DISTRIBUTED CHECKPOINTING FOR

GLOBALLY CONSISTENT STATES OF DATABASES
Sang Hyuk Son

Computer Science Report No. TR-86-23
October 17, 1986

This work was partially supported by the Office of Naval Research under contract no.
NO00014-86-K-0245 to the Department of Computer Science, University of Virginia,
Charlottesville, VA.

ABSTRACT

The goal of checkpointing in database management systems is to save database states
on a separate secure device so that the database c¢an be recovered when errors and failures
occur. Recently, the possibility of having a checkpointing mechanism which does not inter-
fere with the transaction processing has been studied[4, 7]. Users are allowed to submit
transactions while the checkpointing is in progress, and the transactions are performed in
the system concurrently with the checkpointing process. This property of non-interference is
highly desirable to real-time applications, where restficting transaction activity during the
checkpointing operation is in many cases not feasible. In this paper, a new algorithm for
checkpointing in distributed database systems is proposed and its correctness is proved. The
practicality of the algorithm is discussed by analyzing the extra workload and the robust-

ness of it with respect to site failures.

Index Termsg - distributed database, recovery, consistency, checkpoint, transaction, non-

interference, availability

1. Introduction

The need for having recovery mechanisms in distributed database systems is well ack-
nowledged. In spite of powerful database integrity checking mechanisms which detect errors
and undesirable data, it is possible that some erroneous data may be included in the data-
base. Furthermore, even with a perfect integrity checking mechanism, failures of hardware
and/or software at the processing sites may destroy the consistency of the database. In
order to cope with those errors and failures, distributed database systems provide recovery

mechanisms, and checkpointing is a technigque frequently used in such recovery mechanisms.

The goal of checkpointing in database management systems is o save a consistent state
of the database on a separate secure device. In case of a failure, the stored data can be
used to restore the database. Checkpointing must be performed so as to minimize both the
costs of performing checkpoints and the costs of recovering the database. If the checkpoint
intervals are very small, too much time and resources are spent in checkpointing; if these
intervals are large, too much time is spent in recovery. Since checkpointing is an effective
method for maintaining consistency of database systems, it has been widely used and stu-

died by many researchers(l, 4, 5, 7, 8, 10, 11, 13, 17, 18]

When checkpointing is performed during normal operation of the system, the interfer-
ence with transaction processing must be kept to a minimum. It is highly desirable that
users are allowed to submit transactions while the checkpointing is in progress, and the
transactions are executed in the system concurrently with the checkpointing process. A gquick
recovery from failures is also desirable to many applications of distributed databases. For
achieving quick recovery. each checkpoint needs to be globally consistent so that a simple
restoration of the latest checkpoint can bring the database to a consistent state. In distri-
buted database systems these desirable properties of non-interference and global consistency
make the checkpointing more complicated and increase the workload of the system. It may
turn out that the overhead of the checkpointing mechanism is unacceptably high, in which

case the mechanism should be abandoned in spite of its desirable properties. The practicality

of non-interfering checkpointing, therefore, depends partially on the amount of extra work-

load incurred by the checkpointing mechanism.

In this paper, we propose a new checkpointing algorithm which is non-interfering and
which efficiently generates globally consistent checkpoints. The correctness of the algorithm
is shown, and the practicality of the algorithm is discussed. This paper is organized as fol-
lows. Section 2 introduces a model of computation used in this paper. Section 3 discusses
the design issues for checkpointing algorithms and reviews previous work which has
appeared in the literature. Section 4 describes the checkpointing algorithm. Section 5 presents
an informal proof of the correctness of the algorithm. Sections 6 and 7 discuss the practi-
cality of the algorithm by analyzing the workload and the robustness of the algorithm, and

describe the recovery methods associated with the algorithm. Section 8 concludes the paper.

2. A Model of Computation.

This section introduces the model of computation used in this paper. We describe the

notion of itransactions and the assumptions about the effects of failures.

2.1. Data Objects and Transactions

We consider a distributed database system implemented on a computing system where
several autonomous computers (called sites) are connected via a communication network. A
database consists of a set of data objects. A data object contains a data value and
represents the smallest unit of the database accessible to ti;e user. Data objects are an
abstraction; in a particular system, they may be files, pages, records, items, etc. The set of

data objects in a distributed database system is partitioned among its sites.

The basic units of user activity in database systems are transactions. Each transaction
represents a complete and correct computation, i.e., if a transaction is executed alone on an
initially consistent database, it would terminate in a finite time and produce correct results,
leaving the database consistent. The read set of a transaction T is defined as the set of data

objects that T reads. Similarly, the set of data objects that T writes is called the wrire ser

of T. A transaction is said to be committed when it is executed to completion, and it is said
to be aborted when it is not executed at all. When a transaction is committed, the output

values are finalized and made available to all subsequent transactions.

We assume that each transaction has a time-stamp associated with it [12]. A time-
stamp is a number that is assigned to a transaction when initiated and is kept by the tran-
saction. Two important properties of time-stamps are (1) no two transactions have the same
time-stamp, and (2) only a finite number of transactions can have a time-stamp less than

that of a given transaction.

The transaction managers that have been involved in the execution of a transaction are
called the participants of the transaction. The coordinator is one of the participants which
initiates and terminates the transaction by controlling all other participants. In our transac-
tion processing model, we assume that the coordinator decides on the participants using suit-
able decision algorithms, based on the data objects in the read set and write set of the
transaction. The coordinator creates and sends a Transaction Initiating Message (TIM) to each
participants. A TIM contains the definition of the transaction, including the list of partici-

pants, the objects to be accessed, and the time-stamp.

