TSpec: A Notation for Describing Memory Reference Traces

University of Virginia Department of Computer Science
Technical Report CS-2000-23
August 14, 2000

Dee A. B. Weikle, TKevin Skadron; Sally A. McKee, 'William A. Wulf

TDepartment of Computer Science
University of Mrginia,
151 Engineer's ¥, PO Box 400740
Charlottesville, YA 22904-4740
{daw4q | skadron@cs.\gmia.edu, wwulf@nae.edu}

“Department of Computer Science
University of Utah
50 S. Central Campus D#3190
Salt Lale City, UT 84112-9205
{sam@cs.utah.edu}

Abstract

Interpreting refeence patterns in the output of aopessor is complicated by the kaaf a suc-
cinctnotationfor humango usewhencommunicatingaboutthem.Sincean actualtraceis simply
an incredibly long list of numbet it is dificult to see the underlying patterns inbetin it. The
source codewhile simpler to look at, does not include thfe&t of compiler optimizations suc
as loop unolling, and so can be misleading as to the acteédrences and aer seen by the
memorysystemTo simplifycommunicatiorof tracesbetweemneseachers andto undestandthem
more completelywe have deeloped a notation forepresenting them that is easy for humans to
read,write, andanalyze We call this notationTSpeg for tracespedfication notation.It hasbeen
designed for use in che design with four goals in mindirt, it is intended to assist in commu-
nication between peoplespecially with@spect to undstanding the patterns inhemt in mem-
ory refeencetraces.Secondit is theobjectonwhich thecadefilter modeloperates.Specifically
the trace and state of the dae ae represented in TSpec, these dinen the inputs for a function
that models the cae, and the esult of that function is a modifiecite and state that aralso
represented in TSpec. THjrit supports the futercreation of a magine readable vesion that
could be used toamerte traces to drive simulatsr or for use in tools (shicas tanslatos from
assemblyanguage to TSpec)Finally, it canbeusedto representdifferentlevelsof abstractionin
bendimark analysis.

1. Introduction
The work of todays cache designer is becoming increasinglfyodilt. It is well-accepted that

thereis a processememoryperformanceyap thatmustbe compensatetbr with the cachingsys-
tem.[Bur95,Hen96,Jou97 Wul94] Every time thereis anincreasan thespeedf amicroproces-

sor, the cache and corresponding memory system must be redesigned to feed the increased need

for instructions and data to operate on. There continues to be a consthat fesearch and
improvementto cachefunctionality, but suchresearchypically focusesnoreonimprovementgo

the cache system itself and less on the process, or underlying theory behind cache design. The
most common approach is to modify the cache hieyamol then simply judge that design by

running benchmarks through a simulator to determine hit rata®iage memory access times.

While it hasyieldedmary improvementdo the performancef cachingsystemsthis approachs
primarily ad-hoc gperimentation with little unifying theory to guidewmelesigns. This hampers
the ability of the cache designer tdeetively design to specific performance points, or fully
understandheimpactof researchiesultson actualsystems.For example theinteractionbetween
specificfeaturessuchasout-of orderexecution,branchprediction,pre-fetching por cachereplace-
ment algorithms, in the real-tim&exution of a user application is uncle@ptimizing each one
separatelyvill notnecessarilyeadto aglobaloptimum.In addition,it is difficult to controlall the

parameters one needs to performgreement that wuld answer this question.

A final complicating &ctor is that the current approach to cache design depends on benchmarks
and a simulation infrastructure that are non-standard and weslpled primarily for the pur-

poseof evaluatingprocessoarchitecturesThesesimulatorsareextremelyusefulandappropriate

for thespecificareathey weredesignedo explore,but do not provide aunifiedor completeexper-
imental infrastructure. An analysis frawmk that allevs researchers to abstraotay from a
particular emironment to communicate ideas about the fundamental characteristics of memory
systemsvould bebeneficial An integral partof this framevork would betheability to understand

reference patterns of tkfent processors for dfrent source programs.

