A Feedback Control Architecture and Design Methgdology for Service Delay
Guaranteesin Web Servers

ChenyangLu Tarek F. Abdelzaher John A. Stankovic Sang H. Son
Department of Computer Science, University of Virginia
Charlottesville, VA 22903
e-mail: {chenyang, zaher, stankovic, son}@cs.virginia.edu

Abstract

This paper presents the design and implementation of an adaptive architecture to provide relative,
absolute and hybrid service delay guarantees for different service classes on web servers under HTTP
1.1. Thefirst contribution of this paper is the architecture based on feedback control loops that enforce
delay guarantees for classes via dynamic connection scheduling and process reallocation. The second
contribution is our use of feedback control theory to design the feedback loop with proven performance
guarantees. In contrast with ad hoc approaches that often rely on laborious tuning and design iterations,
our control theory approach enables us to systematically design an adaptive web server with established
analytical methods. The design methodology includes using system identification to establish dynamic
models for a web server, and using the Root Locus method to design feedback controllers to satisfy
performance specifications. The adaptive architecture has been implemented by modifying an Apache
web server. Experimental results demonstrate that our adaptive server provides robust delay guarantees
even when workload varies significantly. Properties of our adaptive web server also include guaranteed
stability, and satisfactory efficiency and accuracy in achieving desired delay or delay differentiation.

1. Introduction

The increasing diversity of applications supported by the World Wide Web and the increasing popularity
of time-critical web-based applications (such as online trading) motivates building QoS-aware web
servers. Such servers customize their performance attributes depending on the class of the served requests
so that more important requests receive better service. From the perspective of the requesting clients, the
most visible service performance attribute is typically the service delay. Different requests may have
different tolerances to service delays. For example, one can argue that stock trading requests should be
served more promptly than information requests. Similarly, interactive clients should be served more
promptly than background software agents such as web crawlers and prefetching proxies. Some
businesses may also want to provide different service delays to different classes of customers (e.g.,
depending on their monthly fees). Hence, in this paper, we provide a solution to support delay
differentiation in web servers.

Support for different classes of service on the web (with specia emphasis on server delay
differentiation) has been investigated in recent literature. In the simplest case, it is proposed that
differentiation should be made between two classes of clients;, premium and basic. For example, the
authors of [23] proposed and evaluated an architecture in which restrictions are imposed on the amount of
server resources (such as threads or processes) which are available to basic clients. In [5][6] admission
control and scheduling algorithms are used to provide premium clients with better service. In[11] aserver

" Supported in part by NSF grants CCR-9901706 and EIA-9900895, and contract |JRP-9803-6 from the Ministry of
Information and Communication of Korea. This paper is an extension to an earlier paper submitted to IEEE Real-
Time Technology and Applications Symposium [33]. This paper is submitted to this special issue as an extension to
[33] under the permission of the guest editors.

architedure is proposed that maintains separate service queues for premium and besic dients, thus
faadlit ating their differential treament.

Whil e the @ove differentiation approach usually off ers better serviceto premium clients, it does not
provide any guarantees onthe service Hence we cdl this approad the best effort differentiation model.
In perticular, the best effort differentiation model does not provide guarantees on the extent of the
difference between premium and hesic performance levels. This difference depends heavily on load
condtions and may be difficult to quantify. In a situation where dients pay to receave better service, any
ambiguity regarding the expeded performance improvement may cause dient concern, and is, therefore,
perceved as a disadvantage. Compared with the best effort differentiation model, the proportional
differentiated service and the absolute guarantee model bath provide stronger guarantees in service
differentiation.

In the @solute guarantee model, a fixed maximum service delay (i.e., a soft dealline) for eadt class
neeals to be enforced. A disadvantage of the asolute guarantee modd is that it is usualy difficult to
determine gopropriate deadlines for web services. For example, the tolerable delay threshold of a web
user may vary significantly depending on web page design, length of sesson, lrowsing purpose, and
properties of the web browser [14]. Since system load can grow arbitrarily high in a web server, it is
imposgble to satisfy the absolute delay guarantees of al service dasses under overload condtions. The
absolute delay guaranteerequiresthat all classesrecave satisfadory delay if the server is not overloaded;
otherwise desired delays are violated in the predefined priority order, i.e., low priority classes always
suffer guaranteeviolation ealier than high priority classes’. In the absolute guarantee model, deadlines
that are too loase may not provide necessary servicediff erentiation kecause the deadlines can be satisfied
even when delays of different classes are the same. On the other hand, ceallines that are too tight can
cause etremely long latency for low priority classes in oder to enforce high priority classes
(unrecessary) tight deadlines.

In the propartional differentiated service model introduced in [21], a fixed ratio between the delays
seen by the different service dasses can be enforced. This architedure provides a spedficdion interface
and an enforcement mecdhanism such that a desired "distance' between the performancelevels of diff erent
clases can be spedfied and maintained. This srvice model is more predse in its performance
diff erentiation semantics than the best eff ort diff erentiation model. The propationa differentiated service
is also more flexible than absolute guarantee because it does not require fixed deadlines being assgned
for eath service dass

Depending onthe nature of the overload condtion, either the propartional diff erentiated serviceor the
absolute guarantee may beamme more desirable. The propational differentiated service may be less
appropriate in severe overload condtions becaise even high priority clients may get extremely long
delays. In naminal overload condtions, however, the propartional differentiated service may be more
desirable than absol ute guaranteebecause the propartional diff erentiated service ca provide adequate and
predse service diff erentiation withou requiring artificial, fixed deadlines being assgned to ead service
class Therefore, a hybrid guaranteeis desirable in some systems. For example, a hybrid pdicy can be
that the server provides propartional diff erentiated service when the delay receved by ead classiswithin
its tolerable threshald. When the delay receved by a high priority classexcedls its threshold, the server
automaticaly switches to the asolute guarantee model that enforces desired delays for high priority
clases at the aost of violating desired delays of low priority classes. This pdicy can adieve the
flexibility of the propational differentiated service in naminal overload and boundthe delay of high
priority classin severe overload condtions.

In this paper, we present aweb server architedure to suppat delay guarantees including the asolute
guaranteg propartional diff erentiated service, and the hybrid guaranteedescribed above. A key challenge
in guarantedng servicedelaysin aweb server isthat resource dl ocationthat achievesthe desired delay or

! Another scheme to implement absolute guarantee is to apply admisson control on incoming requests during
overload conditions. However, from the perspedive of web clients, request denial by admisson control is no better
than servicefail ure due to overload.

conditions. The absolute delay guarantee requires that all classes receive satisfactory delay if the
server is not overloaded; otherwise desired delays are violated in the predefined priority order, i.e.,
low priority classes always suffer guarantee violation earlier than high priority classes.

Based on the relative and absolute delay guarantees, different hybrid guarantees can be composed for
the specific requirements of the application. For example, the hybrid guarantee described in Section 1 can
be formulated as follows.

A Hybrid Delay Guarantee: Each class k is assigned a value W that represents both its desired
delay and its desired relative delay. The hybrid guarantee { W | 0 < k < N} provides the relative delay
guarantees if the desired absolute delay of every class is satisfied. When the server is severely
overloaded and desired delays cannot be provided to al classes, the hybrid guarantee provides
absolute delay guarantees to high priority classes at the cost of violating the delays of low priority
classes. This hybrid guarantee provides the flexibility of the proportional differentiated service in
nominal overload while bounds the delay of high priority classes in severe overload conditions.

