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A weak excitation, transit-time resolution limited analytic lineshape is derived for a

Doppler Broadening Free, degenerate two-photon transition from a standing wave with

a TEM00 transverse profile. This approximation is appropriate when the collisional mean

free path is much larger than the transverse width of the TEM00 beam. It is consider-

ably simpler than the two-photon absorption lineshape previously published, C. Bordé,

Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B 282,

341-344 (1976), which was derived for more general experimental conditions. The case of

a saturating field, with an intensity-dependent shift of the resonance frequency, is treated

and expressed in reduced units. Numerical calculations are presented for the lineshape for

a range of the reduced intensity and light intensity shifts values.
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Recently, the author published an analysis of cavity-ring down spectroscopy detection of two-

photon absorption (TPA).1 Degenerate two-photon absorption from counter-propagating waves is

first-order Doppler-free,2–4 which allows for resolution far higher than Doppler broadened spec-

troscopy. For excitation in the IR, near a vibrational fundamental, there are resonantly enhanced

transitions from the ground vibrational state to an overtone of an IR allowed fundamental, with

changes in rotational energy compensating for anharmonicity, resulting in a detuning of the inter-

mediate state absorption of less than the absorber’s rotational constant. This results in a spectrum

dominated by a small fraction of the transitions with thermally excited lower states, further im-

proving the selectivity compared to one-photon absorption spectroscopy. The published analysis

was based upon the steady-state solutions of the Optical Bloch equations for three levels. These

predict that TPA lines will be homogeneously broadened with an angular frequency half-width

at half maximum (HWHM) equal to one-half the dephasing rate of the coherence between initial

and final states.3,5 Typically, for ro-vibrational transitions in the IR, the homogeneous width arises

from pressure broadening and, like for one-photon absorption coefficient (with units m−1) in the

limit that pressure broadening greatly exceeds the Doppler width, the peak two-photon absorption

coefficient (with units of (m W)−1 ) of a gas will be pressure independent.1

When the pressure of the sample is reduced to the point that the collisional mean-free-path

becomes on the order of the beam radius of the laser field exciting the transition, the steady-state

solutions of the optical Block equations used in the previous work1 will no longer be appropriate

and one must consider the motion of the absorbers through the laser field. At sufficiently low

pressure, collisions can be neglected, and the resolution of the absorption will be limited by the

finite duration of the excitation field experienced by a moving molecule. A similar limit in the

cases of Lamb Dip6 and molecular beam7 spectroscopies is known as the transit-time limit.

This paper will present an analysis of two-photon absorption in the transit-time limit when a

molecule passes through a standing wave excitation field, which will be assumed to be a Gaussian

TEM00 mode.8 It will first consider the case in the weak field limit when saturation of the TPA

can be neglected and a simple analytical result can be derived. This will be followed by numeri-

cal calculations applicable to higher power, where TPA saturation and light intensity (AC Stark)

induced shifts of the absorption resonance are significant. The AC Stark shift of the transition is

proportional to optical intensity and to the difference in AC polarizability of the initial and final

states.

Let us assume that the absorber is moving with velocity~v and is excited by a TEM00 standing
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optical wave of angular frequency ω , with the z axis centered on the beam and an origin at the

focal point of the wave. Let r be the distance perpendicular to the z axis. The TEM00 electric field

of the standing wave can be written in cylindrical coordinates as:8

E(r,z, t) = E0~ε
z0√

z2
0 + z2

e
− kr2

2(z0−iz)
+i(kz−η(z))

cos(ωt)+ c.c. (1)

where k = ω/c is magnitude of the wavevector of the light, ~ε is the polarization vector, z0 is

the confocal length of the beam, and η(z) = tan−1(z/z0) the Guoy phase shift. The beam has a

Gaussian intensity vs. r, falling by a factor of e−2 for r = w(z) (the beam radius), where w(z)2 =

w2
0
(
1+(z/z0)

2) and w0 =
√

2z0/k is the beam radius in the focal plane. E0 is the electric field

amplitude at the focal point (r = z = 0) and is related to the one-way optical power, P, by E0 =√
4P/πε0cw2

0.

