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Abstract 
This paper presents the design and implementation of an adaptive architecture to provide relative, 

absolute and hybrid service delay guarantees for different service classes on web servers under HTTP 
1.1.  The first contribution of this paper is the architecture based on feedback control loops that enforce 
delay guarantees for classes via dynamic connection scheduling and process reallocation. The second 
contribution is our use of feedback control theory to design the feedback loop with proven performance 
guarantees. In contrast with ad hoc approaches that often rely on laborious tuning and design iterations, 
our control theory approach enables us to systematically design an adaptive web server with established 
analytical methods. The design methodology includes using system identification to establish dynamic 
models for a web server, and using the Root Locus method to design feedback controllers to satisfy 
performance specifications. The adaptive architecture has been implemented by modifying an Apache 
web server. Experimental results demonstrate that our adaptive server provides robust delay guarantees 
even when workload varies significantly. Properties of our adaptive web server also include guaranteed 
stability, and satisfactory efficiency and accuracy in achieving desired delay or delay differentiation. 

1. Introduction 
The increasing diversity of applications supported by the World Wide Web and the increasing popularity 
of time-critical web-based applications (such as online trading) motivates building QoS-aware web 
servers. Such servers customize their performance attributes depending on the class of the served requests 
so that more important requests receive better service. From the perspective of the requesting clients, the 
most visible service performance attribute is typically the service delay. Different requests may have 
different tolerances to service delays. For example, one can argue that stock trading requests should be 
served more promptly than information requests. Similarly, interactive clients should be served more 
promptly than background software agents such as web crawlers and prefetching proxies. Some 
businesses may also want to provide different service delays to different classes of customers (e.g., 
depending on their monthly fees). Hence, in this paper, we provide a solution to support delay 
differentiation in web servers. 

Support for different classes of service on the web (with special emphasis on server delay 
differentiation) has been investigated in recent literature. In the simplest case, it is proposed that 
differentiation should be made between two classes of clients; premium and basic. For example, the 
authors of [23] proposed and evaluated an architecture in which restrictions are imposed on the amount of 
server resources (such as threads or processes) which are available to basic clients. In [5][6] admission 
control and scheduling algorithms are used to provide premium clients with better service. In [11] a server 
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architecture is proposed that maintains separate service queues for premium and basic clients, thus 
facilit ating their differential treatment.  

While the above differentiation approach usually offers better service to premium clients, it does not 
provide any guarantees on the service. Hence, we call this approach the best effort differentiation model. 
In particular, the best effort differentiation model does not provide guarantees on the extent of the 
difference between premium and basic performance levels. This difference depends heavily on load 
conditions and may be diff icult to quantify. In a situation where clients pay to receive better service, any 
ambiguity regarding the expected performance improvement may cause client concern, and is, therefore, 
perceived as a disadvantage. Compared with the best effort differentiation model, the proportional 
differentiated service and the absolute guarantee model both provide stronger guarantees in service 
differentiation.  

In the absolute guarantee model, a fixed maximum service delay (i.e., a soft deadline) for each class 
needs to be enforced. A disadvantage of the absolute guarantee model is that it is usually diff icult to 
determine appropriate deadlines for web services. For example, the tolerable delay threshold of a web 
user may vary significantly depending on web page design, length of session, browsing purpose, and 
properties of the web browser [14]. Since system load can grow arbitraril y high in a web server, it is 
impossible to satisfy the absolute delay guarantees of all service classes under overload conditions. The 
absolute delay guarantee requires that all classes receive satisfactory delay if the server is not overloaded; 
otherwise desired delays are violated in the predefined priority order, i.e., low priority classes always 
suffer guarantee violation earlier than high priority classes1. In the absolute guarantee model, deadlines 
that are too loose may not provide necessary service differentiation because the deadlines can be satisfied 
even when delays of different classes are the same. On the other hand, deadlines that are too tight can 
cause extremely long latency for low priority classes in order to enforce high priority classes’ 
(unnecessary) tight deadlines.  

In the proportional differentiated service model introduced in [21], a fixed ratio between the delays 
seen by the different service classes can be enforced. This architecture provides a specification interface 
and an enforcement mechanism such that a desired "distance" between the performance levels of different 
classes can be specified and maintained. This service model is more precise in its performance 
differentiation semantics than the best effort differentiation model. The proportional differentiated service 
is also more flexible than absolute guarantee because it does not require fixed deadlines being assigned 
for each service class.  

Depending on the nature of the overload condition, either the proportional differentiated service or the 
absolute guarantee may become more desirable. The proportional differentiated service may be less 
appropriate in severe overload conditions because even high priority clients may get extremely long 
delays. In nominal overload conditions, however, the proportional differentiated service may be more 
desirable than absolute guarantee because the proportional differentiated service can provide adequate and 
precise service differentiation without requiring artificial, fixed deadlines being assigned to each service 
class. Therefore, a hybrid guarantee is desirable in some systems. For example, a hybrid policy can be 
that the server provides proportional differentiated service when the delay received by each class is within 
its tolerable threshold. When the delay received by a high priority class exceeds its threshold, the server 
automatically switches to the absolute guarantee model that enforces desired delays for high priority 
classes at the cost of violating desired delays of low priority classes. This policy can achieve the 
flexibilit y of the proportional differentiated service in nominal overload and bound the delay of high 
priority class in severe overload conditions.  

In this paper, we present a web server architecture to support delay guarantees including the absolute 
guarantee, proportional differentiated service, and the hybrid guarantee described above. A key challenge 
in guaranteeing service delays in a web server is that resource allocation that achieves the desired delay or 
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conditions. The absolute delay guarantee requires that all classes receive satisfactory delay if the 
server is not overloaded; otherwise desired delays are violated in the predefined priority order, i.e., 
low priority classes always suffer guarantee violation earlier than high priority classes. 

 
Based on the relative and absolute delay guarantees, different hybrid guarantees can be composed for 

the specific requirements of the application. For example, the hybrid guarantee described in Section 1 can 
be formulated as follows. 
 
