
1

TSpec: A Notation for Describing Memory Reference Traces

University of Virginia Department of Computer Science
Technical Report CS-2000-23

August 14, 2000

†Dee A. B. Weikle,†Kevin Skadron,*Sally A. McKee,†William A. Wulf

†Department of Computer Science
University of Virginia,

151 Engineer's Way, PO Box 400740
Charlottesville, VA 22904-4740

{daw4q | skadron@cs.virginia.edu, wwulf@nae.edu}

*Department of Computer Science
University of Utah

50 S. Central Campus Dr., #3190
Salt Lake City, UT 84112-9205

{sam@cs.utah.edu}

Abstract

Interpreting reference patterns in the output of a processor is complicated by the lack of a suc-
cinctnotationfor humansto usewhencommunicatingaboutthem.Sinceanactualtraceis simply
an incredibly long list of numbers, it is difficult to see the underlying patterns inherent in it. The
source code, while simpler to look at, does not include the effects of compiler optimizations such
as loop unrolling, and so can be misleading as to the actual references and order seen by the
memorysystem.To simplifycommunicationof tracesbetweenresearchersandto understandthem
more completely, we have developed a notation for representing them that is easy for humans to
read,write, andanalyze. Wecall thisnotationTSpec, for tracespecificationnotation.It hasbeen
designed for use in cache design with four goals in mind. First, it is intended to assist in commu-
nication between people, especially with respect to understanding the patterns inherent in mem-
ory referencetraces.Second,it is theobjectonwhich thecachefilter modeloperates.Specifically,
the trace and state of the cache are represented in TSpec, these are then the inputs for a function
that models the cache, and the result of that function is a modified trace and state that are also
represented in TSpec. Third, it supports the future creation of a machine readable version that
could be used to generate traces to drive simulators, or for use in tools (such as translators from
assemblylanguage to TSpec).Finally, it canbeusedto representdifferentlevelsof abstractionin
benchmark analysis.

1. Introduction

The work of today’s cache designer is becoming increasingly difficult. It is well-accepted that

thereis aprocessor-memoryperformancegapthatmustbecompensatedfor with thecachingsys-

tem.[Bur95,Hen96,Jou97,Wul94] Every timethereis anincreasein thespeedof amicroproces-

sor, the cache and corresponding memory system must be redesigned to feed the increased need

2

for instructions and data to operate on. There continues to be a constant level of research and

improvementto cachefunctionality, but suchresearchtypically focusesmoreonimprovementsto

the cache system itself and less on the process, or underlying theory behind cache design. The

most common approach is to modify the cache hierarchy and then simply judge that design by

running benchmarks through a simulator to determine hit rates or average memory access times.

While it hasyieldedmany improvementsto theperformanceof cachingsystems,thisapproachis

primarily ad-hoc experimentation with little unifying theory to guide new designs. This hampers

the ability of the cache designer to effectively design to specific performance points, or fully

understandtheimpactof researchresultsonactualsystems.For example,theinteractionbetween

specificfeaturessuchasout-oforderexecution,branchprediction,pre-fetching,or cachereplace-

ment algorithms, in the real-time execution of a user application is unclear. Optimizing each one

separatelywill notnecessarilyleadto aglobaloptimum.In addition,it is difficult to controlall the

parameters one needs to perform an experiment that would answer this question.

A final complicating factor is that the current approach to cache design depends on benchmarks

and a simulation infrastructure that are non-standard and were developed primarily for the pur-

poseof evaluatingprocessorarchitectures.Thesesimulatorsareextremelyusefulandappropriate

for thespecificareathey weredesignedto explore,but donotprovideaunifiedor completeexper-

imental infrastructure. An analysis framework that allows researchers to abstract away from a

particular environment to communicate ideas about the fundamental characteristics of memory

systemswouldbebeneficial.An integralpartof thisframework wouldbetheability to understand

reference patterns of different processors for different source programs.

