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Abstract

This technical report contains sections excerpted from the proposal which the
departments of Computer Science and the Electrical Engineering submitted to the
National Science Foundation Institutional Infrastructure Program in December 1989.
That proposal was subsequently adapted somewhat and was awarded over $5.5M
including matching funds from the Commonwealth of Virginia and the University of
Virginia.

In this proposal we ask for support -- primarily equipment, students and staff -- to
enhance the capabilitites that will permit the joint departments to do hardware and
software experiments not now possible or feasible. We need the capability to perform
experiments more rapidly, in more depth and with greater quality and fidelity.
Experimental capabilities include the design of custom chips, integration of custom and
off-the-shelf hardware into board systems, the creation of software systems and
applications, the exercise and instrumentation of the prototype software on the prototype
hardware. The collective faculty involved strongly believe that the quality of computer
research can frequently be enhanced if experiments can be realized to help test the
scientific hypothesis under investigation.

This work is being supported by Grant No. CDA-8922545 funded by the National
Science Foundation.



B. Executive Summary

This proposal is jointly submitted by the faculty of the Department of Computer Science and
the computer engineering faculty of the Department of Electrical Engineering of the University
- of Virginia. The infrastructure for which we ask NSF resources is vital to the experimentation
that is the foundation of our multi-disciplinary research.

‘The University of Virginia granted its first doctoral degree in computer science in 1968,
During the last five years, the Department has grown dramartically. Annual research funding for
CS has increased from $300,000 to $2.4 million. During the past two years faculty quality has
increased with the addition of three professors from Carnegie-Mellon and one each from
Arizona, Illinois and Rochester. Facilities have improved from 8,000 sq. ft. to 18,000 sq. ft.
renovated in 1989. Equipment has increased from a VAX 780 to a VAX 8600 and 43 Suns.
Both the quality and number of graduate students have increased. In the past two years the size
of the graduate class has grown from 76 to 127. This year’s entering graduate class will have the
highest average GRE scores in the School of Engineering (math plus verbal scores of 1348). It
will be our largest class and will contain the largest number of entering Ph.D. students,

Research in parallel computing is performed within the Institute for Parallel Computation
(IPC) which was created by the Computer Science faculty. The IPC houses 128-node and 32-
node hypercubes and a 32-node BBN Butterfly. The IPC was established by computer science
- and systems engineering faculty. This is one example of the Departments’ interdisciplinary
research. Other work involves Biomedical Engineering, Biology, Electrical Engineering, and
Applied Mathematics. New research liaisons are planned with the National Radio Astronomy
Observatory (in Charlottesville) and the Nuclear Magnetic Resonance Institute in the UVa
Medical School.

Research in computer engineering is conducted in the Center for Semicustom Integrated
Systems (CSIS) within the Department of Electrical Engineering. Formed in 1984, the Center
has grown to have annual research funding of $1.2 million with 4 faculty, 25 graduate students,
and two technical staff members. Laboratory space of 1,716 sq. ft. is being renovated during
1989-1990. The Center currently operates 3 minicomputers, 8 Sun and 7 Apollo workstations, 4
AED 512 color graphics viewports and a Tektronix DAS 9100 tester. The Center has substantial
industry support ($300,000 during CY89) from companies including Hughes, IBM, Mentor
Graphics, and General Electric. CS and EE have a long-standing, close working relationship as
evidenced by our joint Masters degree in Computer Engineering, cross-listed courses, and our
on-going joint research projects. '

The University and the School of Engineering have been very supportive of EE and CS. All
space utilized by these departments has been renovated in the past two years. Space available to
CS (EE) has been increased by more than 200% ( 80%) in that time. Architectural pre-planning
for a new computing building will be complete in Fall 1989. Further support is evident in the
matching resources for this proposal: $1.6 million.

The majority of faculty in the CS and EE departments perform experimental research. We
simulate, specify, prototype, reconfigure, fabricate, instrument, and test hardware/software
systems and components in order to validate our scientific and engineering hypotheses. Our
supporting experimental infrastructure consists of laboratory space, equipment—hardware and
software—and people. Most important are knowledgeable students, faculty and staff. They
integrate the other elements to form a research environment in which experiments can be
devised and implemented with an acceptably low investment of time and intellectual energy.
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The desired experimental infrastructure provides a spectrum of related capabilities that
support research in the four general categories shown in Figure B-1. We use the term end-to-end
to suggest a sequence of implementation choices. A researcher may closely control whatever
aspects are critical.
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Figure B-1. Research Categories

At one end is the capability to create custom circuits. Further along the spectrum is the
capability to integrate off-the-shelf, and perhaps custom, components to create a board system.
Still further along is the capability to program small stand-alone software modules. They may
execute on a custom board system or on a general computing engine. At the other end is the
capability to experiment with both general systems and applications. Not all research
investigations will cover the end-to-end spectrum. Each researcher will choose the needed
subset of capabilities. Such an infrastructure offers the researcher the option of performing
experiments at precisely the most effective points of the hardware/software experimental space.

Equipment to support integrated circuits is in a laboratory that is located in the Center for
Semicustom Integrated Systems (CSIS). This proposal requests hardware and software to
enhance that laboratory. Infrastructure for hardware integration and low-level software
instrumentation will be located in the Systems Integration Laboratory (SIL), which is to be built.
Equipment for both systems software and applications is mainly in the form of general-purpose
computing engines and software. The networked computing resources of CS, IPC and CSIS will
be upgraded with resources requested in this proposal. Of particular importance are the
resources that will improve student access and computing capacity.

We perform research in the following areas:
Computer architecture (Aylor, Davidson, Grimshaw, Johnson, Jones, Wulf)
Programming language design (Cook, Grimshaw, O’Bagy, Pratt, Wulf)
Compilation (Davidson, Wulf)
Fault tolerant hardware and software (Johnson, Knight)
Parallel/distributed simulation (Aylor, Reynolds)
Parallel, scientific, and object-oriented databases (French, Jones, Pfaltz, Son)
Test technology (Aylor, Johnson, Knight)
VLSI design technology (Aylor, Cohoon, Johnson, Williams)
Real-time and control systems (Cook, Weaver)
Vision systems (Olson, Martin)
Operating systems (Cook, Grimshaw, Jones, Wulf)
Networks (Weaver)
User interfaces (Pausch)
Parallel genetic algorithms (Cohoon, Martin, Richards)
Computational geometry (Cohoon, Martin, Richards, Salowe)

We have a substantial record of research results, We want to increase the experimental
component of our research. This requires bringing together the necessary knowledge, tools,
skills, and processes. We want to decrease the intellectual effort and the elapsed time to
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accomplish a desired experiment. An improved infrastructure will lead to more experiments,
more experimental data, and more analysis. Therefore, scientific resuits will be better
substantiated, more quickly produced and of better quality.

Compared to other computer science and engineering departments, we are a focused systems
group with a strong experimental bias. There is a synergy to be gained because of this focus:
some research groups produce hardware, software or processes that can be experimental support -
for other projects. To give one example, the compiler project can rapidly retarget a compiler.
This process is useful to a machine architecture project refining an Instruction Set Processor
definition. It is also useful for a real-time operating system project wishing to port to alternative
target architectures. We are at the point that we can take advantage of such synergy. The
requested resources will permit us to package selected research output. Internal use of the tools
and processes we build is the first step toward national distribution.

Note: Bill Wulf is the AT&T professor in the School of Engineering and Applied Science.
He is currently on leave as Assistant Director of Computer & Information Science &
Engineering at the National Science Foundation. To avoid any appearance of conflict of
interest, he has not been involved in the preparation of this proposal. His vita does appear
because he is the principal investigator on the DARPA-funded WM machine architecture
project. He will return to UVa in mid-1990.

Summary of the Research to be Supported

The description of our research activities appears in five sections, each of which closely
relates to one of the research categories in Figure B-1. Two sections, Real-Time Systems and
Paralle] Systems, are in the Software Systems category. The following paragraphs summarize
Section F (Research). :

VLSI Design Automation and Validation: Several projects have the objective of creating
an integrated environment in which a digital designer can create VLSI circuits and systems
efficiently and effectively. Projects include physical design and modeling.

Physical Design: VLSI physical design is a multi-step process whose goal is to translate a
logical description of a digital system into a physical package. The basic steps are partitioning,
floor-planning and placement, and routing. Over the past three years we have developed isolated
tools for each basic step. They are objectively judged to be among the best of the state-of-the-
art. The tools depend upon non-traditional techniques such as geometric search techniques using
computational geometry and genetic algorithms. One of these tools, BEAVER, is able to route
each of the classic switchbox 'instances in less than two seconds. In addition, both wire usage
and via usage are better than or comparable to the best previously known solution. The future
objective is to design and prototype selected tools and then to integrate them into a physical
design environment together with tools of commercial and research origin. The infrastructure is
crucial to being able to build an integrated tool set in contrast to isolated tools.

Uninterpreted/interpreted Modeling: Analysis and validation of digital system designs is
accomplished via modeling. Unfortunately the many tools available each focus on a particular
phase of design; different modeling tools exist for the system level, behavioral level, logic level
and circuit level. The designer must translate between the different tools. As a result, costs
increase along with errors and design time. Our goal is to develop a design representation, and
associated tools, suitable for initial conceptualization and refinement to final physical
implementation. Initially, a design is represented in an uninterpreted model in which tokens
representing information whose form and meaning is unknown flow among elements whose
function is not well specified. As the design is refined, elements are described in an interpreted
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model whose function, inputs, and outputs are specified. Research questions derive from the
coexistence of uninterpreted and interpreted models and "mixed-model" simulation.

Computer Architecture: Computer architectures and the interface between hardware and
— software vary rapidly. We discuss three projects in this area.

The WM Machine Architecture: The WM project is exploring a RISC-like architecture that
enables concurrent execution of several instructions. In principle, 13 RISC-equivalent
instructions can be executed per cycle; in practice 4-5 instructions per cycle seem the norm for
real applications. This means that by using the WM architecture one can design a processor with
several times the speed of a traditional RISC processor using the same technology., We have
built an instruction set processor simulation for the execution of benchmarks; resulis are
encouraging. We have designed and fabricated several WM IC chips. Future WM research
requires the ability to integrate custom and industrial components into systems capable of
executing experimental operating systems.

Retargetable Compilers: Compilers are the critical tool for exploiting new machine
architectures as they emerge. Our long term research goal is to develop compiler technology
that enables a computer scientist to construct a production-quality compiler for a new
architecture with less than one month’s effort. We have developed a technology for retargeting
optimizing compilers and built compilers for C, (validated) Ada, and Pascal and have retargeted
compilers to 12 machines. Future research will involve: 1) implementation of a more powerful
machine description language and 2) optimization at link-time and at post-execution time.

Fault Tolerance and Testing: Both testability and fault tolerance must be considered from
the start of a digital design. Our research focuses on an active design method which requires
elimination of system faults via reconfiguration. Such a methodology depends upon detecting
component faults concurrent with normal operation. We are experimenting with three
alternative concurrent fault detection techniques. Based on the best of these, we will populate a
library of fault-tolerant building blocks. The design tools will be taught the fault-tolerant
characteristics of the building blocks so that it is possible to perform reliability analyses on new
systems designs.