• A Hybrid Delay Guarantee: Each class k is assigned a value Wk that represents both its desired 

delay and its desired relative delay. The hybrid guarantee {Wk | 0 ≤ k < N} provides the relative delay 
guarantees if the desired absolute delay of every class is satisfied. When the server is severely 
overloaded and desired delays cannot be provided to all classes, the hybrid guarantee provides 
absolute delay guarantees to high priority classes at the cost of violating the delays of low priority 
classes. This hybrid guarantee provides the flexibility of the proportional differentiated service in 
nominal overload while bounds the delay of high priority classes in severe overload conditions. 
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Figure 1 The Feedback-Control Architecture for Delay Guarantees 

4. A Feedback Control Architecture for Web Server QoS 
In this section, we present an adaptive web server architecture (as illustrated in Figure 1) to provide the 
above delay guarantees. A key feature of this architecture is the use of feedback control loops to enforce 
desired relative/absolute delays via dynamic reallocation of server process. The architecture is composed 
of a Connection scheduler, a Monitor, a Controller, and a fixed pool of server processes. We describe the 
design of the components in the following subsections. 

4.1.  Connection Scheduler  
The Connection Scheduler serves as an actuator to control the delays of different classes. It listens to the 
well-known port and accepts every incoming TCP connection request. The Connection Scheduler uses an 
adaptive proportional share policy to allocate server processes to connections from different classes3. At 
every sampling instant m, every class k  (0 ≤ k < N) is assigned a process budget, Bk(m), i.e., class k 
should be allocated at most Bk(m) server processes in the mth sampling period. For a system with absolute 
delay guarantees (Section 4.4.1)), the total budgets of all classes can exceed the total number of server 

                                                      
3 Note that the Connection Scheduler uses process allocation instead of CPU allocation as a mechanism to control 
the delays of different classes. This is because processes may hold idle (persistent) connections and therefore CPU is 
not necessarily the bottleneck resource under HTTP 1.1 protocols (as discussed in Section 2). 
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processes in overload, which is a condition called control saturation. In this case, the process budgets are 
satisfied in the priority order until every process has been allocated to a class. This policy means that the 
process budgets of high priority classes are always satisfied before those of low priority classes, and thus 
the correct order of guarantee violations can be achieved. For a server with relative delay guarantee, our 
Relative Delay Controllers always guarantee that the total budget equals the total number of processes 
(Section 4.4.2). For each class k, the Connection Scheduler maintains a (FIFO) connection queue Qk and a 
process counter Rk. The connection queue Qk holds connections of class k before they are allocated server 
processes. The counter Rk is the number of processes allocated to class k. After an incoming connection is 
accepted, the Connection Scheduler classifies the new connection and inserts the connection descriptor to 
the scheduling queue corresponding to its class. Whenever a server process becomes available, a 
connection at the front of a scheduling queue Qk is dispatched if class k has the highest priority among all 
eligible classes { j| Rj < Bj(m)} .  

For the above scheduling algorithm, a key issue is how to decide the process budgets { Bk | 0 ≤ k < N} 
to achieve the desired relative or absolute delays { Wk | 0 ≤ k < N} . Note that static mappings from the 
desired relative or absolute delay { Wk | 0 ≤ k < N} to the process budget { Bk | 0 ≤ k < N} (e.g., based on 
system profili ng) cannot work well when the workloads are unpredictable and vary at run time (see 
performance results in Section 7.3.1). This problem motivates the use of feedback controllers to 
dynamically adjust the process budgets { Bk | 0 ≤ k < N} to maintain desired delays. 

Because the Controller can dynamically change the process budgets, a situation can occur when a 
class k’ s new process budget Bk(m) (after the adjustment in saturation conditions described above) 
exceeds the total number of free server processes and processes already allocated to class k. Such class k 
is called an under-budget class. Two different policies, preemptive vs. non-preemptive scheduling, can be 
supported in this case. In the preemptive scheduling model, the Connection Scheduler immediately forces 
server processes to close connections of over-budget classes whose new process budgets are less than the 
number of processes currently allocated to them. In the non-preemptive scheduling model, the Connection 
Scheduler waits for server processes to voluntaril y release connections of over-budget classes before it 
allocates enough processes to under-budget classes. The advantage of the preemptive model is that it is 
more responsive to the Controller’s input and load variations, but it can cause jittery delay in preempted 
classes because they may have to re-establish connections with the server in the middle of loading a web 
page. Only the non-preemptive model is currently implemented in our web server. The preemptive model 
will be investigated in our future work. 

4.2.  Server Processes 
The second component of the architecture (Figure 1) is a fixed pool of server processes. Every server 
process reads connection descriptors from the connection scheduler. Once a server process closes a TCP 
connection it notifies the connection scheduler and becomes available to process new connections.  

4.3.  Monitor 
The Monitor is invoked at each sampling instant m. It computes the average connection delays { Ck(m) |   
0 ≤ k < N} of all classes during the last sampling period. The sampled connection delays are used by the 
Controller to compute new process proportions.  

4.4. Controllers 
The architecture uses one Controller for each relative or absolute delay constraint. At each sampling 
instant m, the Controllers compare the sampled connection delays { Ck(m) | 0 ≤ k < N} with the desired 
relative or absolute delays { Wk | 0 ≤ k < N} , and computes new process budgets { Bk(m) | 0 ≤ k < N} 4, 
which are used by the Connection Scheduler to reallocate server processes during the following sampling 

                                                      
4 It is the exact algorithm for this computation that control theory enables us to derive as described in the remainder 
of this section and Section 5. 



 7 

period. We first describe the Absolute Delay Controllers and the Relative Delay Controllers in Sections 
4.4.1 and 4.4.2, respectively. The Hybrid Delay Controllers based the Absolute and Relative Delay 
Controllers are described in Section 4.4.3.  

4.4.1. The Absolute Delay Controllers 
The absolute delay of every class k is controlled by a separate Absolute Delay Controller CAk. The key 
parameters and variables of CAk, are shown in Table 1.  
 
Reference VSk The reference of an Absolute Delay Controller CAk is the desired delay of class k, i.e., 

VSk = Wk. 
Output Vk(m) From the Absolute Delay Controller CAk’s perspective, the system output Vk(m) at the 

sampling instant m is the sampled delay of class k, i.e., Vk(m) = Ck(m). 
Error Ek(m) The difference between the reference and the output, i.e., Ek(m) = VSk – Vk(m). 