Interpretingreferencepatternsn theoutputof aprocessors complicatedoy thelack of asuccinct
notation for humans to use when communicating about them. Since an actual trace is simply an
incredibly long list of numbers, it is dii€ult to see the underlying patterns inherent in it. The
sourcecode,while simplerto look at, doesnotincludethe effectsof compileroptimizationssuch
asloop unrolling,andsocanbe misleadingasto theactualreferencesindorderseerby themem-

ory system. @ simplify communication of traces between researchers and to understand them
more completelywe hae dereloped a notation for representing them that is easy for humans to
read, write, and analyze.aXall this notatiolT Spec, for tracespedfication notation. It has been

designed for use in cache design with four goals in mind. First, it is intended to assist in commu-

2

ni cation between people, especially with respect to understanding the patternsinherent in memory
reference traces. Second, it is the object on which the cache filter model operates. Specifically, the
trace and state of the cache are represented in TSpec, these are then the inputs for a function that
models the cache, and the result of that function is a modified trace and state that are also repre-
sented in TSpec. Third, it supports the future creation of a machine readable version that could be
used to generate traces to drive simulators, or for use in tools (such as trandators from assembly
language to TSpec). Findly, it can be used to represent different levels of abstraction in bench-

mark analysis.

Our work focusses on four different levels of abstraction. Current cache analysisis based on sin-
gletraces, so TSpec can specify an individual trace. However, there are many accidents of address
binding by the compiler or loader in such atrace. Itisdesirableto be ableto analyze al the traces
that differ only in those artifacts of binding, or as we describe it, the equivalence class of traces
that differ only because of those binding artifacts. So TSpec has been designed to describe the
abstraction of an equivalence class under varying address bindings. Similarly, there are many
traces that result from the execution of asingle program which, given different input data, follows
different execution paths through the program. Here again, we want T Spec to be able to represent
such alevel of abstraction. Finally, there exists a set of traces that result from both different
address bindings and different input data.

The following sections describe the TSpec constructs that are used to describe a single trace,
where all the address bindings, and the path through the program are known. Descriptions of the

other levels of abstraction and the TSpec constructs to support them begin in Section 4.

2. TSpec Constructsfor Single Traces
A trace specification isaformal rule that describes a specific trace. It consists of a set of defini-

tionsfollowed by atrace list. Definitions can be either variable or subtrace definitions. A trace
list is a concatenation of trace atoms, the most basic TSpec construct, surrounded by angle brack-
ets (<>). Trace atoms are concatenated by separating each trace atom with a comma (100, 200,
300). The simplest example of atrace specification has no definitions and only one trace in the

tracelist. Itisalist of address references such as:

<100, 200, 104, 300, 108, 100, 204, 104, 304, 108, 100, 208, 104, 308, 108>

A trace atom may be (1) a literal, (2) the symbxl(3) a \ariable, or (4) a subtrace. A literal is a
an intgger with an optional attrilie tag. The intger represents an address, and may be specified
in decimal or headecimal; headecimal numbers will be preceded by Ox. The afteilbags are

not defined by TSpecubare intended to connote code vs. data, read vs. write, system ys. user
etc.For the purposeof thisdocumentnon-nullattributetagswill berepresentedly anunderscore
and one or more letters appended to the end of agemntepresenting the address — thus

100_cr is an intger/tag pairA is used as a placeholder for an gaeetag pair Its primary role

is in the meging of multiple traces and will be described in more detail.lsterables and sub-
traces are constructs that alloegular patterns of literals to be described compactlysy are
described more fully in Section 2.1, Section 3.1 and Section 2.4 resbecti