Interpretingreferencepatternsin theoutputof aprocessoris complicatedby thelackof asuccinct

notation for humans to use when communicating about them. Since an actual trace is simply an

incredibly long list of numbers, it is difficult to see the underlying patterns inherent in it. The

sourcecode,while simplerto look at,doesnot includetheeffectsof compileroptimizationssuch

asloopunrolling,andsocanbemisleadingasto theactualreferencesandorderseenby themem-

ory system. To simplify communication of traces between researchers and to understand them

more completely, we have developed a notation for representing them that is easy for humans to

read, write, and analyze. We call this notationTSpec, for tracespecification notation. It has been

designed for use in cache design with four goals in mind. First, it is intended to assist in commu-

3

nication between people, especially with respect to understanding the patterns inherent in memory

reference traces. Second, it is the object on which the cache filter model operates. Specifically, the

trace and state of the cache are represented in TSpec, these are then the inputs for a function that

models the cache, and the result of that function is a modified trace and state that are also repre-

sented in TSpec. Third, it supports the future creation of a machine readable version that could be

used to generate traces to drive simulators, or for use in tools (such as translators from assembly

language to TSpec). Finally, it can be used to represent different levels of abstraction in bench-

mark analysis.

Our work focusses on four different levels of abstraction. Current cache analysis is based on sin-

gle traces, so TSpec can specify an individual trace. However, there are many accidents of address

binding by the compiler or loader in such a trace. It is desirable to be able to analyze all the traces

that differ only in those artifacts of binding, or as we describe it, the equivalence class of traces

that differ only because of those binding artifacts. So TSpec has been designed to describe the

abstraction of an equivalence class under varying address bindings. Similarly, there are many

traces that result from the execution of a single program which, given different input data, follows

different execution paths through the program. Here again, we want TSpec to be able to represent

such a level of abstraction. Finally, there exists a set of traces that result from both different

address bindings and different input data.

The following sections describe the TSpec constructs that are used to describe a single trace,

where all the address bindings, and the path through the program are known. Descriptions of the

other levels of abstraction and the TSpec constructs to support them begin in Section 4.

2. TSpec Constructs for Single Traces

A trace specification is a formal rule that describes a specific trace. It consists of a set of defini-

tions followed by a trace list. Definitions can be either variable or subtrace definitions. A trace

list is a concatenation of trace atoms, the most basic TSpec construct, surrounded by angle brack-

ets (<>). Trace atoms are concatenated by separating each trace atom with a comma (100, 200,

300). The simplest example of a trace specification has no definitions and only one trace in the

trace list. It is a list of address references such as:

<100, 200, 104, 300, 108, 100, 204, 104, 304, 108, 100, 208, 104, 308, 108>

4

A trace atom may be (1) a literal, (2) the symbolλ, (3) a variable, or (4) a subtrace. A literal is a

an integer with an optional attribute tag. The integer represents an address, and may be specified

in decimal or hexadecimal; hexadecimal numbers will be preceded by 0x. The attribute tags are

not defined by TSpec, but are intended to connote code vs. data, read vs. write, system vs. user,

etc.For thepurposeof thisdocument,non-nullattributetagswill berepresentedby anunderscore

and one or more letters appended to the end of an integer representing the address — thus

100_cr is an integer/tag pair. λ is used as a placeholder for an integer/tag pair. Its primary role

is in the merging of multiple traces and will be described in more detail later. Variables and sub-

traces are constructs that allow regular patterns of literals to be described compactly. They are

described more fully in Section 2.1, Section 3.1 and Section 2.4 respectively.

2.1 Simple Variables and Operations on Variables
More will be said about variables later, but here we introduce the basic concept and the simple

operations on them. Avariable represents a regular sequence of addresses and is specified by a

base address and an increment or decrement (stride). An example of a variable definition is

x(400,8). x is the name of the variable, 400 is the value of the base address and 8 is the value of

the increment. A variable can beinitialized (denoted #x) to set its current value to its base

address.A variablecanalsobepost-incremented (denotedx+) to addtheincrementto its current

value orpost-decremented (denoted x-) to subtract the increment from its current value. Each

timeavariableoccurs,it generatesanaddress.Notethatthe+ and- operatorsaresubscripts.The

reason for this will be seen later.