Control input Uk(m) At every sampling instant m, the Absolute Delay Controller CAk computes the control 
input Uk(m), i.e., the process budget Bk-1(m) of class  k. 

Table 1: Variables and Parameters of the Absolute Delay Controller CAk 

 
The goal of the Absolute Delay Controller CAk is to reduce the error Ek(m) to 0 and achieve the 

desired delay for class k. Intuiti vely, when Ek(m) = VSk – Vk(m) < 0, the Controller should increase the 
process budget Uk(m) = Bk(m) to allocate more processes to class k. At every sampling instant m, the 
Absolute Delay Controller calls PI (Proportional-Integral) control [23] to compute the control input. A 
digital form of PI control function is 
 

Uk(m) = Uk(m-1) + g(Ek(m) – rEk(m-1))  (1) 
 

g and r are design parameters called the controller gain and the controller zero, respectively. The 
performance of the web server depends on the values of the controller parameters. An ad hoc approach to 
design the controller is to conduct laborious experiments on different values of the parameters. In our 
work, we apply control theory to tune the parameters analytically to guarantee the desired performance in 
the web server. The design and tuning methodology is presented in Section 5.  

For a system with N service classes, the Absolute Delay Guarantee is enforced by N Absolute Delay 
Controllers CAk (0 ≤ k < N). At each sampling instant m, each Controller CAk computes the process 
budget of class k. Note that in overload conditions, the process budgets  (especially those of low priority 
classes) computed by the Absolute Delay Controllers may not be feasible if the sum of the computed 
process budgets of all classes exceeds the total number of server processes M, i.e., ∑jPk(m) > M. This is a 
situation called control saturation. Because low priority classes should suffer guarantee violation in 
overload conditions, the system always satisfy the computed process budgets in the decreasing order of 
priorities until every server process has been allocated to a class5.  

4.4.2. The Relative Delay Controllers 
The relative delay of every two adjacent classes k and k-1 is controlled by a separate Relative Delay 
Controller CRk. Each Relative Delay Controller CRk, has following key parameters and variables. For 
simplicity of discussion, we use the same notations for the corresponding parameters and variables of the 
Absolute Delay Controller and the Relative Delay Controllers. 
 

                                                      
5 To avoid complete starvation of low priority classes, the system may reserve a minimum number of server 
processes to each service class. 
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Reference VSk The reference of the Relative Delay Controller CRk is the desired delay ratio between 
class k and k-1, i.e., VSk = Wk/Wk-1. 

Output Vk(m) From the perspective of the Relative Delay Controller CRk, the system output is the 
sampled delay ratio between class k and k-1, i.e., Vk(m) = Ck(m) / Ck-1(m). 

Error Ek(m) The difference between the reference and the output, Ek(m) = VSk – Vk(m). 

Control input Uk(m) At every sampling instant m, CRk computes the control input Uk(m) defined as the ratio 
(called the process ratio) between the number of processes to be allocated to class  k-1 
and k, Uk(m) = Bk-1(m) / Bk(m). 

Table 2: Variables and Parameters of the Relative Delay Controller CRk 

 
Intuitively, when Ek(m) < 0, CRk should decrease the process ratio Uk(m) to allocate more processes to 
class k relative to class k-1. The goal of the controller CRk is to reduce the error Ek(m) to 0 and achieve the 
correct delay ratio between class k and k-1. Similar to the Absolute Delay Controller, the Relative Delay 
Controller also uses PI (Proportional-Integral) control (Equation (1)) to compute the control input (note 
that the parameters and variables are interpreted differently in the Absolute Delay Controller and the 
Relative Delay Controller).  
 For a system with N service classes, the Absolute Delay Guarantee is enforced by N-1 relative Delay 
Controllers CRk (1 ≤ k < N). At every sampling instant m, the system calculates the process budget Bk(m) 
of each class k as follows. 
  

control_relative_delay ({Wk | 0 ≤ k < N}, {Ck(m) | 0 ≤ k < N}) 
{ 

Set class (N-1)’s process proportion PN-1(m) = 1; 
S = PN-1(m); 

 for ( k = N-2; k ≥ 0; k--) { 
Calls CRk+1 to get the process ratio Uk+1(m) between class k and k+1;  
The process proportion of class k Pk(m) = Pk+1(m)Uk(m) 
S = S + Pk(m); 

} 
  for ( k = N-1; k ≥ 0; k--) 

Bk(m) = M (Pk(m) / S) 
} 

4.4.3. The Hybrid Delay Controllers 
The hybrid delay guarantee described in Section 3 can be implemented via dynamic switching between 
the Absolute Delay Controllers and the Relative Delay Controllers. The server switches from Relative 
Delay Controllers to Absolute Delay Controllers if the absolute delay guarantee of the highest priority 
class is violated, i.e., C0(m) > W0 + H; On the other hand, the server switches from Absolute Delay 
Controllers to Relative Delay Controllers if C0(m) < W0 - H. The use of a threshold window ±H in the 
mode switching condition is to avoid thrashing between the two sets of Controllers. Since the hybrid 
delay guarantee is a straightforward extension of absolute and relative delay guarantees, we focus on the 
design and evaluation of absolute and relative delay guarantees in the rest of this paper. 
 

In summary, we have presented a feedback control architecture to achieve absolute, relative and 
hybrid delay guarantees on web servers. A key component in this architecture is the Controllers, which 
are responsible of dynamically computing correct process budgets in face of unpredictable workload and 
system variations. In the rest of the paper, we use the closed-loop server to refer to the adaptive web 
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server with the Controllers (Figure 1), while the open-loop server refers to a non-adaptive web server 
without the Controllers. We present the design and tuning of the Controllers in the next section.  

5. Design of the Controller  
In this Section, we apply a control theory framework [23][33] to design the Relative Delay Controller CRk 
and the Absolute Delay Controller CAk. In Section 5.1, we specify the performance requirement of the 
Controllers. We then use system identification techniques to establish dynamic models for the web server 
in Section 5.2. Based on the dynamic model, we use the Root Locus method to design the Controllers that 
meet the performance specifications (Section 5.3).  