2.1 Simple \ariables and Operations on Vriables
More will be said aboutariables laterbut here we introduce the basic concept and the simple

operations on them. Yariable represents a gelar sequence of addresses and is specified by a
base address and an increment or decrement (stridexafpke of a ariable definition is
X(400,8). x is the name of thanable, 400 is thealue of the base address and 8 is tilaesof

the increment. Aariable can benitialized (denoted #x) to set its currerdlue to its base

address.A variablecanalsobe post-incremented (denotedk,) to addtheincremento its current
value orpost-decremented (denoted X to subtract the increment from its currealue. Each

time avariableoccurs,it generateanaddressNotethatthe + and- operatorsaresubscriptsThe

reason for this will be seen later

2.2 Definite Iteration
A list of trace atoms can be grouped together with parentheses and an optional label. ay this w

thegroupis setapartto assisin patternidentification,or to beoperatedn. Theformatof a paren-
thesized group is (100, 200, 300) pkgg, 100, 200, 30QhgEL -

A trace atom or a group of trace atoms can be repeated witierthieon operatoy*. For exam-
ple, x*4 repeats thealue represented by X, 4 timegx<), *4 generates thealue of x and post-
increments x four times. If the initiablue of x vas 100 and the increment 4, the\abaould
generate the address list (100, 104, 108, 112) and thé&me x was used, it wuld generate the
address 116.

2.3 Suppression Operator
To suppress the generation of a constsuatidress while operating on that construct,adrihe

above operations can be preceded by dr &le, #x would initialize the ariable x to its ini-

tial value where #x wuld initialize the ariable x to its inital &lue and generate thalue.

2.4 Subtraces
Oftenit is usefulto separat®uta partof atracethatis reusedrequentlyandusealabelto referto

it ratherthanspecifyingthewholetrace. This makeslarger patternsn thereferencestreammore
obvious. Itis also useful to kia parameters for these subtraces in the instances where subtraces

are the samexeept for one or tw positions. The definition of a subtrace has the form:

s(pl, p2) =<100, p1, 104, p2, 108>

The name of the subtrace is s. pl and p2 are parameters to the subtracevaing tbko= sym-
bol is simply another trace specification. When using the subtrace in a trace, the % operator indi-
cates the subtrace should be “run” to completion (i.e. substituted as a whole into the trace). The

specification

s(pl, p2) = <100, p1, 104, p2, 108>
< %s(200, 300), %s(204, 304)>

would generate the follaing trace:

<100, 200, 104, 300, 108, 100, 204, 104, 304, 108>

The parameters of the subtrace are substituktdaiy, and thenealuated when that element of
the subtrace isxecuted. This all@s variables to be used as parameters; thasahles are then
evaluated in the conke where thg are substituted, and thus camleate to difierent addresses.

For example, the abee trace could also be generated by the folg trace specification:

s(pl, p2) = <100, p1, 104, p2, 108>;

f(200; 4); t(300; 4);

< I#, W, %s(t, ty), Ys(t, t,)>
Therearetwo modesof executionfor asubtraceThefirstis to runthe subtracdrom beginningto
end without ap intervening references. This is the mode demonstrated in both of theysre

examples, is calledunning the subtrace, and is denoted with a % symbol preceding the name of

5

the subtrace (%s(ft,)). The second mode of address generation for a subtrace isprédiag

a subtrace and is denoted with an @ symbol before the name of the subtrace (@s(p1, p2)). Each
subtrace has a control pointer which operatestlie control pointer of a program. When a sub-
traceis “run”, thecontrolpointermovesfrom the beginningto theendof the subtraceaseachele-

ment is @ecuted. When a subtrace is pulsed, the control pointenisdrame element and only

the address(es) associated with that element are generated.x{Ttmae¢he subtrace is pulsed,
thecontrolpointeris movedonemoreelementandsoon. To setthecontrolpointerof asubtrace

to the bginning the subtrace may be initialized with #, juse l&\ariable. © suppress genera-

tion of addresses during initialization, ! should be used.