{W, |0k <N}

A

{C, 10k <N}
COﬂtrOllerS‘ ""E

{B, 10k <N}

TCP connection
fequeisl j]]:’_ Connection
Scheduler
TCP listen queue Server
I Process

HTTP service requests

P

<

HTTP response

Figure 1 The Feedback-Control Architecture for Delay Guarantees

4, A Feedback Control Architecturefor Web Server QoS

In this section, we present an adaptive web server architecture (asillustrated in Figure 1) to provide the
above delay guarantees. A key feature of this architecture is the use of feedback control loops to enforce
desired relative/absolute delays via dynamic reallocation of server process. The architecture is composed
of a Connection scheduler, a Monitor, a Controller, and afixed pool of server processes. We describe the
design of the componentsin the following subsections.

4.1. Connection Scheduler

The Connection Scheduler serves as an actuator to control the delays of different classes. It listens to the
well-known port and accepts every incoming TCP connection request. The Connection Scheduler uses an
adaptive proportional share policy to allocate server processes to connections from different classes®. At
every sampling instant m, every class k (0 < k < N) is assigned a process budget, By(m), i.e., class k
should be allocated at most By(m) server processesin the m" sampling period. For a system with absolute
delay guarantees (Section 4.4.1)), the total budgets of all classes can exceed the total number of server

% Note that the Connection Scheduler uses process allocation instead of CPU allocation as a mechanism to control
the delays of different classes. Thisis because processes may hold idle (persistent) connections and therefore CPU is
not necessarily the bottleneck resource under HTTP 1.1 protocols (as discussed in Section 2).

processsin overload, which is a cndtion cdled control saturation. In this case, the processbudgets are
satisfied in the priority order until every processhas been all ocated to a dass This palicy means that the
processbudgets of high priority classes are dways stisfied before thase of low priority classes, and thus
the wrred order of guaranteeviolations can be atieved. For a server with relative delay guaranteg ou
Relative Delay Controll ers always guarantee that the total budget equals the total number of processes
(Sedion4.4.2. For ead classk, the Conredion Scheduler maintains a (FIFO) conredion queue Qc anda
processcourter R.. The conredion queue Qy hdds conredions of classk before they are dl ocated server
processs. The ouner R, isthe number of processes all ocated to classk. After an incoming conredionis
accepted, the Conredion Scheduler classfies the new connedion andinserts the cnredion descriptor to
the scheduling queue wrrespondng to its class Whenever a server process bemmes available, a
conredion at the front of a scheduling queue Qy is dispatched if classk has the highest priority among all
eligible das=es {j| R < Bj(m)}.

For the &ove scheduling algorithm, akey issue is how to dedde the processbudgets { By | 0 < k < N}
to adchieve the desired relative or absolute delays {W | 0 < k < N}. Note that static mappings from the
desired relative or absolute delay { W | 0 < k < N} to the processbudget {Bx | 0 < k < N} (e.g., based on
system profiling) canna work well when the workloads are unpredictable and vary at run time (see
performance results in Sedion 7.3.1). This problem nwotivates the use of fealbadk controllers to
dynamicadly adjust the processbudgets { B, | 0 < k < N} to maintain desired delays.

Because the Controller can dynamicaly change the process budgets, a situation can occur when a
class k's new process budget B(m) (after the ajustment in saturation condtions described above)
exceadls the total number of freeserver processes and processes alrealy all ocated to classk. Such classk
is cdled an under-budget class Two dfferent pdlicies, preanptive vs. nonpreamptive scheduling, can be
suppated in this case. In the preemptive scheduling model, the Connedion Scheduler immediately forces
server processes to close omnredions of over-budget classes whose new processbudgets are lessthan the
number of processes currently all ocated to them. In the nonpreemptive scheduling model, the Conredion
Scheduler waits for server processes to voluntarily release cnnedions of over-budget classes before it
alocates enowgh processes to under-budget classes. The alvantage of the preemptive model is that it is
more resporsive to the Controller’ s input and load variations, but it can cause jittery delay in preempted
classes because they may have to re-establi sh conredions with the server in the middle of loading a web
page. Only the non-preemptive model is currently implemented in ou web server. The preanptive model
will beinvestigated in ou future work.

4.2. Server Processes

The seaond comporent of the achitedure (Figure 1) is a fixed pod of server processs. Every server
processreads conredion descriptors from the mnredion scheduler. Once aserver processcloses a TCP
conredionit natifies the cnredion scheduler and becomes avail able to processnew conredions.

4.3. Monitor

The Monitor is invoked at ead sampling instant m. It computes the average wnnedion delays { C(m) |
0 < k< N} of al classes during the last sampling period. The sampled conredion delays are used by the
Controll er to compute hew processpropartions.

4.4, Controllers

The achitedure uses one Controller for ead relative or absolute delay constraint. At ead sampling
instant m, the Controllers compare the sampled conrnedion delays { C,(m) | 0 < k < N} with the desired
relative or absolute delays {W | 0 < k < N}, and computes new process budgets {B(m) | 0 < k < N}*,
which are used by the Conredion Scheduler to redl ocate server processes during the foll owing sampling

“ It is the exaa algorithm for this computation that control theory enables us to derive a described in the remainder
of this edion and Sedion 5.

period. We first describe the Absolute Delay Controll ers and the Relative Delay Controllers in Sedions
4.4.1 and 4.4.2 respedively. The Hybrid Delay Controllers based the Absolute and Relative Delay
Controllers are described in Sedion4.4.3

4.4.1. TheAbsolute Delay Controllers

The ésolute delay of every classk is controlled by a separate Absolute Delay Controller CA. The key
parameters and variables of CA,, are shown in Table 1.

Reference VS, The reference of an Absolute Delay Controller CAy is the desired delay of classk, i.e.,
VS = W.

Output Vi(m) From the Absolute Delay Controller CA/'s perspedive, the system output V,(m) at the
samplinginstant misthe sampled delay of classk, i.e., Vi (m) = C(m).

Error E(m) The difference between the reference and the output, i.e., E/(m) = VS, — Vi(m).

Cortrol input Uy (m) At every sampling instant m, the Absolute Delay Controller CA, computes the control
input U (m), i.e., the processbudget B,..(m) of class k.

Table 1: Variables and Parameters of the Absolute Delay Controller CA,

The goa of the Absolute Delay Controller CA is to reduce the eror E(m) to 0 and achieve the
desired delay for classk. Intuitively, when E(m) = VS — Vi(m) < 0, the Controller shoud increase the
process budget U (m) = By(m) to allocae more processes to classk. At every sampling instant m, the
Absolute Delay Corntroller cdls Pl (Propational-Integral) control [23] to compute the cntrol input. A
digital form of Pl cortrol functionis

U(m) = U(m-1) + g(E(m) - rE(m-1)))

g and r are design parameters cdled the controller gain and the controller zero, respedively. The
performance of the web server depends on the values of the wntroller parameters. An ad ha approad to
design the controller is to conduct laborious experiments on dfferent values of the parameters. In ou
work, we gply control theory to tune the parameters analyticdly to guaranteethe desired performancein
the web server. The design and tuning methoddogy is presented in Sedion 5.

For a system with N service dasses, the Absolute Delay Guaranteeis enforced by N Absolute Delay
Controllers CA¢ (0 < k < N). At eath sampling instant m, ead Controller CA, computes the process
budget of classk. Note that in overload condtions, the processbudgets (espedally those of low priority
classes) computed by the Absolute Delay Controllers may nat be feasible if the sum of the computed
processbudyets of al classes exceels the total number of server processes M, i.e., 3 jP«(m) > M. Thisisa
situation cdled control saturation. Because low priority classes $oud suffer guarantee violation in
overload conditions, the system always stisfy the cmmputed processbudgets in the deaeasing order of
priorities until every server processhas been all ocated to a dass.

4.4.2. TheRédative Delay Controllers

The relative delay of every two adjacent classes k and k-1 is controlled by a separate Relative Delay
Controller CR,. Each Relative Delay Corntroller CRy, has following key parameters and variables. For
simplicity of discusgon, we use the same naotations for the mrrespondng parameters and variables of the
Absolute Delay Controller and the Relative Delay Cortroll ers.