5.1. Performance Specifications 
In [34], we presented a set of performance metrics to characterize the performance of adaptive real-time 
systems based on control theory [27]. Compared with traditional metrics that only describe steady state 
performance, the specifications and metrics presented in [34] can characterize the dynamic performance 
of adaptive systems in both transient and steady state. In this paper, we use similar metrics to specify the 
performance requirements of the closed-loop server. The performance specifications of the closed-loop 
server include in following.  
 
o Stability: a (BIBO) stable system should have bounded output in response to bounded input. To the 

Relative Delay Controller (with a finite desired delay ratio), stability requires that the delay ratio 
should always be bounded at run-time. To the Absolute Delay Controller, stability requires that the 
service delay should always be bounded at run-time. Stability is a necessary condition for achieving 
desired relative or absolute delays.  

o Settling time Ts is the time it takes the output to converge to the vicinity of the reference and enter 
steady state. The settling time represents the efficiency of the Controller, i.e., how fast the server can 
converge to the desired relative or absolute delay. As an example, we assume that our web server 
requires the settling time Ts < 5 min. 

o Steady state error Es is the difference between the reference input and average of output in steady 
state. The steady state error represents the accuracy of the Relative Delay Controller or Absolute 
Delay Controller in achieving the desired relative or absolute delays. As an example, we assume that 
our web server requires a steady state error |Es| < 0.1VS. Note that satisfying this steady state error 
requirement means that our web server can achieve the desired relative or absolute delays in steady 
state. 

5.2. System Identification: Establishing Dynamic Models 
A dynamic model describes the mathematical relationship between the input and the output of a system 
(usually with differential or difference equations). Modeling is important because it provides a basis for 
the analytical design of the Controller. From the perspective of a Relative Delay Controller CRk, the 
(control) input of the controlled system is the process ratio Uk(m) = Bk-1(m)/Bk(m). The output of the 
controlled system is the delay ratio Vk(m) = Ck(m)/Ck-1(m) (see Table 2). From the perspective of an 
Absolute Delay Controller CAk, the (control) input of the controlled system is the process budget Uk(m) = 
Bk(m). The output of the controlled system is the delay Vk(m) = Ck(m) (see Table 1). We intentionally use 
the same symbols for input and output for Relative and Absolute Delay Controllers because the design 
methodology described below applies to both cases. Assuming the controlled system models for different 
classes are similar, we skip the class number k of Uk(m) and Vk(m) in the rest of this Section.  

Unlike traditional control theory applications such as mechanical and electronic systems, it is often 
difficult to directly describe a computing system such as a web server with differential or difference 
equations. To solve the modeling problem, we adopt a practical approach by applying system 
identification [8] to estimate the model of the web server. The controlled system (including the 
Connection scheduler, the server processes, and the Monitor) is modeled as a difference equation with 
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unknown parameters. We then stimulate the web server with pseudo-random digital white-noise input 
[37] and use a least squares estimator to estimate the model parameters. Our experimental results (Section 
7.2) established that, For both relative and absolute delay control, the controlled system can be modeled 
as a second order difference equation with adequate accuracy for the purpose of control design. The 
architecture used for system identification is illustrated in Figure 2. We describe the components of the 
architecture in the following subsections. 
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Figure 2 Architecture for system identification 

5.2.1.  Model Structure 
The web server is modeled as a difference equation with unknown parameters, i.e., an nth order model can 
be described as follows,  
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In an nth order model, there are 2n parameters {aj, bj | 1 ≤ j ≤ n} that need to be decided by the least-
squares estimator. The difference equation model is motivated by our observation that the output of an 
open-loop server depends on previous inputs and outputs (experimental results are not shown in this paper 
due to space limitations). Intuitively, the dynamics of a web server is due to the queuing of connections 
and the non-preemptive scheduling mechanism. For example, the connection delay may depend on the 
number of server processes allocated to its class in several previous sampling periods. For another 
example, after class k’s process budget is increased, the Connection Scheduler has to wait for connections 
of other classes to voluntarily release server processes to reclaim enough processes to class k.  

5.2.2. White Noise Input 
To stimulate the dynamics of the open-loop server, we use a pseudo-random digital white noise generator 
to randomly switch two classes’ process budgets between two configurations . White noise input has been 
commonly used for system identification [8]. The white noise algorithm is not presented due to space 
limitations. A standard algorithm for white noise can be found in [37]. 

5.2.3.  Least Squares Estimator 
The least squares estimator is the key component of the system identification architecture. In this section, 
we review its mathematical formulation and describe its use to estimate the model parameters. The 
derivation of estimator equations is given in [8]. The estimator is invoked periodically for at every 
sampling instant. At the mth sampling instant, it takes as input the current output V(m), n previous outputs 
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V(m-j) (1 ≤ j ≤  n), and n previous inputs U(m-j) (1 ≤ j ≤  n). The measured output V(m) is fit to the model 
described in Equation (2). Define the vector q(m) = (V(m-1) … V(m-n) U(m-1) …U(m-n))T, and the vector 
θ(m) = (a1(m)…an(m) b1(m)… bn(m))T, i.e., the estimations of the model parameters in Equation (2). 
These estimates are initiali zed to 1 at the start of the estimation. Let R(m) be a square matrix whose initial 
value is set to a diagonal matrix with the diagonal elements set to 10. The estimator’s equations at 
sampling instant m are [8]: 
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At any sampling instant, the estimator can “predict” a value Vp(m) of the output by substituting the current 
estimates θ(m) into Equation (2). The difference V(m)-Vp(m) between the measured output and the 
prediction is the estimation error. It was proved that the least squares estimator iteratively updates the 
parameter estimates at each sampling instant such that ∑0≤i≤m(V(i) - Vp(m))2 is minimized. 

