
HYPERTEXT STRUCTURES
AND SOFTWARE DOCUMENTATION

James C. French, John C. Knight, Allison L. Powell

Technical Report CS-96-04
Department of Computer Science

University of Virginia
February 1996

ABSTRACT

Software documentation represents a critical resource to the successful functioning of many
enterprises. However, because it is static, documentation often fails to meet the needs of the many
diverse users who are required to consult it on a regular basis in the course of their daily work.
Software documentation is a rich resource that has not been fully exploited.

Treatment of software documentation presents a number of interesting problems that require
a blend of information retrieval and hypertext techniques for their successful solution. The evolv-
ing nature of a software project and the diverse demands on its documentation present an espe-
cially challenging environment. This is made even more challenging by the variety of information
resources, ranging from formal specification languages to source code, that must be integrated
into a coherent whole for the purpose of querying.

In this paper we discuss the issues involved with automating the management of software
documentation to better increase its utility. We describe the mechanics of a prototype system,
SLEUTH, currently under investigation at the University of Virginia as a vehicle for software
documentation management. The prototype maintains software documentation as a hypertext
with typed links for the purpose of browsing by users with varying needs. These links are synthe-
sized by the system and kept accurate under update. Appropriate authoring tools provide the sys-
tem with the information it needs for this maintenance function. Ad hoc querying is provided over
the documentation and hypertext documents are synthesized in response to these queries.

Hypertext Structures and Software Documentation

-- 1 --

INTRODUCTION

Software documentation is a critical resource for many enterprises. A software system is a
complicated artifact, and both building it and maintaining it require that engineers have accurate,
easy-to-modify, and easy-to-use documentation. This documentation has to include material
about the systems specification, design, implementation, verification, installation, and so on, and
for many large systems, it extends to dozens of volumes of text or the equivalent.

The documentation of a software system has to do more than serve as a source of accurate
technical information—it has to do this for a variety of users. Engineers at all levels of experience
need information ranging from high-level, conceptual material if they are new to a project, to low-
level detailed material if they are involved in development or maintenance. In addition, they need
to know how different types of information are related—how an aspect of design is realized in the
implementation, for example.

Present approaches to documentation often fail to meet the needs of the many diverse users
who are required to consult it on a regular basis in the course of their daily work. There are many
reasons for this, of course, but the thesis of the work described in this paper is that software docu-
mentation isinformation and that its creation and use is mainly a problem ofinformation
retrieval. The work described is an approach to software documentation that exploits modern
information retrieval methods including extensive use of hypertext links.

Treating software documentation this way raises a number of interesting problems in infor-
mation retrieval and hypertext techniques. The evolving nature of a software project and the
diverse demands on its documentation present an especially challenging environment. This is
made even more challenging by the variety of information resources, ranging from mathematical
specification languages to natural language to source code in a variety of high-level languages,
that must be integrated into a coherent whole for the purpose of querying.

In this paper we discuss the issues involved with automating the management of software
documentation to better increase its utility. We describe the mechanics of a prototype system,

SLEUTH1, that is currently under investigation at the University of Virginia as a vehicle for soft-
ware documentation management. Although it is a general-purpose system, many facets of its
design are influenced by the goal of providing high quality and extremely accurate documentation
for safety-critical systems. Safety-critical systems are those systems where the consequences of
failure are extreme, perhaps resulting in a large financial loss or endangering human life. Such
systems require documentation that is especially precise, accurate, and easy to use. The latter
property is particularly important because it is essential that engineers involved with the system
be able to obtainall of the information that they need when they need it from the documentation.

The SLEUTH system consists of both an authoring and a viewing environment. The proto-
type system maintains software documentation as a hypertext with typed links. Two unique fea-
tures of SLEUTH are: (1) that these links are synthesized by the system and kept completely
accurate under update, and (2) that synthesized links are provided between a variety of document

1. Software Literacy Enhancing Usefulness to Humans

Hypertext Structures and Software Documentation

-- 2 --

types including current system source code. Appropriate authoring tools provide the system with
the information it needs for maintaining links. Ad hoc querying is provided over the documenta-
tion and a hypertext document is synthesized to hold the response to a query.

THE PROBLEM DOMAIN

The state of the art in software documentation includes desktop publishing systems, plain
text, government standards and experimental systems. These approaches are generally not suffi-
cient for the task at hand.