It is assumed that the sample is at low pressure and the optical power sufficiently low such that

we have a single pair of resonantly coupled levels, with energy difference very close to 2h̄ω . It

is further assumed that there exists one or more intermediate states, n, that simultaneously have

dipole allowed transitions from the initial state g, and to the final state f. The notation ωi = Ei/h̄,

ωi j = ωi−ω j, and Ωi j = 〈i|~µ ·~ε| j〉E0(w0/w(z))e−r2/w(z)2
/2h̄ is used. The resonant condition

implies 2ω ≈ ωgf and we assume that the detuning of all one photon transitions |ω−ωi j| is large

compared to the Rabi frequencies Ωng and Ωfn. In this case, quasi-degenerate perturbation theory

can be used to eliminate the off-resonance states n in the Dress State Hamiltonian,9 resulting in an

effective 2-state Hamiltonian with matrix elements given by:10

Hgg/h̄ = ωg +∆ωg = ωg−∑
n
|Ωgn|2

(
1

ωn−ωg−ω + kvz

+
1

ωn−ωg−ω− kvz
+

1
ωn−ωg +ω + kvz

+
1

ωn−ωg +ω− kvz

)
(2)

Hff/h̄ = ωf +2ω +∆ωf = ωf +2ω−∑
n
|Ωfn|2

(
1

ωn−ωf−ω + kvz

+
1

ωn−ωf−ω− kvz
+

1
ωn−ωf +ω + kvz

+
1

ωn−ωf +ω− kvz

)
(3)

Hgf/h̄ = Ω2p =
1
2 ∑

n
ΩgnΩnf

(
1

ωn−ωg−ω + kvz

+
1

ωn−ωg−ω− kvz
+

1
ωf−ωn−ω + kvz

+
1

ωf−ωn−ω− kvz

)
(4)

Ωi jΩ jk = 〈i|~µ ·~ε| j〉〈 j|~µ ·~ε|k〉
Pe−2r2/w(z)2

π ε0 c h̄2 w(z)2
(5)
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The state f has one photon fewer in the light field from each direction; this model does not in-

clude the Doppler-broadened TPA contribution which reaches distinguishable final states with

two photons removed from either directional beam and includes a Doppler shift contribution

of ±2kvz to Hff. The equation of motion for this effective two-level system is the same as a

one photon two-level system if we use Ω2p in Eq.4 for the Rabi frequency as well as ∆ω =

ωf −ωg − 2ω + ∆ωf − ∆ωg (Eqs. 2 and 3) for the detuning from resonance. Both Ω2p and

∆ωf−∆ωg are proportional to the light intensity; ∆ωf−∆ωg is often called the light or AC Stark

shift.

In the limit that the TPA is dominated by a single near-resonance state n, but with |ωng−

ω|>> |ωfg−2ω| and kvz, we have the limits ∆ωfg = ∆ωf−∆ωg =−2(Ω2
fn−Ω2

ng)/(ωng−ω) and

Ω2p = 2ΩfnΩng/(ωng−ω) . If we further assume the double harmonic oscillator approximation,11

that we are driving the n→ 1→ 2 two-photon vibrational transition, and approximate the two

rotational contributions to the transition matrix elements as equal, we have Ω21 =
√

2Ω10 and

thus ∆ωfg = Ω2p/
√

2 = 2Ω2
01/(ωng−ω).