Our system identification results (Section 7.2) established that, the controlled system can be modeled 
as a second order difference equation,  
 

V(m) = a1V(m-1) + a2V(m-2) + b1U(m-1) + b2U(m-2) (6a) 
 
In the case of relative delay control, V(m) denotes the delay ratio between the two controlled classes, and 
U(m) denotes the process ratio between the two controlled classes, and the estimated model parameters 
are (Section 7.2): 
 

(a1, a2, b1, b2) = (0.74, -0.37, 0.95, -0.12) (6b) 
 

In the case of absolute delay control, V(m) denotes the delay of one controlled class, and U(m) denotes the 
process budget of the controlled class. The estimated model parameters based on system identification 
experiments (Section 7.2) are  

 
(a1, a2, b1, b2) = (-0.08, -0.2, -0.2, -0.05) (6c) 

 

5.3. Root-Locus Design 
Given a model described by Equation (6a), we can apply control theory methods such as the Root Locus 
[27] to design the Relative Delay Controller and the Absolute Delay Controller. The controlled system 
model in Equation (6a) can be converted to a transfer function G(z) in z-domain (Equation 7). The transfer 
function of the PI controller (Equation 1) in the z-domain is Equation (8). Given the controlled system 
model and the Controller model, the transfer function of the closed loop system is Equation (9). 
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According to control theory, the performance of a system depends on the poles of its transfer function. 
The Root Locus is a graphical technique that plots the traces of poles of a closed-loop system on the z-
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plane (or s-plane) as its controller parameters change. We use the Root Locus tool of MATLAB [28] to 
tune the controller gain g and the controller zero r so that the performance specs can be satisfied. Due to 
space limitations, we only summarize results of the design in this paper. The details of the design process 
can be found in control textbooks such as [27].  

To design the Relative Delay Controller, we use the Root Locus tool to plot the traces of the closed 
loop poles (based on the model parameters in Equation (6b)) as the controller gain increases are illustrated 
on the z-plane in Figure 3. The closed-loop poles are placed at  

 
p0 = 0.70 p1,2 = 0.38±0.62i (10a) 

 
(see Figure 3) by setting the Relative Delay Controller’s parameters to  
 

g = 0.3 r = 0.05  (10b) 
 

Similarly, to design the Relative Delay Controller (based on the model parameters in Equation (6c)), the 
closed-loop poles are placed at  

 
p0 = 0.607  p1,2 = -0.30±0.59i   (11a) 
 

by setting the Absolute Delay Controller’s controller parameters to  
 

g = -4.6 r = 0.3 (11b) 
 
The above pole placement is chosen to achieve the following properties in the closed loop system [27]:  
 
• Stability: The closed-loop system with the Relative Delay Controller (with parameters in Equation 

(10b)) or the Absolute Delay Controller (with parameters in Equation (11b)) guarantees stability 
because all the closed-loop poles are in the unit circle, i.e., |pj| < 1 (0 ≤ j ≤ 2) (Equations (10a) and 
(11a)).  

• Settling time: According to control theory, decreasing the radius (i.e., the distance to the origin in the 
z-plane) of the closed-loop poles usually results in shorter settling time. The Relative Delay 
Controller (with Equation (10b)) achieves a settling time of 270 sec, and the Absolute Delay 
Controller (with Equation (11b)) achieves a settling time of 210 sec, both lower than the required 
settling time (300 sec) defined in Section 5.1. 

• Steady state error: Both the Relative Delay Controller and the Absolute Delay Controller achieve 
zero steady state error, i.e., Es = 0. This result can be easily proved using the Final Value Theorem in 
digital control theory [23]. This result means that, in steady state, the closed-loop system with the 
Relative Delay Controller or the Absolute Delay Controller guarantees the desired relative delays or 
the desired absolute delays, respectively.  

 
In summary, using feedback control theory techniques including system identification and the Root 

Locus design, we systematically design the Relative Delay Controller and the Absolute Delay Controller 
that analytically provide the desired relative or absolute delay guarantee and meet the transient and steady 
state performance specifications described in Section 5.1. This result shows the strength of the control-
theory-based design framework for adaptive computing systems. 
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Figure 3 The Root Locus of the web server model 

6. Implementation 
We now describe the implementation of the web server. We modified the source code of Apache 1.3.9 [7] 
and added a new library that implemented a Connection Manager (including the Connection Scheduler, 
the Monitor and the Controllers). The server was written in C and tested on a Linux platform. The server 
is composed of a Connection Manager process and a fixed pool of server processes (modified from 
Apache). The Connection Manager process communicates with each server process with a separate UNIX 
domain socket. 
 
• The Connection Manager runs a loop that listens to the web server’s TCP socket and accepts 

incoming connection requests. Each connection request is classified based on its sender’s IP address 6 
and scheduled by a Connection Scheduler function. The Connection Scheduler dispatches a 
connection by sending its descriptor to a free server process through the corresponding UNIX domain 
socket. The Connection Manager time stamps the acceptance and dispatching of each connection. The 
difference between the acceptance and the dispatching time is recorded as the connection delay of the 
connection. Strictly speaking, the connection delay should also include the queuing time in the TCP 
listen queue in the kernel. However, the kernel delay is negligible in this case because the Connection 
Manager always greedily accepts (dequeues) all incoming TCP connection requests in a tight loop. 

 
• The Monitor and the Controllers are invoked periodically at every sampling instance. For each 

invocation, the Monitor computes the average delay for each class. This information is then passed to 
the Controllers, which implements the control algorithm to compute new process budgets. 

 
• We modified the code of the server processes so that they accept connection descriptors from UNIX 

domain sockets (instead of common TCP listen socket as in Apache). When a server process closes a 
connection, it notifies the Connection Manager of its new status by sending a byte of data to the 
Connection Manager through the UNIX domain socket.  

 
The server can be configured to a closed-loop/open-loop server by turning on/off the Controllers. An 

open-loop server can be configured for either system identification or performance evaluation. 

                                                      
6 Other criteria for connection classification include HTTP cookies, Browser plug-ins, URL request type or filename 
path, and destination IP address of virtual servers [12]. 
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7. Experimentation 
All experiments were conducted on a testbed of ten PC’s connected with 100 Mbps Ethernet. Each 
machine had a 450MHz AMD K6-2 processor and 256 MB RAM. One machine was used to run the web 
server with HTTP 1.1, and up to four other machines were used to run clients that stress the server with a 
synthetic workload. The experimental setup was as follows. 
 
