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Classic	View	of	Infrastructure	
Interdependencies	

•  Physical	interdependencies	

•  Geographic	interdependencies	

•  Cyber	interdependencies	

•  Logical	interdependencies	(i.e.,	“other”)	



Decisions	and	Infrastructure	
•  Infrastructure	users:	effect	system	state	through	decisions	

of	how	to	use	the	system	services	
•  Infrastructure	“antagonists”:	effect	system	state	through	

aRacks	
•  Infrastructure	operators:	effect	system	state	through	

decisions	of	how	to	respond	to	events	and	users	in	
opera7ng	the	system	

•  Infrastructure	managers:	effect	system	state	through	
decisions	about	resource	investments,	both	long	and	short-
term	

•  Policy	makers	and	regulatory	agencies:	effect	system	state	
through	decisions	about	allowable	ac7ons,	requirements,	
and	incen7ves	



Outline	

•  Poten7al	for	climate	change	induced	changes	
in	hurricane	risk	to	coastal	energy	systems	

•  Behavior	and	the	evolu7on	of	regional	
vulnerability	in	response	to	repeated	
hurricanes	

•  Flooding,	behavior,	and	non-sta7onarity	–	
evolving	vulnerability	



Long-Term	Risk	to	Power	Systems	
in	a	Changing	Climate	



Research	Ques7ons	

•  How	would	poten7al	changes	in	hurricane	
hazards	–	intensity,	frequency,	loca7on	–	
influence	wind-related	power	system	risk?	

•  Which	areas	of	U.S.	coastline	are	most	
sensi7ve	to	changes	in	hurricane	hazards?	

•  Can	the	possible	changes	be	simula7on	in	a	
way	that	will	help	support	long-term	u7lity	
hardening	decision-making?	



Goals	&	Data	
•  Goal:	Accurately	es7mate	power	outages	4-6	days	
before	landfall	and	update	every	6	hours	

•  Unit	of	Analysis:	
–  U7lity-specific	model:	12,000	c.	by	8,000	c.	grid	cells	
–  Spa7ally	general	model:	census	tracts	

•  Data:	
–  Hurricane	wind	speeds	&	dura7on	(wind	field	model)	
–  Geographic	data:	LU/LC,	soil	type,	topography,	
watersheds,	etc.	

–  Climatological:	soil	moisture,	drought	levels,	long-term	
precip	levels	

–  U7lity-specific:	system	inventory,	tree-trimming	



Model	Development	Process	

10	hurricanes,	4-state	area	

In-house	Willougby-based	model	

Have	run	model	for	12(+)	real	storms	

Use	scenario	storms	to	(a)	answer	
policy-related	queries	and	(b)	gain	
Further	confidence	in	the	model	



Predic7on	Process	

Hurricane	track	&	
intensity	forecast	

(ensemble	or	single)	

Hurricane	Wind	Field	
Model	

Sta7s7cal	Outage	
Forecas7ng	Model	

Itera7ve	upda7ng	at		
every	6	hour	hurricane	

forecast	update	



Current	Genera7on	U7lity	Model	
Predic7on	Example	

Random	forest	model,	reduced	to	6	covariates	(Nateghi	et	al.,	Risk	Analysis	2013)	



A	Note	On	Valida7on	
•  Good	fit	≠	Strong	predic7ve	accuracy	in	many	
cases	

•  Valida7on	cri7cal	to	balancing	bias-variance	
tradeoff,	par-cularly	for	complex	data	mining	
models	

Source:	Fortmann-Row	

Our	Valida*on	Approach	
1)	Random	hold-out	valida7on	
2)	State-based	holdout	valida7on	
3)	Storm-based	holdout	valida7on	
4)	Hold-one-out	valida7on	



The	Underlying	Model	

•  A	500-member	Random	Forest,	trained	with	
10	storms	for	4	states,	30-fold	20%	random	
selec7on	cross-valida7on	

	figure	from	
hRp://kazoo04.hatenablog.com/entry/2013/12/04/175402	



Addressing	Track	Uncertainty	
Quiring	et	al.	(2013)	Incorpora7ng	Hurricane	Forecast	Uncertainty	into	a	Decision		
Support	Applica7on	for	Power	Outage	Modeling,	Bulle-n	of	the	American	Meteorological		
Society.	

Use	Monte	Carlo	Wind	Speed	Probability	(MCWSP)	model	to	simulate	
synthe7c	tracks.	Example	for	Hurricane	Irene:	



MCWSP-Based	Es7mates	

24-Hour	Ahead	Forcasts	
Green:	Average	of	the	MCWSP-based	model	(1000	replica7ons)	
Red:	Best-track	based	
*:	Realized	(Actual)	outages	



A	Key	Challenge:	
	

	
All	of	the	above	models	were	

specific	to	a	u7lity	service	area	and	
required	privately	held	data.	