®> To avoid complete starvation of low priority classes, the system may reserve a minimum number of server
proceses to eat service dass

Reference VS The reference of the Relative Delay Controller CRy is the desired delay ratio between
classk and k-1, i.e., VS, = Wi/Wi.1.

Output Vi(m) From the perspective of the Relative Delay Controller CR,, the system output is the
sampled delay ratio between classk and k-1, i.e., Vi (m) = C(m) / C.1(m).

Error E(m) The difference between the reference and the output, E,(m) = VS, — V(m).

Control input U (m) | At every sampling instant m, CR, computes the control input U,(m) defined as the ratio
(called the process ratio) between the number of processes to be alocated to class k-1
and k, Ug(m) = Bya(m) / By(m).

Table 2: Variables and Parameters of the Relative Delay Controller CR¢

Intuitively, when E(m) < 0, CR, should decrease the process ratio U,(m) to allocate more processes to
classkrelative to classk-1. The goal of the controller CR is to reduce the error E(m) to 0 and achieve the
correct delay ratio between class k and k-1. Similar to the Absolute Delay Controller, the Relative Delay
Controller also uses PI (Proportional-Integral) control (Equation (1)) to compute the control input (note
that the parameters and variables are interpreted differently in the Absolute Delay Controller and the
Relative Delay Controller).

For a system with N service classes, the Absolute Delay Guarantee is enforced by N-1 relative Delay
Controllers CR¢ (1 < k < N). At every sampling instant m, the system cal cul ates the process budget Bi(m)
of each classk asfollows.

control_relative_delay ({Wi|0< k< N}, {C(m) |0< k< N})
{
Set class (N-1)’s process proportion Py.(m) = 1;
S= Py.a(m);
for (k=N-2; k= 0; k--) {
Calls CRy. 1 to get the process ratio Uy, 1(m) between class k and k+1;
The process proportion of class k P,(m) = Py, 1(M)U,(m)
S=S+ Pk(m);
}
for (k=N-1; k= 0; k--)
B(m) =M (P(m) /9
}

44.3. TheHybrid Delay Controllers

The hybrid delay guarantee described in Section 3 can be implemented via dynamic switching between
the Absolute Delay Controllers and the Relative Delay Controllers. The server switches from Relative
Delay Controllers to Absolute Delay Controllers if the absolute delay guarantee of the highest priority
class is violated, i.e.,, Co(m) > Wy + H; On the other hand, the server switches from Absolute Delay
Controllers to Relative Delay Controllers if Co(m) < W, - H. The use of a threshold window £H in the
mode switching condition is to avoid thrashing between the two sets of Controllers. Since the hybrid
delay guarantee is a straightforward extension of absolute and relative delay guarantees, we focus on the
design and evaluation of absolute and relative delay guarantees in the rest of this paper.

In summary, we have presented a feedback control architecture to achieve absolute, relative and
hybrid delay guarantees on web servers. A key component in this architecture is the Controllers, which
are responsible of dynamically computing correct process budgets in face of unpredictable workload and
system variations. In the rest of the paper, we use the closed-loop server to refer to the adaptive web

server with the Controllers (Figure 1), while the open-loop server refers to a non-adaptive web server
without the Controllers. We present the design and tuning of the Controllersin the next section.

5. Design of the Controller

In this Section, we apply a control theory framework [23][33] to design the Relative Delay Controller CRy
and the Absolute Delay Controller CAx. In Section 5.1, we specify the performance regquirement of the
Controllers. We then use system identification techniques to establish dynamic models for the web server
in Section 5.2. Based on the dynamic model, we use the Root Locus method to design the Controllers that
meet the performance specifications (Section 5.3).

5.1. Performance Specifications

In [34], we presented a set of performance metrics to characterize the performance of adaptive real-time
systems based on control theory [27]. Compared with traditional metrics that only describe steady state
performance, the specifications and metrics presented in [34] can characterize the dynamic performance
of adaptive systems in both transient and steady state. In this paper, we use similar metrics to specify the
performance requirements of the closed-loop server. The performance specifications of the closed-loop
server include in following.

o Stability: a (BIBO) stable system should have bounded output in response to bounded input. To the
Relative Delay Controller (with a finite desired delay ratio), stability requires that the delay ratio
should always be bounded at run-time. To the Absolute Delay Controller, stability requires that the
service delay should always be bounded at run-time. Stability is a hecessary condition for achieving
desired relative or absolute delays.

0 Settling time Tsis the time it takes the output to converge to the vicinity of the reference and enter
steady state. The settling time represents the efficiency of the Controller, i.e., how fast the server can
converge to the desired relative or absolute delay. As an example, we assume that our web server
requires the settling time To < 5 min.

0 Steady state error Esis the difference between the reference input and average of output in steady
state. The steady state error represents the accuracy of the Relative Delay Controller or Absolute
Delay Contraller in achieving the desired relative or absolute delays. As an example, we assume that
our web server requires a steady state error |Ef < 0.1Vs. Note that satisfying this steady state error
requirement means that our web server can achieve the desired relative or absolute delays in steady
State.

5.2. System Identification: Establishing Dynamic M odels

A dynamic model describes the mathematical relationship between the input and the output of a system
(usually with differential or difference equations). Modeling is important because it provides a basis for
the analytical design of the Controller. From the perspective of a Relative Delay Controller CR,, the
(control) input of the controlled system is the process ratio U (m) = By.1(M)/B(m). The output of the
controlled system is the delay ratio Vi(m) = C(m)/Cy.1(m) (see Table 2). From the perspective of an
Absolute Delay Controller CAy, the (control) input of the controlled system is the process budget Uy(m) =
B«(m). The output of the controlled system is the delay Vi(m) = C(m) (see Table 1). We intentionally use
the same symbols for input and output for Relative and Absolute Delay Controllers because the design
methodology described below applies to both cases. Assuming the controlled system models for different
classes are similar, we skip the class number k of U,(m) and Vi(m) in the rest of this Section.

Unlike traditional control theory applications such as mechanical and electronic systems, it is often
difficult to directly describe a computing system such as a web server with differential or difference
equations. To solve the modeling problem, we adopt a practical approach by applying system
identification [8] to estimate the model of the web server. The controlled system (including the
Connection scheduler, the server processes, and the Monitor) is modeled as a difference equation with

unknown parameters. We then stimulate the web server with pseudo-random digital white-noise input
[37] and use aleast squares estimator to estimate the model parameters. Our experimental results (Section
7.2) established that, For both relative and absolute delay control, the controlled system can be modeled
as a second order difference equation with adequate accuracy for the purpose of control design. The
architecture used for system identification is illustrated in Figure 2. We describe the components of the
architecture in the following subsections.

Model
parameters

{BoBi} [
TCP connection
requests j]m_ Connection >
Scheduler v
TCPlisten queue Server
> Process,
HTTP service requests
d

<
HTTP response

Figure 2 Architecture for system identification

5.21. Mode Structure

The web server is modeled as a difference equation with unknown parameters, i.e., an n" order model can
be described as follows,

V(m)=iaJV(m—j)+ibjU(m—j) @

In an n" order model, there are 2n parameters {a, b |1<j<n} that need to be decided by the least-
squares estimator. The difference equation model is motivated by our observation that the output of an
open-loop server depends on previous inputs and outputs (experimental results are not shown in this paper
due to space limitations). Intuitively, the dynamics of a web server is due to the queuing of connections
and the non-preemptive scheduling mechanism. For example, the connection delay may depend on the
number of server processes alocated to its class in several previous sampling periods. For another
example, after class k's process budget is increased, the Connection Scheduler hasto wait for connections
of other classesto voluntarily release server processes to reclaim enough processesto classk.

