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Current and future high-performance systems require language processors that can generate code that fully exploits
the power of the underlying architecture. A key and necessary component of such language processors is a global code
improver. This article describes the key principles behind the design and implementation of a global code improver
that has been use to construct several high-quality compilers and other program transformation and analysis tools. The
code improver, called vpo, employs a paradigm of compilation that has proven to be flexible and adaptable—all code
improving transformations are performed on a target-specific representation of the program. The aggressive use of this
paradigm yields a code improver with several valuable properties. Four properties stand out. First, vpo is language and
compiler independent. That is, it has been used to implement compilers for several different computer languages. For
the C programming language, it has been used with several front ends each of which generates a different intermediate
language. Second, because all code improvements are applied to a single low-level intermediate representation, phase
ordering programs are minimized. Third, vpo is easily retargeted and handles a wide variety of architectures. In
particular, vpo's structure allows new architectures and new implementations of existing architectures to be
accommodated quickly and easily. Fourth and finally, because of its flexible structure, vpo has several other interesting
uses in addition to its primary use in an optimizing compiler. This article describes the principles that have driven the
design of wpo and the implications of these principles on vpo's implementation. The article concludes with a brief
description of vpo’s use as a back end with front ends for several different languages, and its use as a key component
for the realization of several other applications.

1 Introduction

The ability to produce a high-quality compiler that can be adapted to current and future architectures is critical to

building and marketing computer systems successfully. A key component of a high-quality, production compiler is a

global optimizer. This article describes the architecture of a code improver called vpa.T The code improver has several
interesting characteristics. First, it is easily retargetable. Production-quality compilers can be constructed in a matter
of weeks. Second, it has been retargeted to a wide variety of machines. It is able to handle complex instruction set
machines (CISCs) equally as well as reduced instruction set machines (RISCs). Third, its organization and structure
are such that it is simple to modify so that it can accommodate new architectural features as they appear. Fourth, all
code improvements are performed on machine- and language-independent representation that encodes machine-
specific instructions. This allows wpo to be largely machine-independent, yet efficiently handle machine-specific
features such as register allocation, instruction scheduling, memory latencies, multiple condition code registers, etc. It,
in effect, improves object code. Similarly, vpo is largely language- and application- independent. It has been used to
construction compilers for several imperative languages such as C, Pascal, and Ada. A PL/I compiler is currently under
construction. Finally, because of its flexible structure and organization, vpo has been adapted for use in a variety of

other contexts. It has been used to build machine-code-to-machine-code translators, to build emulators and simulators

+The more accurate terms code improver and code improvement are used throughout this paper instead of optimizer and optimization.
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for both existing and proposed architectures, to gather trace information for use in cache and virtual memory trace-

driven simulations, and for predicting execution times of straight-line code for hard-real-time systems.

A number of vpo’s code improvement algorithms have been presented elsewhere [DAVI94, BENE%4b,
BENE91, DAVI86]. This paper describes the principles that have driven the design of vpo and the implications of
these principles on wpo’s architecture. The paper also describes upo’s use in global, optimizing compilers for several
languages and its use as a key component in several nontraditional applications. We know of no other code
improvement system that has been used with as large a variety of front ends and languages, targeted to as many

different machines, and is a key component of several other applications.

2  Design principles
vpo evolved into its current state over a period of about ten years. During this period, several rules or design principles

have emerged. Three of these principles have played a key role in allowing vpo to grow and adapt to changing demands

placed by new architectures and new applications. These three principles are:

+ all code improvements are effectively machine-dependent,
* instruction selection must be done on demand, and

+ all code improvements are important some of the time.

The following subsections elaborate on and provide justification for these principles.

2.1 Machine-dependence of code improvements

A global, optimizing compiler must perform a comprehensive set of code improvements in order to produce high-
quality code for a wide range of machines. A partial list of code improvements that must be included in the compiler’s

repertoire is:

* register assignment and allocation, + common subexpression elimination,
* loop-invariant code motion, + induction variable elimination,

+ evaluation order determination, + constant folding,

* constant propagation, *+ dead code elimination,

* loop unrolling, * instruction scheduling, and

+ inline function expansion, * memory access coalescing.