2.2 Definite Iteration
A list of trace atoms can be grouped together with parentheses and an optional label. In this way

thegroupis setapartto assistin patternidentification,or to beoperatedon.Theformatof aparen-

thesized group is (100, 200, 300) or (LABEL 100, 200, 300)LABEL .

A trace atom or a group of trace atoms can be repeated with theiteration operator, *. For exam-

ple, x*4 repeats the value represented by x, 4 times. (Lx+)L*4 generates the value of x and post-

increments x four times. If the initial value of x was 100 and the increment 4, the above would

generate the address list (100, 104, 108, 112) and the next time x was used, it would generate the

address 116.

5

2.3 Suppression Operator
To suppress the generation of a construct’s address while operating on that construct, any of the

above operations can be preceded by !. For example, !#x would initialize the variable x to its ini-

tial value where #x would initialize the variable x to its inital value and generate that value.

2.4 Subtraces
Oftenit is usefulto separateoutapartof atracethatis reusedfrequentlyandusealabelto referto

it ratherthanspecifyingthewholetrace. Thismakeslargerpatternsin thereferencestreammore

obvious. It is also useful to have parameters for these subtraces in the instances where subtraces

are the same except for one or two positions. The definition of a subtrace has the form:

s(p1, p2) =<100, p1, 104, p2, 108>

The name of the subtrace is s. p1 and p2 are parameters to the subtrace and following the = sym-

bol is simply another trace specification. When using the subtrace in a trace, the % operator indi-

cates the subtrace should be “run” to completion (i.e. substituted as a whole into the trace). The

specification

s(p1, p2) = <100, p1, 104, p2, 108>
< %s(200, 300), %s(204, 304)>

would generate the following trace:

<100, 200, 104, 300, 108, 100, 204, 104, 304, 108>

The parameters of the subtrace are substituted textually, and then evaluated when that element of

the subtrace is executed. This allows variables to be used as parameters; these variables are then

evaluated in the context where they are substituted, and thus can evaluate to different addresses.

For example, the above trace could also be generated by the following trace specification:

s(p1, p2) = <100, p1, 104, p2, 108>;
f(200; 4); t(300; 4);
< !#f, !#t, %s(f+, t+), %s(f+, t+)>

Therearetwo modesof executionfor asubtrace.Thefirst is to runthesubtracefrom beginningto

end without any intervening references. This is the mode demonstrated in both of the previous

examples, is calledrunning the subtrace, and is denoted with a % symbol preceding the name of

6

the subtrace (%s(f+, t+)). The second mode of address generation for a subtrace is calledpulsing

a subtrace and is denoted with an @ symbol before the name of the subtrace (@s(p1, p2)). Each

subtrace has a control pointer which operates like the control pointer of a program. When a sub-

traceis “run”, thecontrolpointermovesfrom thebeginningto theendof thesubtraceaseachele-

ment is executed. When a subtrace is pulsed, the control pointer is moved one element and only

the address(es) associated with that element are generated. The next time the subtrace is pulsed,

thecontrolpointeris movedonemoreelement,andsoon. To setthecontrolpointerof asubtrace

to the beginning the subtrace may be initialized with #, just like a variable. To suppress genera-

tion of addresses during initialization, ! should be used.

d = <200, 300, 204, 304>;
c(100; 4);
< !#d, (!#c, c+, @d, c+, @d, c+)*2>

The above specification generates the trace below.

<100, 200, 104, 300, 108, 100, 204, 104, 304, 108>

If asubtracenameis usedwithoutan@ or %, theelementof thesubtracethecontrolpointeris at

is generatedandthecontrolpointerstayswhereit is. This is similar to apulsewithout theupdate

of the control pointer and is analagous to using a variable without an operator.