d = <200, 300, 204, 304>;
c(100; 4);
< #d, (#c, ¢, @d, G, @d, g)*2>

The abwee specification generates the trace welo

<100, 200, 104, 300, 108, 100, 204, 104, 304, 108>

If asubtracenameis usedwithoutan @ or %, theelemenif the subtraceghe controlpointeris at
is generate@ndthe controlpointerstayswhereit is. Thisis similarto a pulsewithouttheupdate

of the control pointer and is analagous to usingrable without an operator

2.5 Merge
Themerge (denoted t1 & t2) of multiple traces is formed one “address’doalile) at a time.

The mege of a single address withyanumber ofAs is defined to be the address. Theguef

ary number ofAs is defined to b&. The mege of more than one address is undefined ekam-
ple,<g, A, &, A> & <A, &, A\, &8> =<q, &, &, a>. Itis easiest to visualize this operation by
lining thetracesup oneabove the otherasif they weregoingto be“added”andmeiging eachset

in the same position in the reference string.

<a,)\,ag, A>
&<A, ay, A, ag>

Figure 3: Merge Example

3. Specific Examples
So far we have discussed the basic element of TSpec (the trace atom), how a variable can repre-

sent atrace atom, and several operations including:

- definite iteration of avariable or atrace(*),

- initialization of avariable or a subtrace(#),

- variable post-increment or decrement (+,-),

- merge of multiple traces (&), and

- concatenation of variables to form atrace (,).

Figure 1 shows a more complete example for asimplified version of theinner loop of aroutine to
copy avector from one location to the another. The code in this example has been simplified to

allow the pattern to be easily seen in the reference string. One might think of the first c, asthe

load of the element being copied, the second as the store to the new location, and the third as the
branch back for the next element. Notice that this TSpec description represents a very specific
trace T, as the address bindings and the specific path through the program (number of iterationsin
this example) are known.

CCode fori=1to3t[i] =f[i];

TSpec: ¢(100; 4); f(200; 4); t(300; 4);
<I#, 14, (L1#e, ¢y, Ty, Cpy Uy, ©) L * 3>

Reference

String: 100, 200, 104, 300, 108,
100, 204, 104, 304, 108,
100, 208, 104, 308, 108

Figure 1 Copy example

3.1 Trace Variables In More Detail
Now we can create a more complex example by introducing a more general definition and use of

trace variables. Variables and the increment operator as introduced in Section 2.1 are adequate
for describing any trace, but they are most convenient for 1-dimensional arrays. We shall therefore
extend the definition and increment/decrement syntax to more naturally handle n-dimensional
arrays, by using an arbitrary number of iterator value-count pairs instead of a single iterator. Con-
sider the variable definition x(100; 4, 0; 64, 0) where x isthe name of the variable, 100 is the base
address (or starting address of the structure being accessed) and 4 and 64 are iterator values that

can be added or subtracted from the value of the variable. The zeros are the base values of the

iterator counts. At anpoint in time the &lue of a ariable is determined by the folng for-

mula:

var = base + (icl*ivl) + (ic2*iv2) + ...

wherevar = the currentvalueof the variable base = the baseaddres®f the variablein the defini-
tion, ic representtheiteratorcountfor a specificiterator andiv representsheiteratorvaluefor a
specific iteratarincrementing an iterator count increases #ilaesof the ariable by the alue of
the iterator in the definition. Note that if only oredue is present for an iteratatris assumed to

be the @alue of the iteratoand the iterator count is assumed to be zero.

Generallyspeakingnultiple incrementsareusedto traversea datastructuresuchasa matrix with
different strides and the number often reflects the number of loop nests useerse tifae struc-

ture.