Real-time Software: We study operating systems, databases and communications designed
to serve real-time applications. We implement them so are concerned with software fault
tolerance.

The StarLite development environment: We have developed a host environment, StarLite, for
the development of real-time operating systems and real-time databases. StarlLite is unusual in
that it provides for the execution of target software on virtual single, multiple and distributed
processors. Interfaces to a variety of devices, such as Ethernet, exist. Hence StarLite is
conducive to the development of software for which hardware does not exist or is inhospitable.
StarLite executes on Unix for portability and includes an initial set of development tools
including debugger, visualizer and a software library of over 200 modules. Qur complementary
objectives are to mature the StarLite environment and validate its use for real-time systems.

Real-Time Communications: We have built a variety of LAN networks for ships, aircraft and
factories and have achieved very high speed transmission rates. Now we are moving to higher
speed networks to focus on the new research problems that surface. First, we are developing
LAN protocols for control systems where latency control is critical to meeting real-time
deadlines. Traditional transport protocols are optimized for throughput; the needed latency
control is absent. Second, we are studying dynamic manipulation of message importance and
the role of pre-emption as a means to assure real-time performance. Third, we will address
protocol compilation and validation for the situations in which real-time communications
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protocols will be tailored to the specific system needs.

Software Fault Tolerance: Most approaches to software fault tolerance attempt to deal with
all faults. In contrast, we are investigating several strategies which will support tolerance of
specified classes of faults. One technique relies on the fact that many computer programs map
multiple inputs to one output. For some applications it is possible that an alternative input will
cause the software to traverse a different path and produce the originally desired correct output.
Such techniques take advantage of knowledge of the limited faults of interest.

Parallel Systems: A wide variety of parallel systems research is pursued at UVa., Three
projects are described in some depth.

ADAMS, a parallel database interface: The goal of the ADAMS—the Advanced Data
Management System—project is to create a standard interface which will support parallel access
and management of data. It will 1) interface directly with programs written in algorithmic
languages, particularly scientific programs, 2) obviate the need for a separate database system,
and 3) provide for parallel access to data. Research problems include determining data
description and access primitives, naming vast amounts of data, organizing data on parallel -
storage devices for efficient access, and ensuring integrity.

Parallel simulation: Qur research in parallel simulation has resulted in the development of
SPECTRUM, a testbed for discrete event simulation. Within SPECTRUM it is possible to vary -
the protocol which determines how the concurrent, cooperating simulation processes interact.
The testbed environment is useful for experimentation with alternative protocols and the
development of new protocols. In addition, it permits simulation of operators which provide
parallel processes efficient, lockless access to data structures. We have proposed such operators
both for simulation and general purpose computing.

Parallel genetic algorithms: In a genetic algorithm a population of solutions evolves through
successive generations. Recently, we have devised a new genetic algorithm that is suitable for
distributed implementation. In parallel, multiple populations of solutions evolve, each in a
separate environment. Their value is judged by a fitness function. At intervals, fit solutions in
one environment are transplanted to another. We have shown that the performance of ‘the
distributed genetic algorithm exceeds that of the original genetic algorithm.

Applications: We discuss two applications.

Computer vision: Our work is in the area of dynamic scene analysis. We emphasize the
control of focus of attention mechanisms in vision systems in a parallel processing context. We
want to understand the fundamental nature of quasi-parallel agents cooperating to interpret
visual information in dynamic environments. Second, we seek to define effective operations on
multiple, varying-grain resolutions of time-sequenced images.

Computational geometry toolbox: Computational geometry is concerned with manipulating,
processing and examining geometric objects. We have selected a set of geometry problem areas:
convex hulls, Voronoi diagrams and Steiner trees. These are of particular use in VLSI design
layout and in computer vision. We will build a library of algorithms to solve problems in these
geometry areas. Our emphasis will be on data structures that are common to multiple
algorithms, simplicity of control and data structures, robustness of algorithms to input
perturbations and dynamic insertions and deletions. We will then experiment with suitability
and ease of use of the toolbox algorithms in VLSI design layout and computer vision software.
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F. Research

We want to expand our infrastructure for the support of experimental systems research. The
infrastructure to do so involves people, equipment, space, and ideas. It is characterized as end-
to-end because the capabilities facilitate experimentation at one end with the design of circuits,
all the way to instrumentation and test of prototype complex software systems at the other end.
Because the infrastructure is "what is needed", precise definition is difficult. The infrastructure
is best illustrated by examples of the capabilities it offers:

o Construct prototype compilers for experimental target processors.

o Construct prototype operating, real-time and control systems by replacement of modules
within existing systems.

e Compose and test prototype boards from custom and off-the-shelf components.

e Design, layout, simulate, and test VLSI circuits, with routine fabrication performed at a
national (MOSIS) or industrial facility.

e Store, manipulate, incrementally alter and re-simulate experimental designs at many
levels.

¢ Model and analyze systems using queueing and petri net models; simulate components and
systems at all levels. :

o Instrument, monitor and test both hardware and software, with automatic test generation
wherever possible.

e Produce technical prose and presentation visuals — both still (transparencies) and
animated graphics (video).

No single researcher may necessarily use all the capabilities end-to-end. Each user will
instead select the set of capabilities needed. The presence of infrastructure to support a slightly
broader experiment will encourage researchers to attempt more experimentation.

Much of our research is characterized as "systems”. We build many prototype hardware and
software components, We build software that is sensitive to underlying hardware, e.g. user
interfaces, networks, vision, operating systems, compilers, and databases.

Because of our systems focus and our productivity in the past, several research projects have
built or are building software, tools, or hardware that other research groups wish to use. The list
of such opportunities includes the vpo retargetable compilers, Starlite real-time operating
system kernel, SPECTRUM simulation testbed, BEAVER and LIR VLSI routers, and the fault
tolerant chip library. This opportunity for synergy offers high leverage for extending the
experimentation of some researchers. With an infrastructure enrichment grant from NSF we will
commit to packaging some of the research products for use by others at UVa. It is a

straightforward, though not simple, step beyond that to distribute to other research sites. We
aspire to be a national asset in this regard.

We divide the infrastructure intuitively into four areas, each offering a set of capabilities of
the kind listed above. The four areas are depicted by thick lines in Figure F-1 below. The
general areas in which we do research are indicated by thin lines. Placement and length of a
solid research line indicates what portion of the infrastructure serves our research in that area
today. Dotted research lines are placed to illustrate how an enriched infrastructure will broaden
the kind of experimentation that is performed. An arrow indicates that some research project in
that area is expected to produce a tool or a process that itself will be refined so that it becomes a
part of the infrastructure.
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Figure F-1. Research Spectrum

Our plan to enrich our infrastructure would proceed as follows. First in 1990, we will
strengthen the general computing environment as well as the integrated circuit design facility
which is physically part of the Center for Semicustom Integrated Systems. We would acquire
workstations, laboratory equipment and software tools from commercial sources and other
research sites. We would also hire technical staff and graduate students to integrate the new
facilities and to ensure their consistency and ease of use for researchers.

Second in 1991, we will create the Systems Integration Laboratory (SIL) so that we have the
ability to integrate hardware systems. The SIL will permit the circuit builders to insert custom
circuits in board-level systems. At the same time it will permit those researchers who now build
software that is sensitive to the hardware interface to vary that interface in experiments. During
1991 we will begin to package thé expertise, tools and technology we have in six areas:
networking interface software, operating and real-time system kernel software, retargetable
compilers, physical design tools, hardware component libraries, and the parallel simulation
testbed. These packages will be made available to research projects other than the creating
project. Projects that will benefit from developments in the above seven areas are as follows:

Capability Using Research Areas
network interface fault tolerant distributed architectires

OS/real-time system software WM machine architecture,
reliable control systems of physical systems
(electric wheelchair design)

retargetable compilers networks, real-time OS,
: WM machine architecture
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physical design tools all integrated circuit design activities
component libraries all integrated circuit design activities

parallel simulation testbed functional simulation of ICs

Lastly, beginning in 1991 we will incrementally improve our infrastructure both with funds
from this NSF grant, and with other funds that we expect this grant to catalyze. We will
routinely add new tools, expertise and processes to our environment.

Research to be supported by the infrastructure is described in five sections. Each describes
several related projects; collectively these projects span the research categories in Figure F-1.
Two sections, Real-Time Software and Parallel Systems, relate to the Systems Software research
category. NSF review guidelines led us to focus on those research projects with a track record.
Projects just getting under way have shorter descriptions. For each research project we state its
long term research goals, past success and its research agenda—the next research questions to be
asked and the milestones to be accomplished.
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F.1 VLSI Design Automation and Validation

Digital designers, who create state-of-the-art VLSI circuits and systems, need quality tools
that quickly and automatically perform a variety of design and management functions. While
such tools are important in the creation of most complex systems, they are especially important
in the design and implementation of digital products because of the large implementation costs
and short development times. Also, digital systems are increasingly present in systems where
failure can result in endangering human life or large financial loss, so that safety and reliability
are crucial. Through our interdisciplinary VLSI custom design facility, we have developed and
are continuing to develop a collection of high guality tools and methodologies that span the
design spectrum. Our past successes and the resultant interest they have generated are readily
documented [CoH88, HAWE9].

In our research programs, we have established particular expertise in several major design
validation and automation areas: fault tolerant design [BJA88, Joh89], physical design [CoR88,
CoHB88], modeling and simulation [AuA86, HAWS89], and testing [AJR86, FAC89]. Below we
describe some of the design tools and methodologies we have developed for two of these
areas—physical design and system modeling.

F.1.1 Physical Design (Cohoon)

Physical design is a multi-step process whose goal is to translate a logical description of a digital
system into a physical package. Its basic steps are partitioning, floor-planning and placement,
and routing [PrL88]. The partitioning step decomposes the systern into a collection of circuits,
each of which can be realized as a single physical entity. The floor-planning and placement step -
determines where the circuit elements or modules that make up a circuit should be located and
how they should be positioned. Finally, the routing step realizes the interconnections that
comprise a circuit,

Our objective is to design and prototype selected tools, and then to integrate them into a
physical design environment together with tools of commercial or other origin. The physical
design project began three years ago. It has involved 5 faculty and 9 graduate students from 2
departments, 8 funding awards and has resulted in 15 journal and conference publications as
well as isolated tools for each of the basic steps. They are objectively judged to be among the
best of the state-of-the-art [CoR88, CoH88].

High performance is always a figure of merit for VLSI design tools because of the rapid
growth in the size and complexity of circuits. We have repeatedly applied and extended
techniques from non-traditional areas to solve problems yet attain high performance. For
example, our partitioning and routing tools [Coh86, CoR88, CoH88, CoL90] depend upon
generalized algorithmic and search techniques from computational geometry [PrS85]. Our
floor-planning and placement tools [CoP87, CHM88] employ an adapted genetic algorithm
method [Gol88, Hol75] to produce sequential and parallel combinatorial optimization schemes
and depend upon an interesting generalization of the now traditional VLSI optimization method
of simulated annealing [KGV83, SeS85].

Below we describe briefly two of our recent routing tools—LIR and BEAVER. These two
tools demonstrate our ability to achieve research goals.