5.2.2. White Noise Input

To stimulate the dynamics of the open-loop server, we use a pseudo-random digital white noise generator
to randomly switch two classes’ process budgets between two configurations. White noise input has been
commonly used for system identification [8]. The white noise algorithm is not presented due to space
limitations. A standard algorithm for white noise can be found in [37].

5.2.3. Least Squares Estimator

The least sguares estimator is the key component of the system identification architecture. In this section,
we review its mathematical formulation and describe its use to estimate the model parameters. The
derivation of estimator equations is given in [8]. The estimator is invoked periodically for at every
sampling instant. At the m™ sampling instant, it takes as input the current output V(m), n previous outputs

10

V(M) (1<) < n),andn previousinpus U(m+j) (L <j £ n). The measured ouput V(m) isfit to the model
described in Equation (2). Define the vedor g(m) = (V(m-1) ... V(mn) U(m-1) ...U(mn))', and the vedor
M) = (ay(m)...ay(m) by(m)... b,(m))", i.e., the estimations of the model parameters in Equation (2).
These estimates are initialized to 1at the start of the estimation. Let R(m) be asquare matrix whase initi al
value is st to a diagonal matrix with the diagonal elements st to 10. The estimator’s equations at
sampling instant mare [8]:

y(m) = (a(m)" R(m-Dg(m) +1)™ (©)
6(m) =6(m-1) + Rm-)g(m)y(m)(V (m) -q(m)" 6(m-1)) (4)
R(m) = R(m-1)(I - g(m)y(m)a(m)” R(m-1) Q)

At any sampling instant, the estimator can “predict” a value VP(m) of the output by substituting the aurrent
estimates 6(m) into Equation (2). The difference V(m)-VP(m) between the measured ouput and the
prediction is the estimation error. It was proved that the least squares estimator iteratively updetes the
parameter estimates at eat sampling instant such that S o<i<m(V(i) - VP(m))? is minimized.

Our system identification results (Sedion 7.2) established that, the controll ed system can be modeled
asasemnd ader difference euation,

V(m) = a;V(m-1) + a,V(m-2) + b,U(m-1) + boU(m-2) (6a)

In the case of relative delay control, V(m) denotes the delay ratio between the two controlled classes, and
U(m) denates the processratio between the two controlled classes, and the estimated model parameters
are (Sedion7.2):

(a4, @, by, by) = (0.74, -0.37, 0.95, -0.12) (6b)

In the case of absolute delay cortrol, V(m) denctes the delay of one controll ed class and U(m) denctes the
process budget of the controlled class The estimated model parameters based on system identificaion
experiments (Sedion7.2) are

(al, ay, bl, b2) = (-008, -0.2,-0.2, -005) (6C)

5.3. Root-L ocus Design

Given amodel described by Equation (6a), we can apply control theory methods auch as the Roaot Locus
[27] to design the Relative Delay Controller and the Absolute Delay Controller. The wntrolled system
model in Equation (6a) can be mnverted to atransfer function G(2) in z-domain (Equation 7). The transfer
function d the PI controller (Equation 1) in the zdomain is Equation (8). Given the controlled system
model and the Controller model, the transfer function d the dosed loop system is Equation (9).

_V(__ bz+b
G(2 UG Z-az-a (7
D(2) = 9(z=r) ®)
z-1
G (2 = 226D)
1+D(2)G(2)
According to control theory, the performance of a system depends on the pales of its transfer function.
The Roat Locus is a graphicd technique that plots the traces of paes of a dosed-loop system on the z-

11

plane (or s-plane) as its controller parameters change. We use the Root Locus tool of MATLAB [28] to
tune the controller gain g and the controller zero r so that the performance specs can be satisfied. Due to
space limitations, we only summarize results of the design in this paper. The details of the design process
can be found in control textbooks such as [27].

To design the Relative Delay Controller, we use the Root Locus tool to plot the traces of the closed
loop poles (based on the model parametersin Equation (6b)) asthe controller gain increases are illustrated
on the z-planein Figure 3. The closed-loop poles are placed at

Po = 0.70 P12 = 0.38+0.62i (10a)
(see Figure 3) by setting the Relative Delay Controller’s parameters to
g=0.3 r=0.05 (10b)

Similarly, to design the Relative Delay Controller (based on the model parameters in Equation (6¢)), the
closed-loop poles are placed at

Po = 0.607 P, = -0.30+0.59i (11a)
by setting the Absolute Delay Controller’s controller parameters to

g=-46 r=03 (11b)
The above pole placement is chosen to achieve the following propertiesin the closed loop system [27]:

» Stability: The closed-loop system with the Relative Delay Controller (with parameters in Equation
(10b)) or the Absolute Delay Controller (with parameters in Equation (11b)) guarantees stability
because all the closed-loop poles are in the unit circle, i.e, |p| <1 (0 < j < 2) (Equations (10a) and
(11a)).

» Settling time: According to control theory, decreasing the radius (i.e., the distance to the origin in the
z-plane) of the closed-loop poles usualy results in shorter settling time. The Relative Delay
Controller (with Equation (10b)) achieves a settling time of 270 sec, and the Absolute Delay
Controller (with Equation (11b)) achieves a settling time of 210 sec, both lower than the required
settling time (300 sec) defined in Section 5.1.

» Steady state error: Both the Relative Delay Controller and the Absolute Delay Controller achieve
zero steady state error, i.e., Es = 0. Thisresult can be easily proved using the Final Value Theoremin
digital control theory [23]. This result means that, in steady state, the closed-loop system with the
Relative Delay Controller or the Absolute Delay Controller guarantees the desired relative delays or
the desired absolute delays, respectively.

In summary, using feedback control theory techniques including system identification and the Root
Locus design, we systematically design the Relative Delay Controller and the Absolute Delay Controller
that analytically provide the desired relative or absolute delay guarantee and meet the transient and steady
state performance specifications described in Section 5.1. This result shows the strength of the control-
theory-based design framework for adaptive computing systems.

12

Root Locus Design

Imag Axes
|
-

-1 -08 -06 -04 -02 0 0z 04 06 08 1
Real Axis

— Root Locus B Closed Loop Poles

Figure 3 The Root Locus of the web server model

I mplementation

We now describe the implementation of the web server. We modified the source code of Apache 1.3.9[7]
and added a new library that implemented a Connection Manager (including the Connection Scheduler,
the Monitor and the Controllers). The server was written in C and tested on a Linux platform. The server
is composed of a Connection Manager process and a fixed pool of server processes (modified from
Apache). The Connection Manager process communicates with each server process with a separate UNIX
domain socket.

The Connection Manager runs a loop that listens to the web server's TCP socket and accepts
incoming connection requests. Each connection request is classified based on its sender’s IP address®
and scheduled by a Connection Scheduler function. The Connection Scheduler dispatches a
connection by sending its descriptor to afree server process through the corresponding UNIX domain
socket. The Connection Manager time stamps the acceptance and dispatching of each connection. The
difference between the acceptance and the dispatching time is recorded as the connection delay of the
connection. Strictly speaking, the connection delay should also include the queuing time in the TCP
listen queue in the kernel. However, the kernel delay is negligible in this case because the Connection
Manager always greedily accepts (degueues) all incoming TCP connection requests in atight loop.

The Monitor and the Controllers are invoked periodically at every sampling instance. For each
invocation, the Monitor computes the average delay for each class. Thisinformation is then passed to
the Controllers, which implements the control algorithm to compute new process budgets.

We modified the code of the server processes so that they accept connection descriptors from UNIX
domain sockets (instead of common TCP listen socket as in Apache). When a server process closes a
connection, it notifies the Connection Manager of its new status by sending a byte of data to the
Connection Manager through the UNIX domain socket.