All participants that receive a TIM and are able to execute it reply with a TIM-ACK
message to the coordinator. The other sites send a TIM—«NACK message indicating that the
transaction cannot be executed at this time. The coordinator waits for a response from all
of the participants. If they are all TIM-ACKs then it sends a Start Transaction Message
(STM). The transaction is started at a participating site only after it has received the STM.
One TIM-NACK message is enough to reject the transaction. In that case, the coordinator

sends a Reject message to each participants, and the transaction is rejected.

We assume that the database system runs a correct transaction control mechanism (e.g.,
atomic commit algorithm{19] and concurrency control algorithm{2]), and hence assures the

atomicity and serializability of transactions.

2.2. Failure Assumptions

A distributed database system can fail in many different ways, and it is almost
impossible to make an algorithm which can tolerate all possible failures. In general, failures
in distributed database systems can be classified as failures of omission or commission
depending on whether some action required by the system specification was not taken or
some action not specified was taken[14]. The simplest failures of omission are simple crashes
in which a site simply stops running when it fails. The hardest failures are malicious runs
in which a site continues to run, but performs incorrect actions. Most real failures lie

between these two extremes.

In this paper, v;re do not consider failures of commission such as the "malicious runs”
type of failure. When a site fails, it simply stops running (fail-stop). When the failed site
recovers, the fact that it has failed is recognized, and a recovery procedure is initiated. We
agsume that gite failures are detectable by other sites. This can be achieved either by net-
work protocols or by high-level time-out mechanisms in the application layer{3]. We also
assume that network partitioning never occurs. This assumption is reasonable for most local

area networks and some long-haul networks.

3. Related Work

In order to achieve the goal of efficient database system recoverability, it is necessary
to consider the following issues when a checkpointing mechanism is designed for a distri-

buted database system.
(1) it should generate globally consistent checkpoints,

(2) it should be non-interfering in that it does not affect the ongoing processing of tran-

sactions,
(3) the storage and the communication overhead should be small.

The need and the desirability of these properties is self evident. For example, even

though an inconsistent checkpoint may be quick and inexpensive to obtain, it may require a

lot of additional work to recover a consistent state of the database. Some of the schemes

appearing in the literature (e.g. {1, 5]) do not meet this criteria.

Checkpointing can be classified into three categories according to the coordination neces-
sary among the autonomous sites. These are (1) fully synchronized[10], (2) loosely syn-
chronized[17], and (3) nonsynchronized[5]. Fully synchronized checkpointing is done only
when there is no active transaction in the database system. In this scheme, before writing a
local checkpoint, all sites must have reached a state of inactivity. In a loosely synchronized
system, each site is not compelled to write its local checkpoint in the same global interval
of time. Instead, each site can choose the point of time to stop processing and take the
checkpoint. A distinguished site locally manages a checkpoint sequence number and broad-
casts it for the creation of a checkpoint. Fach site takes local checkpoint as soon as it is
possible, and then resumes normal transaction processing. It is then thé responsibility of the
local transaction managers to guarantee that all global transactions run in the local check-
point intervals bounded by checkpoints with the same sequence numbers. In nonsynchronized
checkpointing, global coordination with respect to the recording of checkpoints does not take
place at all. Each site is independent from all others with respect to the frequency of
checkpointing and the time instants when local checkpoints are recorded. A logically con-
sistent database state is not constructed until a global reconstruction of the database is

required.

One of the drawbacks common to the checkpointing schemes above is that the process-
ing of transactions must be stopped for checkpointing. Maintaining transaction inactivity for
the duration of the checkpointing operation is undesirable, or even not feasible, depending

on the availability constraints imposed by the system.

In [13], checkpointing is always performed exclusively as part of the commitment of
transactions. This scheme has the advantage of not having a separate checkpointing mechan-
ism, but may have problems if the number of transactions allowed is too many or if it is

necessary to keep checkpoints for a long time. A similar checkpointing mechanism is sug-

gested in [11]. The synchronization of checkpointing in [11] is achieved through the time-
stamp ordering, making the global reconstruction easier than in the scheme of [13]. The
storage requirements of these transaction-based checkpointing mechanisms depend upon the
amount of information saved for each transaction, and are difficult to compare with the

checkpointing mechanisms which save only the values of data objects.

In [1], a backup database is created by pretending that the backup database is a new
site being added to the system. An initialization algorithm is executed to bring the new site
up-to-date. One drawback of this scheme is that the backup generation does interfere with

update iransactions.

In [7], a different approach based on a formal model of asynchronous parallel processes
and an abstract distributed transaction system is proposed. It is called non-intrusive in the
sense that no operations of the underlying system need be halted while the global check-
point is being executed. The non-intrusive checkpointing approach as suggested in [7]
describes the behavior of an abstract system and does not provide a practical procedure for

obtaining a checkpoint.

Our new algorithm provides a practical procedure for non-interfering checkpointing in
distributed environments, through efficient implementation of the abstract idea of non-
intrusiveness. The algorithm constructs globally consistent checkpoints, and yet the interfer-
ence of it with the transaction processing is greatly reduced. Perfect non-interference can be
achieved by the algorithm if the messages are delivered in the order they are sent. The
notion of diverged computation in [7] is captured in the "committed temporary versions" of

data objects in our algorithm.
4. An Algorithm for Non-Interfering Checkpoints

4.1. Motivation of Non-interference

The motivation of having a checkpointing scheme which does not interfere with tran-

saction processing is well explained in [4] by using the analogy of migrating birds and a

group of photographers. Suppose a group of photographers observe a sky filled with migrat-
ing birds. Because the scene is so vast that it cannot be captured by a single photograph,
the photographers must take several snapshots and piece the snapshots together to form a
picture of the overall scene. Furthermore, it is desirable that the photograpbers do not dis-
turb the process that is being photographed. The snapshots cannot all be taken at precisely
the same instance because of synchronization problems. and yet they should generate a

“meaningful” composite picture.