LIR—Detailed Router The routing of a circuit is decomposed into a collection of wiring
sub-problems. Appropriate problem-specific routers are then invoked on the sub-problems. LIR
is a special purpose tool for the most ubiquitous of the routing sub-problems—interconnecting
two terminals in the presence of obstacles. Although traditional design environments provide
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either a maze router or a heuristic line search router [Sou81], both methods have major
disadvantages in running time or failure to route.

We produced an alternative method called line intersection routing (LIR) [CoR88]. It uses a
variation of a computational geometry technique, line sweeping, to pre-process the circuit,
constructing a more suitable graph structure. This structure is then examined using efficient,
special-purpose, rectilinear versions of shortest-path search algorithms. They exploit some
computational-geometry-based theorems that we proved regarding the nature of optimal
routings. The result is the first algorithms with polynomial running times in the number of
obstacles that can determine optimal wirings with respect to the minimum length, minimum
bend, and the minimum length-bend weight metrics. Thus our method offers an arbitrary worst-
case speed-up over conventional methods. In addition, our routing experiments demonstrated
that the method is equally effective in practice [CoR88].

BEAVER—Switchbox Router In the switchbox problem a collection of terminals are located
on the perimeter of a rectangular region that may contain obstacles. All terminals belonging to
the same signal or ner must be interconnected within the switchbox by the router. The
switchbox routing problem is one of the most difficult routing sub-problems [Sou81]; until
recently no router could claim 100% routabilty. This limitation has caused some top VLSI chip
manufacturers to delay using methodologies that introduce switchboxes. Recently, Joobbani and
- Siewiorek developed a knowledge-based expert-system router, WEAVER, that attains 100%
routability [JoS86]. However, there was a price extracted for WEAVER’s consistent success—
many of its solutions even for relatively small instances required tens of minutes of CPU time.

We have developed a fast heuristic switchbox router called BEAVER. As with LIR, it uses
computational geomeiry techniques. The figure of merit for BEAVER was both quickness and
quality of route. The investigation was successful in both regards. BEAVER was able to route
each of the classic switchbox instances in less than two seconds. In addition, for each of these
instances, BEAVER’s feedthrough usage is better than the best previously known solution and its
wire usage is either better than, or comparable to, the best previously known solution.

The ideas validated in LIR and BEAVER are currently being generalized in our next router
DRAGNET, a general purpose router for multi-layer circuits. Besides handling arbitrarily-
shaped rectilinear routing regions with embedded obstacles, DRAGNET will avoid traditional,
but unnecessary assumptions. For example, DRAGNET does not use a reserve layer strategy for
horizontal and vertical wire segments. In fact, DRAGNET uses non-rectilinear wire segments
(eg., 45° wire) if they better optimize the routing figure of merit.

The infrastructure enrichment is a necessary basis for us to be able to integrate isolated tools
into an environment which will necessarily include industrial and university VLSI layout
software components that interface with our tools, We need the advanced program development
environment, as well as the staff to provide programming continuity, to perform integration, and
to support the physical design environment when used in the chip laboratory. The several
faculty and graduate students actively examining VLSI problems need convenient access to
color workstations and printers. Today within the Computer Science department, we have
access to a single color workstation and no color printers.

F.1.2 Uninterpretedffnterpreted Modeling of Digital Systems (Aylor, Johnson, Williams)

The advent of computer aided design has produced many tools and methodologies for the
design, analysis and verification of digital systems, Unfortunately, each method has focused on
a particular type of system or phase of design, so that supporting tools are very specific. As a
design proceeds through refinement of abstract concept into detailed design, it passes through
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many levels during which analyses and simulations are applied. Each analysis and simulation is
based on a different model expressed in a different language and tool. For example, there are
different languages for modeling at the system level, behavioral level, logic level, and circuit
level. .

Because of this fragmented approach, the designer must translate the design between
different tools. As a result, costs increase along with errors and design time. Our research goal is
to develop a design methodology and associated tool(s) that represent a digital design from
initial concept to final physical implementation. The project commenced in 1984 and now
involves 3 faculty, 6 graduate students, and to date has published 3 papers. Interest is quite high
in this area and we have recently received grants from Hughes, IBM and the Semiconductor
Research Corporation.

We distinguish between two kinds of models. At the early design stage are uninterpreted
models in which ‘‘tokens’’ that represent information—whose form or meaning is not known—
flow among elements whose function is not well specified. In an uninterpreted simulation an
element acts only on the presence or absence of a token. In contrast, a late design stage model is
described as an interpreted model. Here information flowing in the model has a well-defined
form and a known value. Elements act upon the value presented and have known input to output
mappings.

We are investigating hybrid models in which uninterpreted elements coexist with interpreted
elements. Communications between these different types take place through interfaces which
convert tokens to values or values to tokens.

Today, environments support simulation for each of the two extreme models, but there is no
automated support environment for hybrid models. Uninterpreted modeling is well researched.
This work generally falls into two categories, petri nets [Pet81] and queuing models [Lav83].
Queuing models work well for gaining statistical data on very high-level uninterpreted models of
digital systems. But when these models are further partitioned, it has proved to be difficult to
express the deterministic nature of the system [Aui87]. In addition, models based on these
techniques are often very large and cumbersome.

The only commercially-available tool that attempts to provide both types of modeling is the
Architecture Design and Assessment System (ADAS) developed by the Research Triangle
Institute [FSC85, Res87]. The ADAS tool supports hierarchical design with each element
defined as a new model. Interpreted modeling is provided by allowing the user to write Ada
code fragments that describe the function of an element. ADAS also provides functional
simulation at lower levels of abstraction by allowing conversion of the ADAS models to a
hardware description language form.

Our approach is to start with existing hardware description languages (HDLs). HDLs and
their simulators accurately and conveniently represent the physical implementation, ie.
‘interpreted models, of digital systems at the switch, gate, register-transfer, and behavioral levels.
By adding an uninterpreted modeling capability to hardware description languages based on
extended petri nets and queuing models [AuA86], a single design environment can span design
concept to implementation [AuA86, Aul87, HAWS89]. At early stages uninterpreted modeling of
a design would be used. Later, as individual elements are developed or components are selected
from existing libraries, the system description would be systematically converted into a fully
interpreted description for final verification. Such an approach, if successful, would bring
uninterpreted modeling into the mainstream of the digital system design process utilizing
modern hardware description languages.
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We have selected VHDL, VHSIC Hardware Description Language as our basis
language{IEE88]. We believe that VHDL will handle uninterpreted modeling so that analysis
and simulation will pose no major problems. The difficult research questions include: What are
the characteristics of the elements in an uninterpreted model that are the basis for performing
system level estimation of performance, reliability, element utilization and throughput? Is the
behavior of estimations well behaved as elements are incrementally described in an interpreted
fashion? For example, it is not difficult to collect statistics such as the percent utilization of each
element. As elements representions are refined to an interpreted form, do the statistics refine
accurately?

How is the mapping from token to value defined in a hybrid model? What is the space of
interactions between interpreted and uninterpreted elements? For example, if the interpreted
element performing reconfiguration control for a fault-tolerant system emits a value which is
translated to a token, what behavior is exhibited by uninterpreted elements receiving that token?
More generally speaking, what are the feedback modalities between the two types of elements?
Can an automated code generator be built to generate VHDL code for high level models
described in a notation less detailed than VHDL?

Our long term goal is to answer such questions and to enrich a VHDL environment to
support uninterpreted modeling resulting in the single design environment, and then to
demonstrate its efficacy in practice.
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F.2 Computer Architecture

Computer architectures and the interface between hardware and software are varying
rapidly. Dynamic change is driven by low-level electronics and communications. technologies,
and to a lesser degree by the software technologies in which the systems and application
functions are rendered. To explore improved architectures requires investigation and
experimentation with hardware implementation techniques, operating systems, compilers, and
languages—in a cyclic feedback fashion. Several projects at UVa explore such architectural
issues.

F.2.1 WM Machine Architecture (Wulf, Jones, Aylor, Davidson, Johnson, Grimshaw)

The WM project is exploring a RISC-like architecture that enables concurrent execution of
several instructions. In principle, 13 RISC-equivalent instructions can be issued per cycle; in
practice, 4-5 instructions per cycle seem the norm for real applications. This means that using
the WM architecture one can design a processor with several times the speed of a traditional
RISC processor using the same technology. WM is especially suitable for embedded and multi-
computer applications. Specifically, it:

e has a peak performance 13 times that of RISC architectures for comparable gate-counts

(area) and implementation technology.

e is capable of vector-like performance on computationally intensive numeric computations.

¢ can achieve vector performance on loops containing recurrences.

¢ does not require "heroic" compiler technology in order to achieve its peak performance.
has data paths which have been carefully designed so that modest pinouts are adequate.
A key architectural feature that facilitates several of these properties is that selected WM
registers are first-in/first-out register sequences that permit streaming of data, condition codes
and instructions.

In addition to the CPU innovations, the memory system and IO system were designed so that
user-level (applications) programs can access and control IO devices directly without
compromising security or invoking operating system overhead. The same mechanism permits
direct user-level access to communication and multi-computer synchronization devices.

The WM project began in late 1988 and involves 6 faculty and 6 graduate students. During
1989 the Instruction Set Processor (ISP) is being analyzed and refined [Wul88, WuHS89, Wul89].
Complementary activities involve benchmark measurement of increasingly large and complex
codes, C compiler development, and experimental component design and fabrication. Two
models exist. A high-level ISP model (10,000 lines of C running on Sun, Mac 1I, and VAX
8600) is used for benchmark code and implementation timing experimentation. Although
benchmarks have a synthetic flavor because actual WM processors do not yet exist, benchmark
results compare favorably to reported statistics for the MIPS and Intel 860. A VHDL model
(5,000 lines) exists to support component design efforts. Implementation experience is being
gained from the design and fabrication of component circuits. Several WM IC chips were
designed by students in the VLSI systems class, have been fabricated at MOSIS (Metal Oxide
Semiconductor Implementation Service), and are now under test. The first chip for the Stream
Control Unit (control) has been fabricated at MOSIS in 2 micron technology and is under test in
the integrated circuit design laboratory.
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Using the retargetable compiler technology described in the next section, a C cross-compiler
exists; it has been shown to be robust enough to compile Unix utility code, which is the next set
of benchmarking we will perform. Efforts in code optimization are under way. Next an Ada
- compiler will be retargeted. Coding is in progress for a bare-bones initial operating system to
explore the utility of the WM system features for device access, protection and virtual memory.

The next stage of WM research will focus on systems-—rather than components—
performance and delivery of the performance to applications. This involves construction of
several medium to high performance versions of WM processors, for example an embedded WM
processor with 64-bit float capability. Construction of a high performance processor will
involve an industrial partnership with a company having a suitable design and fabrication
capability. In parallel we at UVa will continue with complementary component design. We will
use MOSIS technology to implement a slower speed implementation, for example, a multi-
computer WM implementation. The WM project will need the Systems Integration Laboratory to
integrate custom and industrial components into systems capable of executing experimental
operating systems.