The server can be configured to a closed-loop/open-loop server by turning on/off the Controllers. An

open-loop server can be configured for either system identification or performance evaluation.

® Other criteria for connection classification include HTTP cookies, Browser plug-ins, URL request type or filename
path, and destination | P address of virtual servers[12].

13

7. Experimentation

All experiments were conducted on a testbed of ten PC's connected with 100 Mbps Ethernet. Each
machine had a 450MHz AMD K6-2 processor and 256 MB RAM. One machine was used to run the web
server with HTTP 1.1, and up to four other machines were used to run clients that stress the server with a
synthetic workload. The experimental setup was as follows.

* Client: We used SURGE [13] to generate realistic web workloads in our experiments. SURGE uses a
number of user equivalents (also called users for simplicity) to emulate the behavior of real-world
clients. The load on the server can be adjusted by changing the number of users on the client
machines. Up to 500 concurrent users were used in our experiments.

» Server: The total number of server processes was configured to 128. Since service differentiation is
most necessary when the server is overloaded, we set up the experiment such that the ratio between
the number of users and the number of server processes could drive the server to overload. Note that
although large web servers such as on-line trading servers usually have more server processes, they
also tend to have many more users than the workload we generated. Therefore, our configuration can
be viewed an emulation of real-world overload scenarios at a smaller scale. The sampling period S
was set to 30 sec in al the experiments. The connection TIMEOUT of HTTP 1.1 was set to 15 sec.

In Section 7.1, we present experimental results that compare connection delays with response time of
a server with HTTP 1.1. The experiments on system identification are presented in Section 7.2. We
present the evaluation of the closed-loop server in Section 7.3.

35.00

30.00 //’
S 25.00 D
2 20.00
g 15.00 /
£ 10.00
5.00 ;//./I/.
0.00 ‘

0 200 400 600
Number of Users
—4&— Connection Delay —— Response Time ‘

Figure 4 Connection delay and response time

7.1. Comparing Connection Delays and Response Times

In the first set of experiments, we compare the average connection delay and the average response time
(per HTTP request) of an open-loop server (see Figure 4) to justify the use of connection delay asametric
for service differentiation in web servers with HTTP 1.1. All connections are treated as being in a same
class and all server processes are allocated to the class. Every point in Figure 4 refers to the average
connection delay or average response time in four 10-minute runs with a same number of users. The 90%
confidence intervals are within 0.58 sec to all the presented average connection delays, and within 0.21
sec to all the presented average response times. The connection delay is significantly higher and increases
at a much faster rate than the response time as the number of users increases. For example, when the
number of users is 400, the connection delay is 4.9 times the response time. Note that the average
response time is computed based on two types of requests, i.e., the response time (including the
connection delay and the processing delay) of the first request of each connection and the response time
(including only the processing time) of each subsequent request. The difference between connection delay

14

and response time is due to the fact that processing delay is on average significantly shorter than
connection delay. We also run similar experiments with 256 server processes (the maximum number
allowed by the original Apache on Linux). With 256 server processes, the ratio between the connection
delay and the response time is similar to that presented in Figure 4. For example, the connection delay
was 5.3 times the response time when 400 users are used. The complete result for this case is not
presented due to space limitations. Thisresult justifies our decision to use connection delay asametric for
service differentiation in web serverswith HTTP 1.1.

0
o]
B
S 1 SeSmangmototooooIAIIIIIIAIIIIIIIAIRATER e a
g —_—2
0 -== bl
g ——— b2
E
7B -1 | T T T T T T T T T T T T T T 1
w 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800
Time (second)
(a) Estimated model parameters (second order model)
8
04 4 actual
2 1 v N /NN . AASYA s YA) e estimate
22
0 T T T T T - T T T T T T T T T T 1
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800
Time (second)
(b) Modeling error (second-order model)
8
26
ol
o a actual
2 1 A AN NANSN A LNLA L e estimate
22
0 | T T T T T T T T T T T T T T 1
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800
Time (second)
(c) Modeling error (first-order model)
8
26
©
o 2 actual
2 1l N /N . ANA/ A\ A . SNXNA S e estimate
g2
o
o Y

T T T T T T T T T T T T T 1
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800
Time (second)

(d) Modeling error (third-order model)

Figure 5 System identification results for Relative Delay

7.2. System ldentification

We now present the results of system identification experiments for both relative delay and absolute delay
to establish a dynamic model for the open-loop system. Four client machines are divided into two classes
0 and 1, and each class has 200 users. We begin with the relative delay experiments. The input, process
ratio U(m) = Bo(m)/By(m), isinitialized to 1. At each sampling instant, the white noise randomly sets the
process ratio to 3 or 1. The sampled output, the relative delay V(m) = Cy(m)/Co(m) is fed to the least
squares estimator to estimate model parameters (Equation (2)). Figure 5(a) shows that the estimated
parameters of a second order model (Equation (6)) at successive sampling instants in a 30 min run. The
estimator and the white noise generator are turned on 2 min after SURGE started in order to avoid its
start-up phase. We can see that the estimations of the parameters (a;, aj, b, b,) converge to (0.74, -0.37,
0.95, -0.12). Substituting the estimations into Equation (6), we established an estimated second-order

15

model for the open-loop server. To verify the accuracy of the model, we re-run the experiment with a
different white noise input (i.e., with a different random seed) to the open-loop server and compare the
actual delay ratio and that predicted by the estimated model. The result is illustrated in Figure 5(b). We
can see that prediction of the estimated model is consistent with the actual relative delay throughout the
30 min run. This result shows that the estimated second order model is adequate for designing the
Relative Delay Controller. We aso re-ran the system identification experiments to estimate a first order
model and a third order model. The results demonstrate that the estimated first order model had larger
prediction error than the second order model (see Figure 5(c)), while an estimated third order model does
not tangibly improve the modeling accuracy (see Figure 5(d)). Hence the second order model is chosen as
the best compromise between accuracy and complexity.

The system identification experiments are repeated with the same workload and configurations for the
absolute delay. The input of the open loop system is the process budget U(m) = By(m) of class 0, whichis
initialized to 64. At each sampling instant, the white noise randomly sets the process budget to 96 or 64.
The output is the sampled delay V(m) = Co(m) of class 0. To linearize the model, we feed the difference
between two consecutive inputs (Byo(m) - Bo(m-1)) and the difference between two consecutive outputs
(Co(m) - Co(m-1)) to the least squares estimator to estimate the model parametersin Equation (2). Figure
6(a) shows that the estimated parameters of the second order model (Equation (6)) at successive sampling
instants in a 30 min run. The estimations of the parameters (ay, a;, by, b,) converge to (-0.08, -0.2, -0.2,
-0.05). To verify the accuracy of the model, we re-run the experiment with a different white noise input to
the open-loop server and compare the actual difference between two consecutive delay samples with that
predicted by the estimated model (Figure 6(b)). Similar to the relative delay case, the prediction of the
estimated model is consistent with the actual delay throughout the 30 min run. This result shows that the
estimated second order model is adequate for designing the Absolute Delay Controller.

0.5

0.0

-05

T '.I .'I * T T T T T T T T T T T 1

0 120 240 » 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800
[Time (second)

(a) Estimated mode! parameters (second-order model)

Estimated model parameters

20
10

-10

CO(m)-CO(m-1) (second)
o

205 T T T T T T T T T T T T T T J
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800
Time (second)

Modeling error (second-order model)

Figure 6: System Identification Results for Absolute Delay

7.3. Evaluation of the Adaptive Web Server

In this section, we present evaluation results for our adaptive web server. In Section 7.3.1, we first present
the evaluation results of the Relative Delay Controller. The results for guaranteeing the relative delays of
a server with three classes are presented in Section 7.3.2. The evaluation results of absolute delay
guarantee are presented in Section 7.3.3.