Commercial desktop publishing systems, such as FrameMaker and Interleaf, facilitate writ-
ing, viewing, and editing large documents and sets of documents. These systems allow documents
to be collected into sets and automate the creation of indices and tables of contents. Most provide
a WYSIWYG editing environment and tools for creating diagrams and mathematical formulae.
They provide useful tools but do not offer guidance on what should be written.

Software-development standards generally prescribe the documents that have to be produced
and their formats but seldom provide justification for the inclusion of particular documents. In
support of the standards, there are systems that generate documents automatically in required for-
mats given a collection of system work products such as structured designs and source code.
While there are some useful features in this approach, the documents produced often end up con-
taining very little useful information. And they are certainly not easy to use.

The current approaches lead to software documents that do not serve the engineering commu-
nity well for a number of reasons.

• The preparation of documents requires enormous effort that is not viewed as commensurate
with the benefits of having it. Engineers resent developing documentation.

• Software documents are notoriously inaccurate. Even if the documents are prepared carefully,
they are rarely maintained. As a result, engineers do not trust documentation and argue that
the only accurate documentation is the source code because that is what runs. However, all of
the information needed by software engineers cannot be embodied in the source code. The
importance of documentation in the software development process is discussed by Parnas et
al. [14]. Inaccuracies or inconsistencies in documentation hinder that process.

• Software documentation is difficult to use because it is static and hence takes on a single form.
This means that a single form has to meet the needs of the various interested parties. In prac-
tice, this compromise satisfies the needs of none very well. An important aspect of this static
structure is that it rarely if ever contains a comprehensive index. This means that users are
basically left to their own devices when searching for information.

A number of experimental systems have been developed in an effort to deal with the situation
and to experiment with other approaches to managing software documentation. Four such systems
are DIF[8], SODOS[9,10], HyperCASE[2] and LaSSIE[3]:

DIF. The Document Integration Facility is an environment to develop, maintain and browse the

Hypertext Structures and Software Documentation

-- 3 --

documentation associated with a large-scale software system. It was introduced by Garg and
Scacchi [8]. The documents produced in DIF are the documents associated with each phase in the
software life cycle, from requirements analysis and specification to testing. Each segment of a
document is viewed as an object and hypertext links between documents are relationships
between objects. These relationships are stored in a relational database. Searching is allowed only
on predefined keywords.

SODOS. SODOS is the Software Documentation Support Environment proposed by Horowitz
and Williamson [9,10]. This environment integrates the ideas of an object-based modeling of the
software life cycle with a database management system. The information gathered at each stage
of the software life cycle is put into structured documents. The database consists of all documents
associated with a project. SODOS provides a document interface which allows users to modify
and query documents. Possible query terms are defined by the author.

HyperCASE. HyperCASE was proposed by Cybulski and Reed [2]. It integrates the two con-
cepts of hypertext and CASE tools. HyperCASE uses hypertext to link related information in doc-
uments associated with the software life cycle. HyperCASE provides an application for creating,
editing and presenting documents, a repository and a data dictionary. HyperCASE provides a
number of browsing capabilities.

LaSSIE. LaSSIE [3] focuses on the structure of a large software system and provides architec-
tural, operational, feature and code views of the system. LaSSIE maintains a knowledge base to
attempt to answer programmer questions.

All of these systems are helpful and provide capabilities for the software engineer that are far
superior to those available with traditional text documents. But they also have their limitations.
For example, both DIF and SODOS integrate database management systems with the software
documentation associated with the software life cycle. Queries are allowed on predefined key-
words. This can be moderately helpful to the user; however, it places an additional burden on the
author. When predefining keywords, the author is forced to anticipate the needs of the end user. If
the documentation is used in a way that the author did not anticipate, desired terms might not be
available for searching. This is similar to the problem often encountered with book indices. An
individual may be certain that a key piece of information is included in the book, having read it
once before, but be unable to locate the topic again because it was not included in the index.

With SLEUTH, the goal is to provide accurate documentation that addresses the needs of all
of the users. This goal requires that the system provide a hypertext structure to permit smooth
navigation through the material based on the user’s needs and on the information content. It also
requires that a query mechanism be provided to permit information to be retrieved based on que-
ries that are not constrained by prescribed keywords or other static context limitations.

