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ABSTRACT

A prototyping environment is a valuable tool for evaluating new techniques and design alternatives for
database systems prior to the actual implementation of the system. Using such a prototyping tool, the
characteristics and possible performance benefits of maintaining multiple data versions with time-stamp
based scheduling are investigated. In addition, the characteristics of a database system employing a mul-
tiversion concurrency control mechanism in a real-time environment are explored. This research is
focused on how the availability of multiple data versions may be used in order to better meet the timing
constraints of the system. A scheduling algorithm which incorporates the consideration of the temporal
requirements in its scheduling decisions is presented.
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1. Introduction

A prototyping environment is a valuable tool for evaluating new techniques and design alternatives for
database systems prior to the actual implementation of the system. Through the use of the prototype, the
designers are not required to spend considerable time and effort building new systems before the design
of their integrated functional components are evaluated and justified. This paper describes the experi-
menis conducted and the results which were observed while using such a database prototyping environ-
ment, The prototyping environment was developed based on a flexible message-passing concurrent pro-
gramming kernel. A full description of its functional components may be found in [1].

The focus of this paper is to investigate, using the prototyping environment, the characteristics and possi-
ble performance benefits of a multiversion database system with time stamp based scheduling. A number
of researchers have studied the nature and performance of multiversion time-stamp algorithms [2,3,4,5].
Although these studies provide a valuable insight in regards to the particular approach adopted in under-
taking the evaluations, it is almost impossible to compare or integrate their results. This is due to the fact
that they each have made different assumptions about the environment and the system, and they have
often used widely varying performance metrics. In our model, the assumptions which significantly
influence the system behavior may be specified as parameters during the evaluation process. Therefore
we not only have the capability of investigating the influence of these assumptions on system perfor-
mance, we can also study the other major performance factors while retaining the assumptions at a_con-
stant.

The organization of the paper is as follows. Section 2 outlines a series of four experiments that were con-
ducted in order to compare the relative performances of the single version and multiversion systems
under varying sysiem parameters. Each experiment concentrates on the effect of one major parameter.
Section 3 describes the experiments that were conducted in order to investigate the nature of two different
strategies employed in implementing the multiversion system. In each experiment, a comparison of per-
formance results is presented. Section 4 presents the results of our study on the performance benefits of
the multiversion system in a real-time environment. Section 5 is a summary of our conclusions. Section
6 is a list of references.

2. Multiversion Vs. Single Version Concurrency Control

The primary reason for implementing multiversion concurrency control algorithms is to allow the use of
previous versions of data items in order to improve the level of achievable concurrency {31, Each update
(or write) transaction creates a new version of the data item. In a time-stamp based scheduling system
such as ours, each read transaction selects the appropriate version of the data item to be read from
amongst a collection of available versions. This selection is based on how closely the time-stamp of the
data version matches that of the transaction without surpassing it. In a single version algorithm, a conflict
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between a read and a write transaction requesting to access the same data item is problematic and usually
results in the abortion (or delay) of one of the transactions in order to solve the conflict. The motivation
for utilizing multiversion schemes that intuitively result in a performance improvement is to allow read
transactions to access older versions of the data while the update transactions concurrently create new
versions of the same data items. This would alleviate the need for aborting or delaying either one of the
transactions.

A variety of multiversion algorithms have been studied. These approaches vary on how the creation,
maintenance, and accessing of data versions are treated. While some of the algorithms allow for only one
older version of any data item to be maintained [6,7], others allow the creation of a certain number or an
unlimited number of data versions [8,9,10]. Some algorithms allow only one transaction o create a new
version at a time, while others allow for simultaneous creation of new versions of the same data item by
different transactions. The performance trade-offs resulting from different algorithms incorporated in
multiversion database systems is the subject of Section 3. In this section we will present a comparison
study of the relative performance of the single and multiversion concurrency control algorithms which
were implemented using our prototyping environment.

The user is given a chance to enter values for the key parameters that influence the performance of the
simulator before each run. According to the user specifications, processors (or sites) in the distributed
environment are initialized. Then transactions are generated as processes. Each transaction contains a
number of read and/or write requests depending on the transaction mix and size specified by the user.
Once a transaction has been created, it will successively access the data items in its read/write set until it
either aborts or commits, If no conflicts have occurred by the time a transaction has successfully accessed
all its data items, the transaction commits. An abortion due to unresolved conflict causes the transaction
10 be restarted at a later time with the same read/write set. The total time from when a transaction was
created until it commits is computed. The key performance metric used is the average response time of
all the transactions. The system also reports the total number of abortions during each simulation.

In the multiversion database, each version of a data item contains a read and a write time stamp associ-
ated with the transaction that created the version. Each data version also has a tag variable associated
with it. A tag value of 0 indicates that the transaction which generated the data version has not yet com-
mitted. The data version is considered temporary and thus can not be used by other read or write transac-
tions. Once a transaction commits, all the tag values associated with the data versions it created are
changed to 1. These data versions are now accessible to other transactions,

A read request in the multiversion system involves the comparison of the time stamp of the requesting
transaction with the write time stamp of the data item and its different versions. The comparison begins
with the base version and continues until the data version with the largest write time stamp which is less
than the time stamp of the transaction is found. In Fig 1, the read request with time stamp 14 will read
the base version with a write time stamp value of 12.
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The operation of a write request in the multiversion database involves the comparison of the time stamp
of the transaction with the read time stamp of the data item. If the transaction’s time stamp is greater than
the read time stamp of the data item, a new version is created with a tag value of 0 to indicate that it is not
yet valid until the transaction commits. Fig 2 illustrates a write operation. A transaction with time stamp
value of 19 has successfully created a new version for data item dsetfo].

The multiversion database system currently under study has very strong constraints in regards to the crea-
tion of new versions for data items. At any given time, only one temporary version for each data item is
allowed. An attempt to create a new version on top of a temporary version results in the abortion of the
transaction. Also new versions are only allowed to be added at the end of the queue of different versions
of a data item. An attempt to insert a new version between two already existing versions causes an abor-
tion. InFig 3 the transaction with time stamp 25 is aborted since there already exists a temporary version
of the data item with write time stamp 19. Also the write transaction with time stamp value 8 is aborted
since it requires the insertion of a new version between two valid versions, In Section 3 we will examine
the consequences of removing these constraints.

The four experiments that are presented in this section were conducted using the multiversion database
model described above. In each experiment the performance of the multiversion system was compared to
that of a database system implementing a basic time stamp ordering scheduling algorithm with a single
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version of every data item. In each case, both systems ran with the same set of input transactions,
2.1 Experiment 1: Parameters in Favor of Multiversion System

The purpose of this experiment is to examine the behavior of the multi-version database system under a
mix of transactions for which intuitively it was thought that having multiple versions would be beneficial.
The performance of the multi-version system is compared with the corresponding single-version system
under the same set of transactions.

Intuitively, the multiple versions of data objects can help the scheduler to avoid the abortion of read-only
transactions that arrive too late. Since multiple versions are maintained, tardy read-only transactions can
access earlier versions of the data item whose write time-stamp value is less than the current transaction’s
time-stamp. In the single version system, if the time-stamp of a read transaction is less than the write
time-stamp of the data item, the transaction is aborted.

The following 3 cases illustrate the conflicts that may arise when processing read-only transactions:

1. The time-stamp of the transaction is less than the write time-stamp of the base version.
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Since the write time-stamp of the base version is less than that of any other versions that may
be available, there are no earlier versions that may be used to satisfy the current transaction.
The transaction is aborted. The single version system would have similarly aborted the tran-
saction.