16

7.3.1. Evaluation of Relative Delay Guar antees between Two Classes

To evaluate the relative delay guarantee in a server with two classes, we set up the experiments as
foll ows.

* Workload: Four client machines are evenly divided into two classes. Eac client macdine has 100
users. In thefirst half of ead run, orly one dient macdine from class0 and two client madines from
class1 (100 wsers from class0 and 200 gers from class1) generate HT TP requests to the server. The
second machine from class O starts generating HTTP requests 870 sec later than the other three
madhines. Therefore, the user popuation changes to 200from class 0 and 200from class 1 in the
latter half of ead run.

» Closed-loop server: The reference input (the desired delay ratio between class 1 and O to the
Controller is Wi/W, = 3. The process ratio Bo(m)/By(m) is initialized to 1 in the beginning of the
experiments. To avoid the starting phase of SURGE, the Controll er isturned on 150sec dter SURGE
started. The sampled absolute cnnedion delays and the delay ratio between the two classes are
illustrated in Figure 7(a) and (b), respedively.

e Open-loop server: An open-loop server is also tested as a baseline. The open-loop server is fine-
tuned to have a “@rred” process alocaion based on pofiling experiments using the original
workload (100classO users and 200class1 users). The results of the open-loop server are ill ustrated
in Figure 7(c)(d).

We first look at the first half of the experiment on the dosed-loop server (Figure 7(a)(b)). When the
Controller isturned onat 150sec the delay ratio C,(m)/Co(m) = (28.5sec/ 6.5sec) = 4.4 dweto incorred
processall ocaion. The Controller dynamicdly redl ocaes processes and changes the relative delay to the
vicinity of the reference W,/W, = 3. The relative delay stays close (within 10%) to the reference & most
sampling instants after it converged. This demonstrates that the dosed-loop server can guarantee the
desired relative delay. Compared with an open-loop server, a key advantage of a dosed-loopserver isthat
it can maintain robust relative delay guarantees when workload varies. Robust performance guarantees
are espedally important in web servers, which dften facewith unpedictable and busty workload [20].
The robustnessof our closed-loop server is demonstrated by its resporse to the load variation starting at
870sec(Figure 7(a)(b)). Because the number of users of class0 suddenly increases from 100to 200,the
delay ratio drops from 3.2 (at 870 seg) to 1.2 (at 900 seq) - far below the reference Wi/W, = 3. The
Controller reads to load variation by all ocating more processes to class 0 whil e dedl ocating processes
from class1. By time 1140seg, the relative delay succesully re-convergesto 2.9.

In contrast, while the open-loop server adchieves stisfadory relative delays when the workload
conforms to its expedation (from 150 secto 900seq), it violates the relative delay guarantee dter the
workload changes (seeFigure 7(c)(d)). After the workload changes (from 960 secto the end d the run),
conredions from classO consistently have longer delays than conredions from class1.

In terms of the control metrics, the dosed-loop server maintains dability because its relative delay is
clealy bouncdkd throughou the run. We observe from (Figure 7(b)) that the server renders satisfadory
efficiency and acauracy in achieving the desired relative delays. In particular, in resporse to the workload
variation at time 870 sec the duration d the distinguishable performance deviation from the reference
lasts for 180 sec (from 900 secto 1080sec), well within the theoreticd settling time of 270secbased on
our design (Sedion 5.3). The delay ratio stays close to the referencein stealy state, which demonstrates a
small steady state aror’.

’ Due to the noise of the server caused by the random workload, it is impossble to predsely quantify the settling
time and steady state aror based on the ided definitions (Sedion 5.1).

17

=)
§
% 40
] Class0
L L e Class 1
=
S 20
8
c
5]
© 0+ T T T
o 500 1000 1500
Time (second)
(&) Close-loop: Connection Delays C(0) and C(1)
E
g 4
B
= 3+
o
2 2
<
o
& 17
T
a o T T T T T T T T T T T T T T 1
o 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800
Time (second)
(b) Close-loop: Delay Ratio (C1(m)/C0O(m)) and Process Ratio (PO(m)/P1(m))
= 604
;
> 40
2 Class0
[R e S i S Class 1
=
S 20
B
c
5]
© o T T T
o} 500 1000 1500
Time (second)
(c) Open-loop: Connection Delays C(0) and C(1)
£ 5
3 4
\E’ 3 ——— - reference
(&) Delay Ratio
£249 T~ O\ e Process Ratio
T
o
=1
T
o o ‘

o

120 240 360 480 600 70 810 960
Time (second)
(d) Open-loop: Delay Ratio (C1(m)/CO(m)) and Process Ratio (PO(m)/P1(m))

Figure 7: Evaluation Results of Relative Delay Guarantees between Two Classes

T T T T T T 1
1080 1200 1320 1440 1560 1680 1800

7.3.2. Evaluation of a Server with Three Classes

In the next experiment, we eval uate the performance of a closed-loop server with three classes. Each class
has a client machine with 100 users. The Controller is turned on at 150 sec. The desired relative delays
are (Wp, Wi, W,) = (1, 2, 4). The process proportions are initialized to (Po, P4, P2) = (1, 1, 1). From Figure
8, we can see that the connection delay begin at (Co, Cy, Cy) = (14.6, 17.3, 17.5) which has the ratio (1,
1.2, 1.2), and then changesto (Co, Cy, Cy) = (9.3, 16.2, 33.9) which hastheratio (1, 1.7, 3.6), i.e., close to
the desired relative delay, 240 sec after the Controller isturned on. The relative connection delay remains
bounded and close to the desired relative delay in steady state. This experiment demonstrates the Relative
Controllers can guarantee desired rel ative delays for more than two classes.

= 60
c
;
A
Z N \ s
> 40 s\ \ / s ;7\
% I, Sa ,’\—\, (NN Jl \ I\\ ’ \\,\,xf\l’ ‘\ 1 VoS a ——— Class0
a AN N/ 1 v AR NS e Class 1
4
c , === Class2
-%20- O e N e aa s SN e e ot et ien e e
c \A/—N_/\/_—__N\w/\’—wv
c
]
O o0 T T . : : : T
0 500 1000 1500

Time (second)
Figure 8: Evaluation Results of Relative Delay Guarantees for Three Classes

18

7.3.3. Evaluation of Absolute Delay Guar antees

In this dion, we evaluate the asolute delay guarantee for two classes. The experiment is st up as
foll ows.

» Workload: The same workload described in Sedion 7.3.1is used to evaluate the dsolute guarantees.
In the first haf of ead run, 100 wers from class 0 and 200 gers from class 1 generate HTTP
requests to the server. Another 100 wsers from classO start generating HT TP requests 870 sec later
than the original users. Thus the user popuation changes to 200from class0 and 200from class1in
the latter half of ead run.

* Closed-loop server: The reference inpu (the desired delays for class1 and Q) to the Controller is
(Wo, W) = (10, 30 (seq. The processbudyets (Bo(m), B:(m)) areinitialized to 64for ead classin the
beginning of the experiments. To avoid the start up plrese of SURGE, the Controller isturned on 150
sec dter SURGE started. The sampled absolute mnredion delays of the two classs areill ustrated in
Figure 9(a).

* Open-loop server: An open-loop server is tested as a baseline. The open-loop server is fine-tuned to
have a “orred” process alocdion to adieve the desired absolute delays based on pofiling
experiments using the original workload (100 classO users and 200class1 users). The results of the
open-loopserver areill ustrated in Figure 9(b).