Given the lack of Doppler broadening, and that z0 >> w(z), we can ignore vz when integrat-

ing the equations of motion. Each molecule will pass through the TEM00 mode with an im-

pact parameter b and the magnitude of the velocity perpendicular to z of v, with v having a 2-D

Maxwell-Boltzmann distribution, P2D(v) = (mv/kBT )exp(−mv2/2kBT ). For such a trajectory, let

ρ∞
ff (b,v,∆ω) be the probability that a molecule that enters the field in state g leaves in state f;

∆ω = (ωf−ωg)/2−ω is the detuning from the two photon resonance. The rate of photon absorp-

tion per unit pathlength by a thermal sample with number density in state g of Ng can be written

as

R2p(∆ω) = 4Ng

∫
∞

0

∫
∞

0
vP2D(v)ρ∞

ff (b,v,∆ω)dbdv (6)
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I. WEAK FIELD LIMIT

For a weak excitation field intensity, we use first order time dependent perturbation theory to

write

ρ
∞
ff (b,v,∆ω) =

∣∣∣∣∫ ∞

−∞

Ω2p(t)exp(−i(2∆ωt))dt
∣∣∣∣2 (7)

Ω2p(t) = Ω
(0)
2p exp(−2b2/w2)exp(−2v2t2/w2) (8)

ρ
∞
ff (b,v,∆ω) =

(
Ω

(0)
2p

)2
exp(−4b2/w(z)2)

πw(z)2

2v2 exp
(
−w(z)2∆ω2

4v2

)
(9)∫

∞

−∞

ρ
∞
ff (b,v,∆ω)db =

(
Ω

(0)
2p

)2 (πw(z)2)3/2

4v2 exp
(
−w(z)2∆ω2

4v2

)
(10)

Recalling that ∆ω is linear in ω , we see that for a molecule crossing with perpendicular speed v,

the transit-time limited, nonsaturated lineshape is Gaussian in detuning with an angular frequency

HWHM of 2
√

ln(2)v/w(z). For single-photon absorption in the transit time limit, the lineshape

is also Gaussian in detuning with a HWHM of
√

2ln(2)v/w0, independent of the beam crossing

position z. The later is due to the fact that as one moves away from the focus and the beam radius

increases, the laser beam develops a wavefront curvature that leads to an effective frequency sweep

experienced by the molecules crossing it and this just compensates for the expected reduction in

linewidth due to the longer interaction time. In the two-photon case, the frequency shifts due to

motion through the forward and backward propagating fields cancels and thus does not increase

the two-photon linewidth. The two-photon lineshape is independent of the collimation of the

molecular beam while realizing the transit-time limit for one-photon transitions requires that the

angular spread of the molecular beam be < λ/2πw0, which implies that the angular spread of the

molecular beam be less than the far-field diffraction spread angle of the TEM00 beam. As
(

Ω
(0)
2p

)2

is proportional to w(z)−4, we see that the on-resonance excitation probability, ρ∞
ff (b,v,0) scales

w(z)−2 and v−2. This can be contrasted with transit-time limited one-photon absorption where the

on-resonance absorption probability is independent of w(z) and also scales as v−2.

Integration over the 2-D speed distribution gives the thermally averaged excitation rate, Eq. 6:

R2p(∆ω) =
π3Ngw(z)3

(
Ω

(0)
2p

)2

2

√
m

2kbT
exp
(
−
√

m
2kbT

w(z)|∆ω|
)

(11)

∆ωHWHM =
ln(2)
2w(z)

√
2kbT

m
(12)

where Ω
(0)
2p is the two-photon Rabi rate when the molecule is at the center of the laser beam.
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∆ωHWHM is the angular frequency HWHM (of ω) of this lineshape. The lineshape is predicted

to have a cusp, i.e. a discontinuous slope, at exact resonance ∆ω = 0. This arises from the 1/v2

factor in ρ∞
ff (b,v,∆ω), which cancels the factor of v2 in vP(v), combined with the transit-time width

approaching zero width as v→ 0. Clearly, both the assumption that collisions can be neglected

and that ρ∞
ff (b,v,∆ω) can be calculated by perturbation theory break-down in this limit of small

v. Correcting these assumptions will “round-off" the cusp. It is noted that Ω
(0)
2p is proportional to

the on-axis intensity and thus inversely proportional to w(z)2, so the on-resonance excitation rate

is inversely proportional to w(z).