2. The base version of the data item is the only one available and its write time-stamp is less
than the transaction’s time-stamp. However, there is an active (non-committed) write tran-
saction operating on this data item whose time-stamp is greater than the read transaction’s
time-stamp. In a single version system, the read transaction would be aborted. However, the
multi-version system allows the read transaction to proceed. The active write transaction
will create a new version of the data item, so there is no problem with reading the base ver-
sion.

3. There are multiple versions of the data item. The time-stamp of the transaction is less than
the write time-stamp of the latest version. In a single version system, a similar situation
would cause the transaction to be aborted. However in a multi-version system, the transac-
tion may be satisfied by an earlier version whose write time-stamp is less than the
transaction’s time-stamp.

The transaction mix emphasizes conflicts involving read-only transactions. In each case, 80% of the tran-
sactions are update transactions that read and write the data items, and the remaining 20% are read-only
transactions. Update transactions are very small. They always read and write 2 data items. On the other
hand, read-only transactions are large, ranging in size from 8 to 40. Conflicts between update transac-
tions are possible but not very likely. Conflicts between read-only and update transactions occur quite
frequently. The multi-version system should avoid these conflicis by allowing read-only transactions to
read earlier versions of the data items{3]. The experiment is conducted in a centralized environment with
only one site (processor). The average response time and the number of abortions are examined as we
increase the number of transactions present in the system.

The average response times of both systems under the parameter settings described above are illustrated
in the graph of Fig 4. Fig 5 is a graph of the number of abortions resulting from the same simulation.
None of the read-only transactions were aborted in the multi-version system. The aborted update transac-
tions were equally distributed over the following two cases:

1. The base version is the only version and its read time stamp is less than the current transaction’s
time stamp. We will call this transaction T1. We should be able to allow T1 to create a new ver-
sion. However, there is at least one other active transaction, T2, with a time stamp greater than
that of T1. In addition, T2 is currently reading the same data version. Consequently, T1 is
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aborted. A similar situation in the single version system would also cause an abortion. The fol-
lowing explains the logic behind why in the multi-version system we abort the update transaction:

A. Consider the case where T2 is an update transaction. If we don’t abort T1, we are effec-
tively pursuing the creation of two new versions of the same data item at the same time. In
the current implementation, we have made the choice to allow only one tempotary version at
atime. Therefore, the second update transaction must be aborted.

B. In the case when T2 is a read-only transaction, If we allow T1 to proceed, then T2 may

read an older version when it should have really read the new version T1 is currently creat-
ing,

T



2. There are multiple versions. However, the read time-stamp of the very last version is greater
than the current transaction’s time-stamp. Clearly, we can not create a new version after the last
version. Since the creation of a new version between two already existing versions is not allowed
in this implementation, we must abort the current transaction.

Cleaily the graph of figure 5 shows that the multiversion system provides a noticeable improvement in
regards to the number of abortions, Every time a transaction is aborted, we effectively lose the work that
transaction has already accomplished, and in addition, that transaction must be restarted later. Since the
read-only transactions are large, this could amount to considerable wasted processing time. As mentioned
earlier, we expect the multiversion system to perform better in terms of lowering the average TESponse |
time by avoiding the abortion of read-only transactions. Therefore, it would be of interest to examine the
effect of the multiversion system on the average response time of the read-only transactions. In order to
accomplish this, we must isolate the read-only transactions from the update transactions. This way, the
behavior of the update transactions will not affect the average response times of the read-only transac-

tions. The graphs in Fig 6 and Fig 7 show the average response times and the number of abortions of the
read-only transactions in isolation,

Single version time stamp ordering is biased against large read-only transactions[3]. The algorithm
aborts a transaction every time it tries to read a data object whose write time-stamp is greater than the
transaction’s time-stamp. As the read-only transactions get larger, the possibility that the transactions get
aborted increases. With this experiment’s transaction mix, these sort of conflicts are very likely. In the
smgle-versmn system the large read-only transactions often get starved out (restarted over and over) as
the small update transactions proceed with their computations. These abortions result in high average
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response times. The multi-version system avoids this problem by satisfying read requests with older ver-
sions. Therefore the average response times are lower. The multiversion concurrency control algorithm
results in considerable performance improvement when the transaction mix consists of large read-only

transactions and small update transactions.

2.2 Experiment 2.2: Effect of Transaction Mix

The purpose of this experiment is to test the effect of the transaction mix (ﬂpdate/read—orﬂy ratio) on the
performance of the single and multiversion systems. In experiment 1, we evaluated the performance of
the systems under a transaction load mix of 80% update and 20% read-only transactions. This experi-

ment analyzes the following update/read-only ratios:

- 20% update, 80% read-only
- 100% update
- 100% read-only

- 50% update, 50% read-only

Throughout this experiment, the transaction size is held constant at 5. This means that all transactions
read or write 5 data items. The simulations were conducted in a centralized environment with only one
processor. What follows is a description of the outcome of these simulations.

80 90

]




20% Update, 80% Read-Only Transactions

The graph which demonstrates the results of the simulation under this system configuration appears in Fig
8. Since there is never a conflict between two read-only transactions and read-only transactions dominate
the transaction mix, the potential for read-only/update conflicts is small to begin with. This probability is
further reduced due to the fact that each transaction accesses a small number of data items(5). Since the
read-only transactions rarely get aborted in the single version system, there is little hope that the existence
of multiple versions would help in preventing abortions. The graph indicates that multiple versions do
not present a performance benefit under these conditions.

‘These results are further explained by the fact that both systems favor read-only transactions. An active
read-only transaction is aborted only if it conflicts with a completed update transaction that has a later
time-stamp [2]. This only occurs rarely because of two reasons. First, update transactions take longer to
complete. Secondly, update transactions only make up 20% of the transaction mix. Therefore, there is
rare opportunity for a read-only transaction to conflict with a completed update transaction. As a result,
multiple versions are of little value. We may conclude that when transactions are uniformly small and
read-only transactions dominate in the mix, multiple versions do not provide a performance benefit.

50% Update, 50% Read-Only Transactions

The graph of the average response times observed in this simulation appears in figure 9. Again, due to
the small size of transactions, there is not a significant number of read-only transaction abortions that the
multiple versions can help to avoid. Therefore, the performances of the single and multiversion systems
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are almost identical,
100% Read-Only Transactions

The graph appears in Fig 10. As seen, the multiversion and single version systems show identical perfor-
mances. This observation is easily explained by the fact that with 100% read-only transactions there are
no write operations that would allow the multiversion system to create additional versions of data items.
Therefore, with a transaction load consisting of 100% read-only transactions the multiversion system
effectively operates in the same manner as its single version counterpart.
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100% Update Transactions

The graph is shown in Fig 11. Since there are no read-only transactions, and therefore no abortions
involving them, we would not expect the multiversion system to outperform its single version counter-
part. As a matter of fact, as shown in the graph, the single version system performs better. This differ-
ence in the performances becomes more noticeable as we increase the number of transactions. The differ-
ence is due to the fact that the implementation of the multiversion system is prejudiced against update
transactions. This is caused by the restrictions that we have employed regarding the creation of new ver-
sions of data items in the multiversion system. As a result, the number of update transactions that are
aborted due to write-write conflicts is higher. These implementation restrictions and the consequences of
removing them are further discussed in sections 2.5 and 3.1.

From the results of these simulations, we conclude that regardless of the transaction mix, multiple ver-
sions do not buy us much (if anything at all) when the transaction sizes are uniformly small.

2.2 Experiment 2.3: Effect of Transaction Size

This experiment investigates the behavior of the single and multiversion systems under varying transac-
tion sizes. The purpose is to examine whether transaction size has a noticeable affect on the difference of
the performance of the single and multiversion systems, We survey the performance of both systems
while varying transaction sizes under the following three different transaction mixes:

- 80% update, 20% read-only
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- 20% update, 80% read-only
- 50% update, 50% read-only

In all cases, 40 transactions were randomly generated. The graphs displaying the relative performances
for the 3 configurations listed above appear in figures 12, 13, and 14.