Therearefour operatorghatcanbeusedto changehevalueof theiteratorcount(s). # initializes

the \alue to its basealue in the definition. + post increments the iterator count by 1, - post dec-
rements the iterator count by 1, and ~vésait alone. The operators for the iterator counts appear
assubscriptgo thevariablenamein atrace. Theiteratorcountoperatorsappeamsa commasep-
aratedsubscriptcalledthecontrol tag string. Thepositionof theoperatoiin thecontroltagstring
indicateswhichiteratorwill beusedto incremenor decrementhevariable.Thecontrolcharacter

in the first position describes what will happen with the first itertiterone in the second posi-

tion what will happen with the second iteratetc. Current corention is that the iterator that

changesdstest is closest to thanable.
As an éample of this usage, consider the data portion of matrix multiplicatidy,= z:

x(1000; 0,4; O,N),

y(4000; 0,4; 0, N),

z(8000; 0,4; O,N);

<Xy WY HZy s (G~ Yo 5 Z2 PN Yo 2o X N, Z g 4 X 4, Vi) *N>
Here the innermost loop does a read ofvafrom x and a read of a column fragnmultiplying
them and keping a running sum of the productgz.a is traversed completely once. Each ele-
mentof z is computeccompletelybeforegoingonto thenext one.y is traversedoy “column” (the

second iterator first) while is traversed by “rav” (the first iterator first).

8

The following sections provide a more complete description of equivalence classes and the more
advanced T Spec constructs to support them. At the end is a complete grammar for the TSpec

notation.

4. Equivalence Classes In Depth and the Larger Picture
As described above computer architectstypically evaluate cache designs on afew specific traces.

These traces are generated by running a particular benchmark suite on a simulation of their new
design. Thistraceisthen compared to another single trace resulting from asystem that is as close
as possible to the same, but without the particular improvement under investigation. While there
has been significant work and improvements to benchmarks in the last decade, these results are
still point solutions for awhole range of possible results for a specific piece of source code. For
example, the results from benchmark runs are for one set of input data, one set of address bind-
ings, and one compiler. Another instance of any of these parameters may produce drastically dif-
ferent results. To make it clear where atrace has come from and what type of dynamic run it
corresponds to, we have devel oped the concept of equivalence classes of reference traces, or dif-

ferent levels of abstraction as described in the introduction.

If two traces are in the same equivalence class, then they use the same piece of source code but
may vary one or more parameters that are used to describe the equivalence class. For our work we
have broken down the set of traces that could be generated by a specific piece of source code into
four sets, depending on whether or not the address bindings are known and whether or not the
input data is known. The relationship between these groupsis shown in Figure 2. The specific
trace generated by a benchmark could be thought of asthetrace T. The set of traces that would be
generated with the same source code and the same set of bindings as T, but with different sets of

input datais denoted { T4}, and isreferred to as the equivalence class of traces with respect to
input data. { Ty} isreferred to as the equivalence class of traces with respect to address bindings,

and is the set of traces that has the same source code and input dataas T, but a different set of
address bindings. (Note that thisis a generalization of the concept of trandation arraysin

[Har99].) {Tpq} istheset of tracesthat has the same source code, but varies the address bindings

and theinput data. Other equivalence classes exist, such as the equivalence class of traces under

varying virtual to plgsical address bindingsybwe do not treat them in ourowk.

Same data {Todt
5 Y | N
._g
5 | Y T {Tg
2 7
g N| {Tot [{Thd

Figure 2. Equivalence Classes: The relationship between traces generated by a
specific source program bynying bindings only ({F}), input data only ({T4}),
or both bindings and input data ¢J).

Each of the four sets siva in Figure 2 has corresponding constructs in TSpec. A specific trace,

T, can be fully described using the constructswshim Section 2 abe. The set of traces {J,

the equralence class of traces undarying address bindings, can be represented by the con-
structs described in Section 2tlvithout the base addresses. Consider thg ea@mple in Fig-
urel. By substitutingconstannamedor the specifichaseaddressnformation,onespecification
can describe a whole class of traces that includes all possible mappings of thaabk @),

and the tw data streams (f and t).

Cc(CSTART, 4); f(FSTART, 4); t(TSTART, 4);
<I#f, #t, (#c, ¢, Ty, ¢, Ly, C)*3>

Depending on the cache desigeegbal, this form of TSpec can be used to do a case analysis of
what diferent mappings wuld mean to cache performance, or tovallbe cache designer to
abstract way from those side f&fcts, choose a representatirace for the class as a whole, and

understand he a particular cache systenould handle the basic reference pattern.