Spa7al	Generaliza7on	
Can	a	model	be	developed	that	can	be	used	for	en7re	
coast	using	only	publicly	available	data	while	s7ll	
maintaining	accuracy?	

Approach	

Train	&	validate		
models	w/in	

service	area	using	
only	public	data	

Validate		
models	across	
hurricanes	

Validate		
models	across	

states	

Predict	for	
an	approaching		

hurricane	

Learn	from	storms	and	refine	models	



Experience	with	Hurricane	Sandy	



First	Model	Run:	Oct	26,	5pm		
Our	Forecast:		

10	million	without	power	
First	Press	Release	by	JHU	



Progression	of	Hurricane	Sandy	Runs	
During	the	Event	



Media	Response:	

•  Substan7al	na7onal	coverage,	some	
interna7onal	coverage	
CNN,	CNN	Interna7onal,	Good	Morning	America,	USA	
Today,	Discovery	Channel,	CBC,	Bloomberg	TV,	US	New	&	
World	Report,	WBAL,	Punk	Rock	OR,	etc.	

•  Focus	of	media	interest:	
– Overall	forecast	
– Limited	to	no	interest	in	uncertainty	in	the	
forecasts	



So	How	Did	We	Do?	
•  Important	dis7nc7on:	We	predict	cumula7ve	outages,	
u7li7es	generally	report	peak	outages	

•  Important	to	realize:	We	cannot	find	a	reliable	source	
of	actual	outage	data	at	the	scale	at	which	we	are	
making	predic7ons	

•  Results:	
–  DOE	es7mated	8.5	million	customers	were	out	at	peak	
–  Our	final	es7mate	as	the	storm	transited	the	mid-Atlan7c	
was	8-10	million	out	

– We	were	within	8%	of	DOE’s	es7mates	for	NY,	PA,	MA,	RI,	
VA	

– We	overes7mated	outages	for	MD	and	DE	
– We	underes7mated	outages	for	CT	



Now	Back	to	the	Long-Term	Ques7on:	
Research	Approach	

Coupled,	large-scale	simula7on	of:	
– Hurricane	occurrence,	track,	and	intensity	
– Hurricane	wind	field	
–  Impacts	on	power	systems	

Frac7on	without	
power	



Exis7ng	Hurricane	Climatology	



Influence	of	Changes	in	Intensity	



Influence	of	Changes	in	Frequency	



Metropolitan	Area	Impacts:	New	York	
City	vs.	Washington,	DC	



Metro	Area	Sensi7vity	
Sensitivity to Changes in Hurricane Intensity

C
ha

ng
e 

in
 E

xp
ec

te
d 

Fr
ac

tio
n 

of
 C

us
to

m
er

s 
w

ith
ou

t
 P

ow
er

 fo
r t

he
 1

00
-Y

ea
r S

to
rm

0.0

0.1

0.2

0.3

0.4

0.5

New
 Y

or
k, 

NY

Phil
ad

elp
hia

, P
A

Ja
ck

so
nv

ille
, F

L

Virg
ini

a B
ea

ch
, V

A

Hart
for

d, 
CT

Orla
nd

o, 
FL

Tam
pa

, F
L

Pro
vid

en
ce

, R
I

Miam
i, F

L

New
 O

rle
an

s, 
LA

Bos
ton

, M
A

Hou
sto

n, 
TX

Rich
mon

d, 
VA

Birm
ing

ha
m, A

L

Aus
tin

, T
X

Balt
im

or
e, 

MD

W
as

hin
gto

n, 
DC

Rale
igh

, N
C

San
 A

nto
nio

, T
X

Cha
rlo

tte
, N

C

Roc
he

ste
r, 

NY

Atla
nta

, G
A

Pitts
bu

rgh
, P

A

Dall
as

, T
X

Mem
ph

is,
 TN

Nas
hv

ille
, T

N



Insights	

•  Not	all	areas	of	the	country	are	equally	
sensi7ve	to	changes	in	hurricane	hazard	

•  Even	without	probabilis7c	climate	model	
based	projec7ons	of	hurricane	hazards	we	can	
gain	understanding	into	differing	degrees	of	
sensi7vity	

•  A	validated	predic7ve	model	of	storm	impacts	
is	of	cri7cal	importance	
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Four	Phases	of	Emergency	
Management		
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fema.dhs.gov 

 
 
 
 
 
 