Previously,12 Bordé published a considerably more complex expressions for the two-photon

lineshape. His analysis considered the interaction with the field to third order, allowed for the

two traveling waves to have different frequencies and spatial shapes, and included the 2nd order

Doppler Effect. The 2nd order Doppler effect results in a shift in the resonant frequency12 of

-ωv2/2c2, which for thermal velocities of small molecules in the IR is on the order of tens of Hz,

completely negligible compared to the transition time broadening for realistic cavity parameters.

II. LINESHAPE WITH SATURATION AND AC STARK SHIFT

Analytical expressions are not available in the strong field case, but can be computed numeri-

cally by integration of the equation of motion d~r/dt =−~Ω×~r where~r =
(
Reρgf, Imρgf,ρ11−ρ22

)
and ~Ω =

(
2Ω2pe−2(b2+v2t2)/w2

,0,2∆ω +βΩ2pe−2(b2+v2t2)/w2
)

, where β = ∆ωfg/Ω2 f (the ratio of

the AC Stark Shift in the level separation to the effective two-photon Rabi frequency), which is in-

dependent of field amplitude if the perturbation treatment of nonresonant states is valid. Reρgf and

Imρgf are the real and imaginary parts of the two-photon coherence, ρgf. For molecules with per-

pendicular speed v, ρff(∞) can be written as a function of a dimensionless reduced effective Rabi

frequency, Ω′ =
√

π/2wΩ2p/v and reduced detuning ∆ω ′ = 2w∆ωgf/v. For a molecule passing

the center of the optical beam with β = ∆ω ′ = 0, Ω′ = 1 correspond to a π pulse that inverts the

population between states g and f.

Figure 1 shows the integrated (over impact parameter, b) value of ρff(∞) as a function of Ω′

divided by w, for several values of ∆ω ′, and for three values of β = 0,1/
√

2. and
√

2, shown in

three separate panels. For β = 0 these integrated excitation probability plots are independent of

the sign of ∆ω ′. For β > 0, the curves with negative values of ∆ω ′ have higher peak values as then

the negative detuning compensates in part of the light shift near the center of the beam. Figure
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2 shows the integrated excitation probability vs. ∆ω ′ for values of Ω′ = 0.1,0.2,0.4,0.8,1.6,3.2,

and 6.4 with β = 0,1/
√

2, and
√

2 again shown in separate panels.

Under thermal conditions, the lineshape is calculated by averaging the flux of excited molecules

leaving the beam. This can be represented by another pair of dimensionless, reduced quan-

tities: Ω′′ =
√

πm
kBT wΩ2p and ∆ω ′′ =

√
2m
kBT w∆ωgf. Figure 3 shows the calculated lineshape,√

m/2kBTw2
∫ ∫

vP(v)ρff(∞,b,v,Ω2p,∆ωgf)dbdv.

III. NUMERICAL EXAMPLE

As a numerical example, consider the TPA of NNO (nitrous oxide) pumping the ν3 vibra-

tional mode, as was recently reported.13 Here m = 44 u and the mean inverse laser beam radius

at the center of the cavity used ( mirrors of 1 m radii of curvature, separation of 0.75 m and

λ = 4.53 µm) is w0 = 0.90 mm. At T=300 K, Eq. 12 predicts a low power transit time limited

lineshape with a frequency HWHM of 41.2 kHz. The root-mean-squared perpendicular velocity,

vrms =
√

2kBT/m= 335 m/s. Saturation intensity, where Ω′= 1, occurs when Ω2p = 2.97 ·105 s−1.

The detuning of the Q(17) TPA feature is 0.113 cm−1 = 2.13 · 1010 s−1. The spontaneous emis-

sion rates for the transitions that make up the near resonant pathway are Ang = 107 s−1 and

Afn = 205 s−1, so the approximation Ωfn =
√

2Ωng is a good one. Ω′= 1 when Ωng = 4.73 ·107 s−1,

which occures for molecules passing through the center of the beam when the on-axis intensity is

56.4 W/cm2 or a one way optical power of the TEM00 equal to 0.717 W. The self collisional broad-

ening HWHM coefficient for the P(18) line of the fundamental is 0.099 cm−1/bar = 30 kHz/Pa

and the two photon transition should have about the same relaxation rate, or a broadening rate

of 15 kHz/Pa. Thus, at a NNO pressure of 1 Pa, the pressure broadening width should be about

37% of the transit-time broadening. The published experiment on the TPA of this transition13

used sample pressures between 100-1200 Pa; the sample was air containing 25 ppm of NNO, i.e.