As shown in the graphs, the multiple versions did not provide a performance benefit in either one of the
three cases. As a matter of fact, in some cases the single version system performed better. The multiple
versions do not enhance the performance of the system when the sizes of the read only and update

80% Update, 20% Read-only Transactions
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50% Update, 50% Read-Only Transactions
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transactions do not differ widely. If the read-only transactions are small or generally the sizes of the
read-only and update transactions are close or equal, both systems yield almost the same performances.

In [2] the authors conclude that over a wide range of system conditions, the multiple version method per-
forms only marginally better than the single-version method. They do however caution that the conclu-
sions must be taken in the context of the simulation model assumptions. These assumptions and their
influence on the performance evaluation process, as well as the comparison of our results with those of
other studies are the topics of section 2.6.

2.4 Experiment 4: Effect of the Degree of Distribution

The purpose of this experiment is to examine the performance of the single and multi-version systems in
distributed environments. In our model of a distributed environment, each site (or node) is equipped with
its own processor. In addition, each site has its own stable storage which contains a portion of the data-
base. Data items are not replicated; that is each data item (or record) is stored at only one site. The pro-
totyping environment however can be easily modified in order to allow for the duplication of data items
at different sites by simply changing the duplication factor. Transactions make data access requests that
are either local or remote. Local requests (read or update) are satisfied by accessing data items stored at
the site itself. Remote requests call for accessing data items that are stored at other sites. Remote
requests are handled through the transaction sending a request message to the data manager of the site
that stores the data item. This message passing between sites provides the sharing of the information. In
our simulation model, data items accessed by a transaction are ran'domly and uniformly distributed across
the entire database. '
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The time stamp ordering scheduler used in the implementation to assure serializability and consistency
lends itself well to decentralization. Each site has its own scheduler which coordinates the requests for
access to data items stored at that site, The decision to schedule, delay, or reject a request depends only
on other operations accessing the data items at the site [11]. Since the scheduler at each site is informed
of the status of all its local data items, it can make the decision regarding how to respond to access
requests without communicating with schedulers at other sites. This independent character of each
scheduler makes the distributed synchronization only slightly more complex than the centralized case.

The prototyping environment provides the facility to set up different numbers of sites. Up to 30 different
sites in the distributed environment are supported. The system initializes the database by allocating
storage for the data items at each site. This allocation follows an even and systematic distribution of data
items across sites. In a distributed environment, one of the key factors that affects performance is the
communication delay. This delay reflects the price paid in terms of response time for the communication
that must take place between two physically separate sites. In our model the inter-site communication
delay is 5 times longer than the delay involved in accessing a data item within the same site. This com-
munication factor can also be easily modified in order to examine the influence of varying communica-
tion delays on the performance of the system,

Our experiments investigate the behavior of the single and multiversion systems in distributed environ-
ments having 2 or 5 sites. In each case the size of the transactions which were generated randomly was
held constant at 5 data items. The transaction mix consisted of 80% update and 20% read-only transac-

tions. Figures 15 and 16 show the graphs of the average response times of the systems in a distributed
environments with 2 and 5 sites respectively.

Our first observation is that the average response times in the distributed systems were generally much
lower than those in the centralized cases observed in experiments of previous sections. This is due to the
fact that in the distributed cases we have increased our computational power by providing additional pro-
cessors. The communication delay introduced as a result of distributing the data items across sites is
offset by the increased computational power. With only one site, as seen in the slope of the curves of pre-
vious sections, there is a direct relationship between the number of transactions and the average response
time. As the number of transactions increase, the average response time also increases proportionally,
The slope of Fig 15 is not as sharp, indicating that the effect of increasing the number of transactions on
the average response times is more subtle.

In Fig 16 we see that increasing the number of transactions does not seem to affect the average response
times at all. This is observed by the horizontal lines of the graph, With S processors one at each site, the
computational power provided surpasses the delays that having a large number of transactions introduces.
Therefore, increasing the number of transactions does not cause a significant increase in the workload of
each processor which would consequently result in higher response times. This observation however is
not necessarily a true generalization for all distributed environments. The distribution of data access
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requests from transactions is a very influential parameter affecting the overall performance. Depending
on the nature of this distribution, the performance characteristics of a distributed database system may
vary widely.
The data access patterns for transactions have heen classified in [4] as follows;
1. Accesses that are randomly distributed across the entire database;

2. Accesses that are biased in such a way that, say, 90 percent of the access is for 25 percent of the

-16-



database;
3. Accesses that are sequential within one or more areas of the database.

In our simulation, as noted earlier, data items accessed by a transaction are randomly and uniformly dis-
tributed across the entire database. This strategy causes the workload to be divided and shared equally by
processors at different sites. Therefore, a significant increase in the workload was not experienced by
each processor as we increased the number of transactions. Also since requests follow a random pattern,
each processor spends a good portion of its time processing remote requests from other sites.

If however, the access pattern is biased toward a certain subset of the database, increasing the number of
transactions does not uniformly increase the workload of all processors. In such cases, a small number of
processors which are located at the sites where the "hot" areas of the database teside perform the majority
of the work. Therefore, a large subset of the processors wait idlely, while a selected few process the
remote requests of idle transactions. Consequently, increasing the number of transactions would increase
the workload of only a small set of the processors, and therefore we can expect to see a more direct rela-
tionship between the number of transactions and the average response times. Also since the majority of
data requests are concentrated on a smail subset of the database, the number of conflicts resulting from
transactions accessing the same data items rise directly as a result of increasing the number of transac-
tions. Under such circumstances we can expect the average response times to increase proportionally as
we increase the number of transactions.

From the results of this experiment one might be inclined to conclude that increasing the number of sites
‘will generally lead to lower response times. This however is only true if the communication delay intro-
duced as a result of the distribution does not offset the additional computing power of the processors at
different sites. In our simulation where the ratio of local to remote access delay is 1 to 5, the added com-
putational power overrides the communication delay.

As we increase the number of sites within the system, we are potentially increasing the amount of com-
munication that is to take place between sites. As we have more and more sites, we are also partitioning
the database into a larger number of units. As the database becomes more “"spread out" the possibility
that a request will not be satisfied locally increases. This means that at one point we may even get poorer
response times when we pass a certain threshold in increasing the number of sites. |

2.5 Analysis of Results

The results of the experiments in this section indicated that multiple versions only provide a significant
performance enhancement under a mix of transactions for which they were intuitively thought of as being
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beneficial. In general, a database system adapting a multiversion concurrency control algorithm performs
better while processing read requests. Read requests that would be aborted in a database system with a
single version of each data item due to time stamp conflicts will be successfully processed in a multiver-
sion system using older versions of the data items. Therefore, when the read requests dominate the tran-
saction load, and there is ample opportunity for read-only transactions to be aborted due to conflicts with
update transactions, a multiversion system performs better than its corresponding single version system.
The relative sizes of the read and write sets of transactions is an important factor affecting the perfor-
mance.

Originally we had thought that maintaining multiple versions could only serve to improve the system per-
formance. Intuitively, if the added versions are not used in order to prevent abortions of read-only tran-,
sactions, they should not degrade the performance of the system either. However in practice, as observed
in some of the graphs of the experiments presented in this section, the multiversion system performed
even more poorly than its single version counterpart. While examining the operation of the multiversion
system we found out that it is possible to implement a multiversion system that is prejudiced against
update transactions.