This list of code improvements traditionally is divided into two groups: those that are considered to be
machine-dependent and those that are machine-independent. Machine-dependent code improvements are those that, to
be applied most effectively, require specific knowledge of the target machine. Obviously, code improvements such as
register allocation and instruction scheduling are machine dependent. Somewhat less obvious, but no less machine
dependent are inline function expansion and loop unrolling. Inline function expansion can be performed most
effectively when details of the target machine’s instruction cache is availablef MCFA89, MCFA91]. Similarly, when
unrolling a loop, the unroll factor depends on the number of target machine registers available, characteristics of the
target machine’s jump instructions, and characteristics of the instruction pipeline as well as the size of the instruction

cache [WEIS87].

Machine-independent code improvements are those that do not require specific knowledge of the target

machine, and they can be applied effectively independently of machine-dependent transformations. Examples from



the above list typically included in this group are loop-invariant code motion, induction variable elimination, common
subexpression elimination, constant propagation, constant folding, and dead code elimination. Because of their
presumed machine-independence, these code improvements are often applied to a high-level intermediate language

representation of the source program. This division of code improvements results in a compiler that has a structure

shown in Figure 1a.
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Figure 1. Structure of two compiler organizations.

Unfortunately, these code improvements are not machine-independent. For example, loop-invariant code
motion and induction variable elimination are machine dependent because their effective application requires
knowledge of the addressing modes available on the target machine [BENE94b]. Similarly, common subexpression
elimination and evaluation order determination are machine dependent because their effective application requires
knowledge of the target machine’s instruction set [DAVI84a, DAVI86]. Effective constant propagation requires
knowledge of the calling convention, the machine’s data paths, and the instruction set support for dealing with

constants [ BENE94b].



Constant folding is machine dependent because the addressing modes of many machines limit the size of an
integer constant. Consequently, folding two integer constants may yield a result larger than the immediate addressing
mode can handle. A reasonable solution is to fold constants early, and assume the back end will handle appropriately
any large constants produced. After all, the back end must handle any large constants that appear in the source code
(i.e., they were not synthesized by constant folding). This approach solves half the problem. Because some machine-
dependent code transformations (e.g., inline function expansion and loop unrolling) will expose new opportunities for

constant folding, to be most thorough, constant folding will still need to be done in the back end.

On the other hand, dead code elimination, applied in isolation, is machine independent. We cannot think of
any situation where a target machine’s characteristics would warrant not deleting code that will never be executed.
Unfortunately, dead code elimination interacts with machine-dependent code improvements such as inline function
expansion, constant folding, and constant propagation. In conjunction with constant propagation, inline function
expansion exposes new opportunities for dead code elimination by effectively propagating constants across calls.
Similarly, constant folding may expose new opportunities for dead code elimination by allowing conditional

expressions to be evaluated at compile time. Hence, effectively there are no machine-independent code improvements.

2.2 On-demand instruction selection

Traditional compilers perform target machine code generation after machine-independent code improvement (see

Figure 1a). There are several problems with this organization. One problem is that comprehensive code generators
operate locally and while they generate a locally best sequence, they often “go too far” in their attempt to best utilize
the target machine’s instruction set. Complicated addressing modes and complex instructions are emitted, when in
fact, a better global sequence might use a more primitive addressing mode or a sequence of simple instructions. For
example, an aggressive code generator might use a scaled addressing mode because locally this is the best choice.
However, when information from predecessor and successor blocks is considered, a better choice might be a primitive

sequence where a subcomputation is exposed and can be reused.

A second, more serious problem with the compiler organization in Figure 1a is that target machine code is
not exposed to global code improvement. Code generators often introduce new expressions and new control-flow paths
that were not visible in the intermediate language representation of the program. Better final code can be produced if

the code emitted by the code generator is subjected to thorough global improving transformations.

A third problem is that any further changes in the target machine code that might be warranted, say because
a machine-dependent transformation introduced an opportunity to use a better machine code sequence, must be
handled in an ad hoc manner. A common solution is to use a pattern-directed, machine-specific peephole optimizer
that is driven by a file of patterns. There are three well-known problems with this approach. First, it is impossible, a
priori, to determine what post-code generation transformations might be made and construct a comprehensive set of
patterns. Second, the ad-hoc approach hampers retargetability. Each new target machine requires a new pattern file.
Automatically generating a set of patterns is possible, but suffers from incompleteness| DAVI84b]. Third, global

program information has been lost. Typical peephole optimizers operate locally on small sections of code.