In considering the scope of the problem that software documentation presents, it is instructive
to try to identify the set of potential users and to itemize their individual needs. The documenta-
tion for safety-critical systems, one of the systems that SLEUTH is designed to support, has many
potential users including the following:

Hypertext Structures and Software Documentation

-- 4 --

• The software engineer who must design a new system component. This engineer will need
detailed information on all work products and all components to determine the interactions of
the new component with the existing ones.

• The project manager preparing a status report. This user needs relatively high level yet very
specific information on the areas of the project covered by the status report.

• The software engineer new to the project. This engineer will need high level and conceptual
information presented in such a way that more detail is available when needed.

• A maintenance programmer charged with making an enhancement or change. This user needs
detailed information on a specific system area, along with interactions with other components.
As detailed by Soloway et al. [17], documentation should help the maintenance programmer
to have a full understanding of the system before making a change so that the system design
can be consistently maintained.

• A regulator who must determine if a legal requirement has been implemented. The regulator
may need information at varying degrees of detail to complete this task.

This is a very wide spectrum of needs. To address these needs, SLEUTH depends in large
part on the hypertext structure of the documentation. This structure allows users to tailor both the
degree of detail and the specific content to their needs. However, as discussed by Marchionini and
Shneiderman [13], while hypertext is an excellent environment for browsing and providing vary-
ing levels of detail, it is not always best for providing quick answers to specific questions. There-
fore, SLEUTH provides a search engine, in addition to hypertext, to address those needs.

HYPERTEXT LINK SYNTHESIS

There is an interesting and important difference between information in the form of software
documentation and almost all other kinds of information. This difference is that, from the outset,
software documentation can be designed for retrieval. Although legacy systems exist with volu-
minous, unstructured, and inaccurate documentation, new systems, and especially safety-critical
systems, can be documented with a view to ensuring that the form and content of the documenta-
tion is optimized for retrieval that is easy, accurate and complete.

This is a novel situation that can be quite difficult to appreciate by both software engineers
and information retrieval specialists. But it presents a tremendous opportunity because techniques
that are useful yet have limitations in traditional circumstances can be used optimally in software
documentation. An example is hypertext links—as noted above, in SLEUTH they are synthe-
sized. The reason is not efficiency or cost savings. In safety-critical systems, the cost of failure is
so high that cost savings during development are very much a secondary concern. The reason they
are synthesized is to ensure the reader of completeness and accuracy.

Completeness ensures that if the author determines that a link should be present to alert the
reader to other information in the document, then it will be present. Accuracy ensures that all
links throughout the document that are supposed to be to a particular point will indeed all be to
that point. This means that once the synthesis is verified, the reader can be confident in each and
every link. Because they are synthesized, any item that should be a link will be no matter where it

Hypertext Structures and Software Documentation

-- 5 --

appears and no matter how many times it appears.

A special case of link synthesis is the set of links to thesource code of the software that is
being documented. It is essential in the documentation of a safety-critical system that the source
code be included and that it be the right source code. In many cases, documentation either does
not include the source code or it contains a copy. A copy is actually worse than omitting the
source code because the copy might be out of date.

SLEUTH generates hypertext links to the source code files actually used to build the software
system so it is guaranteed to be the source code as seen by the compilers. Within SLEUTH the
source text is actually reformatted when it is opened for viewing and so the appearance on the
screen for the viewer is compatible with the remainder of the documentation.

As well as the links themselves, SLEUTH builds a “map” of the hypertext links for the user.
This map is, of course, based on the directory structure of the files in which the source code is
stored. The map is merely a convenient screen representation of the structure that facilitates navi-
gation. The map is somewhat more than a presentation of the directory structure that would be
displayed by a file manager, however. Included are a table of links for each software module. This
permits the collection of links to a module’s interface (e.g. header file in C++), its implementation
(e.g. implementation file in C++), and any other module-specific documentation into a single
structure. When users select a filename, they are presented with a scroll-box that offers the choice
of source, header or descriptive files (see Fig. 1). When users choose to view a header or source
file, it is imported into a new FrameMaker document and automatically displayed. While this
causes a slight increase in loading time, it helps to assure that users are viewing the current ver-
sion of the source code rather than an out-of-date copy.

 Fig. 1 Interface to directory-structured index.

Hypertext Structures and Software Documentation

-- 6 --

MECHANICS OF SLEUTH

Initial Prototype

An initial prototype was created using a World Wide Web browser to investigate the merit of
hypertext and searching capabilities in software documentation that was stored in HTML. The
prototype was demonstrated and response to its capabilities was positive.