" With actual hardware implementations available, we can experiment with larger scale
operating systems: general purpose, real-time, and control. The C retargetable compiler will
translate the StarLite real-time kernel for experimentation when such board systems are built.
Memory interconnection and very wide paths between processors and memories, and between
processors and i/o devices will be explored. The WM project is one of the projects that has use
for all of the "end-to-end" infrastructure capabilities.

The final stage of the project will be to realize a few application systems that deliver
something near the maximum performance achievable with the architecture and implementation
technology.

F.2.2 Retargetable Compilers (Davidson)

Compilers are the critical tool for exploiting new machine architectures as they emerge. Qur
long term research goal is to develop compiler technology that enables a typical computer
scientist to construct a production-quality compiler for a new architecture with less than one
month’s effort. ‘

We have developed a technology for retargeting compilers using vpo, the Very Portable
Optimizer {BeD88, Dav86]. For compiler experts, our compilers have proven to be easily and
quickly retargeted; yet they produce excellent code. Over the next years we plan to 1) reduce
the time for a ‘‘non-expert’’ to retarget a compiler, 2) add additional optimization capability to
both compilers and linkers, 3) validate the quality of code produced against excellent hand-
coded compilers, and 4) package the compiler prototyping technology so that it can be routinely
used at UVa and possibly at other research sites. This research currently involves one faculty
and six graduate students and work has been documented in over 12 published papers and
technical reports.

The optimizer, vpo, replaces the traditional code generator used in many compilers. The
optimizer is retargeted by supplying a description of the target machine. Using the diagrammatic
notation of Wulf [WIW75], Figure F-2 shows the overall structure of a set of compilers
constructed using vpo. Vertical columns within a box represent logical phases which operate
serially. Columns divided horizontally into rows indicate that the subphases of the column may
be executed in an arbitrary order. IL is the Intermediate Language. Register transfers or register
transfer lists (RTLs) describe the effect of machine instructions and have the form of
conventional expressions and assignments over the hardware’s storage cells. Any particular
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RTL is machine specific, but the form of the RTL is machine independent.

Currently, we support the compilation of four source languages: C, Ada, Modula-2, and
Pascal. The Ada compiler is front-end is also used in a validated commercial compiler. Both
the C and the Pascal compilers pass validation suites that are in wide use in the industry to test
compilers. The Modula-2 compiler is in process.

The vpo C compiler has been retargeted to twelve machines: VAX-11, Intel 386, Motorola
68020, AT&T DSP32, Intergraph Clipper, National Semiconductor 31016, Sun SPARC, IBM
RT/PC, Harris HCX-9, Concurrent Computer Corporation 3200, AT&T 3B15, and WM. It has
been ported to ten of these machinest. In all cases, the vpo-based compiler generates code that
runs at least as fast as the code produced by the C compilers supplied with the machine. In most
cases, the vpo-based compiler generates substantially faster code. This compiler technology has
been licensed to AT&T Microelectronics, Intel Corporation, and Concurrent Computer

c {source languages)

Pascal Ada

Front Front Front
End End End
1L L IL
Code Code Code
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Figure F-2. Compiler Structure

1The DSP32 and WM C compilers run on VAXes and Suns.
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Corporation for use in developing high-performance compilers to support chips and machines
they market.

To achieve our long-term goal of making high-quality compiler technology available to the
typical computer scientist, we are starting two new activities. First, we will develop a new
machine description language. Currently, machine descriptions are written using yace. Early on
yacc had advantages. It is widely available and compiler writers are familiar with the
peculiarities of writing grammars for yacc.

While the use of yacc has been successful, it is not ideal. The most important problem is
that some compiler-relevant aspects of machines are impossible to describe using yace. To
schedule instructions so as to avoid pipeline conflicts or bubbles, the compiler must know
pipeline characteristics. Currently, vpo depends upon a procedural description of a machine’s
pipeline which is separate from the machine description. Yace descriptions also do not permit
description of instructions that contain implicit loops—e.g., block move instructions. Lacking
such a description, the optimizer cannot discover sequences of primitive instructions that can be
replaced by the more complex loop instruction. Our objective is to develop a notation and the
supporting tools that permit us to retain the general structure of our optimizer yet succinctly,
simply and efficiently write and process machine descriptions.

Second, we will optimize at link-time and post-execution time. We have developed a
prototype optimizing linker [BeD88]. It performs inter-procedural optimization of specific call
and parameter usage by the callee, based on seeing all routines, regardless of the compile unit in
which they were processed. We will extend the linker to perform global register allocation (i.e.,
allocation of heavily used global variables to registers), removal of dead functions, better local
register allocation by using information in the static call graph, and some inlining.

Post-execution optimization is based on an efficient profiling of programs. The profiler
yields detailed—down to the instruction level—information about the execution behavior of
programs at an average increase of ten per cent of the execution time of the programs. To
perform post-execution optimization we collect profiling information with the program running
with representative data. The profiler counts variable references, loop iterations, and procedure
invocations. This information guides the register allocation algorithms and inlining algorithms.
Both the profiler and the optimizer exist; next we will integrate them and experiment with their
effectiveness.

F.2.3 Architectural Support for Fault Tolerance and Testing (Johnson, Aylor)

The importance of testability escalates with the complexity of hardware. The importance of
dependability escalates with the ubiquity of function. Architectural features to enhance both
testability and dependability must be an integral component of design. Both depend upon
detecting errors at a low level. The advent of Very Large Scale Integration (VLSI) technology
has made the implementation of error detection and fault handling practical because of size,
weight, power, and cost reductions. At the same time, the increasing complexity of today’s
systems has made the incorporation of fault tolerance and testability a daunting design problem.

Fault tolerance can be accomplished through the use of the so-called active approach. It
requires that faults be detected, located, and eliminated from the system via reconfiguration.
The cornerstone of the active approach is a fault detection ability. Therefore, techniques must be
incorporated into the processing elements of a system to support fault detection and
methodologies must be developed that use these elements to implement fault-tolerant systems.
To be time-efficient, the fanlt detection technique used must operate concurrently with the
normal function of the element.
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- While some research has been performed [Dri83, RAES81, Sel.80], neither a good design
methodology nor basic building blocks that employ concurrent, on-line fault detection yet exist.
Our goal is to devise a methodology. We will then develop the computer-aided design tools,
complemented by a library of standard building blocks, to reduce the methodology to practice.
These standard blocks, such as adders or memories, will have on-line error detection and
testability characteristics known to the tools and will be suitable for incorporation into larger,
fault-tolerant, testable systems. Ideally, the method, tools, and building blocks can be used by
those not proficient in fault tolerance techniques. This research was initiated in 1984 and
involves 2 faculty and 4 graduate students. Results to date, some of which are sketched below,
are documented in 10 papers and 3 technical reports, as well as a book [Joh89].

The two fundamental problems are: find error detection techniques that permit design of
suitable building blocks for logic circuits and develop the methodology with the concomitant
tools. In what follows, we first discuss three concurrent error detection techniques under
investigation. We conclude with a discussion of the methodology issues.

Two fundamental approaches to error detection are hardware redundancy and time
redundancy. The hardware redundancy approach says replicate the hardware and compare
results. The time redundancy approach says compute the function twice, serially, using slightly
different logic paths and compare the results. We have developed a hybrid technique called
REcomputing using Duplication With Comparison (REDWC) [JAH88]. REDWC takes
advantage of the speed of hardware redundancy and the hardware savings of time redundancy.
Time redundancy can be effectively used because of the serial nature of the functions
considered. The REDWC approach was originally applied to the design of a VLSI adder; the
result used approximately 33% less gates and 37% less time than a purely time redundant adder.
It required approximately 44% less gates and 7% more time than a pure hardware redundant
adder. It appears that the hybrid approach is better than either end of the spectrum, unless very
high performance is a requirement. We have shown that the REDWC approach is easily
applicable to multiplier arrays resulting in designs using approximately 45% less gates than a
competing approach [CJA89].

Our second approach to concurrent error detection uses conservative logic. A conservative
logic gate exhibits a one-to-one correspondence between input and output, so that the input of a
conservative logic gate can be uniquely determined from its output. Our new approach derives
its capabilities from the conservative attribute of the gate. A gate is said to be conservative if its
output has as many 1’s as are present at the input.

The significance of this approach is that the primitive element, the conservative logic gate,
has the attribute of supporting concurrent error detection which is not the case for typical
elements such as AND and OR gates. For this reason, it is very easy to implement any arbitrary
function that contains error detection. We have designed and fabricated VLSI adders and
multipliers using conservative logic [SJA89a]. Area efficiency is not yet acceptable; we are
experimenting with its improvement.

Our last approach uses parity prediction. Parity is a technique in which the number of ones
in the set of outputs of a network is forced to be either odd or even. Corruption of a single bit of
the output causes the total number of ones to deviate from the expected parity. Parity techniques
are common to memory design but have not been generally applied to arithmetic and logic
circuits. We have developed a technique that allows parity to be preserved within general
combinational logic circuits. The theory supporting the technique has been developed; example
circuits have been designed [SJA89b]. While resulting circuits are efficient, the design
algorithm is not. We are atternpting various optimizations of the algorithm.
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With the three above approaches we expect to develop a library of building blocks which
can detect an error. How does one build a system that utilizes the knowledge? We will
characterize the properties of the blocks, and determine methods for interconnecting them so as
to attain overall system fauit tolerance and testability. In addition, we want to use the
uninterpreted modeling techniques described in Section F.1.2 to model fault tolerance at the
conceptual design stage. That is, at the stage at which a circuit is modeled as tokens passing
among functional elements, and computed values are not known, we want to be able to assess
the fault tolerance features and their impact on the overall performance [RJA89]. Further we
want to repeat such automatic analysis as elements are incrementally replaced by an interpreted
model, that is one in which actual signal values can be computed.

The proposed infrastructure improvements will increase the number of design seats in the
Center for Semicustom Integrated Systems as well as providing a new probe capability for
testing for faults. Both will further this project.
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F.3 Real-Time Software

The goals of the real-time software group are two-fold. First, we will advance the state-of-
the-art in the technologies to support the construction of real-time operating systems,
communication networks, and database systems. We consider such systems from the point of
view of fault tolerance as well as performance. Second, the research necessitates development
of tools and software components useful to other research groups; we will develop them with the
goal of distribution. Our greatest infrastructure need is to have an excellent, tool-rich software
development environment.

F.3.1 The StarLite Project (Cook, Son)

It has never been possible to develop real-time operating systems efficiently and
conveniently on a host environment. The Starlite [Coo86, Coo87, SoK89] software
development system is a substantive step in that direction, StarLite hosts the interactive,
incremental development of software generally. More particularly, it supports development
when the hardware is not available, not yet in existence, or when the target hardware is
inhospitable for software development. The project currently involves two faculty, 8 graduate
students, and several undergraduates, and is funded by ONR, ARO, and IBM.

The approach is 1) to build atop the Unix operating system for portability; 2) to specify a
virtual machine, an interpreter, on which the host and target software (being developed) execute
so that calls to the host, target and underlying Unix routines can be freely interspersed; and 3) to
specify a low-level interface to simulate target hardware. The latter includes provision for
execution of the target software on single processors, multiple processors with shared memory,
and distributed systems. Interfaces exist for virtual clocks, disks, Ethernet connection and other
devices. All software developed above this hardware interface layer remains invariant with
respect to execution in either thf.: host or target environment.