In thefirst half of the experiment onthe dosed-loopserver (Figure 9(a)), the Controll ers dynamicaly
alocate processes and the delays of bath classes remain close to their desired delay (10 sec and 30sec
respedively). At time 870sec the number of users of class0 suddenly increases from 100to 200,and the
delay of classO increases from 8.4 sec (at time 870 seg to 20.0sec (at time 900 seg) — violating its
absolute delay guarantee (10 sec). The Controllersread to the load variation by all ocating more processes
to class0 and deaeasing the number of processes allocaed to class 1. By time 1020 sec the delay of
classO succesgully re-convergesto 9.6sec d the aost of violating the delay guaranteeof the low priority
class(class1)®.

In comparison, while the open-loop server achieves stisfadory delays for both classes when the
workload is gmilar to its expedation (from 150 secto 900se0), it fails to provide delay guaranteefor
class0 with the highest priority, after the workload changes (seeFigure 9(b)). Instead, conredions from
classO consistently have longer delays than connedions from class 1 after the workload changes, i.e., the
open-loop server fail sto achieve the desired delay for the high priority class

Note that while both the open loop server and the dosed loop server violate the delay guarantee of
one service dass the dosed loop server provides the crred order of guarantee violation by
discriminating against the low priority class whil e the open loop server fail s to achieve the crred order.
In terms of control metrics, the unsaturated (high priority clas9 controller maintains dability because its
delay is clealy bounded throughou the run. Note that because the system load can grow arbitrarily,
Absolute Delay Controll ers (espedally those of low priority classes) can saturate and becomes unstablein
overload condtions even if it is tuned corredly. We observe from (Figure 9(a)) that the server renders
satisfadory efficiency and acairagy in achieving the desired delay for the high priority class(class0). In
particular, in resporse to the workload variation at time 870 sec the duration d the distinguishable
performance deviation from the reference lasts for 60 sec (from 930 sec to 990 seq), well within the
theoretica settling time of 210 sec based onthe @ntrol design (Sedion 5.3). The delay of classO stays
close to the referencein stealy state, which demonstrates a small steady state eror for high priority class

8 Note that the low priority class siffers extremely long service delay in the second half of the dosed loop
experiment. In such overload conditi ons, the system devotes most processes to high priority classes to provide their
absolute delay guarantees, and consequently starves low priority classes. This stuation is unavoidable in any servers
that provide ésolute guarantees.

18

i.e., the desired delay of the high priority class is guaranteed in steady state even when the server is
severely overloaded.

250 4
200+

150

100

L atency (second)
o
B
o

0 500 1000 1500
Time (second)
(a) Connection Delays of the Closed Loop Server
250
200

1504

100+

L atency (second)
e}
@E
o

50 4

T T T
0 500 1000 1500
Time (second)

(b) Connection Delays of the Open Loop Server
Figure 9: Evaluation of Absolute Delay Guarantees

In summary, our evaluation results demonstrate that the closed-loop server provides robust relative
and absolute delay guarantees even when workload significantly varied. Properties of our adaptive web
server also include guaranteed stability, satisfactory efficiency and accuracy in achieving desired delay or
relative delay differentiation.

8. Related Work

Support for different classes of service on the web (with special emphasis on server delay differentiation)
has been investigated in recent literature. For example, the authors of [23] proposed and evaluated an
architecture in which restrictions are imposed on the amount of server resources (such as threads or
processes) which are available to basic clients. In [5][6] admission control and scheduling al gorithms are
used to provide premium clients with better service. In [11] a server architecture is proposed that
maintains separate service queues for premium and basic clients, thus facilitating their differential
treatment. While the above differentiation approach usually offers better service to premium clients, it
does not provide any guarantees on the service and hence can be called the best effort differentiation
model.

Several other works such as [10][22][30] developed kernel level mechanism to achieve overload
protection and proportional resource allocations in server systems. Their work also did not provide
relative or absolute delay guarantees in web servers. Supporting proportional differentiated services in
network routers have been investigated in [21][31]. Their work did not address end systems such as web
servers.

There have been several results that applied feedback control theory to the design of real-time
computing systems. For example, several papers [11][16][17][23][36][43][44] focused on adaptive rea-
time (CPU) scheduling techniques to improve digital control system performance by exploiting the elastic
timing constraints in such systems. These techniques are tailored to the specific characteristics of digital

20

corntrol systems instead of web servers. Transient and steady state performance of adaptive red-time
systems has recaved spedal attentionin recent yeas (e.g., [15][40][45]). For example, Brandt et. al. [15]
evaluated a dynamic QoS manager by measuring the transient performance of applicaionsin resporse to
QoS adaptations. Rosu et. a. [40] proposed a set of performance metrics to capture the transient
resporsiveness of adaptations and its impad on applicaions. In [31], Li et. a. applied cortrol theory
based tedhniques to adiieve the desired throughpu over the network in a distributed visual tradking
system. System delay and web servers were not addressed in their work. Adaptive QoS management
architedures (e.g., [2][4][9][29][39][46]) have been developed to suppat applicdions such as
communication, multimedia and embedded systems. However, these achitedures were not designed
based onaunified theoreticd framework such as control theory.

A least squares estimator was used in [1] for automatic profili ng of resource usage parameters of a
web server. However, the work was not concerned with establi shing a dynamic model for the server. In
[3][5], a feaedbad control loop was used to control the desired CPU utili zation o a web server with
adaptive admisson control. By controlli ng the CPU utili zation, the CPU utili zation control can guarantee
the desired absolute delay in web servers under HTTP 1.0 protocol and when CPU is the bottlenedk
resource This technique is nat applicable to servers under HTTP 1.1 potocol. In [34], we proposed a
control-theory-based design framework for adaptive red-time systems to guarantee low deadline miss
ratio in unpedictable ewironments. This paper extends the framework in [34] to web servers for
guarantedng desired relative service delays among service dasses.

9. Conclusion and Future Work

In this paper, we present the design and implementation d an adaptive achitedure to provide relative,
absolute and hybrid servicedelay guarantees for diff erent service dasses onweb serversunder HTTP 1.1.
Thefirst contribution o this paper is the achitedure based onfeedbadk control loops that enforce delay
guarantees for different classes via dynamic conredion scheduling and processredl ocaion. The second
cortribution is our use of feadbadk control theory to design the feedbad loop with proven performance
guarantees. In contrast with ad hoc approaches that often rely on laborious tuning and design iterations,
our control theory approad enables us to systematicaly design an adaptive web server with establi shed
analyticd methods. The design methoddogy includes using system identification to establish dynamic
models for a web server, and wing the Roat Locus method to design feadbadk controllers to satisfy
performance spedficdions. The alaptive achitedure has been implemented by modifying an Apade
web server. Experimental results demonstrate that our adaptive server provides robust delay guarantees
even when workload varies sgnificantly. Properties of our adaptive web server also include guaranteed
stability, and satisfadory efficiency and acairagy in achieving desired delay or delay differentiation. In
the future, we will extend ou architedure to provide QoS guarantees in networked embedded systems
and web server farms.

Acknowledgements
The aithorswould like to thank Gang Tao, John Regehr and Jorg Liebeherr for their valuable suggestions
to improve this paper.

10. Reference

[1] T. F. Abdezaher, “An Automated Profiling Subsystem for QoS-Aware Services” |EEE Real-Time
Technology and Applications Symposium, Washington D.C., June 2000

[2] T.F. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS Negotiation in Red-Time Systems and Its Application
to Automatic Flight Control,” |EEE Real-Time Technology and Applications Symposium, June 1997.