NNO partial pressures between 0.1-1.2 mPa, approximately three orders of magnitude below that

needed to realize the transit-time broadening limit if the sample was pure NNO. Clearly, sensitivity

is not the limiting factor in realizing transit time limited resolution, rather it is the stabilization and

control of the laser frequency with sufficient resolution (on the order of 1 kHz). That initial exper-

iment used optical feedback locking of the laser to the cavity used for the TPA, which resulted in

a frequency jump of the laser the lock was interrupted to observe the cavity intensity ring-down.

It should be possible to optically lock the laser to one cavity and observe the TPA in another using
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an AOM as light attenuator. The small frequency shifts required in the transit time limit could be

realized by changes in the RF drive frequency of the AOM, in which case the laser and cavity it is

locked to can be static, which should enhance their frequency stability.

IV. CONCLUSIONS

The results of this investigation provide simple expressions for the two-photon absorption line

lineshape in the low pressure limit where collisions while crossing a laser beam can be neglected

and the intensity is well below that needed to saturate the two-photon transition. The higher optical

intensity case is expressed in dimensionless reduced units for effective Rabi Frequency and light

shift and numerical lineshape calculations presented for a range of values for these.
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FIG. 1: Plots of excitation probability for a transit-time limited two-photon absorption, integrated

over impact parameter b and then divided the the optical beam radius, w, for normalization. The

horizontal axes are the dimensionless Rabi frequency, Ω′, as defined in the text. Panel a) is

calculated with no intensity dependence of the transition frequency (β = 0). The curves, from

bottom to top, correspond to dimensionless detuning of ∆ω ′ = 2.0,1.5,1.0,0.5,0.0; Panel b) is

calculated with the ratio of lineshift to Rabi frequency factor β = 1/
√

2. The curves (in order of

hight of first peak from bottom to top) were calculated with ∆ω ′ = 2.0,1.0,−2.0,0.0,−1.0. The

curves in Panel c) were calculated with β =
√

2. The curves (in order of hight of first peak from

bottom to top) were calculated with ∆ω ′ = 2.0,1.0,0.0,−2.0,−1.0.
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FIG. 2: Plots of excitation probability for a transit-time limited two-photon absorption, integrated

over impact parameter b and then divided the the optical beam radius, w, for normalization. For

each panel, curves correspond to reduced Rabi frequencies of 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, from

bottom to top. The horizontal axe are the dimensionless angular frequency detuning, ∆ω ′, as

defined in the text. Panel a) is calculated with no intensity dependence of the transition frequency

(β = 0); curves correspond to reduced Rabi frequencies of 0.1, 0.2, 0.4, 0.8, 1.6, 6.4, 3.2 12.8,

25.6 from bottom to top. Panel b) is calculated with the ratio of lineshift to Rabi frequency factor

β = 1/
√

2; curves correspond to reduced Rabi frequencies of 0.1, 0.2, 0.4, 1.6, 0.8, 6.4, 3.2, 12.8,

25.6. from bottom to top. Panel c) is calculated with β =
√

2; curves correspond to reduced Rabi

frequencies of 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6 from bottom to top.
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FIG. 3: Plots of Thermal Averaged Two-Photon Absorption Lineshapes in the Transit-time limit.

For each panel, curves correspond to reduced Rabi frequencies of 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4,

from bottom to top. The horizontal axes are the dimensionless angular frequency detuning, ∆ω ′′,

as defined in the text. Panel a) is calculated with no intensity dependence of the transition

frequency (β = 0); Panel b) is calculated with the ratio of lineshift to Rabi frequency factor

β = 1/
√

2, and Panel c) with β =
√

2.
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