The base environment exists, as does an initial set of development tools including a
symbolic, window-based, multi-thread debugger; a visualization ‘package; a Modula-2 compiler
that compiles 20,000 LPM on a Sun 3; and a software library of over 200 modules. The
compiler and run-time libraries are implemented in C to enhance the portability. The system has
been ported to the Sun 4 and NeXT architectures. To port to any UNIX system, the compiler
and runtime library must be recompiled and the runtime interface to the underlying window
system must be rewritten. To port target code to its target hardware, it need only be recompiled.

The system bas been used by multiple instructors to teach graduate and undergraduate
operating system and database courses. Students routinely write and integrate their modules for
synchronization, memory management, and process management into our test systerm. Starlite
is well-suited for implementation of alternative algorithms for comparative experimentation.
Typically, it has not been possible to compare features of different operating systems directly.
Often one-of-a-kind hardware is unavailable, or there is no environment in which only a selected

portion of an operating system could be implemented for experimentation. StarLite now provides
a base for such activity,

A Unix-compatible operating system shell, plus utilities, has been implemented (9000 lines)
in the StarLite environment. In addition, a database system has been implemented using
StarLite. It was selected by IBM to validate the priority ceiling algorithm developed at CMU
because the environment was conducive to the comparative experimentation needed [SoC89].
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The next domain of application for Starlite is embedded real-time operating systems (by
Cook) and real-time database systems (by Son). The long-term objectivc is to validate the use of
Starl.ite as a basis for real-time software development and to package it for distribution for use
in classes and research.

The real-time operating systems research will span several projects. The first project
explores the tension between layered software and its execution performance. Operating system
components are designed in layers with standard but very carefully crafted interfaces. Each
layer, composed of a set of modules, is designed to provide a coherent function. New target
software may be built up from any layer, even if there are higher layers already in existence.
Scrupulous observance of layering and interfaces costs procedure call performance. Application
requirements, such as protection, can affect implementation in many layers. Even if an upper
layer of software is not used, its requirements may have a residual effect on the code size and
performance of lower layers. We will investigate how best to partition the layers and define the
interfaces to maintain an open architecture, while still retaining the ability to compile code that
yields good performance.

Second, the function provided by a module may have alternative implementations. We will
explore the definition and management of multiple implementations with the intent of creating a
systems generator that will automatically select implementations from a module library based on
specified application requirements and a given target architecture. The context of this
investigation will be that of real-time software which executes "very close” to its target
hardware. Hardware changes require changes in related software. Our research plan calls for
the creation of a library of alternative implementation modules in the domain of ﬁne -grained

synchronization and locking for real-time multiprocessors.

Third, we will extend the Unix implementation to see how real-time guarantees might be
incorporated.

The real-time database research component of the Starlite project addresses real-time
response guarantees while collecting, updating, and retrieving shared data. State-of-the-art
database management systems are not used in real-time applications due to two inadequacies:
poor performance and lack of predictability. Transaction scheduling does not consider response
requirements, and data tables are locked indiscriminately to assure database consistency.
Basically locks, as defined today, and time-driven scheduling are incompatible. Low priority
transactions can and will block higher priority ransactions, which lead to response requirement
failures. We seek new techniques to manage database consistency while meeting real-time
constraints [Son88, S0A89, SoCE9].

Our approach is to create a model of real-time databases. We will then derive characteristics
of transactions, data objects, their storage and accessing, and transaction schedulers. Based on
this analysis of characteristics that affect responsiveness, we will develop database definitions as
well as storage and processing techniques upon which we can define a transaction scheduler
which can make and meet real-time guarantees of service, taking reliability requirements into
consideration.

We will extend the database system built in the Starlite environment. It already provides
concurrent transaction execution facilities including two-phase locking, timestamp ordering and
priority-based contention protocols as the underlying synchronization mechanisms, as well as a
multiversion data object control mechanism [SoK89)]. We have validated the preliminary
implementation. We will upgrade it while performing three closely related tasks:
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e Upgrade the database library to enhance modularity so as to attain more component
reusability.

¢ Develop a semantic model for real-ime temporal knowledge of data objects and
transactions in order to devise a new notion of "correct execution” of real-time
transactions.

e Devise efficient schedulers and reliability control mechanisms that can be used as building
blocks-—having known specified performance and reliability characteristics—for
implementing a real-time distributed database with predictable behavior.

The resulting reusable database component library housing components with known
performance/reliability characteristics will be exportable to other database research sites.

F.3.2 Real-Time Communications (Weaver)

The Computer Networks Laboratory (CNL) at the University of Virginia was established in
1980 to pursue research and development in computer networks. We have a broad range of
experience with the design, analysis, implementation, modeling, and performance measurement
of computer networks and their protocols. The long-term goal of CNL is to solve the research
and development problems that will enable medium-speed (10-100 Mbit/sec) and high-speed
(Gbit/sec) networks to be placed into routine use in commercial and military real-time
environments.

CNL currently consists of 10 graduate students under the direction of Professor Weaver;
other faculty members participate on a project-by-project basis. To date the laboratory has
completed 45 research projects, graduated 41 students with M.S. and Ph.D. degrees, and
published over 60 journal and conference papers. Six current projects, their sponsors, and recent
publications include: '

SeaNET: a real-time network for ships (Sperry Marine, Proteon) [SWC88, WeM89]
AIrNET: a real-time network for aircraft (NASA-Lewis) [CoW87]

performance measurements of ISO protocols (Intel, Motorola) [StW88a, StW88b]
SAFENET: a real-time network for military ships (Navy) [PeW87] _
Xpress Transfer Protocol (Protocol Engines, Navy, NASA, Sperry Marine) [WeS89a]
prototype communications system for the NASA Space Station (NASA-JSC) [WeS89b]

Using LAN technology and protocols for real-time communications introduces some major
research problems: (a) latency control; (b) user interface; (c) efficient transport protocols; (d)
dynamic message importance; (e) rate control; (f) multicast transmission; (g) global sense of
time; (h) distributed process synchronization; (i) protocol specification, verification, and
compilation; and (j) rapid prototyping of protocols in hardware.

We will have new proposals for the first five topics within three years and will show
progress on all ten topics in 53-8 years. Capitalizing upon our extensive implementation
experience, our plan is to make routine the use of medium- and high-speed communications in
both local (campus, ship, aircraft, factory) and long-haul (coast-to-coast, satellite-to-ground)
real-time applications. Three efforts are described below.

LAN Protocols for Real-Time Control Systems: Distributed control systems are now
commonly implemented using local area networks rather than point-to-point wiring or avionics
busses. A common problem is that LANs generally do not provide the low latency typical of
hardwired connections. We have attacked this problem in two ways: reducing the complexity of
the user interface, and providing latency control as a feature of the underlying transport protocol.
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User Interface. In a typical commercial network, passing a message from the user to the
network interface hardware may involve multiple steps, each incurring the cost of multiple
message copies or DMA transfers and multiple interrupts. We measured two commercial real-
time systems whose end-to-end delay for 100-byte messages was 5 to 10 ms. In contrast, our
SeaNET system—a real-time network for ships—collapses the entire user interface into twelve
commands which connect the user directly to the network interface. Our documented end-to-end
delay for a 100-byte message is 680 microseconds. While skillful implementation is a factor,
performing high-speed communications requires identification of the essential services of real-
time systems, a new design philosophy for user/system buffer pools which reduces copying, and
a new strategy for reducing message fragmentation.

Latency Control. Traditional transport protocols (e.g. ISO TP4 and TCP) are optimized for
throughput, not latency. Yet real-time systems are more affected by end-to-end delay than by
raw transmission capacity. The research problem, then, is latency control. We are proposing
and analyzing a new class of transport protocols, tentatively called "latency division
multiplexing.” Like time-division and frequency-division multiplexing, the concept is to divide
the available bandwidth into latency classes. Performance guarantees are made to every
message permitted to a class. Unlike most other protocols, service is pre-emptive. This trades
off reduced throughput for improved latency control. Our results will be in the form of a new
transport protocol for real-time systems, complete with analytic analysis and actual measurement
of its performance characteristics.

Message Importance and Pre-emption in Real-Time Systems: For real-time systems it is
generally important to assure that, at every moment, the system as a whole is working on its
most important task(s). Conventional real-time systems lack effective mechanisms to recall
previously made scheduling decisions. For example, most network access protocols support
priority, but only at the granularity of message frames. Once a message has begun segmentation
and transmission, it is generally impossible to pre-empt it in favor of a more recent but more
important message. At the transport layer, TCP and TP4 provide only two levels of importance,
and they are not pre-emptive. We are investigating two approaches: changing an existing
protocol, and creating a new protocol with the desired capability.

Xpress Transfer Protocol (XTP). XTP is a transport protocol designed from the outset for
implementation in silicon as the "protocol engine." As originally proposed, XTP did not include
specific support services for real-time systems; our contribution to date has been an analysis of
the needs of such systems and a proposal for essential real-time services. Qur proposal was
largely adopted by XTP’s designers in the July 1989 version [Pro89], which added static and
dynamic message priorities to the protocol definition. We are investigating priority assignment
algorithms that dynamically assign message importance based on a) multiple, competing goals
which change with time, and b) message age. :

Qur Real-Time Protocol. Armed with our experiences in déveloping several "real” real-time
networks, we are specifying a new communications protocol that includes all the essential
services we have identified, and yet is simple enough to be implemented in VLSI. This protocol
would be limited to interconnected LANs (e.g., token rings) and limited topologically to the
domain of ships, aircraft, space vehicles, and small factories. Our near term goal is to produce
our new protocol’s specification, implement and refine it in software, and compare its
performance in the domain of real-time systems to that of TP4, TCP, and XTP.

Protocol Compilation and Verification: There is no such thing as the "perfect" protocol; each
one represents a particular combination of features and a compromise of performance attributes.
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Our work in real-time systems suggests that there will always be a need for communications
protocols with differing combinations of features and performance. We envision a future in
which one can design new protocols quickly, describe them in a new protocol specification
language, and compile the description into running code. The resulting code could either be
executed conventionally on a host or front-end processor, or it could be reduced to a custom
VLSI circuit. Our current research task is to develop the necessary theory for protocol
specification, verification, validation, and compilation.

In the context of these projects, we expect to experiment with circuit design. As message
communication speeds increase, protocol execution speed must also increase. To perform
research in the medium to high-speed arena, we require the System Integration Laboratory in
order to combine off-the-shelf and custom components for experimentation. To date, CNL has
been restricted to the use of commercial components with no capability of adapting them.

F.3.3 Software Fault Tolerance for Real-Time Systems

Certain applications of computers are referred to as crucial because failure of the computer
system could endanger human life, damage expensive equipment, or otherwise lead to extensive
financial loss. Such applications are usually control systems, and are embedded and operate in
real time. Although sophisticated techniques for building fault-tolerant hardware systems have
- produced computer architectures of great reliability [Hop78, $iS82, Wen78], no corresponding
techniques exist for building software with assured, adequate reliability. Software faults are
design faults and differ fundamentally from faults due to hardware degradation. Therefore, the
techniques used to achieve hardware reliability do not apply directly to software [AmMKE9].