2.5 Merge
Themerge (denoted t1 & t2) of multiple traces is formed one “address” (or variable) at a time.

The merge of a single address with any number of λs is defined to be the address. The merge of

any number of λs is defined to beλ. The merge of more than one address is undefined. For exam-

ple, < a1, λ, a3, λ> & < λ, a2, λ, a3> = < a1, a2, a3, a4>. It is easiest to visualize this operation by

lining thetracesuponeabove theotherasif they weregoingto be“added”andmergingeachset

in the same position in the reference string.

 <a1, λ, a3, λ>

&<λ, a2, λ, a4>

 <a1, a2, a3, a4>

Figure 3: Merge Example

7

3. Specific Examples

So far we have discussed the basic element of TSpec (the trace atom), how a variable can repre-

sent a trace atom, and several operations including:

- definite iteration of a variable or a trace(*),
- initialization of a variable or a subtrace(#),
- variable post-increment or decrement (+,-),
- merge of multiple traces (&), and
- concatenation of variables to form a trace (,).

Figure 1 shows a more complete example for a simplified version of the inner loop of a routine to

copy a vector from one location to the another. The code in this example has been simplified to

allow the pattern to be easily seen in the reference string. One might think of the first c+ as the

load of the element being copied, the second as the store to the new location, and the third as the

branch back for the next element. Notice that this TSpec description represents a very specific

trace T, as the address bindings and the specific path through the program (number of iterations in

this example) are known.

3.1 Trace Variables In More Detail
Now we can create a more complex example by introducing a more general definition and use of

trace variables. Variables and the increment operator as introduced in Section 2.1 are adequate

for describing any trace, but they are most convenient for 1-dimensional arrays. We shall therefore

extend the definition and increment/decrement syntax to more naturally handle n-dimensional

arrays, by using an arbitrary number of iterator value-count pairs instead of a single iterator. Con-

sider the variable definition x(100; 4, 0; 64, 0) where x is the name of the variable, 100 is the base

address (or starting address of the structure being accessed) and 4 and 64 are iterator values that

can be added or subtracted from the value of the variable. The zeros are the base values of the

C Code: for i=1 to 3 t[i] = f[i];

TSpec: c(100; 4); f(200; 4); t(300; 4);
<!#f, !#t, (L!#c, c+, f+, c+, t+, c+)L*3>

Reference
String: 100, 200, 104, 300, 108,
 100, 204, 104, 304, 108,
 100, 208, 104, 308, 108

Figure 1: Copy example

8

iterator counts. At any point in time the value of a variable is determined by the following for-

mula:

var = base + (ic1*iv1) + (ic2*iv2) + ...

wherevar = thecurrentvalueof thevariable,base = thebaseaddressof thevariablein thedefini-

tion, ic representstheiteratorcountfor aspecificiterator, andiv representstheiteratorvaluefor a

specific iterator. Incrementing an iterator count increases the value of the variable by the value of

the iterator in the definition. Note that if only one value is present for an iterator, it is assumed to

be the value of the iterator, and the iterator count is assumed to be zero.

Generallyspeakingmultiple incrementsareusedto traverseadatastructuresuchasamatrixwith

different strides and the number often reflects the number of loop nests used to traverse the struc-

ture.

Therearefour operatorsthatcanbeusedto changethevalueof theiteratorcount(s).# initializes

the value to its base value in the definition. + post increments the iterator count by 1, - post dec-

rements the iterator count by 1, and ~ leaves it alone. The operators for the iterator counts appear

assubscriptsto thevariablenamein a trace. Theiteratorcountoperatorsappearasacommasep-

aratedsubscript,calledthecontrol tag string. Thepositionof theoperatorin thecontroltagstring

indicateswhichiteratorwill beusedto incrementor decrementthevariable.Thecontrolcharacter

in the first position describes what will happen with the first iterator, the one in the second posi-

tion what will happen with the second iterator, etc. Current convention is that the iterator that

changes fastest is closest to the variable.

