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ABSTRACT
The dynamics of how groups move through space to accom-
plish common goals must be understood to create realistic
synthetic environments. One potential method for creating
such multiagent behaviors is to replay prerecorded examples
of group movements. While these data-driven methods ef-
fectively capture the original performance for a particular
instance, the success of these methods for interactive, mul-
tiagent applications is limited by the large number of poten-
tial agent movements that must be prerecorded. To mitigate
the scaling effects of data-driven multiagent behavior algo-
rithms, we propose a behavior model that reduces the di-
mensionality of prerecorded data and decreases the amount
of data required by effectively using available data. We have
chosen to investigate the sport of simulated soccer and have
developed behaviors for simulated soccer players from the
data acquired from recent RoboCup games.
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1. INTRODUCTION
Multiagent behaviors play a vital role in coordinated robotics,

scientific simulations, and surveillance systems. In the case
of mobile agents, the behaviors must generate movements
for each individual based on its state relative to other agents
and the world. Our system automatically develops behaviors
for mobile agents from the observation of the movements of
multiagent groups. With these behaviors, we demonstrate a
multiagent system that anticipates the future actions of the
observed system and retargets behaviors to different groups
in novel circumstances.
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We wish to predict and generate the behaviors of the sim-
ulated soccer players used in the popular simulated soccer
testbed, RoboCup [3]. The game logs of RoboCup soccer
games are widely available and provide our system with
the observational data needed to build behavioral models
of player actions and team strategies. Although the game
logs provide extensive details of the game state, we only
use the player positions in our algorithms and thus these
algorithms would be compatible with the data generated by
future image-based systems for human soccer games.

The machine learning and computer graphics communities
have investigated learning by example [1] and motion cap-
ture [2] technologies, but all data-driven methods like these
are confronted with the need to use models to fill gaps in the
database, blend incongruous observations, and extrapolate
to new circumstances. To be effective and realistic, these be-
havioral models must possess sufficient degrees of freedom
to discriminate between similar, but distinct, observations
while not becoming so rigidly defined that the model size and
complexity scale uncontrollably due to the myriad observed
interactions between the agents and the dynamic world. Our
contribution is to map the high-dimensional player data ob-
served during a simulated soccer game to a simplified repre-
sentation that preserves the ability to synthesize and predict
player movements.

2. METHODOLOGY
Simulated soccer data consists of the 22 player positions

and the ball position sampled at 6,000 moments throughout
the game, forming a sparse data set with high dimensional-
ity. This data property impedes the ability of data-driven
modeling techniques to automatically capture relationships
between one state and another. Furthermore, the labeling of
the data fields will cause comparison metrics to fail to indi-
cate the similarity between two samples of game state when
player-occupied field locations are unchanged, but the loca-
tion of two players are exchanged. We argue that in these
simulated soccer games, all players on a team can be treated
equally and thus they need not be uniquely identified in the
game state.

We convert each simulated soccer game log into a se-
quence of presence density maps (PDMs, see figure 1),
with one data channel for each class of entity we are in-
terested in, namely the players from each team and the ball:
T = {τteamA

, τteamB
, andτball}. Each channel of the PDM

is defined as a 2-D function of the constituent members of
its associated agent class; formed by summing the set of
2-D Gaussians centered over each entity in the class then



sampled in a grid covering the entire playing field. The mo-
tivation for this transposition comes from fluid mechanics
methodologies where it is common to switch focus from in-
dividual fluid particles (Lagrangian) to the space through
which they move (Eulerian). This mapping permits our sys-
tem to predict the image captured by an overhead camera
at a soccer game rather than the positions of each individual
player. This data representation enables image processing
techniques analog to those developed by Schödl et al. [4],
wherein finite-length image sequences are parsed and recom-
bined into arbitrarily long continuous animations.

To predict how the state of a current game will change
during δ frames, we developed a comparison metric, a pre-
dictor, and a corrector. The PDM sequences from multiple
soccer games are placed in a database, D, with ordering pre-
served to maintain time-dependent correlations. The system
predicts future PDMs based on the PDM, g, of the current
game state by comparing it to all the PDMs, d ∈ D, using
the comparison metric, µ(g, d):

µ(g, d) = 1 − exp(−
�
τ∈T

ψ
+
τ

2
(g, d)) (1)

The cross correlation ψ(x, y) is used to evaluate the similar-
ity between each channel of T in the PDMs:

ψ(x, y) =
1

N
·
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(2)

and ψ
+ = � 0 if ψ ≤ 0

ψ otherwise
(3)

where N is the number of samples, x̄ is the mean, and σ is
the variance.

The resulting comparisons are then used to generate the
predicted PDM δ frames in the future, g̃δ. For each state
in the database, di, the system accesses the successor state
that is δ frames ahead, di+δ. The function g̃δ is a weighted
average of the set of successor frames, where the weighting
is derived from the comparison metric and from a reinforce-
ment learning correction term, λ.

g̃δ(t) = � i di+δ · µ(g, di) · µ(di, di+δ) · λdi� i
µ(g, di) · µ(di, di+δ) · λdi

(4)

The correction term λd is associated with each PDM, d ∈ D.
Once δ frames have elapsed in the current game, the correc-
tion terms of all PDMs get updated so those that accurately
predicted future states are rewarded:

∀d ∈ D, λd = (1 − ε) · λd + ε · µ(g̃δ(t− δ), d) (5)

where ε is a tunable parameter.

3. EXPERIMENTAL RESULTS
We have completed two series of tests to evaluate the per-

formance of our data-driven predictor. We measured how
the accuracy of the prediction was affected by the looka-
head term, δ. As a reference technique, we constructed a
kinematic extrapolator that computes a future PDM based
on the current velocities and positions of the ball and play-
ers, while our method only uses position information.

Figure 1: presence density map for a team defending

its goal. Dark regions indicate player locations.

Games were played between the 2000 champion team, FC
Portugal and Wahoo Wunderkind, comparing the perfor-
mance of the predictor with and without the benefit of cor-
rector feedback. Although the kinematic predictor performs
better for small δ values, its performance degrades rapidly
as δ increases and the data-driven predictor outperforms it
for values of δ greater than 17 frames with corrector feed-
back, or 29 without (see figure 2). These results indicate
the value of using velocity data to complement our behavior
model, which we will investigate in future work.

Figure 2: This graph plots the matching perfor-

mance of the data-driven predictor and the kine-

matic extrapolator. A perfect score of 1.0 indicates

an exact match between the predicted PDM and the

actual future PDM from the test data.
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