Climate Change Risk Analysis:
From Simulation to Behavior

Seth Guikema and Allison Reilly, U. Michigan
Gina Tonn, Johns Hopkins University
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Classic View of Infrastructure
Interdependencies

Physical interdependencies
Geographic interdependencies
Cyber interdependencies

Logical interdependencies (i.e., “other”)



Decisions and Infrastructure

Infrastructure users: effect system state through decisions
of how to use the system services

Infrastructure “antagonists”: effect system state through
attacks

Infrastructure operators: effect system state through
decisions of how to respond to events and users in
operating the system

Infrastructure managers: effect system state through
decisions about resource investments, both long and short-
term

Policy makers and regulatory agencies: effect system state
through decisions about allowable actions, requirements,
and incentives



Outline

e Potential for climate change induced changes
in hurricane risk to coastal energy systems

* Behavior and the evolution of regional
vulnerability in response to repeated
hurricanes

* Flooding, behavior, and non-stationarity —
evolving vulnerability



Long-Term Risk to Power Systems
in @ Changing Climate
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Research Questions

* How would potential changes in hurricane
hazards — intensity, frequency, location —
influence wind-related power system risk?

* Which areas of U.S. coastline are most
sensitive to changes in hurricane hazards?

* Can the possible changes be simulation in a
way that will help support long-term utility
hardening decision-making?



Goals & Data

e Goal: Accurately estimate power outages 4-6 days
before landfall and update every 6 hours

* Unit of Analysis:
— Utility-specific model: 12,000 ft. by 8,000 ft. grid cells
— Spatially general model: census tracts

* Data:
— Hurricane wind speeds & duration (wind field model)

— Geographic data: LU/LC, soil type, topography,
watersheds, etc.

— Climatological: soil moisture, drought levels, long-term
precip levels

— Utility-specific: system inventory, tree-trimming



Model Development Process

10 hurricanes, 4-state area Have run model for 12(+) real storms

Forecast for actual
Collect data events and observe
performance

Train, test, and
validate statistical
models

Code and validate
wind field estimation
model

In-house Willougby-based model Use scenario storms to (a) answer
policy-related queries and (b) gain
Further confidence in the model



Prediction Process

Iterative updating at
every 6 hour hurricane
forecast update

Statistical Outage

Hurricane track &
Forecasting Model

intensity forecast
(ensemble or single)

Hurricane Wind Field
Model



Current Generation Utility Model
Prediction Example

Random forest model, reduced to 6 covariates (Nateghi et al., Risk Analysis 2013)
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A Note On Validation

* Good fit # Strong predictive accuracy in many

cases

* Validation critical to balancing bias-variance
tradeoff, particularly for complex data mining

A

models

Optimum Model Complexity

Model Complexity

Source: Fortmann-Row

Our Validation Approach

1) Random hold-out validation

2) State-based holdout validation
3) Storm-based holdout validation
4) Hold-one-out validation




The Underlying Model

* A500-member Random Forest, trained with
10 storms for 4 states, 30-fold 20% random
selection cross-validation
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figure from
http://kazoo04.hatenablog.com/entry/2013/12/04/175402



Addressing Track Uncertainty

Quiring et al. (2013) Incorporating Hurricane Forecast Uncertainty into a Decision
Support Application for Power Outage Modeling, Bulletin of the American Meteorological

Society.

Use Monte Carlo Wind Speed Probability (MCWSP) model to simulate
synthetic track. Example for Hurricane Irene:
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Frequency

MCWSP-Based Estimates
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A Key Challenge:

All of the above models were
specific to a utility service area and
required privately held data.



Spatial Generalization

Can a model be developed that can be used for entire
coast using only publicly available data while still
maintaining accuracy?

Approach
alidate
models across
Train & validate . .
: hurricanes Predict for
models w/in .
' i an approaching
service area using : ik
only public data alidate
models across
] states

Learn from storms and refine models



Experience with Hurricane Sandy



First Model Run: Oct 26, 5pm

Lattitude

Our Forecast:
10 million without power
First Press Release by JHU
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gression of Hurricane Sandy Runs
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Media Response:

* Substantial national coverage, some

international coverage

CNN, CNN International, Good Morning America, USA
Today, Discovery Channel, CBC, Bloomberg TV, US New &
World Report, WBAL, Punk Rock OR, etc.

 Focus of media interest:

— Overall forecast

— Limited to no interest in uncertainty in the
forecasts



So How Did We Do?