• Client: We used SURGE [13] to generate realistic web workloads in our experiments. SURGE uses a 

number of user equivalents (also called users for simplicity) to emulate the behavior of real-world 
clients. The load on the server can be adjusted by changing the number of users on the client 
machines. Up to 500 concurrent users were used in our experiments. 

• Server: The total number of server processes was configured to 128. Since service differentiation is 
most necessary when the server is overloaded, we set up the experiment such that the ratio between 
the number of users and the number of server processes could drive the server to overload. Note that 
although large web servers such as on-line trading servers usually have more server processes, they 
also tend to have many more users than the workload we generated. Therefore, our configuration can 
be viewed an emulation of real-world overload scenarios at a smaller scale. The sampling period S 
was set to 30 sec in all the experiments. The connection TIMEOUT of HTTP 1.1 was set to 15 sec. 

 
In Section 7.1, we present experimental results that compare connection delays with response time of 

a server with HTTP 1.1. The experiments on system identification are presented in Section 7.2. We 
present the evaluation of the closed-loop server in Section 7.3. 
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Figure 4 Connection delay and response time 

7.1. Comparing Connection Delays and Response Times 
In the first set of experiments, we compare the average connection delay and the average response time 
(per HTTP request) of an open-loop server (see Figure 4) to justify the use of connection delay as a metric 
for service differentiation in web servers with HTTP 1.1. All connections are treated as being in a same 
class and all server processes are allocated to the class. Every point in Figure 4 refers to the average 
connection delay or average response time in four 10-minute runs with a same number of users. The 90% 
confidence intervals are within 0.58 sec to all the presented average connection delays, and within 0.21 
sec to all the presented average response times. The connection delay is significantly higher and increases 
at a much faster rate than the response time as the number of users increases. For example, when the 
number of users is 400, the connection delay is 4.9 times the response time. Note that the average 
response time is computed based on two types of requests, i.e., the response time (including the 
connection delay and the processing delay) of the first request of each connection and the response time 
(including only the processing time) of each subsequent request. The difference between connection delay 
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and response time is due to the fact that processing delay is on average significantly shorter than 
connection delay. We also run similar experiments with 256 server processes (the maximum number 
allowed by the original Apache on Linux). With 256 server processes, the ratio between the connection 
delay and the response time is similar to that presented in Figure 4. For example, the connection delay 
was 5.3 times the response time when 400 users are used. The complete result for this case is not 
presented due to space limitations. This result justifies our decision to use connection delay as a metric for 
service differentiation in web servers with HTTP 1.1.  
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Figure 5 System identification results for Relative Delay 

7.2. System Identification 
We now present the results of system identification experiments for both relative delay and absolute delay 
to establish a dynamic model for the open-loop system. Four client machines are divided into two classes 
0 and 1, and each class has 200 users. We begin with the relative delay experiments. The input, process 
ratio U(m) = B0(m)/B1(m), is initialized to 1. At each sampling instant, the white noise randomly sets the 
process ratio to 3 or 1. The sampled output, the relative delay V(m) = C1(m)/C0(m) is fed to the least 
squares estimator to estimate model parameters (Equation (2)). Figure 5(a) shows that the estimated 
parameters of a second order model (Equation (6)) at successive sampling instants in a 30 min run. The 
estimator and the white noise generator are turned on 2 min after SURGE started in order to avoid its 
start-up phase. We can see that the estimations of the parameters  (a1, a1, b1, b2) converge to (0.74, -0.37, 
0.95, -0.12). Substituting the estimations into Equation (6), we established an estimated second-order 



 16 

model for the open-loop server. To verify the accuracy of the model, we re-run the experiment with a 
different white noise input (i.e., with a different random seed) to the open-loop server and compare the 
actual delay ratio and that predicted by the estimated model. The result is illustrated in Figure 5(b). We 
can see that prediction of the estimated model is consistent with the actual relative delay throughout the 
30 min run. This result shows that the estimated second order model is adequate for designing the 
Relative Delay Controller. We also re-ran the system identification experiments to estimate a first order 
model and a third order model. The results demonstrate that the estimated first order model had larger 
prediction error than the second order model (see Figure 5(c)), while an estimated third order model does 
not tangibly improve the modeling accuracy (see Figure 5(d)). Hence the second order model is chosen as 
the best compromise between accuracy and complexity. 

The system identification experiments are repeated with the same workload and configurations for the 
absolute delay. The input of the open loop system is the process budget U(m) = B0(m) of class 0, which is 
initialized to 64. At each sampling instant, the white noise randomly sets the process budget to 96 or 64. 
The output is the sampled delay V(m) = C0(m) of class 0. To linearize the model, we feed the difference 
between two consecutive inputs (B0(m) - B0(m-1)) and the difference between two consecutive outputs 
(C0(m) - C0(m-1)) to the least squares estimator to estimate the model parameters in Equation (2). Figure 
6(a) shows that the estimated parameters of the second order model (Equation (6)) at successive sampling 
instants in a 30 min run. The estimations of the parameters (a1, a1, b1, b2) converge to (-0.08, -0.2, -0.2,        
-0.05). To verify the accuracy of the model, we re-run the experiment with a different white noise input to 
the open-loop server and compare the actual difference between two consecutive delay samples with that 
predicted by the estimated model (Figure 6(b)). Similar to the relative delay case, the prediction of the 
estimated model is consistent with the actual delay throughout the 30 min run. This result shows that the 
estimated second order model is adequate for designing the Absolute Delay Controller.  
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Figure 6: System Identification Results for Absolute Delay 

7.3. Evaluation of the Adaptive Web Server 
In this section, we present evaluation results for our adaptive web server. In Section 7.3.1, we first present 
the evaluation results of the Relative Delay Controller. The results for guaranteeing the relative delays of 
a server with three classes are presented in Section 7.3.2. The evaluation results of absolute delay 
guarantee are presented in Section 7.3.3. 
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7.3.1.  Evaluation of Relative Delay Guarantees between Two Classes  
To evaluate the relative delay guarantee in a server with two classes, we set up the experiments as 
follows. 
 
• Workload: Four client machines are evenly divided into two classes. Each client machine has 100 

users. In the first half of each run, only one client machine from class 0 and two client machines from 
class 1 (100 users from class 0 and 200 users from class 1) generate HTTP requests to the server. The 
second machine from class 0 starts generating HTTP requests 870 sec later than the other three 
machines. Therefore, the user population changes to 200 from class 0 and 200 from class 1 in the 
latter half of each run. 