5. Expanding T Spec to Describe {T 4} and {T 4}
To describehe equivalenceclassof tracesundervaryinginput data,away to expressconditionals

is required. Specificallysupport for trace patterns generated by procedural case statements (if-

1. While examining lernels it is unlikly that a diference wuld appear between virtual andyplcal
addresses. The actual addresses mégr,difit the form of the reference patterowid be the same
unless a page boundaryasvcrossed or wwirtual addresses mapped to the sanysiphl page. In our
work we alvays use virtual addresses.

10

then-else) or indefinite iteration of loops is needed.

5.1 Case Statements
Anif-then-else clauseis a special case of a procedural case statement. To support the description

of several different execution paths through a case statement, we use a parenthesized group of
trace items separated by |. Thisdenotes aset of smaller traces; only one of which is executed. For

example:

¢(1000; 4); d(1020; 4);
<l#c, €y, Cy, Cy, {Cy [}>

would generate one of the following two trace lists.

<1000, 1004, 1008, 1016> or <1000, 1004, 1008, 1020>

The above example describes a code segment where the last statement executed is an if-then-else.

The then clause is represented by executing the last c,, and the else clause by d. Here, either the
c,, or the d is executed, but not both. For clarity, it is sometimes desirable to label the conditional

symbols (|) and the curly brackets that designate the set of possible statements so that their rela

tionship isobvious. Labelsare similar to those for parentheses. For example:

c(1000; 4); d(1020; 4);

<l#c, ¢y, Cp, C, {1 G LD} >
There are times when the exact addresses being generated for the code of a case statement may
not be important. In this situation, the same variable can be used in all possible cases and the

form of the code loop is still clear. For example, the above pattern could be written as.

c(1000; 4); d(1020; 4);
<!#Ca C+1 C+! C+1 {LC+ |L C}L>

5.2 Indefinite Iteration and Break
To represent indefiniteiteration, the* symbol is used for loops without a corresponding number to

represent the number of iterations. For example, x* means zero or more repetitions of x.

The break construct is analagous to the break in C and continues the specification after the right
parenthesis with the same label asthe break. For example, consider the above example with aloop
and break added.

11

c(1000; 4); d(1020; 4);
<M, (RC4+, C4, Gy, {LC4 | C, break R })g, c,>

Here, if the second case option iseakthe outer loop labeled R isited. and gecution contin-

ues with the last,c

These three constructs; case options (|), indefinite iteration (*), and bremakialto model gry

general paths through a piece of source code.

6. Notational Conventions
The abwoe paragraphs outline the formal notation. Often it is usefulwe same shorthand for

specific operations. The frequently used alht®ns are:

to their initial \alue.
- x+is used for x _ _ . The companion, x-, is also acceptable.

- X* is used when thexact number of iterations is unimportant to the discussion.

- Commasasa delimiter betweertraceatomsmay beleft outif theresultis adescriptionthat

is easier to read.

- The label for a parenthesized group of trace atoms may be left out.

- If only onenumberis presenfor avariablesiterator it is assumedo bethevalueof theiter-

ator and the iterator count is assumed to be zero.

- Sometimes thexact address and/or increment is unimportant to the discussion and trace
lists will be used without their definitionoFexample, < (1#x, x+*)* > to demonstrate the

form of the code references for a loop of indeterminate length, location, and number of itera-
tions.