In a distributed database system, each site saves the state of the data objects stored at
it to generate a local checkpoint. We cannot ensure that the local ‘checkpoints are saved at
the same instance, unless a global clock can be accessed by all the checkpointing processes.
Moreover, we cannot guarantee that the global checkpoint, consisting of local checkpoints
saved, is consistent. Non-interfering checkpointing algorithms are very useful for the situa-
tions in which a quick recovery as well as no blocking of transactions is desirable. Instead
of waiting for a consistent state to occur, the non-interfering checkpointing approach con-
structs a state that would result by completing the transactions that are in progress when

the global checkpeint begins.

In order to make each checkpoint globally consistent, updates of a transaction must be
either included in the checkpoint completely or not at all. To achieve this, transactions are
divided into two groups according to their relations to the current checkpoint: affer-
checkpoint-transactions (ACPT) and before-checkpoint-transactions (BCPT). Updates belonging
to BCPT are included in the current checkpoint while those belonging to ACPT are not
included. In a centralized database system, it is an easy task to separate transactions for
this purpose. However, it is not easy in a distributed environment. For the separation of
transactions in a distributed environment, a special time-stamp which is globally agreed
upon by the participating sites is used. This special time-stamp is called the Global Check-
point Number (GCPN), and it is determined as the maximum of the Local Checkpoint

Numbers (LCPN) through the coordination of all the participating sites.

An ACPT can be reclassified as a BCPT if it turns out that the transaction must be

executed before the current checkpoint. This is called the conversion of transactions. The

updates of a converted transaction are included in the current checkpoint.

4.2. The Algorithm

There are two types of processes involved in the execution of the algorithm: checkpoint

coordinator (CC) and checkpoint subordinate (CS). The checkpoint coordinator starts and ter-

minates the global checkpointing process. Once a checkpoint has started, the coordinator does

not issue the next checkpoint request until the first one has terminated.

(1)

)

(3)

(4)

(1

The variables used in the algorithm are as follows:

Local Clock (LC): a clock maintained at each site which is manipulated by the clock

rules of Lamport[12].

Local Checkpoint Number (LCPN): a number determined locally for the current check-

point.

Global Checkpoint Number (GCPN): a globally unique number for the current check-

point.

CONVERT: a Boolean variable showing the completion of the conversion of all the

eligible transactions at the site.
Our checkpointing algorithm works as follows:

The checkpoint coordinator broadcasts a Checkpoint Request Message with a time-
stamp LCgqc. The local checkpoint number of the coordinator is set to LCgc. The coor-

dinator sets the Boolean variable CONVERT to false:
CONVERTCC 1= false

and marks all the transactions at the coordinator site with the time-stamps not

greater than LCPNgc as BCPT.

@)

(3)

(4)

53

On receiving a Checkpoint Request Message, the local clock of site m is updated and

I.CPNp, is determined by the checkpoint subordinate as follows:

LCpy = max(1.Ccc + 1, LCy)

LCPN,, = LCp,

The checkpoint subordinate of site m replies to the coordinator with LCPNp,, and sets

the Boolean variable CONVERT to false:

CONVERT,, = FALSE

and marks all the transactions at the site m with the time-stamps not greater than

LCPN,, as BCPT.

‘The coordinator broadcasts the GCPN which is decided by:

GCPN := max(LCPN,) n=1,..N

For all sites, after LCPN is fixed, all the transactions with the time-stamps greater
than LCPN are marked as temporary ACPT. If a temporary ACPT wants to update
any data objects, those data objects are copied from the database to the buffer space
of the transaction. When a temporary ACPT commits, updated data objects are not
stored in the database as usual, but are maintained as committed temporary versions
(CTV) of data objects. The data manager of each site maintains the permanent and
temporary versions of data objects. When a read request is made for a data object
which has committed temporary versions, the value of the latest commitied temporary
version is returned. When a write request is made for a data object which has com-
mitted temporary versions, another committed temporary version is created for it

rather than overwriting the previous committed temporary version.

When the GCPN is known, each checkpointing process compares the time-stamps of
the temporary ACPT with the GCPN. Transactions that satisfy the following condition

become BCPT; their updates are reflected into the database. and are included in the

-10-

current checkpoint.
LCPN < time-stamp(T) € GCPN

The remaining temporary ACPT are treated as actual ACPT; their updates are not
included in the current checkpoint. These updates are included in the database after
the current checkpointing has been completed. After the conversion of all the eligible

BCPT, the checkpointing process sets the Boolean variable CONVERT to true:

CONVERT := true

(6) Ilocal checkpointing is executed by saving the state of data objects when there is no

active BCPT and the variable CONVERT is true.

(7) After the execution of local checkpointing, the values of the latest committed tem-
porary versions are used to replace the values of data objects in the actual database.

Then, all committed temporary versions are deleted.

The above checkpointing algorithm essentially consists of two phases. The function of
the first phase (steps 1 through 3) is the assignment of GCPN that is determined from the
local clocks of the system. The second phase begins by fixing the LCPN at each site. This is
necessary because each LCPN sent to the checkpoint coordinator is a candidate of the GCPN
of the current checkpoint, and the committed temporary versions must be created for the
data objects updated by ACPT. The notions of committed temporary versions and conversion
from ACPT to BCPT are introduced to assure that each checkpoint contains all the updates

made by transactions with earlier time-stamps than the GCPN of the checkpoint.