The ability to do instruction selection “on-demand” solves these problems. By on-demand, we mean that at

any point during processing by the back end, an instruction selection phase can be invoked to determine a new target



machine code sequence. On demand instruction selection is provided by a retargetable peephole optimizer that
employs global data-flow information. Section 3 describes how on-demand instruction selection in wpo solves the

previously described problems.

2.3 Relative importance of code improvements

Section 2.1 contained a list of some common code improvements. A question that often arises is which code
improvements are important? Or, put another way, which code improvements should be implemented? Clearly,
register allocation is so important that any good compiler must include this code improvement. But what about the
others? We have measured the impact of the listed code improvements on a wide variety of machines, with a variety
of languages, and in a variety of application domains (e.g., real-time software, digital signal processing, image
processing, scientific codes, business applications, ec.). From these measurements, we can make the following

observations:

+ any single code improvement will only affect a subset of the programs to which it is applied,
+ for some programs the effect will be small and for others it will be large, and
+ the effect of applying a set of code improvements is often greater than the sum of the individual effects.

Thus, a good optimizing compiler uses a collection of code improvements where each transformation
produces a small benefit most of the time and a large benefit occasionally. Furthermore, many code improvements

interact in unpredictable ways. Forgoing one may reduce the effectiveness of another.

3 Architecture of vpo

Of the three principles listed, the characterization of all code improvements as machine dependent has the most impact
on wpo's architecture. We need a intermediate representation and implementation that permits code improvements to
be done in such a way that target machine characteristics can be taken into account. We also want an implementation
that can be quickly retargeted to a new machine. While these may seem like contradictory requirements, vpo

demonstrates that such an implementation is possible, and the resulting code improver is highly effective.

3.1 Intermediate representation

We require a representation that supports the application of both local and global code improvements at the level of
the target machine. The representation used is called RTL (Register Transfer Lists). RTL consists of a representation
for machine instructions and a method of conveying source language information to vpe. The part of RTL that encodes
machine instructions is based on the ISP notation of Bell and Newell. Original RTL descriptions were ad hoc
[DAVI85]. Over the years, this portion of the RTL representation has evolved into a compact, well-defined language
for describing the instruction sets of machines [BENE9%4a]. Over 20 architectures have been described.

However, to be most effective, a global code improver needs more than target machine information. It needs
control over the allocation of objects and information about the source program. Most code improvers do not
participate in the placement of data. For global data, for example, the code generator simply emits the necessary
assembly language directives that allocate space for program objects without regard to their relative location. However,
for many of today’s high performance processors, proper location of data can affect overall performance [DAVI94]. In
many cases, a global code improver, using information gathered during its data-flow analysis phase, can place data so

that it can be referenced more efficiently. Similarly, to be effective and perform safe code transformations, a code



improver needs some information from the source program. For example, the C language contains the vol at i | e type
qualifier. When applied to an object declaration, this qualifier informs an implementation that the value of the object
may be altered by outside agents. vpo must know which objects are volatile so that these objects do not participate in
code transformations that can change when or where an object is referenced. Simil arly, some languages have pointers.
Unconstrained use of pointers makes some code improvements difficult to apply safely. On the other hand, many
languages are strictly typed. If type information is available, a code improver can often make transformations that,
without type information, it would be forced to forgo. There are other examples where information available at the
source level can impact the effectiveness of code improvements (e.g., Fortran equivalence statements, C++ reference

type, Ada pragmas, ezc.).

vpo's RTL language includes directives that allow a front end, if desired, to supply relevant source language
information to wpo. Additionally, directives are available for conveying the static memory allocation requirements of a

program to vpo. It uses this information to place data and perform more effective code transformations.

3.2 Implementation overview

The overall organization of a global optimizing compiler that uses vpo is shown in Figure 1b. In this organization, there
are two intermediate languages. The high-level intermediate language (HIL) corresponds to the intermediate language
often used in a compiler with a traditional organization [CHOWS3, NELS79, TANES2]. The HIL serves to make
the front end machine independent so that it can be used for a variety of target architectures with as little modification
as possible. The low-level intermediate language (L.IL) is RTL. An RTL representation of a program is supplied to
vpo via a file interface. While this has a minor impact on compile-time efficiency, the benefits far outweigh any

disadvantages (see Section 4).