As an example of this usage, consider the data portion of matrix multiplication,x * y = z:

x(1000; 0,4; 0,N),
y(4000; 0,4; 0, N),
z(8000; 0,4; 0,N);
<!#x#,#, !#y#,#, !#z#,#, (((x+,~, y~,+, z~,~, z~,~)*N, y+,#, z+,~, x#,~)*N, z #,+, x#,+, y#,#) *N>

Here the innermost loop does a read of a row from x and a read of a column fromy, multiplying

them and keeping a running sum of the products inz. z is traversed completely once. Each ele-

mentof z is computedcompletelybeforegoingonto thenext one.y is traversedby “column” (the

second iterator first) whilex is traversed by “row” (the first iterator first).

9

The following sections provide a more complete description of equivalence classes and the more

advanced TSpec constructs to support them. At the end is a complete grammar for the TSpec

notation.

4. Equivalence Classes In Depth and the Larger Picture

As described above computer architects typically evaluate cache designs on a few specific traces.

These traces are generated by running a particular benchmark suite on a simulation of their new

design. This trace is then compared to another single trace resulting from a system that is as close

as possible to the same, but without the particular improvement under investigation. While there

has been significant work and improvements to benchmarks in the last decade, these results are

still point solutions for a whole range of possible results for a specific piece of source code. For

example, the results from benchmark runs are for one set of input data, one set of address bind-

ings, and one compiler. Another instance of any of these parameters may produce drastically dif-

ferent results. To make it clear where a trace has come from and what type of dynamic run it

corresponds to, we have developed the concept of equivalence classes of reference traces, or dif-

ferent levels of abstraction as described in the introduction.

If two traces are in the same equivalence class, then they use the same piece of source code but

may vary one or more parameters that are used to describe the equivalence class. For our work we

have broken down the set of traces that could be generated by a specific piece of source code into

four sets, depending on whether or not the address bindings are known and whether or not the

input data is known. The relationship between these groups is shown in Figure 2. The specific

trace generated by a benchmark could be thought of as the trace T. The set of traces that would be

generated with the same source code and the same set of bindings as T, but with different sets of

input data is denoted {Td}, and is referred to as the equivalence class of traces with respect to

input data. {Tb} is referred to as the equivalence class of traces with respect to address bindings,

and is the set of traces that has the same source code and input data as T, but a different set of

address bindings. (Note that this is a generalization of the concept of translation arrays in

[Har99].) {Tbd} is the set of traces that has the same source code, but varies the address bindings

and the input data. Other equivalence classes exist, such as the equivalence class of traces under

10

varying virtual to physical address bindings, but we do not treat them in our work.1

Each of the four sets shown in Figure 2 has corresponding constructs in TSpec. A specific trace,

T, can be fully described using the constructs shown in Section 2 above. The set of traces {Tb},

the equivalence class of traces under varying address bindings, can be represented by the con-

structs described in Section 2, but without the base addresses. Consider the copy example in Fig-

ure1. By substitutingconstantnamesfor thespecificbaseaddressinformation,onespecification

can describe a whole class of traces that includes all possible mappings of the code (variable c),

and the two data streams (f and t).

c(CSTART, 4); f(FSTART, 4); t(TSTART, 4);
<!#f, !#t, (!#c, c+, f+, c+, t+, c+)*3>

Depending on the cache designer’s goal, this form of TSpec can be used to do a case analysis of

what different mappings would mean to cache performance, or to allow the cache designer to

abstract away from those side effects, choose a representative trace for the class as a whole, and

understand how a particular cache system would handle the basic reference pattern.

5. Expanding TSpec to Describe {Td} and {Tbd}

To describetheequivalenceclassof tracesundervaryinginputdata,awayto expressconditionals

is required. Specifically, support for trace patterns generated by procedural case statements (if-

1. While examining kernels it is unlikely that a difference would appear between virtual and physical
addresses. The actual addresses may differ, but the form of the reference pattern would be the same
unless a page boundary was crossed or two virtual addresses mapped to the same physical page. In our
work we always use virtual addresses.

or both bindings and input data ({Tbd}).