• Closed-loop server: The reference input (the desired delay ratio between class 1 and 0) to the 
Controller is W1/W0 = 3. The process ratio B0(m)/B1(m) is initiali zed to 1 in the beginning of the 
experiments. To avoid the starting phase of SURGE, the Controller is turned on 150 sec after SURGE 
started. The sampled absolute connection delays and the delay ratio between the two classes are 
ill ustrated in Figure 7(a) and (b), respectively. 

• Open-loop server: An open-loop server is also tested as a baseline. The open-loop server is fine-
tuned to have a “correct” process allocation based on profili ng experiments using the original 
workload (100 class 0 users and 200 class 1 users). The results of the open-loop server are ill ustrated 
in Figure 7(c)(d). 

 
We first look at the first half of the experiment on the closed-loop server (Figure 7(a)(b)). When the 

Controller is turned on at 150 sec, the delay ratio C1(m)/C0(m) = (28.5 sec / 6.5 sec) = 4.4 due to incorrect 
process allocation. The Controller dynamically reallocates processes and changes the relative delay to the 
vicinity of the reference W1/W0 = 3. The relative delay stays close (within 10%) to the reference at most 
sampling instants after it converged. This demonstrates that the closed-loop server can guarantee the 
desired relative delay. Compared with an open-loop server, a key advantage of a closed-loop server is that 
it can maintain robust relative delay guarantees when workload varies. Robust performance guarantees 
are especially important in web servers, which often face with unpredictable and bursty workload [20]. 
The robustness of our closed-loop server is demonstrated by its response to the load variation starting at 
870 sec (Figure 7(a)(b)). Because the number of users of class 0 suddenly increases from 100 to 200, the 
delay ratio drops from 3.2 (at 870 sec) to 1.2 (at 900 sec) - far below the reference W1/W0 = 3. The 
Controller reacts to load variation by allocating more processes to class 0 while deallocating processes 
from class 1. By time 1140 sec, the relative delay successfully re-converges to 2.9.  

In contrast, while the open-loop server achieves satisfactory relative delays when the workload 
conforms to its expectation (from 150 sec to 900 sec), it violates the relative delay guarantee after the 
workload changes (see Figure 7(c)(d)). After the workload changes (from 960 sec to the end of the run), 
connections from class 0 consistently have longer delays than connections from class 1. 

In terms of the control metrics, the closed-loop server maintains stabilit y because its relative delay is 
clearly bounded throughout the run. We observe from (Figure 7(b)) that the server renders satisfactory 
eff iciency and accuracy in achieving the desired relative delays. In particular, in response to the workload 
variation at time 870 sec, the duration of the distinguishable performance deviation from the reference 
lasts for 180 sec (from 900 sec to 1080 sec), well within the theoretical settling time of 270 sec based on 
our design (Section 5.3). The delay ratio stays close to the reference in steady state, which demonstrates a 
small steady state error7.  

 
 

                                                      
7 Due to the noise of the server caused by the random workload, it is impossible to precisely quantify the settling 
time and steady state error based on the ideal definitions (Section 5.1). 
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Figure 7: Evaluation Results of Relative Delay Guarantees between Two Classes 

7.3.2.  Evaluation of a Server with Three Classes 
In the next experiment, we evaluate the performance of a closed-loop server with three classes. Each class 
has a client machine with 100 users. The Controller is turned on at 150 sec. The desired relative delays 
are (W0, W1, W2) = (1, 2, 4). The process proportions are initialized to (P0, P1, P2) = (1, 1, 1). From Figure 
8, we can see that the connection delay begin at (C0, C1, C2) = (14.6, 17.3, 17.5) which has the ratio (1, 
1.2, 1.2), and then changes to (C0, C1, C2) = (9.3, 16.2, 33.9) which has the ratio (1, 1.7, 3.6), i.e., close to 
the desired relative delay, 240 sec after the Controller is turned on. The relative connection delay remains 
bounded and close to the desired relative delay in steady state. This experiment demonstrates the Relative 
Controllers can guarantee desired relative delays for more than two classes. 
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Figure 8: Evaluation Results of Relative Delay Guarantees for Three Classes 
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7.3.3. Evaluation of Absolute Delay Guarantees 
In this section, we evaluate the absolute delay guarantee for two classes. The experiment is set up as 
follows.  
 
• Workload: The same workload described in Section 7.3.1 is used to evaluate the absolute guarantees. 

In the first half of each run, 100 users from class 0 and 200 users from class 1 generate HTTP 
requests to the server. Another 100 users from class 0 start generating HTTP requests 870 sec later 
than the original users. Thus the user population changes to 200 from class 0 and 200 from class 1 in 
the latter half of each run. 

• Closed-loop server: The reference input (the desired delays for class 1 and 0) to the Controller is 
(W0, W1) = (10, 30) (sec). The process budgets (B0(m), B1(m)) are initiali zed to 64 for each class in the 
beginning of the experiments. To avoid the start up phase of SURGE, the Controller is turned on 150 
sec after SURGE started. The sampled absolute connection delays of the two classes are ill ustrated in 
Figure 9(a). 

• Open-loop server: An open-loop server is tested as a baseline. The open-loop server is fine-tuned to 
have a “correct” process allocation to achieve the desired absolute delays based on profili ng 
experiments using the original workload (100 class 0 users and 200 class 1 users). The results of the 
open-loop server are ill ustrated in Figure 9(b). 
 
In the first half of the experiment on the closed-loop server (Figure 9(a)), the Controllers dynamically 

allocate processes and the delays of both classes remain close to their desired delay (10 sec and 30 sec, 
respectively). At time 870 sec, the number of users of class 0 suddenly increases from 100 to 200, and the 
delay of class 0 increases from 8.4 sec (at time 870 sec) to 20.0 sec (at time 900 sec) – violating its 
absolute delay guarantee (10 sec). The Controllers react to the load variation by allocating more processes 
to class 0 and decreasing the number of processes allocated to class 1. By time 1020 sec, the delay of 
class 0 successfully re-converges to 9.6 sec at the cost of violating the delay guarantee of the low priority 
class (class 1)8.  