When a site receives a Transaction Initiation Message, the transaction manager checks
whether or not the transaction can be executed at this time. If the checkpointing process
has already executed step 5 and time-stamp(T) € GCPN, then a TIM-NACK message is
returned. Therefore in order to execute step 6. each checkpointing process only needs to

check active BCPT at its own site, and yet the consistency of the checkpoint can be

-11~

achieved.

4.3. Termination of the Algorithm

The algorithm described so far has no restriction on the method of arranging the exe-
cution order of transactions. With no restriction, however, it is possible that the algorithm
may never terminate. In order to ensure that the algorithm terminates in a finite time, we
must ensure that all BCPT terminate in a finite time, because local checkpointing in step 6

can occur only when there is no active BCPT at the site.

Termination of transactions in a finite time is ensured if the concurrency control
mechanism gives priority to older transactions over younger transactions. With such a
time-based priority, it is guaranteed that once a transaction Tj is initiated by sending Start
Transaction Messages, then T; is never blocked by subsequent transactions that are younger
than T;. The number of transactions that may block the execution of T, is finite because
only a finite number of transactions can be older than T,. Among older transactions which
may block T), there must be the oldest transaction which will terminate in a finite time,
since no other transaction can block it. When it terminates, the second oldest transaction
¢an be executed, and then the third, and so on. Therefore, T; will be executed in a finite
time. Since we have a finite number of BCPT when the checkpointing is initiated, all of
them will terminate in a finite time, and hence the checkpointing itself will terminate in a
finite time. Concurrency control mechanisms based on time-stamp ordering as in [2, 20] can

ensure the termination of transactions in a finite time.

5. Consistency of Global Checkpoints

In this section we give an informal proof of the correctness of the algorithm. In addi-
tion to proving the consistency of the checkpoints generated by the algorithm, we show that
the algorithm has another nice property that each checkpoint contains all the updates of
transactions with earlier time-stamps than its GCPN. This property reduces the work

required in the actual recovery, which is discussed in Section 7. A longer and more

w12

thorough discussion on the correctness of the algorithm is given in [21}.
The properties of the algoritbm we want te show are

(1) a set of all local checkpoints with the same GCPN represents a consistent database

state, and

(2) all the updates of the committed transactions with earlier time-stamps than the GCPN

are reflected in the current checkpoint.

Note that only one checkpointing process can be active at a time because the check-
pointing coordinator is not allowed to issue another checkpointing request before the termi-

nation of the previous one.

A database state is consistent if the set of data objects satisfies the consistency con-
straints[6]. Since a transaction is the unit of consistency, a database state S is consistent if

the following holds:

(1) For each transaction T, S contains all subtransactions of T or it contains none of

them.

(2) If T is contained in S, then each predecessor T° of T is also contained in 8. (T” is a
predecessor of T if it modified the data object which T accessed at some later point
in time.)

For a set of local checkpoints to be globally consistent, all the Iocal checkpoints with
the same GCPN must be consistent with each other concerning the updates of transactions
that are executed before and after the checkpoint. Therefore, to prove that the algorithm
satisfies both properties, it is sufficient to show that the updates of a global transaction T
are included in CP; at each participating site of T, if and only if time-stamp(T) €
GCPN(CP;). This is enforced by the mechanism to determine the value of the GCPN, and

by the conversion of the temporary ACPT into BCPT.

A transaction is said to be reflected in data objects if the wvalues of data objects

represent the updates made by the transaction. We assume that the database system pro-

=13~

vides a reliable mechanism for writing into the secondary storage such that a writing opera-
tion of a transaction is atomic and always successful when the transaction commits. Because
updates of a transaction are reflected in the database only after the transaction has been
successfully executed and committed, partial results of transactions cannot be included in

checkpoints.

The checkpointing algorithm assures that the sequence of actions are executed in some
specific order. At each site, conversion of eligible transactions occurs after the GCPN is
known, and local checkpointing cannot start before the Boolean variable CONVERT becomes
true. CONVERT is set_to false at each site after it determines the LCPN, and it becomes
true only after the conversion of all the eligible transactions. Thus, it is not possible for a
local checkpoint to save the state of the database in which some of the eligible transactions

gre not reflected because they remain unconverted.

We can show that a transaction becomes BCPT if and only if its time-stamp is not
greater than the current GCPN. This implies that all the eligible BCPT will become BCPT
before local checkpointing begins in step 6. Therefore, updates of all BCPT are reflected in

the current checkpoint.

From the atomic property of transactions provided by the transaction control mechan-
ism (e.g. commit protocol in [19]), it can be assured that if a transaction is committed at a
participating site then it is committed at all other participating sites. Therefore if a transac-
tion is committed at one site, and if it satisfies the time-stamp condition above, its updates

are reflected in the database and also in the current checkpoint at all the participating sites.

6. Performance Characteristics

In order to discuss the practicality of the proposed algorithm, we consider two perfor-
mance measures. extra workload and extra storage required. We assume that for each tran-
saction during its execution, there exists a private buffer. All updates made by a transaction
are performed tentatively on copies of data objects in the private buffer. When a transac-

tion commits, the updates are propagated from the buffer space either to the database (for

-14-

BCPT) or to the committed temporary versions file (for ACPT), and the buffer space is
cleared. If a transaction aborts, the buffer space is simply cleared without any data propa-
gation. The updates in the CTV file are propagated to the database by the reflect operation
when the current checkpoiﬁting is terminated or when an ACPT is converted to a BCPT.

Figure 1 shows the different execution sequences of BCPT and ACPT.

The extra workload imposed by the algorithm mainly consists of the workioad for (1)
determining the GCPN, (2) committing ACPT (move data objects from the buffer space to
the CTV file), (3) reflecting the CTV file (move committed temporary versions from the
CTV file to the database), and {4) making the CTV file clear when the reflect operation is

finished.

