocols can be used at different memory levels; depending on the
intercon'nection schemes chosen. For example, a snooping cache protocol or a shared cache canv
be used in a cluster if we use a fast bus or a crossbar switch in the cluster. A directory schéme or
a software éoherence scheme can be used for the global memory if an interconnection network is
used. Some research prototypes like Dash and Cedar have already addressed some of these
issues. Several recent commercial machines such as KSR and Convex MPP have also been

built with hierarchical structures, even though they are addressing different issues in their

designs.

(B) How can the compiler and language suppoﬁ such a hierarchy? Should we make this
memory hierarchy visible through the language to compiEer and application programmers, so
they can take advantage of such a hierarchy? | HPF allows data ali gnnaent and distribution to be
specified, but it does not provide the notion of memory hierarchy. It is not easy to specify a

clusterly-shared variable vs. a globally-shared variable using HPF,

(C) Can algorithms and applications take advantage of such a hierarchical structure? Some
preliminary studies on Cedar seem to indicate this possibility. However, more studies are

needed in this area.
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(I) Parallel Program Memory Behavioral Study

Werstili know very little about the memory access behavior 0f parallel programs in general.
We havé seen some parallel benchmarks like th'ge Perfect Benchmarks, Spiash, and NAS
‘benchmarks emerging in the last few years. However, it“requi:‘es a tremendous effort to port
these coaes to a variety of machines because many of them were originally targeted for one
particular machine organizaiian. It would be very useful if we céu!d pool different versions of
thé same benchmark suite when they are ported to machines with different organizations. We
can then compare the program behavior change caused by different machine and memory

organizations.

.We‘stili know.very little about the amount of data sharing between tasks, the data sharing
patterns, the synchronization behavior, and the amount. of parallelism that exists at different
levels of task granularity in parallel programs. Defining these characteristics will be very useful
in helping us to design cache coherence protocols, synchronization primitives, data prefetching

techniques, and other latency reduction and locality enhancement strategies.

“The main difficulty here is to obtain a large :%uite of parallel programs that more or less
| .represcnt “typical" application codes being run on parallel machines. We then have to port these
codes to different machines and tune them. for good performance. This effort requires
coordinatioﬁ and cooperation within the research community. An effort like SPEC or the Perfect
Benchmarks within the research comnmnify will be very useful. However, the focus here is not

on benchmarking, but rather to provide a comnion application suite for system studies.
(HI) Compiler and Language Support

There are generally two approaches to reduce the penalty caused by the memory latency:

(a) exploit locality and use fast cache/local memories; (b) hide latency using prefetching, multi-
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threading, and other techniques. The effectiveness of each approach needs to be studied further.
The compiler techniques to enﬁance program locality for cache and local memories have been
studied quite extensively. Data distribution through language directives also has been proposed
and studigd. However, the compiler techniques for latency hiding schemes are just beginning to
be investigated. Many of these techniques are suggested without real implementation and
without berfommnce data from real application codes. More such experimental studies are

needed in this area.

(IV) Development of Methodology for Performance Measurement on High Performance

Memory Systems

The methodology of performance measurement on. parallel machines is still being
developed. Because of the potentially large amount of traces and performance data that can be
obtained from such empirical studies, more sophisticated measurement tools and techniques

need to be developed.

To date, many software and hufdwnre performance monitoring tools have been developed
on some research prototypes such as Cedar and Dash. However, many of those tools have been
developed by'thé "tool builders," not néCessari!y by the "tool users." It is very important to
evaluate various performance measurement techniques and to develop more efficient and

‘effective methodologies.
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