As part of a long term research project in software reliability we are investigating software
fault tolerance. We have shown that one technigue, N-version programming [Avi85], has
several difficulties that make its use in crucial applications very unwise [AKB89, AmK90,
BKL89, BKL90, Knl.86a] although some reliability gain has been demonstrated [KnL86b].
Almost all proposed techniques for building fault-tolerant software attempt to survive essentially
any fault. This contrasts sharply with other engineering disciplines where the tolerance achieved
is with respect to specific fault classes. The attempt to cope with all possible faults is the basis
of much of the difficulty in implementing the methods and of the unpredictability in their
performance. A notable exception is the work on robust data structures {TMB80] in which
provision is made to cope only with faults that result in data-structure defects. These techniques
are provable and so their performance is guaranteed.

During the next several years we plan to continue research into the general area of software
fault tolerance for specific fault classes. Two projects are described here.

First, we will develop techniques for tolerating specific classes of faults. We intend to
develop a classification scheme of important types of software faults in real-time systems such
as failure to meet real-time deadlines, deadlock, and livelock. For each, we will develop
software structures that can be shown to cope with the associated fault type. These techniques
will lead to systems that have predictable performance for (only) specific fault categories and an
assured performance improvement over non-fault-tolerant systems.

Most existing techniques for tolerating software faults rely upon redundant software.
Functionality is replicated with multiple, independently developed implementations. Such
techniques are said to incorporate design diversity because the different implementations are
assumed to incorporate different designs. In contrast, our second project involves a technique
for tolerating software faults that relies on data diversity [KnA88]. A computer program is
frequently a many-to-one mapping, and when a fault is encountered, correct operation might be
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possible if the input data is replaced by different data that should produce equivalent output.
The fault is tolerated if the new data causes the program to execute a different path that does not
contain the original fault or any other faults. Data diversity has been investigated sufficiently to
show feasibility for a number of applications. Its performance has been shown to be promising
in a pilot study. We will develop the technique by extending the range of application, by
refining the performance model of the method, and by experiments to ascertain the realized
reliability improvement.

The computing infrastructure for the fault tolerance analysis and experimentation, as well as
for the other real-time projects described, is resource intensive. We require general purpose
computation, storage, and display facilities. We require an excellent software development
environment and analytic tools.
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F.4 Parallel Systems

Hardware for parallel systems is relatively straightforward to construct, as evidenced by the
many commercial parallel systems currently on the market. In contrast the software systems for
these machines remain relatively unsophisticated. In the Institute for Parallel Computation
(IPC), we have three medium scale commercial parallel systems: a 128 node NCUBE/ten
hypercube, a 32 node Intel iPSC/2 hypercube, and a 32 node BBN GP-1000 "butterfly”. Our
overall goal is to develop programming environments and software sub-systems needed to use
these machines effectively. Research activities include basic work in parallel database systems,
parallel discrete event simulation, parallel programming languages and environments, and
parallel high-performance input/output subsystems, and parallel genetic algorithms. In addition
the IPC hosts more application oriented research in parallel data correlation and fusion
algorithms, parallel terrain mapping algorithms, parallel vision systems, and neural net
algorithms. In this section we describe three of these research projects.

F.d.1 ADAMS, A Parallel Database Interface (Pfaltz, Son, French, Grimshaw) -

The goal of the ADAMS—the Advanced Data Management System—project is to create a
standard interface which will support the parallel access and management of persistent data. We
envision ADAMS becoming a standard interface between programs written in algorithmic
languages, such as C, Pascal, Ada, and Fortran, to persistent data. In commercially available
information systems, the data operators can be predicted and implemented within the database.
In scientific computations, the scientist must program the data operators. Hence, the scientists’
programs would benefit from a gracefully integrated data access capability. Such an interface
obviates the need for database languages apart from the algorithmic language. Persistent Algol
[BuA86] and ODE [AgG89], which have been proposed to handle persistent data in existing
languages, have a similar goal. The significant differences are that ADAMS is designed to (a)
interface with all commonly used scientific languages, (b) share data between distinct users, and
(© provide a parallel interface to the data. It is our objective to develop a complete
programming environment to support coarse grained parallelism. The ADAMS prcgcct is
focused on five key sub-problems:

Data description and access. One needs a data description and access syntax that is both
flexible and simple. The ADAMS language, described in [PSF88], consists of only five basic
constructs class, set, attribute, map, and codomain. Every ADAMS element is an instance of, or
belongs to, a class. Classes can be hierarchically declared within an executing program, with
subclasses inheriting the properties of their superclasses. Set, attribute, and map are the
remaining basic ADAMS classes. A codomain describes a set of data values.

A prototype version was first implemented so that test applications could be written and
analyzed. This led to several important design modifications. An object-oriented C++ version is
currently being implemented with expected completion by October.

Naming. An item or collection of data is referenced by name. When data is persistent,
names must also be persistent. We have developed a dictionary concept {PFW88] to implement
a large persistent hierarchical name space. Data name scope can be specified to be a block, a
task, global, or system-wide. Automatically managing such a hierarchical name space so that
naming conflicts are avoided is a central research goal.

ADAMS is intended for scientific applications needing access to many data values having
the same form. To expand the ADAMS name space we use generally subscripted names. The
subscript itself does not bind the storage location of a value. Two values whose names differ

F.4 Parallel Systems F-23



only by subscript may not be in predictable, relative storage locations. We are experimenting
with innovative techniques for associating groups of subscripted, named values to storage
locations.

Parallel data storage. To achieve a high degree of parallel access to data by processes
executing in parallel, data must reside on multiple devices. Our approach is to balance load on
devices dynamically via data migration in response to patterns of data usage. With such a
strategy the logical record structure no longer tightly binds the elements of that record to be co-
located on a single device. ADAMS avoids record/file structures altogether. Data elements
migrate within the storage system in response to patterns of data usage. The benefits of such
data distribution, for example with access to set operations, was examined in [PFS89]. Issues of
parallel data distribution are discussed in [Fre89, SCR89].

Rapid access. If data items can float in the storage environment, then new methods of
access must be developed to find and access them. Older indexed access schemes become
impractical. We have developed Compact O-complete trees (or O-trees) for this purpose .
[OrP88]. O-trees are a kind of B-tree, in which the space consuming index keys have been
replaced by a single 8 bit (byte) surrogate. These trees have been described by Ed McCreight as
the "most significant improvement of B-trees in the last 10 years". They are the basis for our
implementation of data element access, set representation, and identifier subscripting [OrP89].

Integrity and reliability. If multiple processes can create, access, and update data—the
integrity of data must be assured. Also, if the database is distributed, as we anticipate for
efficiency purposes, it must be fault-tolerant. Reliability achieved through efficient
checkpointing [Son88b, SoP88], and data replication [Son89] have been explored. We are
testing various reliability concepts in the StarLite prototyping environment [Son88a, SoK89].

Parallel environment. Large grain expressions in ADAMS’ statements must execute in
parallel to achieve our high-performance goals. To explore this aspect we have selected the
Mentat prototype system, designed to support large-grain parallel computation [GLT87, GrL87,
GrL88]. It consists of the Mentat Programming Language (MPL), an object-oriented
programming language based on C++, and the Mentat run-time system. Programmers are
responsible for providing information for object classes amenable to parallel processing, and the
compiler and run-time system are tesponsible for managing parallelism with its associated
communication and synchronization. Mentat provides a cost-effective compromise between
fully explicit and automatic techniques. The Mentat compiler and run-time systems are suitably
instrumented for performance monitoring. Mentat executes on a network of Sun workstations as
well as the Intel hypercube. We are currently working on a production version of the system that
will include both an instrumented run-time system as well as an MPL compiler.

F.4.2 Parallel Simulation (Reynolds)

Parallel simulation is the parallel execution of discrete event simulations. Beginning with
the models of Chandy and Misra [ChM81] and Peacock, et al. [PWM?79], a number of
approaches have been described for coordinating cooperating processes so that the outcome of a
parallel simulation is determinate. There are two problems with earlier work. There have been a
number of characterizations and classifications of parallel simulation protocols, e.g. “optimistic”
vs. "conservative", and of the applications, e.g. "queueing” vs. "non-queueing”. But there has
not been a comprehensive classification. Second, the effectiveness of parallel simulation
protocols is usually determined by comparing individual experiments conducted in isolated
environments. Such one-shot experiments do not advance general understanding.
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We have found a way to characterize both protocols and applications in a comprehensive
and useful way [Rey88, RWF89]. This has led us to design a parallel simulation testbed,
SPECTRUM, for comparing protocols in a realistic context of applications. SPECTRUM is
implemented on both a 32-node BBN GP-1000 parallel computer and an 32-node Intel iPSC/2
hypercube [ReD89]. It enables the rapid implementation of protocols in a common,
instrumented environment hosting a range of applications, It was our early experience with the
testbed which made it evident that a set of design variables for applications had to be explored; it
is inadequate to consider protocols in a vacuum. SPECTRUM is a vehicle for our future research
which generally aims to improve the performance and effectiveness of parallel simulation
techniques. Three of our current research projects are described below. :

Experimental and analytic comparison of protocols. SPECTRUM currently hosts several
protocols: SRADS, Chandy-Misra null messages, and a new protocol called SRADS with local
rollback. Implemented applications include queueing networks, logic networks, and a battlefield
simulation. We continue to augment both the library of protocols and of applications as well as
the tools SPECTRUM provides for analysis. We will continue to compare and contrast protocols
with the goal of understanding the interplay of classes of protocols and classes of applications.
By considering additional design variables, such as adaptability, risk, accuracy, and knowledge
embedding, dissemination, and acquisition, we can identify as yet unstudied points in the
protocol design space. We intend to polish the user interface to SPECTRUM so that other UVa
researchers will use it as a simulation tool. We need the diverse applications this use will bring.
One early application we seek is the integration of a fault simulator that is in current use in the
Center for Semicustom Integrated Systems. We are also pursuing complementary analytic
work, Collaboration with D. Nicol of the College of William and Mary has resuited in the
development of new analytic techniques for analyzing protocols with varying amounts of
aggressiveness.

Development of new protocols. We have developed protocols in the past: SRADS [Rey82]
and SRADS with local rollback. Recently, we have been working with K. M. Chandy at Caltech
on a new approach developed by Chandy called "space-time”.

Operating system and hardware support for parallel simulation. Large discrete-event
simulations are computation and communication intensive, even on parallel machines. They can
benefit from specially designed operators for very frequently repeated operations and for easing
physical resource contention. We have defined efficient access operators for shared data
structures such as linked lists and vectors. More recently, we designed a new interconnection
network and memory module that supports parallel operations, parops, on shared data structures
without blocking., Parops are composite memory instructions consisting of one or more
operations on shared variables. Multiple parops can be executed by competing processes in a
non-interfering manner. Yet from the perspective of each process, its own parop is executed as
an indivisible operation. Our work involves operators similar to those in the Yale Fluent
machine [Ran87]. In the future we will build interconnection modules and smart memories
using the integrated circuit design facility and Systems Integration Laboratory.