It takes three message exchanges to determine GCPN at each site. Since the time for
processing the messages of LCPN and GCPN is negligible when compared to the I/0 time
for performing the commit and the reflect operations, we neglect the portion of extra work-
load for determining the GCPN. We also neglect the portion of extra workload for making

the CTV file clear.

The commit operation of an ACPT consists of the following two steps: (1) transferring
the data objects from the buffer space to the CTV file, (2) inserting these data objects into
the CTV file. We assume that these two steps are performed independently, that is, while a
data object is being inserted into the CTV file, other data objects can be transferred to the
CTV file. The time required to commit an ACPT, Tc¢a. is a function of the number of data
objects updated by the transaction, and the maximum time to perform these two steps:

TCA = max(th(n). Tic(n))

where n is the number of data objects updated by the transaction, T.{n) is the time
required to transfer n data objects to the CTV file, and Ty (n) is the time required to insert

n data objects into the CTV file.

Let Tep be the time required to commit a BCPT. When a BCPT commits, all the

updates are inserted from the buffer space to the database. This is the minimum time

-15-

required to commit a transaction, and thus it must be subtracted from the extra workload
reqﬁired by the algorithm. As in the commit operation of an ACPT, the commit operation
of a BCPT consists of two steps: (1) transferring the data objects from the buffer space to
the database, (2) inserting these data objects into the database. Tgp is a function of the
number of data objects updated by the transaction, and the maximum time to perform
these two steps:

Tcs = max(Ttd(n). Tiﬁ(n))

where Tys(n) is the time required to transfer n data objects to the database, and Ti(n) is

the time required to insert n data objects into the database.

Let Tr be the time required to reflect the data objects updated by an ACPT into the
database. The reflect operation also consists of two steps: (1) transferring the data objects
from the CTV file to the database, (2) inserting these data objects into the database. Ty is
a function of the number of data objects updated by the transaction, and the maximum
time to perform these two .steps:

Ty = max(Ta(n), Tia(n))

where Tiq(n) is the time required to transfer n data objects from the CTV file to the

database.

For each ACPT, the extra time required to process it is formulated by summing the
commit time and reflect time, and subtracting the commit time of a BCPT. Let N be the
number of ACPT at the site. Then, the overall extra time required to execute the algorithm
is

Ton=Na(Tea+Tr~Tca)
In the following subsections, we formulate the expected number of ACPT, and analyze

the effects of different parameters on the overall extra time.

-16-

6.1. Expected Number of ACPT

We model the database system as a gueuing system with Poisson process of transaction
arrivals. For the simplicity in the analysis, we assume that transactions are processed by
the simple first-come, first-served principle. In real database systems, more than one transac-

tion can be processed concurrentily by the virtue of concurrency control mechanisms.

For BCPT, the database system is a single server which performs necessary processing
and the commit (or abort) operation for the transaction. The database system is a two
server system for ACPT; the first server performs the same operation as the single server
for BCPT, while the second server performs the reflect operatien. We assume an exponential
service time distribution for the first server, and general service time distribution for the
second server. Figure 2 shows the queueing meodel of the database system used in our
workload consideration. Using this model, the expected number of ACPT at a single site

will be formulated.

Note that we are not interested in estimating the exact number of ACPT. We are
interested in determining the number of transactions that cause any extra workload to the
system during a single checkpoint. Thus, the expected number of ACPT includes the number
of temporary ACPT which are eventually converted to BCPT, because they incur overhead

to the database system.

There is a single stream of transactions that flows into the database system. The user
is not aware of checkpointing process when he submits a transaction. From the user’s
viewpoint, there is no distinction between a BCPT and an ACPT. It is the database system
that must mark the transaction either as a BCPT or an ACPT. If a transaction must be an
ACPT, then extra processing is performed by the database system. Therefore, the input pro-

cess of ACPT into the database system is the same as that of BCPT.
Let the arrival rate of transactions to each site of the database system be A and the
mean service time of BCPT be exponentially distributed with mean value % The mean

number of arrivals during the service time of a BCPT is

~-17-

r: A
= | Atue F'dt = -
p = [rusrar = 3

Since a single stream of BCPT changes to a single stream of ACPT when the local
checkpoint number is determined, there must be a transaction which arrives as the last
transaction of the BCPT stream. It has the largest time-stamp not greater than the current
local checkpoint number. We call it the last BCPT. We now observe the system immediately
aftér the arrival of the last BCPT at the site. As far as the BCPT processing is concerned,
the database system is a M/M/1 queuve. Therefore, the time to finish the work present

when the last BCPT arrives is the same as the waiting time of a transaction in the system,

which is A .
#lp—=N)

Let Tg be the time required to finish processing of all BCPT. Ty is the sum of the

waiting time and the service time of the last BCPT, thus we have

A i

Tp= L e

P au=X) T R
=1
A

Let Tp be the time required to save the state of the data objects to generate a local
checkpoint. Tp is proportional to the number of data objects stored at the site, and is fixed
for a given database system. The time interval during which the system needs to process
ACPT instead of BCPT is the sum of Tp and Tp. Thus from the Little’'s Theorem, the

expected number of ACPT is

1

6.2. Analysis of Extra Workload

As shown in figure 1, the difference in committing BCPT and ACPT is whether to use
the database or the CTV file in the commit operation. For a BCPT, the updated data objects
in the buffer space of the transaction have to be transferred to the database: for an ACPT,

they have to be transferred to the CTV file. In most implementations the same hardware is

-18-

most likely to be used for both the database and the CTV file. Hence we assume that the
commit operation of a BCPT requires the same service time as the commit operation of an
ACPT: Tep = Tea. Now the extra workload becomes a function of the expected number of
ACPT and the service time for the reflect operation:

Toy = NAXmax(thd(n). Tid(n))

Let us assume that Ko unit time is required to insert one data object into the data-
bage. Therefore,

Tia(n) = KoXn

Before any insertions are made to the database for the reflect operation, the data objects
have to be transferred from the CTV file to the buffer of the database. In the best case it
takes the minimum required time regardless of the number of data objects updated by the
transaction. The time required in the worst case is proportional to the number of data

objects in the CTV file.