 
 
 
 
 
 

Response 

Mitigation 

Preparedness Recovery 

Long-term 

Short-term 



Hazard	SEES:	Individual	response	and	
community	resilience	to	repeated	hurricanes		

Our perspective is distinct from prior literature examining 
impacts of hurricanes, which include: 
•  Structural responses to wind and storm surge 
•  Evacuation and other “preparedness” actions 
•  System functionality during “response” phase 
•  Optimize investments for mitigation 
 
Approach Build an ABM framework to simulate the impacts of  
•  Different hurricane environments 
•  Damage caused by these hurricanes 
•  How individuals make decisions about mitigation and land use 

change 
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Agent-Based	Models	
	

•  Include	decision-making	en77es	(agents)	in	addi7on	to	
stochas7c	elements.	

•  Agents	have	learning	rules	and	decision	rules	
•  Allows	for	agent	heterogeneity	
•  Widely	used	to	examine	situa7ons	in	which	individual	behavior	

is	an	important	driver	of	collec7ve	outcomes	(public	health,	
natural	hazard	response)	

•  Typically	run	many	simula7ons.	Observe	averages,	outliers.	
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hRp://
www.mcs.anl.g
ov/~leyffer/
listn/slides-06/
MacalNorth.pdf	



Hurricane History (historic or synthetic storm tracks) 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

ABM	Overview	for	Evolu7on	of	community	
Resilience	to	Repeated	Hurricanes	

 
Parcel Risk 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Consequence 
 

Damage, 
measured on a 0 – 

4 scale 
 
 
 

Threat 
 
 
 
 
 

Wind 
speed 
(WMU) 

Storm 
Surge  
(GMU/
JHU) 

Individual learning and 
decision making  

 
 
 
 
 
 

Parcel 
hardening 
(UM, GU) 

Land use 
change 
(RFF) 

Vulnerability  
via HAZUS fragility 

curves 
 
 

Damage	State	

0	 No	damage	

1	 Minor	damage	

2	 Some	damage	

3	 Severe	damage	

4	 Total	
destruc7on	

Community-level Losses 
including spatial patterns and by 
building stock type  

 
 Government Policy/Information 

Sharing for heightened resilience 



Prescriptive decision models (i.e., agents make the best 
decision)  
•  Utility Theory: maximize expected net benefit 
 

Descriptive decision models (i.e., what agents actually do)  
•  Bounded Rationality and satisficing 

–  Prospect theory 
–  Luce’s choice axiom 

•  Theory of Reasoned Action 
•  Behavioral Intention = f(beliefs, subjective norms) 

•  Near-misses 
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Modeling	Agent	Decision-Making 



Case	Study:	Anne	Arundel	County,	MD	
Illustrate	framework	using	simple	decision	rules	

Each red dot represents one of 
~162,000 residential parcels 

Each yellow line represents a historic  
hurricane track; 15 have impacted 
Anne Arundel County since 1860 
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Mitigation options 

 
 

Simple decision rules 
1.   Baseline: Parcels return to same resistance level 
2.  Upgrade with some probability, conditioned on extent of damage 
3.  Upgrade with some probability, conditioned on extent of damage AND 

the neighbor’s damage 
4.  Government subsidy for upgrade given to some percentage homes  
Hazard 
1.  Historic hurricane record from Anne Arundel County, Miami, and Boston 

 

Inexpensive Moderately 
expensive Expensive 
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Case	Study:	Anne	Arundel	County,	MD	
Illustrate	framework	using	simple	decision	rules	



Reduc7on	in	damage	over	baseline	for	3	decision	
rules:	Miami	historical	storm	record	
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Reduc7on	in	damage	over	“do	nothing	case”	for	4	
decision	rules	
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Mi7ga7on	decisions	impact	
community	vulnerability		
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Regulatory/policy 
•  Incentives that get people to mitigate must be targeted and vetted 

to be effective 
 
Engineering 
•  What we assume about how people mitigate really matters 
•  Community vulnerability and resilience is a dynamic principle that 

is impacted by an array of factors 



Evolving	Community	Flood	Risk	

Gina	Tonn	
Seth	Guikema	



Evolving	Community	Flood	Risk	
•  Improve	understanding	of	temporal	changes	in	
community	flood	risk	through	combined	analysis	of	
behavioral,	engineering,	and	physical	hazard	aspects	

•  Interac7ons	of	community	ac7ons,	engineering	
measures,	and	individual	behavior	may	result	in	
unan7cipated	changes	to	flood	vulnerability	that	aren’t	
captured	by	standard	models	