The multiversion system favors read requests. Therefore, if the transaction mix predominantly consists of
read requests, the multiversion system outperforms the single version system by avoiding abortions which
involve read-only transactions. If, however, write requests dominate the transaction load, the multiversion
system performs more poorly by aborting update transactions which were involved in write-write
conflicts. The higher number of write-write conflicts causing the abortion of update transactions is due to
the way the multiversion system implements the creation of new versions of data items as shown by the
example below. Let us assume that our transaction load consists of two update transactions each writing
two data items. As shown in the table of Fig 17, transaction 1 updates items 1 and 2, while transaction 2
updates items 2 and 1 in the specified order. The time stamps of transactions 1 and 2 are 5 and 10 respec-
tively. To enhance the illustration of the operations of the transactions in our example, we have also
included in the "Write Set’ column of our table the new values to be written. That is, transaction 1 will
update data item 1 with the value *A’ and data item 2 with the value "B°. Transaction 2 will similarly
update data items 2 and 1 with the values 'C” and "D’ respectively.

transaction write set time stamp
1 1(A), 2(B) 3
2 2C), D) 10
Fig 17
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First we consider the operation of the single version system. The system begins by processing the first
requests of both transactions. Since the time stamps of both transactions are greater than the original time
stamps of the data items (0), both requests are granted. Note that the actual updating of the data items
and the changing of their time stamps do not take place until a transaction’s requests are all successfully
processed and the transaction commits. Therefore, the time stamps of data items remain 0. This state can
be seen in step O of Fig 18. Within each data item the values of the read and write time stamps as well as
the actual data values are shown.

Next the system processes the second requests of the transactions. Again, since the time stamps of data
items have not yet been updated, the requests are granted. Since the write requests of both transactions
have been processed successfully, they proceed to commit. First transaction 1 commits changing the time
stamps and data values as shown in step 1 of Fig 18. Next transaction 2 commits changing the state of
the database as shown in step 2 of Fig 18. Both transactions have updated the database and committed

step 0

data jtem 1 data item 2
read ts:0 read ts:0
write ts:0 write ts:0

data: data:
tep 1
s Al data item 1 data item 2
read ts:0 read ts:0
write ts:5 write ts:5
data:A data:B
tep 2 -
Seps data item 1 data item 2
read ts:0 read 5.0
write ts:10 i write ts:10
data:D data:C
Fig 18
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successfully.

We now consider the operation of the multiversion system. As in the single version case the system
begins by processing the first requests of both transactions. As seen in Fig 19, temporary versions are
built on top of data items 1 and 2. However, as the system proceeds to process the second request of each
transaction, it is faced with an attempt to create a2 new version on top of an already existing temporary
version. The implementation of the system allows only one temporary version of each data item at a
time, therefore one of the transactions must be aborted.

After one of the transactions has committed and has changed the status of its temporary version to per-
manent by changing its tag value, then the restarted transaction may proceed with its requests. As seen
here, the operation of the multiversion system involved an abortion while in the single version system
both transactions committed without conflicts.

It tumns out that the restriction of allowing only one temporary version for each data item which was
adopted in the implementation of the multiversion system is too costly. It causes abortions due to write-
write conflicts which do not occur in the single version system. That is why when the transaction sizes
are uniform and update transactions dominate the load, as in the graphs of figures 11 and 12 where 100%
and 80% of transactions were update transactions, the multiversion system performed more poorly than
the single version system.

The additional constraint of only allowing new versions to be added at the end of the list of versions asso-
ciated with a data item was also the cause of some abortions. In order to alleviate these limitations which
were found to be too costly in terms of additional abortions of transactions, we implemented a new ver-
sion of the multiversion system which did not incorporate the above mentioned constraints. In the new
system, new versions of data items are allowed to be inserted in between two already existing versions
and an unlimited number of temporary versions are allowed. When checking to see whether a transaction
may commit, the system takes the existence of other temporary versions of data items into consideration.

& 1o,
----- W:35 0 W10
R:0 ! R:0
datar A data:C
1
W:0 li W:0
— R0 —— R B ' S | N S
data: data:
data item 1 data item 2
Fig 19
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In section 3 we present the results of the experiments which were conducted in order to examine the
effect of the removal of the constraints mentioned earlier on the performance of the multiversion system.

2.6 Comparison with other studies

The purpose of this section is to compare our approach to simulation and performance analysis with other
similar works in the field and to examine how our results relate to those of other researchers. Multiver-
sion algorithms have been studied from a theoretical point of view [12,13]. These studies have shown
that logically, the multiversion approach is capable of enhancing the possible degree of concurrency in a
transaction processing system. However, as noted in [3], the actual performance of multiversion systems
has received little attention.

The nature of most previous studies and their results were highly affected by the implementation assump-
tions. For example, in [14] the results are highly influenced by the fact that only two versions of each
data item were allowed. In addition, very few of the studies have actually examined the response time of
the multiversion concurrency control algorithms. In order to examine the approaches to performance
evaluation studies, we need to explore the model assumptions which were involved.

Model assumptions characterize the environment in which the performance evaluation process takes
place. The main problem associated with the majority of previous studies is that in most cases the perfor-
mance evaluation process is completely dependent on the underlying hardware assumptions. In these
cases, it is extremely difficult to examine the behavior of different concurrency control algorithms
independently of the influence of the underlying architecture. For instance, in [4] the authors present a
performance analysis for two different concurrency control algorithms in a distributed environment with
two sites. Each site has its own processor (VAX 11/780) and main memory. The database itself resides
on two different file servers with different performance characteristics. It is extremely difficult, if not

impossible, 10 consider the performance of the concurrency control algorithms in isolation from the
effects of the hardware factors.

Among the many hardware factors which have a significant impact on the transaction processing perfor-
mance are:

- Virtual memory paging caused by transaction requests
- disk /O time for accessing the database

- track-to-track seek time

- number of blocks per track
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- peak transfer performance of the disks at different sites.

The implementation and test environment dependencies make it extremely difficult for the results given
in one study to be applied to other environments.

Among the major limitations of most of the previous modeling studies is that they only consider the per-
formance of different algorithms in centralized environments. In addition, although message-based simu-
lations appear to be more natural for simulating distributed systems, prior to our work, a message based
approach to discrete-event simulation of distributed systems had not been fully developed [5]. Our data-
base prototyping environment is a powerful and effective tool for investigating the properties of database
control techniques. A major problem of other performance evaluation efforts is that many interrelated
factors which affect the performance have been studied as a whole, making it difficult to understand the
influence of each on the overall performance. Our system’s flexibility allowed us to alter the underlying
configuration to a state most suitable for a particular evaluation. Therefore, different design alternatives
and algorithms were evaluated in a uniform environment yielding a fair comparison,

Our approach minimizes the limitations imposed upon the performance evaluation process by rigid
hardware configurations. For example, one can easily examine the effect of decentralizing the database
by increasing the number of sites while keeping the other parameters constant. Different concurrency
control algorithms can be selected to process the same set of transactions in identical environments. The
CPU and J/O rates are not dependent on the underlying architecture, but are rather simulated by the model
and may be altered by the researcher. This flexibility allows the performance evaluation process to be
liberated from the limitations imposed by rigid hardware configurations.

Another critical parameter is the delay involved in communicating between two different sites. The
nature of the effect of the communication delay on the performance results has not been fully considered.
For example in [4], the communication delay is completely dependent on the underlying machine archi-
tecture since the VAX/VMS mailbox mechanism has been used. This inter-node communication delay is
always fixed at about 7.2 milliseconds. In such a system, it is impossible to avoid the effect of the com-
munication overhead on the CPU utilization as each inter-node communication also consumes CPU time.
Our model on the other hand simulates and keeps the CPU and communication costs separately. Also
since in our model the communication delay is modeled by causing a process to wait (or be blocked) for a
finite time interval, this communication delay may be altered easily by changing a parameter to examine
its influence.