{T bd}

{T b} {T d}

Figure 2: Equivalence Classes: The relationship between traces generated by a

T

Same data

S
am

e
bi

nd
in

gs Y N

Y

N

T

{T b}

{T d}

{T bd}

specific source program by varying bindings only ({Tb}), input data only ({Td}),

11

then-else) or indefinite iteration of loops is needed.

5.1 Case Statements
An if-then-else clause is a special case of a procedural case statement. To support the description

of several different execution paths through a case statement, we use a parenthesized group of

trace items separated by |. This denotes a set of smaller traces; only one of which is executed. For

example:

c(1000; 4); d(1020; 4);
<!#c, c+, c+, c+, {c+ | d }>

would generate one of the following two trace lists.

<1000, 1004, 1008, 1016> or <1000, 1004, 1008, 1020>

The above example describes a code segment where the last statement executed is an if-then-else.

The then clause is represented by executing the last c+, and the else clause by d. Here, either the

c+, or the d is executed, but not both. For clarity, it is sometimes desirable to label the conditional

symbols (|) and the curly brackets that designate the set of possible statements so that their rela-

tionship is obvious. Labels are similar to those for parentheses. For example:

c(1000; 4); d(1020; 4);
<!#c, c+, c+, c+, {Lc+ |L d }L>

There are times when the exact addresses being generated for the code of a case statement may

not be important. In this situation, the same variable can be used in all possible cases and the

form of the code loop is still clear. For example, the above pattern could be written as:

c(1000; 4); d(1020; 4);
<!#c, c+, c+, c+, {Lc+ |L c }L>

5.2 Indefinite Iteration and Break
To represent indefinite iteration, the * symbol is used for loops without a corresponding number to

represent the number of iterations. For example, x* means zero or more repetitions of x.

The break construct is analagous to the break in C and continues the specification after the right

parenthesis with the same label as the break. For example, consider the above example with a loop

and break added.

12

c(1000; 4); d(1020; 4);
<!#c, (Rc+, c+, c+, {Lc+ |L c, break R }L)R, c+>

Here, if the second case option is taken, the outer loop labeled R is exited. and execution contin-

ues with the last c+.

These three constructs; case options (|), indefinite iteration (*), and break allow us to model very

general paths through a piece of source code.

6. Notational Conventions

The above paragraphs outline the formal notation. Often it is useful to have some shorthand for

specific operations. The frequently used abbreviations are:

- #x is used for #x#,#,.... This initializes the variable to its base address and all the increments
to their initial value.
- x+ is used for x+,~,~,.... The companion, x-, is also acceptable.
- x* is used when the exact number of iterations is unimportant to the discussion.
- Commasasadelimiterbetweentraceatomsmaybeleft out if theresultis adescriptionthat
is easier to read.
- The label for a parenthesized group of trace atoms may be left out.
- If only onenumberis presentfor avariable’s iterator, it is assumedto bethevalueof theiter-
ator and the iterator count is assumed to be zero.
- Sometimes the exact address and/or increment is unimportant to the discussion and trace
lists will be used without their definition. For example, < (!#x, x+*)* > to demonstrate the
form of the code references for a loop of indeterminate length, location, and number of itera-
tions.

7. Grammar

In this section, we provide the syntactic definition of the notation. Here, single quotes surround

the delimiters of the language being defined. Thus, in the first definition below, a

<trace_specification> consists of a comma-separated sequence of<definition>s followed by a

<trace_list>.