•  Components	
–  Base	model:	Simulate	risk	(flood	damage	and	popula7on	at	risk)	over	7me.		How	

does	risk	vary	based	on	differing	stochas7c	elements?	
–  Mi7ga7on	alterna7ves:	How	do	community	interven7ons	impact	flood	risk	over	

7me?	
–  Climate	change:	How	does	risk	change	based	on	climate	change	scenarios?	
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Simula7on	Steps	
	

Annual	
Flood	

• Sampled	from	historic	flood	data	(also	adjusted	or	
simulated	data)	

• Damage	tallied	
• Popula7on	at-risk	tallied	

Agent	Ac7on	

• Op7ons:	do	nothing;	complain;	elevate	mechanical	
equipment;	elevate	home;	move	out	

• Decision	based	on	risk	percep7on,	coping	
percep7on,	u7lity	(all	recalculated	each	year)	

Community	
Ac7on	

• Op7ons:	do	nothing;		informa7on	campaign;	
mi7ga7on	project	

• Decision	based	on	percentage	of	agents	that	
complain,	percentage	of	houses	damaged,	and	u7lity	
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	 	Case	study	loca7on:	Fargo,	ND	
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Annual	Flood	

•  Eleva7on	
–  Sampled	from	historic	annual	

peak	eleva7ons	at	stream	
gage	within	study	area	

–  Adjusted	sample	sets	for:	
•  Community	mi7ga7on	
•  Climate	change	scenarios	

•  Flood	Depth	
–  Es7mated	for	each	agent	

based	on	flood	eleva7on	and	
GIS	topographic	data	

•  Damage	
–  Calculated	for	each	agent	

based	on	structure	type,	
property	value,	flood	depth,	
HAZUS	depth-damage	curve	

•  Popula7on	at-risk	
–  Count	number	of	agents	in	

study	area	each	year	(non-
vacant	parcels)	
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Agent	Ac7on	
	

•  Perceived	Risk	(Lindell	2008,	Dillon	2008)	
–  Based	on:	

•  Agent’s	flood	experience	
•  Agent’s	near-miss	experience	
•  Neighbors’	flood	and	near-miss	

experience	
•  Agent’s	mi7ga7on	measures	
•  Community	mi7ga7on	measures	
•  Informa7on	dissemina7on	by	

community	
•  Perceived	Coping	Ability	(Poussin	2014,	Bubeck	

2013)	

–  Agents’	confidence	in	their	ability	to	
take	ac7on	

–  Based	on:	
•  Home	value	(proxy)	
•  Previous	agent	mi7ga7on	ac7on	
•  Previous	neighbor	mi7ga7on	

ac7on	
•  Informa7on	dissemina7on	by	

community	

•  Possible	Agent	
Ac7ons	

–  Do	nothing	
–  Complain	to	

community	
–  Elevate	mechanical	

equipment	
–  Elevate	home	
–  Move	
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Community	Ac7on	

•  Ac7ons	based	on:	
–  Agent	complaints	vs.	complaint	threshold	
–  Community	damage	vs.	damage	threshold	

•  Possible	ac7ons:	
–  Informa7on	campaign	
–  Mi7ga7on	project	

•  Levee	
•  Diversion	
•  Floodplain	restora7on	
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Simula*on	 Total	
Damages	

Agent	
Mit.
(number)	

Comm.	
Mit.	

1	(purple)	 $17.4M	 355	 No	

2	
(orange)	

$4.9M	 332	 No	

3	(blue)	 $14.9M	 342	 No	

4	(red)	 $9.0M	 65	 Yes		
(yr	3)	

5	(green)	 $7.3M	 168	 Yes		
(yr	9)	

Base	model	results	



Example	Simula7on	Results	
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Findings	and	addi7onal	work	

•  Findings	
–  ABM	is	a	useful	tool	to	

simulate	flood	risk	evolu7on	
based	on	many	interac7ng	
stochas7c	factors	and	
decisions	

–  Sensi7vity	analysis	is	
necessary	and	useful	

•  Addi7onal	work:	
–  Compare	community	

mi7ga7on	alterna7ves	
–  Climate	sensi7vity	analysis	
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Concluding	Thoughts	

•  Behavior	can	effect	vulnerability	over	7me	–	
need	to	think	beyond	engineered	protec7ve	
measures	and	consider	behavioral	response	to	
protec7ve	measures	in	coastal	risk	analyses	

•  Not	all	areas	of	the	country	are	equally	
sensi7ve	to	climate	change	induced	changes	
in	hurricane	hazards	–	need	to	consider	both	
sensi7vity	to	change	and	likelihood	of	the	
change	in	the	long	run	
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