Another set of factors that are influential in the results of a performance evaluation process are the charac-
teristics of the underlying database. Most of the studies done either assume for the database to be parti-
tioned (not-replicated) or replicated at different sites. Our model allows for both of these assumptions as
well as different degrees of replication by modifying the duplication factor.
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The nature of creation and maintenance of new versions of data in a multiversion system has not been
considered carefully. The model in [3] allows only one temporary version while creating a new version.
This is an implementation assumption which, as we have seen earlier, has a significant affect on results.
Our database model is flexible and can easily adopt different characteristics.

Our task, as in [2], has been to compare concurrency control algorithms using the same model assump-
tions, performance measures, and application environment parameters. Our results confirm those
observed in [2]. The multiversion system performs only marginally better in some of the cases. As
observed in [3], our multiversion system performed better under a mix of transactions for which the mul-
tiple versions were thought to be beneficial. Under a workload of large read transactions and a large
number of update transactions, the probability that the read transactions will be aborted due to conflicts
with update transactions is very high. The multiversion algorithm avoided the abortion of read transac-
tions in all cases. However, the performance benefits observed in our study were not as significant as
those reported in [3]. Our results also confirmed those observed in [2); the multiple versions do not pro-
vide a significant performance benefit when the read-only transactions are small.

The performance evaluation results in [3] indicate that the multiversion algorithm offers a significant per-
formance improvement in all cases. This is in conflict with our observations. When the transactions are
small, the probability of aborting the read-only transactions is small anyway, so multiple versions are not
of much help in preventing abortions. Unless the transaction mix is such that there is a high probability
for the abortion of read-only transactions due to conflicts with update transactions, the multiple versions
will not provide a significant performance benefit. When the transaction mix consists of a large number
of small update transactions and fewer large read-only transactions, the multiple data versions will help in
preventing the abortion of read-only transactions by allowing them to access previous versions of the data
iterns. If the abortion of read-only transactions is not highly probable to begin with, there is litfle chance
that the multiversion system could perform better by avoiding such abortions.

In summary, the following three characteristics of our approach provide us with a more powerful tool for
conducting performance analysis of different algorithms:

- The capability to study the single and multiversion concurrency control algorithms in both a cen-
tralized and distributed environment so that the benefits of multiple versions Gf any) may be iso-
lated from the effects of data distribution;

- The flexibility allowed in deriving different system and application environment configurations;

- The freedom from the effects of the underlying architecture; particularly the way the I/Q and
CPU ratios are specified as parameters to the simulation.
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3. Comparison of Two Multiversion Algorithms

In this section we will compare the performance of a new implementation of the multiversion system with
that of the system studied in the previous sections. The reason for implementing the new multiversion
system was to remove the constraints in the creation and maintenance of new versions of data items
which were found to be too costly in terms of abortions of update transactions. The restriction of allow-
ing only one temporary version for each data item which caused abortions due to write-write conflicts has
been removed in the new implementation. The additional constraint of only allowing new versions to be
added at the end of the list of versions associated with a data item has also been removed. In the new
implementation, new versions of data items are allowed to be inserted in between two already existing
versions and an unlimited number of temporary versions are allowed.

Since intuitively the new version should prevent the abortions of update transactions in the multiversion
system which are caused by write-write conflicts, we will start our comparison with a transaction load
which emphasizes such conflicts: 100% update transactions. The graph is shown in figure 20. This graph
should be compared with that of figure 11. As seen in the graph of figure 11, the multiversion systern
performed more poorly than its single version counterpart. Since all the transactions were update transac-
tions, this illustrates the occurrence of abortions which were caused by the implementation constraints of
the multiversion system. In the new implementation, as seen in figure 20, both systems show identical
performances. The removal of the constraints in the creation and maintenance of multiple versions was
beneficial. Although with 100% update transactions in the workload the multiple versions can not pro-
vide a performance benefit, they will not degrade the performance of the system either.

‘We next examine the behavior of the new implementation under a transaction mix which intuitively

186% Update Transactions

1500 — Multiversion:

Single Version: ......coeeeenne

1000 —
Average

Response Time

500 —

T I : E l 1 I 1
10 20 30 40 350 60 70 80 90

Number of Transactions

Fig 20
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should allow the multiple versions to be of beneficial use: 80% update and 20% read-only transactions.
This workload allows ample opportunities for the abortions of read-only transactions as a result of read-
write conflicts. The graph of figure 21 displays the relative performances of the new multiversion system
and its single version counterpart. This graph should be compared with figure 12. As shown in figure 12,
the original implementation of the multiversion system even performed marginally worst than the single
version system. This is due to the fact that even though the original implementation avoided the abortion
of read-only transactions, there were plenty of opportunities for the abortion of update transactions with
80% update transactions in the multiversion system. So any performance benefits provided as a result of
avoiding the abortions of read-only transactions was offset by the more plentiful abortions of update tran-
sactions. In the new implementation, since the abortion of update transactions is not a problem, as the
transactions get larger, the multiversion system performs better and better than the single version system
by preventing the abortion of read-only transactions.

Similar results are observed in the graph of figure 23 where the transaction load consists of 50% update
and 50% read-only transactions. This graph should be compared with figure 14.

The results presented in this section indicate that in implementing multiversion concurrency control algo-
rithms, careful consideration must be given to the constraints imposed by the manner data versions are
created and maintained. Particularly important are the number of temporary versions that are allowed for
a single data item at any given time and the restrictions that may be imposed on the insertion of new data
versions within a lList of already existing versions. We have found that best performance results were
observed when such restrictions were minimized.

4. Multiple Data Versions in Real-Time Environments

80% Update, 20% Read-Ounly Transactions

2000 -  Muhiversion:
Single Version: ...
1500

Average
Response Time ;440 _|

500 —

z i I ! [ i
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Transaction Size

Fig 21
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50% Update, 50% Read-Only Transactions

2000 - Multiversion: ____________ ..
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Although the maintenance of the multiple data versions did not degrade the system performance, as dis-
cussed in the previous section, their availability only proved to be of significant benefit in some specific
cases with transaction loads of special characteristics. The emphasis in this section is to examine whether
the multiple data versions can be valuable in database systems operating in real-time environments,

Real-time systems have gained significant importance and provide a wide open research area of intellec-
tally challenging computer science problems[16]. We define a database system in the context of a real-
time environment such that the transactions and/or data items having real-time constraints. An example
of such a system is program trading as described in {17]. Insucha system for instance, a monitor/update
process monitors the current state of a physical system (e.g. the stock market) and updates a database
accordingly. If the database is to contain an accurate representation of the current physical system, these
monitoring and updating activities must be performed with some real-time constraints associated with
them. Other examples of the application of database systems in real-time environments may be found in
radar tracking systems, nuclear power plants, and flight control systems,

In real-time systems, correctness may be defined as providing the correct results in a timely manner[lS}
The focus of our research outlined in this section is how multiple data versions can be used in order to
better meet the timing constraints characteristic of such systems. In addition, we propose an algorithm
which considers temporal requirements when scheduling real-time transactions.

4.1 Timing Constraints Associated with Transactions

We first consider the case where the timing requirements are attached to the transactions. Our
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prototyping tool was modified such that each transaction incorporated these temporal constraints. Both
single and multiversion systems were implemented. Within these systems, a transaction is characterized
by its:

- data requirements,
- timing constraints, and
- accuracy requirements.