We calculate the extra workload of the algorithm as the following, considering
different service requirements for the transfer operation. Case I is the best case where the
minimum time unit Cy is required for each ACPT. In this case, To=NaXmax{(Cy KoXn). In
case II, the worst situation is considered where the time required for the reflect operation is
a linear function of the number of data objects updated. We bhave Tou=N,Xmax(C;Xn,
KoXxn). Case III might be closer to the real system performance where the time required for
the transfer operation is proportional to the square root of the number of data objects

updated: Tou=Nax(CoxVn, Kyxn).

We present below some typical combinations of parameters that illustrate the perfor-
mance range of the algorithm. In general, if the number of data objects involved in the
transaction is small, the performance of the best case is closer to the real system perfor-
mance. As the number of data objects involved in the transaction becomes large, the perfor-

mance of the worst case becomes closer to the real system performance.

Among several parameters we can change, p {the mean number of arrivals) and n (the
average number of updates) are key parameters to characterize the extra workload. The
extra workload will be increased when the number of ACPT is increased. It will be also

increased when the number of updates are increased.

As shown in figure 3, the extra workload increases very rapidly as p approaches to 1.
In other words, when the database system is saturated by the incoming transactions (A 2

0.9u), the extra workload by the checkpointing algorithm becomes unacceptable.

Figure 4 shows the extra workload as a function of the average number of data
objects updated by an ACPT. As we can see, the extra workload is not as sensitive to n as
A in its higher range (A Z 0.8x). However, case I is not practical for a large number of
data objects because the capability of reading and transferring the data objects in a constant
time is limited by hardware. Therefore, the actual extra workload is closer to case I only
when the number of data objects involved is very small. When the number of data objects
involved in the execution of a transaction becomes large, the extra workload emerges toward
case I or even toward case II. It implies that if the average number of data objects
updated by an ACPT is quite large, the extra workload of the scheme may become unac-

ceptable.

The extra workload of the algorithm is determined by the dynamic parameters of the
transaction characteristics (e.g., p, n). Naturally, this number is an important criteria for
deciding whether or not to perform checkpointing non-intrusively. For the circumstances in
which p and/or n is so bhigh that the execution of the algorithm would severely degrade the
performance of the system, a conventional intrusive checkpointing might be preferred: In
most cases, however, the system may reguire non-intrusiveness and global consistency of
checkpoints. In order to make a proper decision, the system may provide a mechanism to
determine the dynamic parameters at regular intervals during normal operation and update
them at some safe storage. When the next checkpointing needs to be done, the checkpoint

coordinator decides whether or not to execute the algorithm, based on the expected extra

~20-

workload calculated using the values of the parameters saved. If the extra workload is less

than certain threshold value, the non-intrusive checkpointing will be executed.

6.3. Storage Requirement

The extra storage requirement of the algorithm is simply the CTV file size, which is a
function of the expected number of ACPT of the site, the number of data objects updated
by a typical transaction, and the size of the basic unit of information. In terms of the sys-
tem parameters, we have

CTV file size = Nax{number of updates)X(size of a data object)

1
—(ﬂ%-TD)A\XnXm

where m is the size of a data object fixed by the system.

As in the extra workload estimation, the parameters p and n play a critical role in
estimating the required CTV file size. The size of the CTV file may become unacceptably
large if p approaches to 1 or n becomes very large. Unfortunately, they are determined
dynamically from the characteristics of transactions submitted to the database system, and
hence cannot be controlled. The only parameter we can change in order to reduce the CIV
file size is m, the granularity of a data object. The size of the CTV file can be minimized
if we minimize m. By doing so, however, the overhead of normal transaction processing
(e.g., locking and unlocking, deadlock detection, etc) will be increased. Also, there is a
trade-off between the degr.ee of concurrency and the lock granularity[16]. Therefore the
granularity of a data object should be determined carefully by considering all such trade-
offs, and we cannot minimize the size of the CTV file by simply minimizing the data object

granularity.

There is no extra storage requirement in intrusive checkpointing mechanisms(1, 5, 10,
17]. However this property is balanced by the cases in which the system must block ACPT

or abort half-way done global transactions because of the checkpointing process.

-21-

7. Discussion

So far, we assumed that no failure occurs during a checkpoint. This assumption can be
justified if the probability of failures during a single checkpoint is extremely small. How-
ever, it is not always the case, and we now consider the method to make the algorithm

resilient to failures.

7.1. Site Failures

The algorithm is insensitive to failures of subordinates before or during its execution.
If a subordinate fails before the broadcast of a Checkpoint Request Message, it is excluded
from the next checkpoint. If a subordinate does not send its LCPN to the coordinator, it is
excluded from the current checkpoint. When the site recovers from the failure, the recovery
manager of the site must find out the GCPN of the latest checkpoint. After receiving infor-
mation of transactions which must be executed for recovery, the recovery manager brings
the database up to date by executing all the transactions whose time-stamps are not greater
than the latest GCPN. Other transactions are executed after the state of the data objects at

the site is saved by the checkpointing process.

An atomic commit protocol guarantees that a transaction is aborted if any participant
fails before it sends a Precommit message to the coordinator. Therefore, site failures during
the execution of the algorithm cannot affect the consistency of checkpoints because each

checkpoint reflects only the updates of committed BCPT.