After reading the RTL file and building the necessary internal data structures, a central code improvement

routine is invoked per function. A high-level version of this routine is shown in Figure 2. The first steps are to build
the control flow graph and perform control-flow improvements. Examples of these transformations include removing
unreachable code, removing useless jumps by rearranging basic blocks, and removing branch chains. Following these
actions, local data flow analysis is performed to set up def-use information. Using this information, a preliminary pass
of instruction selection is done. At this point, the preliminary analysis necessary for creating the Static Single
Assignment form [CYTR91] is performed (lines 7—10). We have found the SSA form and the RTL representation
to be a particularly good match. Following the SSA construction, global def-use information is collected and
instruction selection is re-invoked. At this point, local register allocation is performed. This maps any pseudo-registers
to hardware registers. If the local register allocator assigns new hardware registers, instruction selection is redone. At
this point, it is worth noting that instruction selection is not performed over the entire function each time. Rather, as
transformations make changes, these RTLs are marked, and only regions of code that have changed are processed
again. The next step is to find all the loops in the program. The information gathered by the BuildDominator Tree and
FindDominanceFrontiers is used to do this. The routine EstimateExecutionFrequency weights loops according to their

estimated frequency. Static analysis or profile-collected information can be used.

Lines 19 through 38 are a loop where selected code improvements are applied and re-applied until the code
converges. ColorLocalVariables uses a graph coloring algorithm to assign hardware registers to a local variable that has

been allocated to a register. CommonSubexpressionElimination does common subexpression elimination as well as



Line Line

1. proc Improve is 19. do
2. BuildControlFlowGraph() 20. A — False
3 ControlFlow Transformations() 21. do
4. SetLocall.inks() 22. C ~ False
5. InstructionSelection() 23. LiveVariableAnalysisUpdate()
6 FuwaluationOrder Determination() 24. A « DeadVariable Elimination()
7 BuildDominatorTree() 25. if ColorLocalVariables() then
8. FindDominanceFrontiers 26. C « InstructionSelection()
9. LiveVariableAnalysis() 27. A « True
10. BuildMinimalSSAForm() 28. endif
11. SetGloball.inks() 29. while C
12. InstructionSelection() 30. if A then
13. LiveVariableAnalysisUpdate() 31. C — CommonSubexpressionElimination()
14. if LocalRegisterAssignment() then 32. LiveVariableAnalysisUpdate()
15. InstructionSelection() 33. C « CUODeadVariable Elimination()
16. endif 34, C « C OLogpTransformations()
17. FindLoops() 35. C « C OlnstructionSelection()
18. EstimateExecutionFrequency() 36. C « C OlInlineFunctions()

37. endif

38. while C

39. ControlFlow Transformations()

40. InsertFunction PrologueandFEpilogue()

41. InstructionSelection()

42. InstructionScheduling()

43. endproc

Figure 2. Driver loop for vpo.
constant and copy propagation. LogpTransformations performs induction variable elimination, software pipelining,
loop-invariant code motion, loop unrolling, and memory access coalescing. After the code has converged, the
ControlFlowTransformations routine is invoked because many of the previous transformations may have made changes
in the control flow. Following this, the prologue and epilogue code for the function is generated, and a final pass of
instruction selection is performed to “stitch” this code in. Improve ends by invoking an instruction scheduler. For

machines that do not require instruction scheduling, this routine will simply return.

The above structure has several advantages. First, phase-ordering problems are largely eliminated. As changes
are made to the program, improvements previously applied are reapplied. Second, implementation of the code
improvement algorithms is simplified. This is because they can assume that other transformations will be applied. For
example, induction variable elimination (done in LoopTransformations) need not worry about eliminating dead
variables that might be introduced. This will be handled by DeadVariableElimination. Additionally, the ability to do
instruction selection on-demand also simplifies the implementation of the code improvements and it makes vpo easier
to retarget. Many code transformations must insert new instructions (e.g., loop-invariant code motion inserts code in
a preheader, induction variable elimination requires the computation of a induced address, ezc.). With wvpd's
organization, these insertions can be sequences of simple, primitive instructions. Later, instruction selection will
choose the most efficient target machine instructions. Because simple instructions are used, it means that the portion
of the improver that inserts these instructions can often be made machine-independent. For example, most machines
support register-to-register copies, register indirect addressing mode, and register-to-register ALU operations. A third

advantage is that it is very simple to add new code improvements [MUEL92]. This advantage should not be taken



lightly. Consider that in the last ten years machines have been have brought to market that included the following

features or implementation techniques:

* register windows, « large register sets (32 or more),
* superscalar implementation, + superpipelined implementation,
« Very Long Instruction Word (VLLIW), + condition code registers,

* 64-bit implementation, + delayed branches,

* branch with annul, * speculative execution, and

+ exposed pipelines, + exposed cache.

Each of these features or implementation techniques requires special handling by the compiler to fully exploit the
target machine. Furthermore, in many application domains, special-purpose code improvements that have little effect
on general-purpose codes, are required. For example, a compiler used to develop signal processing applications must
be able to do software pipelining, handle recurrences, and control placement of data. All code improvements are
important sometime. Consequently, the code improver must be improved and enhanced constantly to keep pace with
innovations in computer architecture and to be usable in a variety of application domains. A final advantage is that it

is possible to automate debugging vpo [WHALY4].

4  Applications
4.1 Retargetable Compilers

Obviously, the primary application of wpo is to build optimizing compilers, and it has proven to be very successful.
Using a front end that emits code for an abstract stack machine, vpo has been used to build K & R C compilers for the

following architectures:

+ VAX-11 » Motorola 63020

+ Intel 80386 + Concurrent 3230

» Harris HCX-9 + National Semiconductor 3200
« CDC 176 « IBM RT

« MIPS R2000/R3000 * Motorola 88100

« AT&T DSP32 * Sun Sparc

« Intergraph Clipper « AT&T 3B15

+ Hewlett-Packard PA-RISC + DEC Alpha

Work is underway to build compilers for the IBM RS/6000, Motorola’s 65SHCO05 and DSP 56000, as well as some

experimental machines.

Typically, it takes about a month of hard work to bring up a complete, tested compiler for a new machine.

Code quality is not sacrificed for ease of retargeting. vpo is able to generate very high-quality code—code that is as

good as the production compiler for most machines. Using the C component of the SPEC89;,; benchmark suite,

Figure 3 compares vpo-based compilers we actively maintain to several production compilers on five machines. In
terms of compile time, on the Sun3 and Sparc, the vpo-based compiler and the native compiler run at about the same
speed. On the SGI, the native compiler is approximately 13 percent faster than vpo. On all hosts, gec is consistently 10
to 15 percent faster. (Note: All compiles were done with the -O option. The full paper will contain detailed statistics including

the versions of the compilers used.)



25 - B Notive C

20 -

=
5 19
e
8]
w
a 10
0

5

0

Sparc?2 Sun3/60 Intel R3000 Motorda
386-25 Sah 88100

Figure 3. Comparison of run-time performance on SPEC89, ;.
Because of the RTL file interface and its underlying structure, vpo is front end as well as language
independent. Indeed, it has been used with a variety of C front ends each of which generates a different intermediate

representation. It has been used with /s front end (which produces DAGs) [FRAS95]. In this case, the middle end

(see Figure 1b) traverses the DAGs emitting naive RT'Ls for the target machine. Work is underway with /e to emit
RTLs via an IBURG-produced code generator. The work with /«’s front end illustrates vpo’s flexibility. The front end
does some low-cost, high-yield code improvements [HANS83]. This in no way hinders the operation of vpo. It has
also been used with an ANSI C front end developed by Hewlett-Packard Corporation that emits HPcode-Plus, a
proprietary intermediate language similar to MIPS Ucode [CHOWR&3], and an ANSI C front end which produces
trees from the Edison Design Group.

In addition to the C compilers, wpo has been used to produce global optimizing compilers for several other
imperative languages. It has been used to produce a validated Ada compiler. This compiler used a front end that
produced Diana, the standard intermediate language developed for Ada. It has been used to realize a Pascal compiler
in conjunction with a front end that produced Pcode. Work is currently underway by Uniprise Systems, Inc. to produce

a PL/I compiler using ypo. Their compiler front end produces a quad-like intermediate language.