In comparison, while the open-loop server achieves satisfactory delays for both classes when the 
workload is similar to its expectation (from 150 sec to 900 sec), it fail s to provide delay guarantee for 
class 0 with the highest priority, after the workload changes (see Figure 9(b)). Instead, connections from 
class 0 consistently have longer delays than connections from class 1 after the workload changes, i.e., the 
open-loop server fails to achieve the desired delay for the high priority class.  

Note that while both the open loop server and the closed loop server violate the delay guarantee of 
one service class, the closed loop server provides the correct order of guarantee violation by 
discriminating against the low priority class, while the open loop server fails to achieve the correct order. 
In terms of control metrics, the unsaturated (high priority class) controller maintains stabilit y because its 
delay is clearly bounded throughout the run. Note that because the system load can grow arbitraril y, 
Absolute Delay Controllers (especially those of low priority classes) can saturate and becomes unstable in 
overload conditions even if it is tuned correctly. We observe from (Figure 9(a)) that the server renders 
satisfactory eff iciency and accuracy in achieving the desired delay for the high priority class (class 0). In 
particular, in response to the workload variation at time 870 sec, the duration of the distinguishable 
performance deviation from the reference lasts for 60 sec (from 930 sec to 990 sec), well within the 
theoretical settling time of 210 sec based on the control design (Section 5.3). The delay of class 0 stays 
close to the reference in steady state, which demonstrates a small steady state error for high priority class, 
                                                      
8 Note that the low priority class suffers extremely long service delay in the second half of the closed loop 
experiment. In such overload conditions, the system devotes most processes to high priority classes to provide their 
absolute delay guarantees, and consequently starves low priority classes. This situation is unavoidable in any servers 
that provide absolute guarantees.  
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i.e., the desired delay of the high priority class is guaranteed in steady state even when the server is 
severely overloaded. 
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Figure 9: Evaluation of Absolute Delay Guarantees 

 
In summary, our evaluation results demonstrate that the closed-loop server provides robust relative 

and absolute delay guarantees even when workload significantly varied. Properties of our adaptive web 
server also include guaranteed stability, satisfactory efficiency and accuracy in achieving desired delay or 
relative delay differentiation. 

8. Related Work 
Support for different classes of service on the web (with special emphasis on server delay differentiation) 
has been investigated in recent literature. For example, the authors of [23] proposed and evaluated an 
architecture in which restrictions are imposed on the amount of server resources (such as threads or 
processes) which are available to basic clients. In [5][6] admission control and scheduling algorithms are 
used to provide premium clients with better service. In [11] a server architecture is proposed that 
maintains separate service queues for premium and basic clients, thus facilitating their differential 
treatment. While the above differentiation approach usually offers better service to premium clients, it 
does not provide any guarantees on the service and hence can be called the best effort differentiation 
model.  

Several other works such as [10][22][30] developed kernel level mechanism to achieve overload 
protection and proportional resource allocations in server systems. Their work also did not provide 
relative or absolute delay guarantees in web servers. Supporting proportional differentiated services in 
network routers have been investigated in [21][31]. Their work did not address end systems such as web 
servers. 

There have been several results that applied feedback control theory to the design of real-time 
computing systems. For example, several papers [11][16][17][23][36][43][44] focused on adaptive real-
time (CPU) scheduling techniques to improve digital control system performance by exploiting the elastic 
timing constraints in such systems. These techniques are tailored to the specific characteristics of digital 
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control systems instead of web servers. Transient and steady state performance of adaptive real-time 
systems has received special attention in recent years (e.g., [15][40][45]). For example, Brandt et. al. [15] 
evaluated a dynamic QoS manager by measuring the transient performance of applications in response to 
QoS adaptations. Rosu et. al. [40] proposed a set of performance metrics to capture the transient 
responsiveness of adaptations and its impact on applications. In [31], Li et. al. applied control theory 
based techniques to achieve the desired throughput over the network in a distributed visual tracking 
system. System delay and web servers were not addressed in their work. Adaptive QoS management 
architectures (e.g., [2][4][9][29][39][46]) have been developed to support applications such as 
communication, multimedia and embedded systems. However, these architectures were not designed 
based on a unified theoretical framework such as control theory.  

A least squares estimator was used in [1] for automatic profili ng of resource usage parameters of a 
web server. However, the work was not concerned with establishing a dynamic model for the server. In 
[3][5], a feedback control loop was used to control the desired CPU utili zation of a web server with 
adaptive admission control. By controlli ng the CPU utili zation, the CPU utili zation control can guarantee 
the desired absolute delay in web servers under HTTP 1.0 protocol and when CPU is the bottleneck 
resource. This technique is not applicable to servers under HTTP 1.1 protocol. In [34], we proposed a 
control-theory-based design framework for adaptive real-time systems to guarantee low deadline miss-
ratio in unpredictable environments. This paper extends the framework in [34] to web servers for 
guaranteeing desired relative service delays among service classes. 

9. Conclusion and Future Work 
In this paper, we present the design and implementation of an adaptive architecture to provide relative, 
absolute and hybrid service delay guarantees for different service classes on web servers under HTTP 1.1.  
The first contribution of this paper is the architecture based on feedback control loops that enforce delay 
guarantees for different classes via dynamic connection scheduling and process reallocation. The second 
contribution is our use of feedback control theory to design the feedback loop with proven performance 
guarantees. In contrast with ad hoc approaches that often rely on laborious tuning and design iterations, 
our control theory approach enables us to systematically design an adaptive web server with established 
analytical methods. The design methodology includes using system identification to establish dynamic 
models for a web server, and using the Root Locus method to design feedback controllers to satisfy 
performance specifications. The adaptive architecture has been implemented by modifying an Apache 
web server. Experimental results demonstrate that our adaptive server provides robust delay guarantees 
even when workload varies significantly. Properties of our adaptive web server also include guaranteed 
stabilit y, and satisfactory eff iciency and accuracy in achieving desired delay or delay differentiation. In 
the future, we will extend our architecture to provide QoS guarantees in networked embedded systems 
and web server farms. 
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