However, the Web browser did not permit the necessary display flexibility, primarily for three
reasons: the paragraph formatting capabilities were limited; the number of different hypertext
links that could be represented was limited by the number of possible character formats; and,
because Web browsers are configurable by their users, there was not full control over the display
mechanism. This, in combination with difficulties encountered with the tools used to generate
HTML from FrameMaker documents led us to pursue FrameMaker as both the authoring and
viewing tool in the subsequent prototypes.

Current Prototype

FrameMaker provides a WYSIWYG editing environment and supports the creation of hyper-
text links. It also provides basic navigational features and provides a toolkit for customization.
Because it is a document-preparation system, FrameMaker provides many of the features neces-
sary for document creation and editing, allowing effort to be concentrated on more specialized
features. FrameMaker can be used to produce effective hardcopy versions of the documents pre-
cisely because it is a document-preparation system. Using FrameMaker to support authoring,
viewing and printing eliminates any potential inconsistencies that might have occurred if different
representations had been used for these three purposes.

In addition to the basis provided by FrameMaker, the major components of the current
SLEUTH prototype system are as follows: configurable hypertext filter generators; a filter to pro-
duce a directory-structured index for system and library source code; and a search engine and
associated interface that allow full text searching on the documents in the collection. The search
engine allows a user to locate information on a specific topic if it is included in the set of docu-
ments.

The major components of SLEUTH are shown in Fig. 2. The initial set of documents is
authored using FrameMaker and the author configures the hypertext filters using the configuration
file. Once the filters have been generated, they are used to create a hypertext containing the initial
documents. This process, plus the directory-structured index and the integrated search engine are
described in the following sections.

Document Creation

The author uses the standard FrameMaker WYSIWYG editing environment to compose the
initial set of documents and any associated figures and tables. The SLEUTH system provides a
document template that defines paragraph types, the formats to differentiate the typed hypertext
links and other document formatting information.

Hypertext Structures and Software Documentation

-- 7 --

The filters associated with this system require that potential hypertext terms be identified by
the author. Thus, the author maintains a list of terms to become hypertext links while creating the
documents. If the information is known at the time that the term is identified, the author also notes
the location to which the link should point. Although requiring that the author maintain a list of
terms that are to be used as links appears to be a limitation, it is not because the links are sythe-
sized. If new links are required for any reason at any time or if the set of links changes in some
other way, the entire set of material seen in the viewing environment can be recreated merely by
executing the various filters again. Since this is automated, it requires no human effort and can be
performed as often as desired.

We anticipate that a hardcopy version of the documentation will be desired in most cases. We
therefore provide filters (also shown in Fig. 2) that use the FrameMaker cross-reference facilities
to preserve some of the functionality of hypertext in the hardcopy version. Whereas hypertext
links are designated by formatted text, cross-references display the page number in the collection
of the destination of the hypertext link in the online version. If this option is used, the author will
use the recorded hypertext information to initialize the cross-reference filters as well as the hyper-
text ones.

The Filters

The SLEUTH system filters provide the ability to make each instance of specified terms a
hypertext link or a cross-reference or both. These filters are an extension to the standard Frame-
Maker facility for hypertext and cross-references—the standard facility can still be utilized if the
author wishes to add some specific link or cross reference but does not want every instance of the

Hypertext
Filter Config.
 File

Cross-ref.
filter
Config. File

Initial Set of Documents

Source Code

 Indexer

Modified Set of Documents

Linked by
hypertext

Index

Directory Index

Linked by

Filter to produce
directory index

Hypertext Filter

Cross-ref Filter

Search Engine

 Fig. 2 SLEUTH Authoring Architecture

Hypertext Structures and Software Documentation

-- 8 --

term tagged.

Filter Operation

In FrameMaker, as in the World Wide Web, hypertext links consist of two parts, the source
and the destination. The source is the area of active text and the command associated with it. The
destination is a document or a specific point within a document. If the author wants the activation
of a hypertext link to open a document at a particular location, the author must set an anchor point
at that location. The user must also provide a destination for cross-references. This is typically
accomplished by inserting each link and each cross-reference by hand. Not only is this time con-
suming and tedious, but there is also the potential that the author may make an error when creat-
ing a link. The SLEUTH filters help to ease these problems by mimicking the results of these
operations.