As usual, the data requirements provide the list of data items that a transaction accesses for reading and/or
writing purposes. The timing constraints are provided in terms of deadlines. The deadline specifies the
time by which the transaction must be completed. Figure 23 shows an example of a transaction in such a
system. The entries indicate that the transaction with start time of 20 must be completed by time unit 55.
In the current implementation, we treat the timing constraints as hard deadlines meaning that upon the
transaction missing its deadline, the transaction gets aborted. We assume that once the transaction’s
deadline has been missed, there is no value in completing its computation. We will discuss this issue
more fully when considering the scheduling of real-time transactions,

The accuracy requirements of transactions are provided in terms of temporal consistencies. The temporal
consistency provides a time interval, relative to the start time of a transaction, during which accurate
states of data items may be accessed. In our example, the temporal consistency requirement is 15, indicat-
ing that the data items accessed by the transaction can not be older than 15 time units relative to the start
time of the transaction. That is, all the data items read by this transaction must have write time stamps in
the range of 5 to 20. An attempt to read an inaccurate data item(i.c. one whose write time stamp is out-
side of this interval) will cause the transaction to abort. While a deadline can be thought of as providing a
time interval as a constraint in the future, the temporal consistency specifies a temporal window as a con-
straint in the past.

In order to illustrate the usefulness of multiple data versions in such a setting, we next outline the opera-
tions of both the single and multiversion systems under the same set of input transactions. The scenario
consists of two transactions as depicted in figure 24. Transactions 1 and 2 each have start times of § and
15 while their respective deadlines are 60 and 70. The temporal consistency requirement of transaction 1
is 10, while that of transaction 2 is 13. Transaction 1 writes data item 1 and reads data item 2, while tran-
saction 2 writes 2 and 3 and reads 1. The initial state of the database is shown in figure 25. Each

Trans. # |Start Time | Deadline | Temporal Cons. | Data ltems
1 20 85 15 1,23

Fig 23
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rectangle represents a data item. Note that the write time stamp value shown within each data item is set
to 0 in order to indicate the initial state of the data items. The write time stamp of each data item
represents the time stamp of the transaction which updated that data item last. In the multiversion
system's case, the write time stamp represents the time stamp of the transaction which created the particu-
lar version of the data item.

The scenario representing how the single version system handled the workload is shown in figure 27.
Note that we are not presenting a step by step representation of what takes place at every singlé time unit
as the transactions are being processed. Such an illustration would be too lengthy and detailed for our
purposes. We show the significant events which are of interest to us in order to examine the relative
behaviors of both systems. The time units reported are the actual ones observed in our simulations. At
each time unit shown, we present the state of the database as well as the transactions present in the sys;
tem. The read and write requests of transactions are shown above their respéctive data items. Requests
which were successfully granted are shown with bold-face lettering, while the failed requests are printed

Data ltems
Trans. #] Start Time | Deadiine Temporal Cons.| Write Read

1 5 60 10 1 7 2
2 15 70 13 23 f 1
Fig 24
1 Wts: 0 2 Wis: 0 3 Wis: 0
Fig 25
1 Read
2 Write
2 Wits: 0
Fig 26
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in outline lettering. The example in figure 26 shows that transaction 2 has successfully processed a write
request for data item 2 while transaction 1’s read request for that data item has failed.

As shown in figure 27, at time unit 16 both transactions are present in the system. Transaction 1 has suc-
cessfully submitted a write réquest for data item 1 while transaction 2’s write request for data item 2 has
also been granted. The transactions proceed and at time unit 19, transaction 1 submits a read request for

1 Write 2 Write :
lime: 16 1 Wits:0 2 Wis:0 3 Wies:0
91 Read
1 Write 2 Write
time; 19 |1 Wits:0 2 Wits:0 3 Wis:0 |aven:
2 Write 2W;ita
time: 29 1 Wits:0 2 Wits:0 3 Wts:0
2 Rzad 2 Write 2 Write
lime: 42 1 Wis:0 2 Wts:0 3 Wis:0 |aven2
15-0> 13
1 Write
time: 6 |1 Wits:0 2 Wts:0 3 Wts:0 |avon
miss 4l
2 Write 2 Write
lime: 7@ 1 Wis:0 2 Wis:0 3 Wis:0 |aten2
miss @l
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data jtem 2, Since in the single version system a transaction is not atlowed to read a data item while
another transaction is simultaneously updating it, this situation causes a read/write conflict and the read
request of transaction 1 can not be granted. Therefore, the system aborts transaction 1 for a later restart.

Transaction 2 proceeds and at time unit 29 its write request for data item 3 is granted. Note that at this
time, transaction 1 since aborted earlier, is not present in the system. Transaction 2 continues by submit-
ting a read request for data item 1 at time unit 42. Before a read request for a data item can be granted,
the temporal consistency requirement of the transaction with respect to that data item’s write time stamp
must be satisfied. The write time stamp value of the data item is subtracted from the start time of the
transaction. This gives the age of the data item with respect to the transaction’s start time. If this value is
less than the temporal consistency requirement, the read request may be granted. Otherwise, reading the
data item would violate this temporal requirement and therefore the transaction is aborted,

Returning to our example, we see that at time unit 42, the age of the data item (15 - 0) is greater than the
required consistency interval of the transaction(13). Therefore, transaction 2 is aborted. Later on, at time
unit 60, we see that transaction 1 has been restarted. But by the time this transaction acquires its write
request for data item 1, it misses its deadline of time unit 60 and is therefore aborted. Transaction 2 is
similarly aborted at time unit 70 as a result of missing its deadline. So as seen through this scenario, both
transactions miss their deadlines and exit the system without successfully completing. We next see how
the multiversion system handled the same set of transactions.

As shown in figure 28, at time unit 19 both transactions are present in the system. Transaction 1’s write
request for data item 1 and transaction 2’s write request for data item 2 have been successfully granted,
In addition, transaction 1’s read request for data item 2 has also been granted. This is because in the mul-
tiversion system, while transaction 2 is actively pursuing the creation of a new version of data item 2, we
can simply allow transaction 1 to read the original version of this data item. As seen here a read and a
write on the same data item do not create a read-write conflict in the multiversion system and can take
place simultaneously.

Since transaction 1 has processed both its requests successfully, it proceeds to commit. As seen at time
unit 41, transaction 1 has created a new version of data item 1 with a write time stamp value of 5. This is
the start time of transaction 1. In the current implementation, we have adopted the practice of assigning
the start time of a transaction as the write time stamp of the data versions it creates. Returning to our
example, we see that transaction 2 proceeds by submitting its write request for data item 3 at time unit 41
and its read request for data item 1 at time unit 43. The write request is obviously granted. However,
before the read request can be granted, the temporal consistency requirement of the transaction must be
checked.

Since transaction 1 has already committed, the more recent version of data item 1 created by this transac-
tion is available for transaction 2 to read. The age of this version of the data item with respect to the start
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Fig 28

time of transaction 2 (i.e. 15 - 5) is less than the temporal consistency requirement of the transaction (i.e.
13) and therefore the read request is successfully granted. Note that if this later version of the data item
were not available, reading the original version would have caused the abortion of transaction 2 as in the
single version system. Transaction 2 proceeds to commit since all its requests have been granted and the
final state of the database with the new data versions are shown at time unit 61. Note that both transac-
tions have successfully committed before their deadlines.

Our scenario has shown that avoiding the abortion of a transaction because of a read-write conflict by the
multiversion concurrency control algorithm may lead to the availability of more recent data versions
which can be used to satisfy the temporal consistency requirements of transactions and therefore success-
ful completion of transactions before their deadlines. We next examine how the multiple data versions
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may be of benefit when the timing constraints are associated with the data items.