F.4.3 Parallel Genetic Algorithms (Cohoon, Martin, Richards)

Combinatorial optimization problems preclude the direct application of many standard
optimization techniques, e.g., gradient-based hill climbing. Their combinatorial nature has
caused some researchers to turn to probabilistic search mechanisms, such as simulated annealing
[KGV83] and genetic algorithms {Gol89]. We are studying a novel formulation of genetic
algorithms that is motivated by the concept of punctuated equilibria in evolution theory [EIG72]
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and the desire to use effectively large scale, distributed-memory, message-passing, parallel-
processing systems. We call this new approach, GAPE.

The genetic algorithm (GA) paradigm [Hol75] has been proposed to generate solutions to a
wide range of optimization problems, including control systems, function optimization, and
combinatorial problems [CoP87, CHMS87, Gol89]. In a genetic algorithm, a population of
solutions to the problem at hand is maintained and allowed to evolve through successive
generations. A suitable encoding of each solution allows computation of the fitness, ie., a
measure of the solution’s competence, and manipulation to form new solutions. Manipulation
either merges two solutions from the current generation via a crossover operator or alters an
individual solution using a mutation operator. Solutions to be included in the next generation are
probabilistically selected according to their fitness from both the current generation and the new
solutions. These capabilities provide the means to create a sequence of generations.

There are many simple ways to implement a sequential genetic algorithm on a global
shared-memory multiprocessor, e.g., selecting and crossing-over pairs of solutions in parallel,
and mutating solutions in parallel. Such implementations result in a linear speedup at best, and
will perform unacceptably poorly on local-memory, message-passing, distributed systems. In
order to investigate a more effective paradigm, in addition to one that is immediately suitable for
mapping genetic algorithms onto a distributed processor, we have turned our attention to the
theory of punctuated equilibria.

The theory of punctuated equilibria [E1G72] has been proposed to resolve certain
paleontological dilemmas in the geological record, in particular, the rapid evolution of new
species. Punctuated equilibria stresses that a powerful method for generating new species is to
thrust an old species, i.e., one from a stable environment into a new environment, where change
is beneficial and rewarded.

Our approach uses major iterations called, epochs. During an epoch each processor,
disjointly and in parallel, executes the genetic algorithm on its subpopulation. After each epoch
there is a phase during which each processor copies randomly selected subsets of its population
to neighboring processors, then probabilistically selects a set of solutions that survive to be its
initial subpopulation at the beginning of the next epoch. '

The relationship to punctuated equilibria is the following. Each processor corresponds to a
disjoint environment as characterized by the mix of solutions in it. Different environments arise
if the fitness measure is defined relative to the current local population. In this way, exchanging
sets of solutions between local populations will alter the evaluation of the members of the local
populations, and introduce new competitors thereby effecting the desired rapid evolution of new
species. After some generations we expect to see the emergence of some very fit species. Then
a catastrophe occurs and the environments change. This is simulated by having representatives
of geographically adjacent environments regroup to form the new environments. By varying the
amount of redistribution, we can control the amount of disruption.

We have developed a distributed genetic algorithm based on punctuated equilibria,
- experimented with the NP-complete Optimal Linear Arrangement problem [CHM87] and the
floor-plan design problem [CHMS88], and empirically demonstrated that our paradigm is much
more effective than straightforward parallel versions of a sequential genetic algorithm. Further,
we have implemented the system on a hypercube and have developed appropriate
representations for additional problem domains. We are now ready to consider several research
directions. Two issues will be addressed immediately. First, GAPE depends fundamentally on
having distinct environments providing speciation pressure on interacting subpopulations. We
- will investigate methods to create and modify dynamically the needed environments. Second,
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the concept of convergence is basic to the definition of the successive epochs. We will
investigate the meaning of convergence in this domain of probabilistic search in which the
progression is driven, at least partially, by random selection operators.
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- F.5 Application Systems

Two applications are discussed: computer vision and the development of a computational
geometry toolbox. Both require an excellent software development environment.

F.5.1 Computer Vision in Dynamic Environments (Martin, Olson)

Developing vision systems that allow machines to interact intelligently with complex and-
changing environments is a problem of fundamental importance. The changing nature of the
environment demands the analysis of dynamic visual data, i.e., time-ordered sequences of
images such as the frames of a video signal. Our work is in the area of dynamic scene analysis
[ADMS81, MaA78, MaA88)]. Further, we emphasize focus of attention mechanisms in vision
systems based on parallel processing {TaM86, TaM89].

In the areas of machine perception and artificial intelligence, many systems are based on the -
concept of parallel processes cooperating in a quasi-independent manner. The term ‘‘quasi-
independent”” means that individual processes operate independently, but the final result is
dependent on the actual order of operation of the processes. At one level controlling the
attention of the system is just a matter of efficient resource allocation. At a more fundamental
level are problem solving techniques which advance the system toward a solution.

The processing component of our vision system is a set of cooperating agents [TaM86,
TaM89]. Each agent is a quasi-independent process capable of guiding the application of its
processing resources to the primary objects of interest in the environment. The guidance
constitutes the selection of a subimage within each image in the sequence. Each agent reswricts
its processing to selected subimages. The primary data structure used for guidance is a
‘multiresolution image pyramid. It is a sequence of images of different granularity of resolution.
At the base is the original image with fine grain resolution; other images have coarser resolution
of ‘‘averaged’ versions of the original image. An agent analyzes subimages of coarse
resolution to guide the application of its processing resources in the finer resolution images of
the pyramid. This control function is taken as an analog to the human vision system in which
peripheral, i.e., coarse resolution, vision often serves to direct foveal, i.e., fine resolution, vision.
Of course, the underlying data is an image sequence, so the pyramid structure evolves with time.
Cooperating agents communicate via a blackboard.

We have two research objectives. First, we will develop effective operations on
multiresolution imagery in the time-varying context. Secondly, in the long range this research
will lead to an understanding of the fundamental nature of closely coupled cooperation of agents
for the interpretation of visual information from dynamic environments. Qur research program
will involve specific applications. For each, we will determine the major dynamic
characteristics of interest in the application and the resource demands of detecting, tracking and
understanding those characteristics. Then, we will design multi-agent solutions that solve the
problem while operating within the computational constraints. Qur first application is tracking
red blood cells in order to determine the location of capillaries. Experiments are concerned with
various blood flow measures and the change in those measures under imposed conditions, for
example the presence of particular chemicals. The development of computational structures
capable of monitoring those measures in ‘‘real-time’” will be a major advancement in that
experimental methodology.
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F.5.2 The Computational Geometry Toolbox (Cohoon, Martin, Richards, Salowe)

Computational geometry is concerned with manipulating, processing, and examining
geometric objects [PrS85]. Most research has produced isolated algorithms, but there is no
cohesive system to host these algorithms in an integrated way. For example, suppose a software
researcher is interested in creating an effective software system for dealing with points in the
plane where required operations include: dynamically finding the convex hull, locating nearest-
neighbor points, and finding Steiner minimal trees. It is not known whether an integrated system
could be practically built using the best solutions for the various subproblems. Besides using
incompatible data structures, the best algorithms often have running times whose large constants
are obscured in asymptotic analysis. Further, the algorithms are typically sensitive to minor
changes in input. We propose to investigate the fundamental issues involved in implementing an
integrated library of practical algorithm implementations.

Our toolbox development will emphasize:
Dynamic Operations: Algorithms should allow for dynamic insertions and deletions.

Robustness: Algorithms will be formulated to be insensitive to minor perturbations in
the input.

Simplicity: Algorithmic design will be economical in that control structures and data
structures will be the simplest available.

Commonality: Data structures which are common or can be easily transformed across
the algorithms will be used.

Our initial design will focus on simplicity, robustness and dynamics; the more challenging
aspect of commonality will be dealt with later. A small core of computational geometry tasks
will be considered: convex hulls, Voronoi diagrams, Steiner trees and VLSI routing. We will
analyze existing algorithms found in the literature: convex hulls [OvL81, Sei86], Voronoi
diagrams [EdS8S5, For86, GKL83, GuS85], Steiner trees [Ber87, CRS90, RiS89], and VLSI
routing [CoH88, CoR88]. We expect to modify some algorithms extensively for
implementation. Modularity will be emphasized in the design, so that algorithms can be added,
deleted, and modified easily. Once the initial toolbox is complete, it will be expanded and
changed based on feedback from its user community.

We will design the toolbox for three types of users: researchers in computational geometry,
in vision, and in VLSL The core of the toolbox is a library of geometric algorithms; these
algorithms will be accessed either directly or through a graphical interface. For computational
geometry researchers, the toolbox will serve as a platform for implementing new algorithms, a
means for studying the interrelationships between computational geometry algorithms, and a
visualization tool. VLSI and vision researchers are expected to access the library routines
directly. The applications of computational geometry to VLSI and vision are described below.

Computational Geometry in VLSI Design: One of the principal phases of the VLSI design
process is circuit layout. In this phase there are several steps to which computational geometry
theory and tools can contribute greatly: partitioning, floor-planning and placement, and routing.
Besides obvious application to VLSI routing, which is discussed earlier in this proposal, we have
also successfully incorporated computational geometry techniques in partitioning and placement.
For example, in one ongoing placement investigation we have found computational geometry
algorithms and transformations important in determining both solutions for and estimates of
interconnection requirements measured in wire density, total wire length, and longest wire
length [CoP87]. Although minimal spanning trees algorithms are used typically in determining
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the estimators, more accurate estimators can be determined by constructing minimal Steiner
trees for the various interconnections. Because the general Steiner tree problem is NP-hard,
research has concentrated on exact or approximation algorithms for some restricted classes of
rectilinear problem instances. We have developed recently both a fast approximation algorithm
that uses many geometric constructions, and is effective for a broad class of rectilinear problem
instances [Ric89], as well as a fast exact algorithm for terminals on the perimeter of a VLSI
switchbox [CRS90].

Computational Geometry in Computer Vision: A simple definition of vision has been given
as: ‘‘to know what is where by looking”’ [Mar82]. Itis geometry that describes the fundamental
relationships to be determined by vision processes. Computer vision derives and manipulates_
geometric information characterizing the external environment. For a system to know “‘where”’
things are, it must be able to operate effectively and efficiently upon the geometric relationships
imposed by the spatial configuration of the sensed environment.

For a system to know ‘‘what” things are in that environment constitutes recognition.
Though less obvious, recognition also requires computational geometry. The geometry is
determined by a ‘‘parameter space’’ derived from transformations on sensor measurements. For
example, multispectral sensors aboard satellites result in multidimensional “‘signatures’’ for
areas sampled from the surface of the earth, Recognition of ground use categories can then be.
formulated as a computational geometry problem, e.g., determine the convex hull of a set of
points, in the multidimensional ‘‘signature”’ space.

The advantage of having a computational geometry toolbox in vision is the ready access to
established procedures for the common computational geometry tasks that computer vision
systems repeatedly demand. Robustness of algorithms used in computer vision is important
because “‘noise’’ is an ever present component of the image sensing process. The commonality
property of the toolbox will simplify the task of integrating toolbox algorithms into a vision
system.
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F.6 Impact of the Infrastructure Enhancement

An excellent infrastructure is a necessary requirement for excellent experimental research.
Quality computation resources need to be readily accessible and present in sufficient quantity. A
researcher needs to be able to design an experiment and find the infrastructure supportive of it.
This means that the researcher will invest most of his intellectual effort in the research problem,
not the mechanics of experimentation. In this proposal we have outlined how we will use NSF
resources to improve our experimental infrastructure. There are many impacts.