The hypertext and cross-reference filters operate upon the MIF (Maker Interchange Format)
representation of FrameMaker documents. MIF files consist of header information that defines the
document format and the entire text of the document that has been marked up to include the for-
matting information. The filters locate specified terms of interest, and, given the appropriate infor-
mation from the author, they insert the markup language fragments for the desired hypertext links.
The filters ignore the header information and most of the markup tags—inserting a hypertext link
in those areas would be an error.

Filter Creation

The filters are implemented as a series of generated Lex [12] programs. These programs are
generated using the configuration files created by the author. The author records the phrase to
match, the link type, the destination document and the anchor name (if desired) within the docu-
ment for each term that is to become a hypertext link or cross-reference. Available link and cross-
reference types are those to appendices, source code, figures, tables, and other related documents.
Hypertext links to glossary entries are also available. Link types are specified by the author. At
present, it is unclear if automatic determination of link type, such as that explored by Allan [1] is
feasible for this application area.

Once the configuration files have been set up, the information contained therein must be for-
matted for input to Lex (see Fig. 3). One Lex input file (i.e. specification) is created for each con-
figuration file. SLEUTH provides Lex header information and utility functions for both hypertext
and cross-reference creation, and the appropriate headers and footers are concatenated with the
rules files to create full Lex specifications. Finally, the filters are produced by running the Lex util-
ity and compiling the resulting C programs.

The source-code index is generated using the same principles employed in the hypertext fil-
ters. Source-code file names that are formatted to represent their location in the directory tree are
maintained in a FrameMaker document. Each directory name and source file name is a hypertext
link that provides access to the source code.

Hypertext Structures and Software Documentation

-- 9 --

Filter Usage

To use these filters, the author first decides which terms in the document collection should be
hypertext links and cross-references if these terms were not already recorded during the authoring
process. The author then determines the destination for each hypertext link and cross reference
and creates anchors there. These anchors should be inserted into the documents before the hyper-
text is generated for the first time—they only need to be inserted once.

Whether the standard hypertext and cross-reference facilities or the filters are used, it is nec-
essary to maintain a set of original documents. To avoid inconsistencies, all modifications to the
document collection should be made to the original copies. The hypertext is then reproduced. If
the author wants to expand the hypertext, the author should update the filter initialization files,
regenerate the filters, then re-create the hypertext.

Since the filters run on MIF files, not the standard binary files that FrameMaker produces, it
is necessary to convert file formats as part of the filtering process. The hypertext is created when
the filters are run on copies of the archived documents. The prototype system produces transfor-
mations such as those shown in Fig. 4.

In the segment that has been modified, underlined terms designate hypertext links with the
typeface denoting link type. In instances where color is available, link types are denoted using dif-
ferent colors instead of typeface. The page numbers are cross references inserted to facilitate the
use of the documents in hard copy form.

The documents currently being used to test the system are divided into chapters which dis-
cuss major system components, appendices which discuss subtopics, collections of figures and
tables, sets of documents describing code libraries and classes, and a glossary. The current imple-
mentation provides a set of hypertext link types to indicate links to each of these document types.

In the example shown in Fig. 4, italics represent links to the glossary page. No page numbers
are necessary for this type of link. Block letters and the cross-reference format ‘page F#’ denote
links to figures. Helvetica font and the cross-reference format ‘page A#’ denote links to appendi-
ces. The appendices contain supporting information which is important but not integral to under-
standing the system at large. Finally, boldface type and the cross-reference format ‘page #’ denote
links to other main topic areas. In addition, there are link formats for source code and tables. The
transformations shown in Fig. 4 are the hardcopy transformations. The online version of the doc-
uments need not include ‘page #’, etc. as that would be redundant.

Configuration
File Rule file

Generator Lex
filter.l

C Compiler
filter.c filter

 Fig. 3 Filter creation.

Hypertext Structures and Software Documentation

-- 10 --

The Search Engine

The SLEUTH system currently utilizes a WAIS (Wide Area Information Server) [11] search
engine. WAIS is intended for distributed information retrieval and based on a client-server model
of computation. We are using a variant of WAIS that allows simple Boolean keyword searching in
which the boolean operators “and”, “not” and “or” are applied to the terms delimited by the oper-
ators. The search engine returns documents in a ranked list with scoring based upon the number of
times a term occurs in a document, the location of the words, the frequency of those words in the
collection of documents and the size of the document. To improve search granularity, each para-
graph is treated as a document.