Important distinction: We predict cumulative outages,
utilities generally report outages

Important to realize: We cannot find a reliable source
of actual outage data at the scale at which we are
making predictions

Results:

— DOE estimated 8.5 million customers were out at peak

— Our final estimate as the storm transited the mid-Atlantic
was 8-10 million out

— We were within 8% of DOE’s estimates for NY, PA, MA, Rl,
VA

— We overestimated outages for MD and DE
— We underestimated outages for CT



Now Back to the Long-Term Question:
Research Approach

Coupled, large-scale simulation of:
— Hurricane occurrence, track, and intensity
— Hurricane wind field
— Impacts on power systems
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Existing Hurricane Climatology
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Figure 1: Baseline impacts of (a) 100-year wind speed, (b) annual probability of at least 10% of customers losing power, and
(c) 100-year fraction of utility customers without power plotted for each census tract.



Influence of Changes in Intensity

(a) Intensity Factor 0.8 (b) Intensity Factor 1.2 (c) Intensity Factor 1.4
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Figure 2: Changes in 100-year wind speeds for varying storm intensity away from baseline.
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Figure 3: Changes in 100-year fraction of customers without power for varying storm intensity away from baseline.



Influence of Changes in Frequency
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Figure 4: Changes in the probability of at least 10% of customers without power for varying storm frequencies.
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Metropolitan Area Impacts: New York
City vs. Washington, DC

Intensity Factor 0.8 Baseline Intensity Factor 1.2 Intensity Factor 1.4

£ N7 4% 4a

i Ry ey
“:‘ ywe ".’"q ‘

4 ’ - ‘ %'C'* 4(,. 4 ’{.
A

R R "“::;F\ o

V Washington, D.C.

Baseline Intensity Factor 1.2 Intensity Factor 1.4

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0 -

A

New York, NY

Figure 5: 100-year fraction of customers without power for metropolitan areas for scenarios of
varying storm intensity.



Metro Area Sensitivity
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Insights

* Not all areas of the country are equally
sensitive to changes in hurricane hazard

* Even without probabilistic climate model
based projections of hurricane hazards we can
gain understanding into differing degrees of
sensitivity

* A validated predictive model of storm impacts
is of critical importance



Michael Attanasio
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Four Phases of Emergency
Management

Long-term

(éj Mitigation q

Short-term (t @9

fema.dhs.gov
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Hazard SEES: Individual response and
community resilience to repeated hurricanes

Our perspective is distinct from prior literature examining
impacts of hurricanes, which include:

« Structural responses to wind and storm surge
« Evacuation and other “preparedness” actions
« System functionality during “response” phase
* Optimize investments for mitigation

Approach Build an ABM framework to simulate the impacts of
« Different hurricane environments
« Damage caused by these hurricanes

 How individuals make decisions about mitigation and land use
change

31



Agent-Based Models

Include decision-making entities (agents) in addition to
stochastic elements.

Agents have learning rules and decision rules
Allows for agent heterogeneity

Widely used to examine situations in which individual behavior
is an important driver of collective outcomes (public health,
natural hazard response)

Typically run many simulations. Observe averages, outliers.

Euclidean Grid: von Neumann Network | http://

. i www.mcs.anl.
Space: 2D, 3D neighborhood GIS: Geographic ov/~leyffer/ :

Information listn/slides-06/
ng_tem MacalNorth.pdf



ABM Overview for Evolution of community
Resilience to Repeated Hurricanes

Hurricane History (historic or synthetic storm tracks)

Parcel Risk

Consequence

Damage,
measured on a 0 —
4 scale

Damage State

Vulnerability
via HAZUS fragility
curves

0 No damage

1 Minor damage
2 Some damage

3 Severe damage
4

Total
destruction

Community-level Losses
including spatial patterns and by
building stock type

[ e o o e e e e e e R e e e e e e = =

! Government Policy/Information |
! Sharing for heightened resilience |
| |

I

Individual learning and
decision making

Parcel Land use
hardening change
(UM, GU) (RFF)




Modeling Agent Decision-Making

Prescriptive decision models (i.e., agents make the best
decision)
« Utility Theory: maximize expected net benefit

Descriptive decision models (i.e., what agents actually do)

« Bounded Rationality and satisficing
— Prospect theory
— Luce’s choice axiom

* Theory of Reasoned Action
« Behavioral Intention = f(beliefs, subjective norms)