4.2 Object code conversion

Another application that vpo has been used for is conversion of programs that run on one processor to run on
another processor. For example, suppose there exists an object program that runs on machine X and it is desirable to
run that program on machine Y. If the source code is available, the easiest approach is to simply recompile the program

on machine Y. For various reasons, this may not be possible. All or part of the source code may not be available (some



substantial portion of the code could be written in assembly language for performance reasons), the source code may
be very machine-dependent, or it may be desirable to have the program run as if it were running on the original
machine. A naive approach is to translate each X machine instruction in the original program, to an sequence of
machine instructions for machine Y. One problem, of course, is that the resulting program will run more slowly than
the original program if the two processors have about the same performance. If machine Y is faster than X, while the
translated program may run faster, it will not achieve nearly the same performance as a “native” application. Typically,
programs translated naively many run ten to fifteen times slower than they did on machine X (the performance depends

on how different the architectures X and Y are and the effort expended on the translator).

Using wpo, the disparity in the run-times of the two programs can be reduced. Rather than translate X’s
machine instructions directly to Y machine instructions, RTLs for Y are emitted. vpo is applied to the resulting code
to yield an optimized version of the program for the new machine. Experiments indicate that reductions in the run-
time on the order of two to six times are possible. One application of this approach has been used to develop avionics
software for an advanced aircraft, the Swedish JAF 39. The avionics and flight-control systems for this aircraft use
several special-purpose microprocessors called the DA28. While necessary for the onboard avionics, developing
software in this environment is difficult and expensive. An option considered was to take an aircraft and chop the wings
off and reassemble it in a building. A more cost effective solution was to develop the software using a commercial
microprocessor-based system simulating the several DA28s on the aircraft. To accomplish and obtain satisfactory
performance, the DA28 object code for the avionics and flight-control systems were translated to RTLs for a MIPS
R3000-based Silicon Graphics system. The resulting code was optimized by vpo. It is estimated that this particular
Silicon Graphics system is rated at 60 native MIPS while the DA28 is rated at 2 native MIPS. Simulating a single
DA28 assuming a one-to-one mapping from a DA28 instruction to a R3000 instruction would yield a speedup of 30.
However, the R3000 must simulate several DA28s and the DA28 is a CISC machine, so the initial mapping was on
the order of one DA28 instruction to 15 R3000 instructions. Using vpo, it was possible to reduce this by roughly a
factor of three. Another advantage of this approach is that the same front end is used for development and production

of the native software.

In addition to the above application, this approach has also been used to implement translators that take
existing applications that run on older CISC architectures, and convert them to run on RISC architectures. Because
current RISC architectures are much, much faster than the older CISC architectures (approaching 100X), the
applications typically run faster on the RISC machines even using a naive translation approach. However, when
compared to a “native” application, the naively translated application runs much slower (sometimes by as much as a
factor of ten). It has been reported that wpo is able to reduce this to a factor of three. (Note: We are getting permission to
supply more details).

4.3 Architecture and performance evaluation

Today’s high-performance processors rely heavily on optimizing compiler technology to produce code that exploits the
processors capabilities [HENNO90]. To explore and evaluate new architectures, it has become crucial to have access to
optimizing compiler technology. As shown above, vpo provides this access. In addition, it is necessary to have tools

and techniques that help collect detailed measurements of an architecture’s dynamic behavior running real programs.
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Unfortunately, gathering detailed measurements of the execution behavior of an instruction set architecture
can be difficult. A major problem is that gathering detailed dynamic measurements of an architecture using typical user
programs reading typical data sets can consume significant computation resources. For example, a popular way to
gather execution measurements is to simulate the architecture. This technique is often used when the architecture in
question does not yet exist, or is not yet stable and available for production use. Depending on the level of the
simulation, programs can run 100 to 500 times slower than directly-executed code [HUGUS87]. Tracing is another
alternative one can use if the architecture being measured exists, is accessible, and tracing is possible on that machine.
Tracing can be even slower than simulation. Because of the large performance penalties with these methods, the
tendency is to use small programs with small data sets. The relevance of measures collected this way is always subject

to question.