The algorithm is, however, sensitive to failures of the coordinator. In particular, if the
coordinator crashes during the first phase (i.e., before the GCPN message is sent to subordi-
nates), every transactions become ACPT, requiring too much storage for committed tem-

porary versions.

One possible solution to this involves the use of a number of backup processes; these
are processes that can assume responsibility for completing the coordinator’s activity in the

event of its failure. These backup processes are in fact checkpointing subordinates. If the

22

coordinator fails before it broadcasts the GCPN message, one of the backups takes the con-
trol. A similar mechanism is used in SDD-1 [9] for reliable commitment of transactions.
Proper coordination among the backup processes is crucial here. In the event of the failure
of the coordinator, one, and only one backup process has to assume the control. The algo-
rithm for accomplishing this assumes an ordering among the backup processes, designated in
order as Pi1. Pz, . Pn Process pe—y is referred to as the predecessor of process pp (for k >

0). and the coordinator is taken as the predecessor of process p;.

We assume that the network service enables processes to be informed when a given
site achieves a specified status (simply UP or DOWN in this case). Initially, each of the

backup processes checks the failure of its predecessor. Then the following rules are used.

(1) If the predecessor is found to be down, then the process begins to check the predeces-

sor of the failed process.

(2) If the coordinator is found to be down, the first backup process assumes the control

of checkpointing.
(3) If a backup process recovers, it ceases to be a part of the current checkpointing.

(4) After each checkpoint, the list of backup processes is adjusted by including all the

UP sites.

These rules guarantee that at most one process, either the coordinator or one of the
backup processes, will be in control at any given time. Thus a checkpointing will terminate

in a finite time once it begins.

The role of the checkpointing coordinator in the algorithm is simply that of getting a
uniformly agreed GCPN. Apart from this function the coordinator is not critical to the
operation of the proposed algorithm. If a uniformly agreeable GCPN can be made known to
the individual sites, then the centralized nature of the coordinator can be eliminated. One
way to achieve this is to preassign the clock values at which the checkpoints will be taken.
For example, we may take checkpoints at the clock values in the multiple of 1000. When-

ever the local clock of a site crosses the multiple of this value, checkpointing can begin.

23

If the frequency of checkpointing is related to the load conditions and not necessarily
to the clock values, then the preassigned GCPN will not work as well. In this case, a pro-
cess will have to assume the role of the checkpointing coordinator to initiate the check-
pointing. A unique process has to bLe identified as the coordinator. This may be achieved by
using the solutions to the mutual exclusion problem [15] and making the selection of the

coordinator a critical section activity.

7.2, Recovery

The recovery from site crashes is called the site recovery. The complexity of the site
recovery varies in distributed database systems according to the failure situation[17]. If the
crashed site has no replicated data objects and if the recovery information is available at
the crashed site, local recovery is enough. Global recovery is necessary because of failures
which require the global database to be restored to some earlier consistent state. For
instance, if the log file is partially destroyed at the crashed site, local recovery cannot be

executed to completion.

When a global recovery is required, the database system bhas two alternatives: a fast
recovery and a complete recovery. A fast recovery is a simple restoration of the latest
checkpoint. Since each checkpoint generated by the algorithm is globally consistent, the
restored state of the database is assured to be consistent. However, all the transactions com-~
mitted during the time interval from the latest checkpoint until the time of crash would be
lost. A complete recovery is performed to restore as many transactions that can be redone
as possible. The trade-offs between the two recovery methods are the recovery time and the

number of transactions saved by the recovery.

Quick recovery from failures is critical for some applications of distributed database
systems which require high availability (e.g., ballistic missile defense or air traffic control).
For those applications, the fate of the mission, or even the lives of human beings, may
depend on the correct values of the data and the accessibility to it. Awvailability of a con-

gistent state is of primary concern for them, not the most up-to-date consistent state. i a

-24-

simple restoration of the latest checkpoint could bring the database to a consistent state, it
may not be worthwhile to spend time in recovery by executing a complete recovery to save

some of the transactions.

For the applications in which each committed transaction is so important that the most
up-to~date consistent state of the database is highly desirable, or if the checkpoint intervals
are large such that a lot of transactions may be lost by the fast recovery, a complete
recovery is appropriate to use. The cost of a complete recovery is the increased recovery
time which reduces the availability of the database. Searching through the transaction log is
necessary for a complete recovery. The second property of the algorithm (ie., each check-
point reflects all the updates of transactions with earlier time-stamps than its GCPN) is
useful in reducing the amount of searching because the set of transactions whose updates
must be redone can be determined by the simple comparison of the time-stamps of transac-
tions with the GCPN of the checkpoint. Complete recovery mechanisms based on the special

time-stamp of checkpoints (e.g.. GCPN) have been proposed in [11, 22].

8. Concluding Remarks

During normal operation of the database system, checkpointing is performed to prepare
information necessary for a recovery from failures. For better recoverability and availability
of distributed database systems, checkpointing must be able to generate a globally consistent
database state, without interfering with transaction processing. Site autonomy in distributed
database systems makes the checkpointing more complicated than in centralized database sys-

tems.

In this paper, a new checkpointing algorithm for distributed database systems is pro-
posed and discussed. The correctness of the algorithm is proved. and the performance
characteristics of it are discussed by formulating the extra workload and the storage

requirement.

A non-interfering checkpointing is desirable in many applications, and it has been

shown that it can be a viable solution if the extra workload and storage requirement

-25-

remain in an acceptable range. Two important parameters in' making a non-interfering check-
pointing practical are the mean number of transaction arrivals and the average number of
updates of a transaction. As far as they remain below certain threshold values, the over-

head of non-interfering cheékpointing can be justified.