Theindexer creates a table of the document and paragraph locations of terms in the documen-
tation text. FrameMaker documents are stored either in binary or MIF format but neither of these
formats can be indexed effectively, and so SLEUTH does not store the documents in the WAIS
database. The SLEUTH system provides utilities which extract the text from the documents
(which are stored elsewhere), and then uses the WAIS indexer to index the text. After indexing,
this text is discarded and only references to the original documents are retained in the WAIS
index.

The documents in the SLEUTH system are indexed on a paragraph by paragraph basis, and
so hypertext endpoints are added to all paragraphs in the documents. This allows SLEUTH to

SYSTEM ORGANIZATION

The software system of the MSS currently consists of four separate programs as
shown in Fig. 1. The programs communicate via a network using a socket-based com-
munications package written for this system.

The central program in the MSS software system is the control program. It is
responsible for control of the application devices, management of the information that is

 Fig. 4 Document fragment before and after modification by hypertext and cross-refer-

SYSTEM ORGANIZATION

The software system of theMSS currently consists of four separate programs as
shown in Fig. 1(PAGE F1). The programs communicate via a network using asocket
(page A1)-based communications package written for this system.

The central program in theMSS software system is thecontrol program (page 7).
It is responsible for control of the application devices, management of the information

Hypertext Structures and Software Documentation

-- 11 --

open documents for the user at the nearest paragraph for any search response.

User Interface

The on-line interface presented to users is the standard FrameMaker viewing environment
that has been enhanced using the FrameMaker Developer’s Toolkit [6, 7]. This version can be
navigated using the typed hypertext links in the traditional point and click fashion. An example
viewing session is shown in Fig. 5. Multiple windows can be viewed at the same time, allowing
the user to look up a definition and view a referenced figure while examining the document of
interest. In this way, the user can have a set of relevant documents arranged on the screen to
explore a subject area in detail.

The search engine was incorporated into the system using the FrameMaker Developer’s

Toolkit. This provides an intuitive and stable interface to the search engine. If desired1, the WAIS
search engine could be replaced without changing the user interface.

1. WAIS has been used to explore the usefulness of a search engine in general. However, WAIS is not appro-
priate for all applications, specifically those involving non-networked computers. A number of search
engines with a variety of features are available. One of those could be substituted for WAIS without dras-
tically changing the way in which queries are posed.

 Fig. 5 Example browsing session.

Hypertext Structures and Software Documentation

-- 12 --

The user begins a query by choosing the ‘Search’ pull-down menu. The user can begin a new
search or continue the previous one. The search terms are entered into a pop-up window and then
the search is performed. The response currently consists of a list of hypertext links that point to
the documents and paragraphs in which the search terms are located. This list is returned in a gen-
erated FrameMaker document that is opened automatically for the user.

INFORMATION RETRIEVAL CHALLENGES WITH SOFTWARE DOCUMENTATION

The diversity of information contained in software documentation together with the myriad
uses to which it is put conspire to make this an especially demanding arena in which to apply
information retrieval techniques. It is also an arena in which there is a great deal of freedom to
innovate. We are in a position to exploit fully any characteristic of software documents that can
help improve retrieval effectiveness. The SLEUTH prototype provides an environment where we
can conduct experiments, get user feedback, and refine our techniques. Particular areas of investi-
gation are described below.

• Navigational aids for browsing and accessing the documents. This includes static system-
defined navigational links and dynamic user-defined links. The system-defined links are those
that are generated when the online version of the documentation is built. User-defined links
result from queries. A more detailed discussion of user-defined links is provided later in this
section.

• Flattening the hypertext for hardcopy. For the foreseeable future there will be a need for a hard
copy of software documents. Although dynamic links are no longer possible, we would like to
retain the utility of the static links as much a possible. We are approaching this by means of
typed hypertext links, where the type is visually conveyed by typography or color or both.

• Full-text retrieval capability. We have expanded the notion of full-text to include source code
text, requirement and specification language texts, as well as any other component of a soft-
ware documentation library.

There have been some successful applications of IR technology to software engineering such
as Frakes and Pole’s work [5] with IR techniques to search for and retrieve components from a
software reuse library. Wood and Somerville [18] have also explored this area. But for the most
part, software documents have been relegated to hardcopy to languish largely unread.