Fortunately, vpo provides a framework for easily and efficiently capturing measurements of the dynamic
behavior of an architecture. During the course of processing a program, vpo collects a wealth of information about the
program. It constructs the flow graph which consists of basic blocks connected by flow arcs, it locates and identifies
loops, and it selects and identifies target machine instructions. This information along with the description of the
machine’s instruction set (MD) can be used to collect statistics on the dynamic behavior of an existing or proposed

architecture. Measurements of

* instruction path length, * instruction path size,

* instruction type distribution, + addressing mode distribution,

+ memory reference size distribution, + memory reference address distribution,
* register usage, + condition code usage,

+ data type distribution, + conditional branches taken, and

+ average number of instruction between branches, * loop execution frequencies

are gathered routinely. Other measurements of interest can usually be obtained with modest additional effort.
Implementation and performance details of the system can be found in WHAL90 and DAVI91a. With some
extensions the system can be used to gather information so that execution times of straight-line code sequences can be

predicted in hard-real-time systems [HARMO92].

vpo's framework also permits analysis of the instruction set architecture of uninstantiated architectures
[DAVI90, DAVI91b, ALEX93]. This allows early design decisions to be evaluated using applications that will be run
on the architecture. Normally the last step of the code improvement process is to translate the RTLs to assembly
language for the target machine. When the target machine does not exist, rather than emit assembly code for the target
machine, assembly code for a host machine is emitted that emulates the non-existent target machine instructions.

Information about the effects of the instruction are emitted as if the target architecture existed.

An increasingly important aspect of machine design is the construction of a memory hierarchy that meets the
processor’s demand for instructions and data. One technique for evaluating memory hierarchy performance is to use
trace-driven simulation [SMIT82]. In this approach, traces of the addresses fetched by programs are captured and used
to simulate the cache or memory system. Alternative designs can be simulated to determine what gives the best
performance for a particular design. One difficulty with trace-driven simulation is the expense of gathering traces. vpo
supports the efficient gathering and analysis of traces [WHAL93]. (Note: Details to be included in full paper. We also
describe vpo’s use in developing hard-real-time systems[ARNO94, MUEL94].)

-11 -



5 Related Work

Auslander and Hopkins describe the implementation of the PL.8 compiler [AUSL82]. The PL.8 code improver
employed phase iteration, and the authors also noted that this greatly simplified the implementation of the various
code improving transformations. While the PL.8 compiler used a low-level intermediate language, it did not represent
target machine instructions. The final phase of the code improver was responsible for mapping the optimized
intermediate language to target machine instructions. Consequently, as Auslander and Hopkins note, the compiler is

biased in favor of target machines that are similar to the regular and simple register-to-register intermediate language.

Johnson and Miller describe a global code improver that operated at the machine-code level [JOHNS86].
While the code improver supported several front ends, it only generated code for the Hewlett-Packard Precision family
of machines. Much like vpo, the code improver relied on the front ends to collect and pass information about the set

of memory locations actually or potentially touched by each variable reference or pointer dereference.

Perhaps the most closely related work is the GNU C compiler [STAL92]. This is not surprising as both the
GNU C compiler (ge«) and vpo are descendents of a compiler that used RTLs and performed local transformations
[DAVIS1, DAVI84a]. While gec provides support for multiple front ends such as C, C++, and Objective C, these front
ends are tightly integrated with the compiler. No independently developed front end has been used with ge’s code
improver. This is because the implementation does not provide a convenient interface to the back end. This ako
prevents ge from being used for other applications. Like wpo, gec has been retargeted to many machines—23 at last
count. gec's code improver is quite large. It is 47,000 lines of code (this does not include machine descriptions or the
tools to process them). In contrast, vpo is 30,000 lines. While gec includes many code improvements, it does not employ

phase iteration. Rather, a few key phases are simply redone. This may explain gec's better compile time, but slightly less

efficient code for four of the five machines measured in Figure 3.

6  Summary

We know of no other code improvement system that 1) has been used with a variety of front ends and languages, 2)
has been targeted to a wide array of architectures, and 3) has been used to develop other additional applications such
as object-code-to-object code translators and performance evaluation tools. vpo’s utility, flexibility, and adaptability are
due to its use of a low-level intermediate language that represents target-specific instructions and its overall structure.
vpo’s structure and intermediate representation are due to the aggressive application of three design principles. First,
there are no machine-independent code improvements. Second, instruction sekction is necessary throughout the
entire code improvement process, and third, a code improver for use in a wide variety of application domains must

support a comprehensive suite of code improvements.
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