« Near-misses

34



Case Study: Anne Arundel County, MD

Each yellow line represents a historic
hurricane track; 15 have impacted
Anne Arundel County since 1860

35

lllustrate framework using simple decision rules

Each red dot represents one of
~162,000 residential parcels



Case Study: Anne Arundel County, MD

lllustrate framework using simple decision rules
Mitigation options

Without Shutters With Shutters

Toe Nails H. h Gable Roof Hip R(?of
. Moderately .
Inexpensive ) Expensive
expensive

Simple decision rules
1. Baseline: Parcels return to same resistance level
2. Upgrade with some probability, conditioned on extent of damage

3. Upgrade with some probability, conditioned on extent of damage AND
the neighbor’s damage

4. Government subsidy for upgrade given to some percentage homes

Hazard
1. Historic hurricane record from Anne Arundel County, Miami, and Boston
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Reduction in damage over baseline for 3 decision

rules: Miami historical storm record
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Reduction in damage over “do nothing case” for 4
decision rules
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Mitigation decisions impact
community vulnerability

Regulatory/policy
* Incentives that get people to mitigate must be targeted and vetted
to be effective

Engineering
« What we assume about how people mitigate really matters

« Community vulnerability and resilience is a dynamic principle that
is impacted by an array of factors

39






Evolving Community Flood Risk

* |Improve understanding of temporal changes in
community flood risk through combined analysis of
behavioral, engineering, and physical hazard aspects

* |nteractions of community actions, engineering
measures, and individual behavior may result in
unanticipated changes to flood vulnerability that aren’t
captured by standard models

* Components

— Base model: Simulate risk (flood damage and population at risk) over time. How
does risk vary based on differing stochastic elements?

— Mitigation alternatives: How do community interventions impact flood risk over
time?
— Climate change: How does risk change based on climate change scenarios?

41



Repeat Simulation - Next Year

Simulation Steps

Community
Action

e Sampled from historic flood data (also adjusted or
simulated data)

e Damage tallied
¢ Population at-risk tallied

e Options: do nothing; complain; elevate mechanical
equipment; elevate home; move out

e Decision based on risk perception, coping
perception, utility (all recalculated each year)

e Options: do nothing; information campaign;
mitigation project

* Decision based on percentage of agents that
complain, percentage of houses damaged, and utility

47



Case study location: Fargo, ND
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Annual Flood

* Elevation * Damage
— Sampled from historic annual — Calculated for each agent
peak elevations at stream based on structure type,
gage within study area property value, flood depth,
— Adjusted sample sets for: HAZUS depth-damage curve
* Community mitigation ° Population at-risk
e Climate change scenarios — Count number of agents in
e Flood Depth study area each year (non-

. vacant parcels)
— Estimated for each agent

based on flood elevation and
GIS topographic data
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Agent Action

e  Perceived Risk (Lindell 2008, Dillon 2008)
— Based on:

Agent’s flood experience
Agent’s near-miss experience

Neighbors’ flood and near-miss
experience

Agent’s mitigation measures
Community mitigation measures

Information dissemination by
community

* Perceived Coping Ability (Poussin 2014, Bubeck

2013)

— Agents’ confidence in their ability to
take action

— Based on:

Home value (proxy)
Previous agent mitigation action

Previous neighbor mitigation
action

Information dissemination by
community

Possible Agent
Actions
— Do nothing

— Complain to
community

L/
— Elevate mechanical &N
equipment
— Elevate home
— Move




Community Action

e Actions based on:

— Agent complaints vs. complaint threshold
— Community damage vs. damage threshold

 Possible actions:

— Information campaign
— Mitigation project
* Levee
* Diversion
* Floodplain restoration

46



flood elevation (ft.)

annual flood damage ($n
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Example Simulation Results
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Findings and additional work

* Findings

— ABM is a useful tool to
simulate flood risk evolution
based on many interacting
stochastic factors and
decisions

— Sensitivity analysis is
necessary and useful

 Additional work:

— Compare community
mitigation alternatives

— Climate sensitivity analysis
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Concluding Thoughts

* Behavior can effect vulnerability over time —
need to think beyond engineered protective
measures and consider behavioral response to
protective measures in coastal risk analyses

* Not all areas of the country are equally
sensitive to climate change induced changes
in hurricane hazards — need to consider both
sensitivity to change and likelihood of the
change in the long run
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