[3] T. F. Abdelzaher and N. Bhatti, “Web Server QoS Management by Adaptive Content Delivery,”
International Workshop on Quality of Service, 1999

[4 T.F. Abdelzéher and K. G. Shin, "End-Host Architedure for QoS-Adaptive Communicaion," |IEEE Real-
Time Technology and Applications Symposium, Denver, Colorado, June 1998

21

(5]
(6]
(7]
(8]
(9]
[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]

[18]
[19]

[20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]

[28]
[29]

[30]
[31]
[32]

[33]

[34]

T. F. Abdelzaher and K. G. Shin, “QoS Provisioning with gContracts in Web and Multimedia Servers,” |IEEE
Real-Time Systems Symposium, Phoenix, Arizona, December 1999, pp. 44-53.

J. Almedia, M. Dabu, A. Manikntty, and P. Cao, “Providing Differentiated Levels of Service in W eb Content
Hosting,” First Workshop onlinternet Server Performance, Madison, W1, June, 1998.

Apache Software Foundation, http://www.apache.org.

K. J. Astrom and B. Wittenmark, Adaptive @ntrol (2™ Ed.), Addison-Wesley, 1995.

C. Aurrecoechea, A. Cambell, and L. Hauw, “A Survey of QoS Architectures” 4" IFIP Internationa
Conference on Quality of Service, Paris, France, March 1996.

G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers: A New Facility for Resource Management in
Server Systems,” Operating §stems Design andl mplementation (OSDI'96), 1999.

G. Beccari, et. a., “Rate Modulation of Soft Real -Time Tasks in Autonomous Robot Control Systems,”
EuroMicro Conference on Real-Time Systems, June 1999.

N. Bhatti and R. Friedrich, “Web Server Support for Tiered Services.” IEEE Network, 13(5), Sept.-Oct. 1999.

P. Barford and M. E. Crovella, “Generating Representative Web Workloads for Network and Server

Performance Evaluation,” ACM SSGMETRICS'98, Madison W1, 1998.

A. Bouch, N. Bhatti, and A. J. Kuchinsky, “Quality is in the Eye of the Beholder: Meeting Users
Requirements for Internet Quality of Service,” ACM CHI'200Q Hague, Netherland, April 2000.

S. Brandt and G. Nutt, “A Dynamic Quality of Service Middleware Agent for Mediating Application
Resource Usage,” |EEE Real-Time Systems Sympasium, December 1998.

G. Buttazzo, G. Lipari, and L. Abeni, "Elastic Task Model for Adaptive Rate Control", IEEE Real-Time
Systems Sympaosium, Madrid, Spain, pp. 286-295, December 1998.

M. Caccamo, G. Buttazzo, and L. Sha, “Capacity Sharing for Overrun Control,” IEEE Real-Time Systems
Symposium, Orlando, FL, December 2000.

Carr, R,, Virtua Memory Management, Ann Arbor, M1: UMI Research Press, 1984.

S. Cen, "A Software Feedback Toolkit and its Application In Adaptive Multimedia Systems," Ph.D. Thesis,
Oregon Graduate I nstitute, October 1997.

M. E. Crovella and A. Bestavros, “Self -Similarity in World Wide Web Traffic: Evidence and Possible
Causes,” IEEEHACM Transactions on Networking, 5(6):835--846, December 1997.

C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional Differentiated Services. Delay Differentiation
and Packet Scheduling,” SSGCOMM'’ 99, Cambridge, M assachusetts, August 1999.

P. Druschel and G. Banga, “Lazy Receiver Processing (LRP): A Network Subsystem Archi tecture for Server
Systems,” Operating Systems Design andlmplementation (OSDI1'96), Seattle, WA, October 1996.

J. Eker: "Flexible Embedded Control Systems-Design and Implementation." PhD-thesis, Lund Institute of
Technology, Dec 1999.

L. Eggert and J. Heidemann, “Application-Level Differentiated Services for Web Servers,” World Wide Web
Journal, Vol 2, No 3, March 1999, pp. 133-142.

E-Soft Inc., “Web Server Survey,” http://www.securityspace.com.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, “Hypertext Transfer
Protocol -- HTTP/1.1", IETF RFC 2616 June 1999.

G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Cortrol of Dynamic Systems (3" Ed.), Addison-
Wesdley, 1994.

Mathworks Inc., http://www.mathworks.com/products/matlab.

D. Hull, A. Shankar, K. Nahrstedt, and J. W. S. Liu, “An End-to-End QoS Model and Management
Architecture,” IEEEWorkshop onMiddleware for Distributed Real-Time Systems and Sfrvices, Dec 1997.

K. Jeffay, F.D. Smith, A. Moorthy, and J.H. Anderson, “Proportional Share Scheduling of Operating System
Services for Real-Time Applications,” IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.

B. Li and K. Nahrstedt, “A Control -based Middleware Framework for Quality of Service Adaptations,” IEEE
Journal of Seleded Areasin Comrunication, Spedal Isaue on Srvice Enalling Platforms, 17(9), Sept. 1999.
J. Liebeherr and N. Chrigtin, “Buffer Management and Scheduling for Enhanced Differentiated Services,”

University of Virginia Tech. Report CS-2000-24, August 22, 2000.

C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “A Feedback Control Approach for Guaranteeing
Relative Delays in Web Servers,” Submitted to IEEE Real-Time Techndogy and Applications Symposium,
June 2001.

C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son and M. Marley, “Performance Specifications and
Metrics for Adaptive Real-Time Systems,” |IEEE Real-Time Systems Sympaosium, Orlando, FL, Dec 2000.

22

[35]
(36]
(37]
(38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

C. Ly, J. A. Stankovic, G. Tao and S. H. Son, “Design and Evaluati on of a Feedbadk Control EDF Scheduling
Algorithm,” |EEE Real-Time Systems Symposium, Phoenix, AZ, Dec1999

L. Palopdi, L. Abeni, F. Conticdli, M. D. Natale, and G. Buttaz, “Red -Time @ntrol system analysis. An
integrated approach,” |EEE Real-Time Systems Symposium, Orlando, FL, Dec200Q

S. K. Park and K. W. Mill er, “Random Number Generators: Good Ones Are Hard to Find”, Communications
of ACM, vol. 21, no. 10, Oct. 1988 pp. 11921201

V. Pai, P. Druschel and W. Zwaenepoel, “Flash: An Efficient and Portable Web Server,” USENIX Annual
Technical Conference, Monterey, CA, June 1999

D. Rosuy, K. Schwan, and S. Yaamanchili, “FARA —a Framework for Adaptive Resource Allocaion in
Complex Red-Time Systems,” |EEE Real-Time Technology and Applications Symposium, June 1998

D. Rosuy, K. Schwan, S. Yalamanchili and R. Jha, "On Adaptive Resource All ocation for Complex Red-Time
Applications," |EEE Real-Time Systems Symposium, Dec1997.

M. Ryu and S. Hong, ‘“Toward Automatic Synthesis of Schedulable Red -Time Controllers’, Integrated
Computer-Aided Engineering, 5(3) 261-277, 1998

J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, "The Case for Feadbadk Control Red-Time Scheduling,"
EuroMicro Conference on Real-Time Systems, Y ork, UK, June 1999

K. G. Shin and C. L. Meissner, “Adaptation and Gracdul Degradation of Control System Performance by
Task Redlocaion and Period Adjustment,” EuroMicro Conference on Real-Time Systems, June 1999

D. C. Steae, et. d., "A Fealbadk-driven Propation Allocator for Red-Rate Scheduling,” Symposium on
Operating Systems Design and Implementation, Feb 1999

L. R. Welch and B. A. Shiraz, "A Dynamic Red-time Benchmark for Assesanent of QoS and Resource
Management Technology," |EEE Real-time Technology and Applications Symposium, June 1999.

L. R. Welch, B. Shiraz and B. Ravindran, “Adaptive Resource Management for Scdable, Dependable Red -
time Systems. Middleware Services and Applicaions to Shipboard Computing Systems,” |EEE Real-time
Technology and Applications Symposium, June 1998

23