The properties of global consistency and non-interference of checkpointing result in
some overhead on the one hand, and increase the system availability on the other hand. For
the applications where the ability of continuous processing of transactions is so critical that
the blocking of transaction processing for checkpointing is not feasible, we believe that the
checkpointing algorithm presented in this paper provides a practical solution to the problem

of constructing glébaliy consistent states in distributed database systems.

REFERENCES

[1] Attar, R., Bernstein, P. A. and Goodman, N., Site Initialization, Recovery, and Backup
in a Distributed Database System, IEEE Trans. on Software Engineering, November
1984, pp 645-650.

[2] Bernstein, P., Goodman N., Concurrency Control in Distributed Database Systems, ACM
Computing Surveys, June 1981, pp 185-222.

[3] Bernstein, P., Goodman, N., An Algorithm for Concurrency Control and Recovery in
Replicated Distributed Databases, ACM Trans, on Database Systems, Dec. 1984, pp
596-615.

[4] Chandy, K. M., Lamport, L., Distributed Snapshots: Determining Global States of Dis-
tributed Systems, ACM Trans. on Computer Systems, February 1985, pp 63-75.

[5] Dadam, P. and Schlageter, G., Recovery in Distributed Databases Based on Non-
synchronized Local Checkpoints, Information Processing 80, North-Holland Publishing
Company, Amsterdam, 1980, pp 457-462.

[6] Eswaran, K. P. et al, The Notion of Consistency and Predicate Locks in a Database
System, Commun. of ACM, Nov. 1976, pp 624-633.

[7] Fischer, M. J., Griffeth, N. D. and Lynch, N. A., Global States of a Distributed Sys-
tem, IEEE Trans. on Software Engineering, May 1982, pp 198-202.

{8] Gelenbe, E., On the Optimum Checkpoint Interval, JACM, April 1979, pp 259-270.

[9] Hammer, M. and Shipman, D., Reliability Mechanisms for SDD-1: A System for Distri-
buted Databases, ACM Trans. on Database Systems, December 1980, pp 431-466.

[10] Jouve., M., Reliability Aspects in a Distributed Database Management System, Proc. of
AICA, 1977, pp 199-209.

[11] Kuss, H., On Totally Ordering Checkpoints in Distributed Databases, Proc. ACM SIG-
MOD, 1982, pp 293-302.

[12] Lamport, L., Time, Clocks and Ordering of Events in Distributed Systems, Commun.
ACM, July 1978, pp 558-565.

“26-

[13] McDermid, J., Checkpointing and Error Recovery in Distributed Systems, Proc. 2nd
International Conference on Distributed Computing Systems, April 1981, pp 271-282.

[14] Mohkan, C., Strong, R., and Finkelstein, S., Method for Distributed Transaction Commit
and Recovery Using Byzantine Agreement Within Clusters of Processors, Proc. 2nd
ACM SIGACT/SIGOPS Symposium on Principles of Distributed Computing, August
1983.

[15] Ricart, G. and Agrawala, A. K., An Optimal Algorithm for Mutual Exclusion in Com-
puter Networks, Commun. of ACM, Jan. 1981, pp 9-17.

[16] Ries, D., The Effect of Concurrency Control on The Performance of A Distributed Data
Management System, 4th Berkeley Conference on Distributed Data Management and
Computer Networks, Aug. 1979, pp 221-234.

[17] Schlageter, G. and Dadam, P., Reconstruction of Consistent Global States in Distributed
Databases, International Symposium on Distributed Databases, North-Holland Publishing
Company, INRIA, 1980, pp 191-200.

[18] Shin, K. G., Lin, T-H., Lee, Y.-H., Optimal Checkpointing of Real-Time Tasks, 5th
Symposium on Reliability in Distributed Software and Database Systems, January 1986,
pp 151-158.

[19] Skeen, D., Nonblocking Commit Protocols, Proc. ACM SIGMOD International Conference
on Management of Data, 1981, pp 133-142.

{20] Son, S. H. and Agrawala, A. K., A Token-Based Resiliency Control Scheme in Repli-
cated Database Systems, Sth Symposium on Reliability in Distributed Software and
Database Systems, January 1986, pp 199-206.

[21] Son, S. H., On Reliability Mechanisms in Distributed Database Systems, (Ph.D. Disserta-
tion), Technical Report TR-1614, Dept. of Computer Science, University of Maryland,
College Park, January 1986

[22] Son, S. H. and Agrawala, A. K., An Algorithm for Database Reconstruction in Distri-
buted Environments, 6th International Conference on Distributed Computing Systems,
Cambridge, Massachusetts, May 1986, pp 532-539.

-27-

start T
Buffer for ACPT| <——— |Database
reflect
commit
» (CTV file

start T

——i
O I,

commit

Buffer for BCPT

Fig. 1 Execution sequence of ACPT and BCPT.

BCPT

\

ACPT

O

BCPT

|

-

COMMIT

P

O"’“‘“’

ACPT

REFLECT

Fig. 2 Queueing model of the system.

case I1.2
Extra Workload

400.04 i

300.04

200.0¢ case 1L1
case IIX

100.0¢ case I

0.0]
0.0 1.0

Fig. 3 Extra workload of the database system.
Parameters: n=4(Case IL1), n=10(Case 112 & II),
Tn=10. K0=0.1, Cgm]., ClﬂC2=O.5.

50.0 . y
case If
40.04 -
30.04 4
20.0L 4
case I
10-0“' /-
V case I
0.04 ! : : +
0 5 10 15 20 25

Number of updates

Fig. 4 Extra workload of the database system.
Parameters: Tp=10, Kg=0.1, Cg=1, C;=C,=0.5, %mo.s.