We seek nothing less than the complete integration of all software documents—from require-
ments to source code—so that they are regarded as a coherent whole and treated as such for the
purpose of information retrieval.

The most formidable challenge is to organize the online documents for maximum flexibility
to answer unanticipated queries. Users will have varying backgrounds and will require access at
different levels of specificity. A hierarchical hypertext provides the mechanism to gradually
expose detail. The difficulty is summarizing the information returned by an ad hoc query to the
level appropriate for the particular user. This implies the need to synthesize new documents on-
the-fly, documents that meet the specific needs of the user issuing a query. Automatic abstracting
will be crucial. Techniques for automatically abstracting documents have been around for over 35

Hypertext Structures and Software Documentation

-- 13 --

years. Edmundson and Wyllys [4] survey their own work and that of three other researchers: Bax-
endale, Luhn, and Oswald. More recently Salton et al. [15,16] have discussed passage retrieval
and theme generation to aid in the summarization and navigation of large complex texts. These
and other techniques will be necessary to merge fragments of this multimedia (formal specifica-
tion languages, narrative texts, figures and diagrams, tables, source code from multiple languages,
etc.) environment into a cogent response to a query.

For most purposes in software engineering, we would expect a query response to be a new
“fact dense” document on a specific user-defined topic. It must be comprehensible to the intended
reader and it must provide sensible access into the documentation corpus when that reader
requires further elaboration. Our initial studies have barely scratched the surface of what is possi-
ble. We have looked at paragraph level retrieval of narrative text where the document synthesized
in response to a query consists of a concatenated list of sentences containing appropriate key-
words. The links in this synthetic document are implicitly user-defined links.

In all cases our retrieval engine returns paragraphs. Our initial examination considered three
ways to construct the summary response from the matching paragraphs returned by a query.

• The sentence containing the keywords was retained.

• The sentence containing the keyword plus the immediately preceding and immediately fol-
lowing sentences comprised the fragment.

• The whole paragraph containing a keyword match was retained.

In each case the fragments retained were concatenated to form the response document. Note that
with sentence level retrieval it is possible to duplicate some sentences when using the second
strategy above. Care was taken to elide all duplicates.

As an additional navigational aid, the concatenated fragments in the response document were
delimited so that the reader could tell when contiguous chunks were from different underlying
sections of software documents. The delimiter included a hypertext link to the beginning of the
containing document section while the fragments were linked directly to their occurrence within
the document. Thus a reader finding a fragment useful but wanting some further elaboration on
the point is provided access to the containing passage; in case the fragment suggests that the
whole topic is useful, the reader has immediate access to the containing document section. In
either case the normal intra-document hypertext links are available within the containing docu-
ment.

Thus a response document is sufficiently differentiated so that a user can immediately tell
which underlying software documents contain appropriate material and relatively how much
material each document contributes. Although our experience with this limited document abstrac-
tion mechanism is very preliminary at this point, it does seem clear the all three strategies above
have a role to play. Much of the difference in strategies is simply a matter of preference. Different
users seem to prefer different presentations and that is to be expected. It suggests that SLEUTH
should provide a user profile mechanism so that the system can be configured by individual users
for their specific preferences.

Hypertext Structures and Software Documentation

-- 14 --

We intend to expand these experiments to include the other less standard “texts” available to
us in the SLEUTH repository.

EVALUATION

Is a system like SLEUTH really of any use? Does it improve the access to software documen-
tation that we established as a goal. A complete evaluation of such a system requires an elaborate
empirical evaluation in an industrial environment that would enable a statistically valid conclu-
sion to be drawn. Such an evaluation is considerably beyond the resources available to this
project.

To gain insight into the performance of the approach that SLEUTH embodies, we have
undertaken a feasibility study in which a significant fraction of the documentation for a single
project, an experimental medical robotic system, has been prepared. The documentation provides
the following major facilities:

• Over 100 pages of structured textual explanations of the various subsystems and appendices
describing support features and theoretical background.

• A glossary of terms.

• A set of approximately 25 descriptive figures and tables.

• Hypertext links for over 40 words and phrases.