<trace_specification> ::= {<definition>‘,’}* {<tr ace_list>}
<trace_list> ::= {‘<‘ <tr ace> ‘>&’}*’<‘ <tr ace> ‘>’
<definition> ::=

 {<variable_def>’,’}*<variable_def> |
{<subtrace_def>’,’}*<subtr ace_def>

<variable_def> ::=
<trace_variable> ‘(‘ <integer> <attr_tag> ‘;’ <iter ators> ‘)’

<subtrace_def> ::=
<identifier> ‘(‘ <par am_list> ‘)’ ‘=’ <tr ace_list>

13

<iterators> ::= {<iterator>’;’}*<iterator>
<iterator> ::= <integer1>’,’ <integer2>

<param_list> ::=
{<identifier> ‘,’}*<identifier>

<trace_variable> ::= <identifier><control_tag>

<subtrace> ::= <identifier> ‘(‘ <param_list> ‘)’
<trace> ::= <trace_item>

| <trace> ‘,’ <trace_item>

<trace_item> ::= ‘!’<action_atom>
| ‘#’ <action_atom>
| ‘!#’ <action_atom>
| ‘(‘<trace>’)’
| ‘(‘ <trace> ‘&’ <trace> ‘)’
| <trace_item>’*’<integer>
| <trace_atom>
| ‘break’ <identifier>
| ‘{‘ <trace> ‘|’ <trace> ‘}’

<trace_atom> ::= <integer><attr_tag> | ‘λ’ | <action_atom>

<action_atom> ::= <subtrace> | <trace_variable>

<control_tag> ::= {<control_char> ‘,’ }* <control_char>
<control_char> ::= ‘+’ | ‘-’ | ‘#’ | ‘~’

8. Related Work

Other languages to describe memory reference traces are unknown to the authors. Previous work

on TSpec, including a description of Tint, a TSpec interpreter that turns TSpec into an address

trace is described in [McK97]. A general description of the overall framework that uses TSpec,

including a description of the cache as filter concept, is included in [Wei98], [Wei00a], and

[Wei00b].

9. References
[Bur95] D.C. Burger, J.R. Goodman, and A. Kagi, “The Declining Effectiveness of Dynamic Caching for General-
Purpose Microprocessors”, Univ. of Wisconsin-Madison Computer Science Dept. Technical Report 1261, January
1995.

[Har99] J. Harper, D. Kerbyson, and G. Nudd, “Analytical Modeling of Set-Associative Cache Behavior”, IEEE Transactions on
Computers, vol. 48 no. 10, Oct. 1999.

[Hen96] John L. Hennessy and David A. Patterson. “Computer Architecture: A Quantitative Approach”. Morgan
Kaufmann, second edition, 1996.

[Jou97] N. P. Jouppi and P. Ranganathan, “The Relative Importance of Memory Latency, Bandwidth, and Branch
Limits to Performance” ISCA 97 Workshop on Mixing Logic and DRAM: Chips that Compute and Remember June

14

1st, 1997, 8:30am-5:30pm Denver, Colorado.

[McK97]S.A. McKee, Wm.A. Wulf, D.A.B. Weikle, “TSpec: A Specification Language for Reference Traces”, Univ.
of Virginia Dept. of Computer Science Technical Report CS-97-19, August 1997.

[Wei98] Dee A. B. Weikle, Sally A. McKee, Wm. A. Wulf, "Caches As Filters: A New Approach to Cache Analy-
sis", Sixth International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS'98), July19-24, 1998, Montreal Canada.

[Wei00a]Dee A. B. Weikle, Kevin Skadron, Sally A. McKee, Wm. A. Wulf, “Caches As Filters: A Unifying Model
for Memory Hierarchy Analysis”, University of Virginia, Computer Science Department, Technical Report, CS-2000-
16, June, 2000.

[Wei00b]Dee A. B. Weikle, Sally A. McKee, Kevin Skadron, Wm. A. Wulf, “Caches As Filters: A Framework for the
Analysis of Caching Systems”, to appear in Grace Murray Hopper Conference 2000, Sept. 14-16, 2000.

[Wul94] W. A. Wulf, and S. A. McKee, “Hitting the Memory Wall: Implications of the Obvious”, ACM Computer
Architecture News. Vol. 23, No. 4, September 1995.