4.2 Timing Constraints Associated with the Database

In a real-time database system the temporal requirements may be associated with the data items. Exam-
ples of such requirements may be found in a radar tracking system where because of the database being
characterized by frequent and rapid changes, the accuracy of the data items may gradually expire. Certain
degrees of accuracy may be associated with accessing data values during various time intervals after their
most recent updating. In this section we examine the usefulness of the multiple data versions in a system
incorporating such temporal requirements. Both the single and multiversion systems in our prototyping
environment were modified to reflect these requirements,

In our implementation, the real-time requirements associated with the database are specified in terms of
valid time intervals. Each data item in the database has a valid interval specification attached to it. The
valid interval indicates the time interval after the most recent updating of a data item during which a tran-
saction may access a data item with 100% degree of accuracy. ‘What occurs when a transaction attempts
to access a data item outside of its valid interval is dependent upon the semantics of data items and the
particular implementation. In our system, we assume that reading a data item after its valid time interval
has expired will result in 0% accurate data values. Therefore, in the current implementation, an attempt
for such data access will force the transaction to abort.

The example in figure 29 shows a data item with a write time stamp value of 5 and a valid interval of 30.
In 29.2 we see the current implementation’s strategy in treating the valid intervals. 29.b and 29.¢ show
two other possibilities of how the valid intervals may be implemented within the system. In29.b, reading
a data item during its second interval will result in data values which are only 50% accurate. In 29.c, the
accuracy of the data values degrade gradually until a 0% accuracy is reached.

As we did in the previous section, we will now examine the operation of the single and multiversion sys-
tems under the same set of transactions. The scenario this time as shown in figure 30 consists of 3 tran-
sactions. The start time of the transactions are 5, 10, and 45 with éach having a deadline of 60, 70, and
100, respectively. Transaction 1 writes data item 1 and reads data item 3. Transaction 2 writes 3 and
reads 4, while transaction 3 reads 1. The initial state of the database consisting of data items 1, 3, and 4 is
shown in figure 31. Al initial write time stamps are set to 0, while the valid intervals associated with the
data items are 47, 40, and 60, respectively.

We begin by examining how the 3 transactions were processed in the single version system. Figure 32
shows the operation of the single version system under this transaction load. Since a read-write conflict
in the single version system results in the abortion of a transaction, at time unit 19 transaction 1 is aborted
because of such a conflict involving data item 3. Transaction 2 proceeds by submitting its read request
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for data item 4. Before a read request may be granted, the valid interval requirement must be verified. As
shown at time unit 28, since the age of the transaction relative to the current time (28 - 0) is legs than data
itern 4’s valid interval specification (60), the read request is successfully granted. Transaction 2 proceeds
to commit and it therefore changes the write time stamp of the data items it has updated. As seen at time
unit 51, the write time stamp of data item 3 has been changed to 10 in order to reflect the start time of
transaction 2. At time unit 51 we observe that transaction 1 has been restarted and has already submitted
a successful write request for data item 1. At this time transaction 3 submits a read request for the same
data item which causes it to abort. Transaction 1 continues by processing a read request for data item 3 at
time unit 55. However accessing this data item at this time would involve a violation of its valid interval
requirement (since 55 - 10 > 40). Transaction 1 is aborted and by the time it is restarted it misses its
deadline at time unit 60. Once restarted, transaction 3 similarly misses its deadline,

As seen in this scenario, as a result of the initial abortion of transaction 1, by the time this transaction is
restarted the accuracy of the data item it attempts to read has been expired. Transaction 3 aborts since it
does not have access to a more recent update of data item 1 generated by transaction 1. We now see how
the transactions were processed in the multiversion system. The scenario is shown in figure 33,

At time unit 19 transaction 1 submits its read request for data item 3. Again, since this transaction can
read the otiginal version of this data item while transaction 2 creates a new version, and since the valid
interval requirement is satisfied (19 - 0 < 40), the read request is successfully granted. Transaction 1
proceeds to commit and as seen at time unit 29 a new version of data item 1 is created with a write time
stamp value of 5 (start time of transaction 1). At this time, transaction 2 submits its read request for data
item 4, The valid interval requirement is satisfied (29 - 0 < 60) and transaction 2 commits. The new state
of the database with the newly created data versions is shown at time unit 38. At time unit 50 transaction
3 submits its read request for data item 1. Since the latest version of this data item is available for tran-
saction 3 to read, the valid interval requirement is satisfied. That is the age of the latest version of the
data item relative to the current time (55 - 5) is less than the specified valid interval value (47). Transac-
tion 3 therefore also commits. Note that all three transactions have committed before their deadlines. In
this scenario we observed how avoiding the abortion of a transaction in the multiversion system lead to
the availability of more recent data versions which were used to meet the teraporal constraints of data
items.
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4.3 Scheduling Real-Time Transactions

In real-time database systems, scheduling decisions are often directly related to whether the transactions
meet or miss their deadlines. Scheduling decisions must be made when the scheduler has to select from
amongst a collection of transactions that are ready to be started or when a choice has to be made between
two or more transactions which are competing for the same resources (i.e. data items). A decision to
abort a transaction for a later restart may result in the transaction missing its deadline. Required is a
scheduler which incorporates a consideration of the timing constraints of the transactions and the database
in its scheduling decisions.

The goals of such a scheduler in a reai-time environment are:

- to minimize the number of transactions that miss their deadlines,
~ to ensure meeting the timing requirements of highly critical transactions, and
- to maximize the overall transaction accuracy within the system.

A simplistic approach would be to solely consider the minimization of transaction loss due to missing
deadlines. This goal by itself however is not sufficient since the transactions due to their temporal
requirements may have different degrees of criticalness associated with them. A scheduler may be able to
maximize the overall number of transactions which meet their deadlines by successfully scheduling the
less critical transactions and causing the highly critical transactions to miss their deadlines. The failure of
these highly critical transactions may be too costly in terms of endangering the consistency of the data-
base. Therefore it would be desirable for the scheduler to make an effort to ensure that the deadlines of
the highly critical transactions are met. Finally, since the transactions may have different degrees of
accuracy associated with them based on their timing requirements and the temporal constraints of the data
items, we would like for the scheduler to consider the overall transaction accuracy within the system
before making a decision for or against a transaction.

We propose that the above mentioned goals may be achieved by having the scheduler consider the dead-
lines, the criticalness, and the accuracy levels which are associated with transactions. We now consider
each one of these elements separately before we incorporate them in the scheduling decision,

4.3.1 Deadline

An intuitive approach would be to assign the highest priority in the system to the transaction with the
smallest deadline. Since this transaction is at the highest risk of missing its deadline, it would be favored
in the scheduling decision. This approach is not acceptable because it fails to consider another important
factor. What if the transaction is so close to its deadline that we can be reasonably certain that it will miss
its deadline. Making a decision in favor of this transaction may lead to the competing transaction missing
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its deadline and the transaction itself also aborting in time. Therefore, it would be desirable for the
scheduler to consider the feasibility[17) of the deadlines of the transactions prior to making a decision.

The feasibility of the deadline of a transaction may be determined as proposed in [17}:
t+{(E-{t-Ts)) <d.

Where t is the current time, E represents a run time estimate of the transaction, Ts is the start time of the
transaction, and d represents the deadline of the transaction. The equation above subtracts the age of the
transaction (t - Ts) from the run time estimate and adds the result to the current time. If this value is less
than the deadline, then the transaction has a feasible deadline. Otherwise, the deadline is infeasible.

We would also like for the scheduler to consider the slack time of transactions. The slack time of a tran-
saction is the amount of time a transaction may be delayed and still commit by its deadline. {17} also
defines the slack time by:

Slack =d-(t+E-(t-Ts)).

The remaining time for a transaction based on its run time estimate is added to the current time and the
result is subtracted from its deadline. Other factors having been considered, the smaller the slack time of
a transaction, the higher its priority would be within the system,

4.3.2 Criticalness

We define the criticalness of a transaction as a function of the current time and the valid time intervals
and write time stamps of the data items that the transaction makes access to. Let us assume that transac-
tion Ti accesses data items A1, A2, through An. Then Ti’s criticalness can be determined by:

C(Ti) = MIN(Aj.Valid Interval - (t - Aj .Write_Stamp)) For j = 1,2,...,n.