7. Grammar
In this section, we prade the syntactic definition of the notation. Here, single quotes surround

the delimiters of the language being defined. Thus, in the first definition, lzelo
<trace_specificationxonsists of a comma-separated sequeneedefinition>s followed by a

<trace_list>

<trace_specification> ::= {<definition>"}* {<tr ace_list>}
<trace_list> ;= {<’ <tr ace> ‘>&}¥*'<' <tr ace> ‘>’
<definition> ::=
{<variable_def>"}*<variable_def> |
{<subtrace_def>"}*<subtr ace_def>

<variable_def> ::=

<trace_variable> ‘(‘ <integer> <attr_tag> ‘;’ <iter ators>)
<subtrace def>::=

<identifier> ‘(' <par am_list> ‘)’ ‘=" <tr ace_list>

12

<iterators> ::= {<iterator>’;’}*<iterator>
<iterator> ::= <integerl>’, <integer2>

<param list> ::=
{<identifier> *, }*<identifier>

<trace_variable> ::= <identifier>_ ool tag>
<subtrace> ::= <identifier> ‘(* <param_list> ‘)’
<trace> ::= <trace item>

| <trace> ‘) <trace item>

<trace item> ::= ‘!’<action_atom>
| ‘# <action_atom>
| ‘!# <action_atom>
| ‘(‘<trace>')’
| ‘(" <trace> ‘&’ <trace> ')’
| <trace item>'*’'<integer>
| <trace atom>
| ‘break’ <identifier>
| ‘{* <trace> ‘|’ <trace> '}’

<trace atom> ::= <integer><attr_tag> | ‘A’ | <action_atom>
<action_atom> ::= <subtrace> | <trace variable>

<control_tag> ::= {<control_char> ‘; }* <control_char>
<control_char> ::="+" |- | ‘# | ‘"~

8. Related Work
Other languages to describe memory reference traces are unknown to the authors. Previous work

on TSpec, including a description of Tint, a TSpec interpreter that turns TSpec into an address
traceisdescribed in [McK97]. A general description of the overall framework that uses TSpec,
including a description of the cache as filter concept, isincluded in [Wei98], [Wei00a], and
[Wei00b].

9. References

[Bur95] D.C. Burger, JR. Goodman, and A. Kagi, “ The Declining Effectiveness of Dynamic Caching for General-
Purpose Microprocessors’, Univ. of Wisconsin-Madison Computer Science Dept. Technical Report 1261, January
1995.

[Har99] J. Harper, D. Kerbyson, and G. Nudd, “Analytical Modeling of Set-Associative Cache Behavior”, |EEE Transactions on
Computers, vol. 48 no. 10, Oct. 1999.

[Hen96] John L. Hennessy and David A. Patterson. “Computer Architecture: A Quantitative Approach”. Morgan
Kaufmann, second edition, 1996.

[Jou97] N. P. Jouppi and P. Ranganathan, “The Relative Importance of Memory Latency, Bandwidth, and Branch
Limits to Performance” I1SCA 97 Workshop on Mixing Logic and DRAM: Chips that Compute and Remember June

13

1st, 1997, 8:30am-5:30pm Denver, Colorado.

[McK97]S.A. McKee, Wm.A. Wulf, D.A.B. Weikle, “ TSpec: A Specification Language for Reference Traces’, Univ.
of Virginia Dept. of Computer Science Technical Report CS-97-19, August 1997.

[Wei98] Dee A. B. Weikle, Sally A. McKee, Wm. A. WuIf, "Caches As Filters: A New Approach to Cache Analy-
sis’, Sxth International Symposium on Modeling, Analysis, and Smulation of Computer and Telecommunication Sys-
tems (MASCOTS98), July19-24, 1998, Montreal Canada.

[Wei00a]Dee A. B. Weikle, Kevin Skadron, Sally A. McKee, Wm. A. Wulf, “ Caches As Filters: A Unifying Model
for Memory Hierarchy Analysis’, University of Virginia, Computer Science Department, Technical Report, CS-2000-
16, June, 2000.

[WeiOOb]Dee A. B. Weikle, Sally A. McKee, Kevin Skadron, Wm. A. Wulf, “ Caches As Filters: A Framework for the
Analysis of Caching Systems’, to appear in Grace Murray Hopper Conference 2000, Sept. 14-16, 2000.

[Wul94] W. A. Wulf, and S. A. McKee, “Hitting the Memory Wall: Implications of the Obvious’, ACM Computer
Architecture News. Vol. 23, No. 4, September 1995.

14