A variety of users have viewed this documentation and the preliminary subjective evaluation
is positive. All of the authoring tools (link generators, etc.) have been used extensively and found
to be very satisfactory both in terms of their execution-time performance and the resulting hyper-
text. A more detailed assessment of the system is planned.

CONCLUSION

Software documentation is information and can benefit from the application of information-
retrieval techniques. We have described a system that provides users with software documentation
that has a much richer structure than is normally the case, that is equipped with extensive hyper-
text links that are fully synthesized, that incorporates the software source code as part of the doc-
umentation, and that includes a general-purpose search facility.

Although we have no statistical data showing a significant performance improvement from
the users perspective, anecdotal evidence suggests that the SLEUTH environment is far superior
to traditional static software documentation.

Hypertext Structures and Software Documentation

-- 15 --

REFERENCES

1. Allan, James, Automatic Hypertext Construction. Ph. D. dissertation, Cornell University, Jan-
uary 1995. Also technical report TR95-1484.

2. Cybulski, Jacob L. and Reed, Karl, “A Hypertext Based Software Engineering Environment,”
IEEE Software, pp. 62-68, March 1992.

3. Devanbu, Premkumar, Selfridge, Peter G., Branchman, Ronald J. and Ballard, Bruce W.,
“LaSSIE: a Knowledge-based Software Information System,” IEEE Proceedings of the 12th
International Conference on Software Engineering, pp. 249-261, 1990.

4. Edmundson, H. P. and Wyllys, R. E., “Automatic Abstracting and Indexing—Survey and Rec-
ommendations,” Communications of the ACM vol. 4, no. 5, pp. 226-234, May 1961.

5. Frakes, William B. and Pole, Thomas B., “An Empirical Study of Representation Methods for
Reusable Software Components,” IEEE Transactions on Software Engineering, vol. 20, no. 8,
pp. 617-630, 1994.

6. Frame Developer’s Kit for Specific Platforms - UNIX, Frame Technology Corporation, Octo-
ber 1993.

7. Frame Developer’s Kit Programmer’s Guide, Frame Technology Corporation, October 1993.
8. Garg, Pankaj K. and Scacchi, Walt, “A Hypertext System to Manage Software Life-Cycle

Documents,” IEEE Software, pp. 90-98, May 1990.
9. Horowitz, Ellis and Williamson, Ronald C., “SODOS: A Software Document Support Envi-

ronment--Its Definition,” IEEE Transactions on Software Engineering, vol. SE-12, no. 8, pp.
849-859, August 1986.

10. Horowitz, Ellis and Williamson, Ronald C., “SODOS: A Software Document Support Envi-
ronment--Its Use,” IEEE Transactions on Software Engineering, vol. SE-12, no. 11, pp. 1076-
1087, November 1986.

11. Kahle, Brewster and Medlar, A., “An Information System for Corporate Users: Wide Area
Information Servers,” Online Magazine, pp. 56-60, September 1991.

12. Lesk, M. E., and Schmidt, E., “Lex - A Lexical Analyzer Generator,” Computing Science
Technical Report 39, AT&T Bell Laboratories, Murray Hill, N. J, 1975.

13. Marchionini, Gary and Shneiderman, Ben, “Finding Facts vs. Browsing Knowledge in Hyper-
text Systems,” IEEE Computer, vol. 21, no. 1, pp. 70-80, 1988.

14. Parnas, David L., van Schouwen, A. John and Kwan, Shu Po, “Evaluation of Safety-Critical
Software,” Communications of the ACM, vol. 33, no. 6, pp. 636-648, June 1990.

15. Salton, G., Allan, J., and Buckley, C., “Approaches to Passage Retrieval in Full Text Informa-
tion Systems”, Proc. of 16th Annual Inter. ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Pittsburgh, PA, July 1993, pp. 49-58.

16. Salton, G., Allan, J., Buckley, C. and Singhal, A., “Automatic Analysis, Theme Generation,
and Summarization of Machine-Readable Texts”, Science,vol. 264, pp. 1421-1426, 3 June
1994.

17. Soloway, E., Pinto, J., Letovsky, S., Littman, D., Lampert, R., “Designing Documentation to
Compensate for Delocalized Plans,” Communications of the ACM, vol. 31, no. 11, pp. 1259-
1267, November 1988.

18. Wood, Murray and Somerville, Ian, “An Information Retrieval System for Software Compo-
nents,” SIGIR Forum, pp. 11-25, Spring/Summer 1988.