For each data item, the write time stamp value is subtracted from the current time. This results in the
current age of the data item. This value is then subtracted from the valid time interval of the data item.,
The resulting number is the time interval that the transaction can be delayed and still access this data item
within its valid time interval. We compute this number for all the data items the transaction makes access
to and select the minimum value as the criticalness of the transaction. This value represents the max-
imum amount of time a transaction may be delayed and still satisfy the temporal constraints of all the
data items it makes access to. Other factors being considered as well, the smaller this criticalness value
associated with a transaction, the higher its priority should be within the system.
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4.3.3 Accuracy

Since accessing data items at different times will have different degrees of accuracy associated with it, it
would be desirable for the scheduler to consider the resulting accuracy of the transactions prior to making
a decision. We define the overall accuracy of a transaction at a particular instant as a function of the
current time and the timing requirements of the data items that it makes access 10:

F(t, Aj.Valid_Interval, Aj.Write_Stamp)

Accuracy(Ti =

Function F is defined in figure 34. This function implements the approach in assigning proper accuracy
values which was presented in figure 29.b. After determining what interval in relation to the write time
stamp and the valid time interval of a data item the current time falls in, the degree of accuracy attained
by accessing the data item at that particular instant is assigned. The degrees of accuracies achieved by
accessing each one of the data items is computed and the average of these is assigned as the accuracy of
the transaction were it to be processed at this instant. While considering other factors as well, the higher
the accuracy of a transaction, the higher its execution order should be within the system.

4.3.4 The scheduling decision

We assume that the the transactions in the system can be characterized as belonging to one of the two fol-
lowing groups:

- most critical transactions, or

\

F (t, Al.Vaild_interval, Aj.Write_stamp)
IF Aj.Write_stamp « t <= (A].Write_stamp + Al.Valid_interval) THEN
F=100
ELSEIF A].Write_stamp+Aj.Valld_interval < t <= Aj.Write_stamp +
2(Aj.Vaild_interval) THEN

\_ END | | )

Fig 34
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- less critical transactions.

The transactions in the most critical group can be thought of as having hard deadlines. This implies that
if these transactions do not meet their deadlines, the consistency of the database may be compromised.
Within the most critical group the transactions may have different piiorities, but the lowest priority of this
group is still higher than the highest priority found in the less critical group. The scheduling decisions of
the transactions in the most critical group will be based solely on their priorities and deadlines.

The deadlines of the transactions in the less critical group however can be thought of as being soft. The
system will do whatever in its power to satisfy the timing requirements of these transactions but will not
guarantee that these transactions will meet their deadlines. Since in a real-time environment the accu-
racy, criticalness, and the feasibility of the deadline of a transaction changes as a function of the time, we
allow the scheduler to determine the priorities of transactions within this group dynamically. So a given

. transaction in the less critical group may have different priorities at different times. But, at any given
time, the dynamic priority of a transaction in this group is less than the priority of all the transactions in
the most critical group.,

The main scheduling decision of the scheduler is presented in figure 35. In the figure, Th represents a
transaction holding some resource, and Tr is a transaction requesting the same resource. Therefore the
scheduler must make a decision on whether to keep Th running or to preempt Th and run Tr.

If both transactions belong to the most critical group, then a decision can be made between them based on
their priorities. We may use the conditional restart algorithm presented in [17]. If the competing {ransac-
tions belong to two different groups, we always make a decision in favor of the transaction in the most

ﬂF MostCritical(Th) AND MostCritical(Tr) THEN \\
ConditlonalRestart(Th, Tr)

ELSEIF LessCritical(Th) AND LessCritical(Tr) THEN
ExacutionQrdar(Th,Tr)

ELSEIF MostCritical(Th) AND LasasCritical(Tr) THEN
keap Th running
delay Tr

ELSEIF LessCritical(Th) AND MostCritical{Tr) THEN
Abori(Th)
run{Tr)

\\‘?ND | _")

_Fig 35
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critical group. If however both transactions belong to the less critical group, then we decide between the
two transactions based on the value of their dynamic execution orders. Figure 36 shows what this
scheduling decision is based on. The structure of this algorithm is based on ideas presented in [17].

The algorithm first considers the feasibility of the deadline of Tr. If this deadline is found to be infeasi-
ble, we keep Th running. If however the deadline of Tr is feasible, the scheduler proceeds by considering
the dynamic order of both transactions. The dynamic order of a transaction is a function of its accuracy,
slack time, and criticalness as shown in figure 37. The weight factors a, b, and ¢ may be adjusted to
emphasize or de-emphasize the different factors involved.

We first check to see whether the dynamic order of Th is less than that of Tr. This condition by itself
however is not sufficient reason for the scheduler to preempt Th and give access to Tr. Since the execu-
tion orders are determined dynamically, it is possible that the execution order of a transaction rises
immediately after it has been preempted. We want to avoid the situation when the preempted transaction
will immediately have a higher order than the transaction that just gained access to the data item. This
may lead to a preemption-restart cycle. We therefore also check on whether the execution order of Th if
it were to abort would be lower than that of Tr. If the dynamic orders of Th both at the current time and
were Th to abort are less than the dynamic order of Tr, then we check to see whether Th can be completed
within the slack time of Tr. If so, then we keep Th running since we can be reasonably sure that we can

ﬂ t + Estimate(Tr) - (t - Start(Tr}) » dr THEN - \
keep Th running
ELSEIF (Order(Th) < Ordar(Tr)) AND
{Order_Abor{(Th) < Order(Tr)) THEN
IF Estimate(Th) - {t - Start{Th)) <= Stack(Tr) THEN
keep Th running .
block Tr |
ELSE
delay Th
runTr
END
ELSE
block Tr
keep Th running

\e /

Fig 38
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finish this transaction and still have time in order to meet the deadline of Tr. Otherwise, Th is preempted
for later restart and Tr gains control.

Order(Ti) = a * Accuracy(Ti) - b * Slack(Ti) - ¢ * Criticalness(Ti).
Fig 37

As we have seen here, the scheduling decision for the transactions in the less critical group has been made
while considering their time constraints. The temporal requirements and their implications considered
were the deadlines, criticalness, and accuracy of transactions.

5. Conclusions

We have seen that in general, a database system adapting a multiversion concurrency control algorithm
performs better while processing read requests. Read requests that would be aborted in a database system
with a single version of each data item due to time stamp conflicts may be successfully processed in a
multiversion system using older versions of data items. Therefore, when the read requests dominate the
transaction load, and there is ample opportunity for the abortion of read-only transactions due to conflicts
with update transactions, a multiversion system performs better than its corresponding single version sys-
tem. The relative sizes of the read and write sets of transactions is an important factor affecting the per-
formance.

We observed that careful consideration must be given to the implementation constraints regarding the
creation and maintenance of the multiple data versions. These constraints can degrade the system perfor-
mance to the point that they offset any performance improvements that the multiple data versions may
provide. While minimizing the implementation constraints, it is possible to implement a multiversion
database system which never performs more poorly than its single version counterpart and provides a per-
formance improvement in some cases.

Multiple data versions are of significant value for database systems in real-time environments for meeting
the temporal constraints. Real-time requirements associated with both the transactions and the database
have been studied. In order to meet the real-time goals of such a system, the scheduler must consider the
real-time constraints prior to making a scheduling decision. We have proposed a scheduling scheme
which incorporates the real-time requirements in its decisions in terms of transaction deadlines, accuracy,
and criticalness. Qur future plans include implementing this scheduler and incorporating it within our
existing prototyping environment.
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