Students will gain ready, convenient assess to computation resources. Today, only 12
UNIX-based workstations are generally available to computer science students. Twenty-three of
the 43 workstations are located in faculty and technical staff offices; 8 stations are in laboratories
and their use is constrained in some way. Likewise, in electrical engineering 10 workstations are
shared by 25 computer engineering graduate students and 60 graduate students each semester in
classes on switching theory, computer design and VLSI system design. This is an average of
one workstation for every 10 students. We are requesting some workstations, high performance
servers and X-window viewports. Together, these will greatly improve accessibility and
modestly increase cycles per student to be used both for research and graduate education.

Scarce resource bottlenecks will be relaxed. For example, the requested high speed raster
plotter will reduce the elapsed time to plot & dense circuit from 8 hours to 5 minutes. Also, more
computer-intensive jobs will execute faster in the areas of physical design, algorithm testing,
circuit test pattern generation, WM benchmark simulation, and circuit simulation.

Selected research efforts will be accelerated. Equipment allocations are made to two
research areas: parallel computation and networks. Parallel computation is a focus of research
attention as evidenced by the presence of three substantial parallel engines. The BBN
“Butterfly’” arrived some months ago. We anticipate adding a new parallel engine roughly
every 18 months to two years. This budget allocates funds for one new, to-be-determined
parallel engine about 4 years from the arrival of the ‘“Butterfly’’. The second area for research
acceleration is networks. We expect a dramatic increase in communications speed, first in the
research laboratory and then in our computation infrastructure. The proposed network funds are
for research equipment. Research experience will chart the way to increase the LAN speeds for
computer science and engineering and for our future collaborators in other departments in the
University. The impact of this infrastructure is to let us gain experience early, as well as to do
research. -

Researchers will be able to prototype circuits and systems rapidly. The research
descriptions in this chapter amply demonstrate that we design and build experimental circuits
and systems (both hardware and software). To enhance this direction, we are proposing to add
equipment to the current integrated circuit design facility within CSIS and to create a new
system integration capability. Within CSIS, we are increasing the number of design stations,
resulting in a 40% increase in the number of ‘‘seats.’” In addition, a programmable logic device
‘implementation capability will be purchased for the rapid prototyping of logic functions. The
system integration facility, housed within the System Integration Laboratory will bridge between
the software design efforts and the hardware design. Such an infrastructure addition is costly. It
probably can not be built up incrementally, because a critical mass of knowledge and equipment
is necessary to sustain it. Only programs like the NSF Infrastructure Program fund such
advancements. We will be able to prototype hardware based on off-the-shelf technology and
application-specific ICs. Then, we can develop several instruction set implementations for the
WM architecture family and WM multicomputer prototype. For networks we can integrate
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protocol chips into an experimental interface microprocessor. For the first time we will be able

to lash-up laboratory board systems to our parallel engines, perhaps to test proposed parallel
operators or better monitor data access traffic.

Secondly, the SIL will greatly extend our options for experimenting with software that is
““close to”’ the hardware/software interface. Many of us build such software, for example real-
time data bases, real-time operating systems, communication interfaces and fault-tolerance
software. To date, we experiment only by adapting the software. With the SIL we have some of
the capability to experiment with the hardware side of the interface.

Lastly, this infrastructure enhancement will strengthen the synergistic relationship between

the computer science and electrical engineering faculty and students. Tt will catalyze the
research projects and the winning of other grants.

A simple qua.nntatwe measure of improvement directly attributable to the infrastructure is
the amount of time savings that can be experienced for the completion of a project. We believe

that in several cases, a realistic 25-35 percent of the duration of a research project could be saved
with no loss of results.
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C. Equipment

The Computer Science department currently operates the following equipment:

VAX 8600 running 4.3 BSD Unix with 72 Mbytes of primary memory and 1.6 Gbytes of
local disk space

Ethernet-based LAN with two SUN 3/280 servers having 4.4 gigabtyes disk capacity

Workstations: 36 SUN 3’s (23 with local disks), one SUN 4/110, 6 SUN 2’s, Concurrent 3230
minicomputer

Parallel engines: 32 Node Intel Hypercube with 1.4 gigabyte disk farm and 4 Mbytes of
memory; 128 Node NCUBE with 8x160 megabyte disk farm; 4 386-based NCUBE-4
systems, 1 AT-based NCUBE-4 system; BBN Butterfly with 32 Nodes sharing 128
Mbytes of primary memory and 500 Mbytes of disk

Personal computers: 10 PC AT class machines, 6 Intel 386 machines, 3 Macintosh IIs, 2
VAXstation GPX systems

Viewports: 15 X-window terminals, 24 ‘dumb’ terminals

Printing: 6 Apple Laserwriter printers

The Center for Semicustom Intégrated Systems currently operates the following equipment:

Minicomputers: Harris HCX-9 Super Minicomputer, 2 VAX-11/750 computers running Unix
and VMS

Workstations: 8 Sun 3/50 and 3/60 workstations, 7 Apollo 3000 & 3500 workstations

Viewports: 4 AED 512 color graphics units

Personal computers: 10 IBM PC/AT computers

Test Generation/Application: Tektronix DAS 9100 tester

Plotting: 2 Hewlett Packard multipen plotters

TCP/IP networking connects all locations on University grounds, running on a 10 Mbps
Ethernet.

The equipment budget follows the equipment rationale section.

Equipment Rationale

Qur requested budget for equipment is approximately $2.2 million. We will invest 38% in
general purpose computing facilities, 13% in enhancing the integrated circuit design facilities
within the Center for Semicustom Integrated Systems (CSIS), 19% in creating the Systems
Integration Laboratory (SIL), 9% in support for parallel computation, 7% in high-speed
networking, and 14% in software tools for all the above areas.

The equipment budget is presented in terms of currently-available products at current prices.
Actual hardware and software purchased will be the most up-to-date items available ar the time
of purchase. Discounts are noted.

Center for Semicustom Integrated Systems: The CSIS houses and maintains the facilities for
the design, fabrication using MOSIS, and test of integrated circuits. Capabilities within the
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CSIS include design capture and functional simulation, performance modeling and simulation,
test pattern generation and fault simulation, physical design and synthesis, and hardware test.
We require four improvements: (1) additional commercial computer-aided design software for
performance modeling (ADAS and SES/workbench), automated synthesis (Silicon Compiler
Systems), and programmable logic device design (Data /O Personal Silicon Foundry); (2)
enhancement of hardware test moving us from small, slow devices (25 megahertz and 64 pins) to
higher performance devices (100 megahertz and 128 pins); (3) a new probe capability for
minimal die-level testing; and (4) a 40 per cent increase in laboratory design seats giving us a
total of 10 seats. In addition, the latter requires an increase in general computing to support our
core tool set (Mentor Graphics) using Apollo DN1000O and DN3500 technology. We are
comumitted to using Mentor Graphics tools. The enhanced facility will provide the complete
rapid prototyping capability for both custom IC and "glue" logic implementations. The high
performance compute server will provide the needed resources for excellent design cycle times.

Systems Integration Laboratory: This Laboratory will support the fabrication of systems from
off-the-shelf components, custom circuits designed in the IC Design Laboratory, standard digital
and analog parts, and programmable logic devices. No such facility currently exists. It will be
constituted using all appropriate software in the CSIS, specifically the Mentor Graphics tool set,
plus tools to support printed circuit board layout with automated wiring. Hardware requested
includes three color workstations (DN3500s) and five fabrication/test stations. The latter are
equipped with power supplies and function generators and share low- and high-frequency
oscilloscopes and logic analyzers. This laboratory will be networked at high speed to the CSIS
as well as to all general purpose CS and EE computing. Interfaces to commercial printed circuit
board fabrication houses will be established to provide quick implementation turnaround. In
addition, multichip and single chip microprocessor development capabilities will be installed.
Down-loading cross compilers and assemblers will be routinely available. The overall objective
of the SIL is to provide the resources and expertise necessary on a continuing basis to support
easy and quick board/system-level prototyping.

General Computing Environment: We seek to improve our general computing environment.
Qur research is computation-intensive, We need for high performance workstations, file servers,
and peripherals such as color graphics monitors, color plotters, and color printers. We intend to
provide access to the computation cycles via the X-window viewports. All of the computational
equipment requested will support X-windows which will permit researchers to access any of our
machines from anywhere on the network. Graphics workstations are also requested; the VLSI
physical design work with detailed routers and switchbox routers (Section F.1.1) will profit
enormously from the addition of advanced graphics equipment.

Network Equipment: All of the computing equipment will be networked with a combination of
Ethernets and high-speed fiber optic LANs. We will use the 100 Mbit/sec Fiber Distributed
Data Interface (FDDI) as a testbed for our real-time communications protocols and as a high-
speed access path between equipment located in Computer Science and equipment located in
Electrical Engineering. The design and implementation of our own real-time transport protocols
and protocol chip sets (section F.3.2) requires LAN capacities of 100 Mbit/sec and higher.

Parallel Computing Equipment: Our Institute for Parallel Computation (IPC) currently
operates a Hypercube, N-cube, and Butterfly. Current research projects will utilize existing
equipment through budget year three, at which time a replacement for some of this equipment
will be required. The appropriate architecture and vendor will be chosen at the time of purchase.

C. Equipment C.2



The IPC provides parallel computational support for the work in parallel databases, parallel
simulation and parallel genetic algonzhms (see Section F.4). The IPC supports other research
not discussed in this proposal.

Software Tool Sets: Many capabilities are realized as sets of software tools. In many cases
groups of tools need to be integrated to work in concert, or at least fused with user-convenient
interfaces. We list software tool areas below. Example software systems are included, however
particular choices will vary based on actual negotiated cost and current technology. The budget
contains a yearly line item for software license fees and maintenance.

Integrated software development environment: Compilers or cross-compilers for all
machines in the environment. C and C++ are the preferred languages. We also need tools
for source control, configuration conwol, structured analysis, debugging, and regression
testing.

Software analysis: Performance profiler and analysis support for parallel programming.
Simulation and modelling: SIMSCRIPT, ADAS, event simulation debugger.

Fault tolerance analysis: CARE-III, HARP.

User Interfaces: X-windows base plus tailored windows for a variety of applications.

Information management: Hypertext/database/information retrieval support. The tools
should integrate access to text, programs, images, and possibly audio.

VLSI circuit design and analysis: Mentor Graphics tool suite.

Document production: We now use troff and related tools and wish to move to a

WYSIWYG document system with an integrated database interface for bibliographic
information.

Presentation graphics tools: Slide packages and an algorithm animation capabihty We
need a tool that supports the integration of visual aids into program documentation.

Maintenance

Equipment maintenance costs are computed yearly as eight per cent of accumulated
hardware acquisition costs. Note that costs reflect discounts. The software budget includes its
own maintenance.
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