
 1

A Feedback Control Architecture and Design Methodology for Service Delay
Guarantees in Web Servers*

Chenyang Lu Tarek F. Abdelzaher John A. Stankovic Sang H. Son
Department of Computer Science, University of Virginia

Charlottesville, VA 22903
e-mail: {chenyang, zaher, stankovic, son}@cs.virginia.edu

Abstract
This paper presents the design and implementation of an adaptive architecture to provide relative,

absolute and hybrid service delay guarantees for different service classes on web servers under HTTP
1.1. The first contribution of this paper is the architecture based on feedback control loops that enforce
delay guarantees for classes via dynamic connection scheduling and process reallocation. The second
contribution is our use of feedback control theory to design the feedback loop with proven performance
guarantees. In contrast with ad hoc approaches that often rely on laborious tuning and design iterations,
our control theory approach enables us to systematically design an adaptive web server with established
analytical methods. The design methodology includes using system identification to establish dynamic
models for a web server, and using the Root Locus method to design feedback controllers to satisfy
performance specifications. The adaptive architecture has been implemented by modifying an Apache
web server. Experimental results demonstrate that our adaptive server provides robust delay guarantees
even when workload varies significantly. Properties of our adaptive web server also include guaranteed
stability, and satisfactory efficiency and accuracy in achieving desired delay or delay differentiation.

1. Introduction
The increasing diversity of applications supported by the World Wide Web and the increasing popularity
of time-critical web-based applications (such as online trading) motivates building QoS-aware web
servers. Such servers customize their performance attributes depending on the class of the served requests
so that more important requests receive better service. From the perspective of the requesting clients, the
most visible service performance attribute is typically the service delay. Different requests may have
different tolerances to service delays. For example, one can argue that stock trading requests should be
served more promptly than information requests. Similarly, interactive clients should be served more
promptly than background software agents such as web crawlers and prefetching proxies. Some
businesses may also want to provide different service delays to different classes of customers (e.g.,
depending on their monthly fees). Hence, in this paper, we provide a solution to support delay
differentiation in web servers.

Support for different classes of service on the web (with special emphasis on server delay
differentiation) has been investigated in recent literature. In the simplest case, it is proposed that
differentiation should be made between two classes of clients; premium and basic. For example, the
authors of [23] proposed and evaluated an architecture in which restrictions are imposed on the amount of
server resources (such as threads or processes) which are available to basic clients. In [5][6] admission
control and scheduling algorithms are used to provide premium clients with better service. In [11] a server

* Supported in part by NSF grants CCR-9901706 and EIA-9900895, and contract IJRP-9803-6 from the Ministry of
Information and Communication of Korea. This paper is an extension to an earlier paper submitted to IEEE Real-
Time Technology and Applications Symposium [33]. This paper is submitted to this special issue as an extension to
[33] under the permission of the guest editors.

 2

architecture is proposed that maintains separate service queues for premium and basic clients, thus
facilit ating their differential treatment.

While the above differentiation approach usually offers better service to premium clients, it does not
provide any guarantees on the service. Hence, we call this approach the best effort differentiation model.
In particular, the best effort differentiation model does not provide guarantees on the extent of the
difference between premium and basic performance levels. This difference depends heavily on load
conditions and may be diff icult to quantify. In a situation where clients pay to receive better service, any
ambiguity regarding the expected performance improvement may cause client concern, and is, therefore,
perceived as a disadvantage. Compared with the best effort differentiation model, the proportional
differentiated service and the absolute guarantee model both provide stronger guarantees in service
differentiation.

In the absolute guarantee model, a fixed maximum service delay (i.e., a soft deadline) for each class
needs to be enforced. A disadvantage of the absolute guarantee model is that it is usually diff icult to
determine appropriate deadlines for web services. For example, the tolerable delay threshold of a web
user may vary significantly depending on web page design, length of session, browsing purpose, and
properties of the web browser [14]. Since system load can grow arbitraril y high in a web server, it is
impossible to satisfy the absolute delay guarantees of all service classes under overload conditions. The
absolute delay guarantee requires that all classes receive satisfactory delay if the server is not overloaded;
otherwise desired delays are violated in the predefined priority order, i.e., low priority classes always
suffer guarantee violation earlier than high priority classes1. In the absolute guarantee model, deadlines
that are too loose may not provide necessary service differentiation because the deadlines can be satisfied
even when delays of different classes are the same. On the other hand, deadlines that are too tight can
cause extremely long latency for low priority classes in order to enforce high priority classes’
(unnecessary) tight deadlines.

In the proportional differentiated service model introduced in [21], a fixed ratio between the delays
seen by the different service classes can be enforced. This architecture provides a specification interface
and an enforcement mechanism such that a desired "distance" between the performance levels of different
classes can be specified and maintained. This service model is more precise in its performance
differentiation semantics than the best effort differentiation model. The proportional differentiated service
is also more flexible than absolute guarantee because it does not require fixed deadlines being assigned
for each service class.

Depending on the nature of the overload condition, either the proportional differentiated service or the
absolute guarantee may become more desirable. The proportional differentiated service may be less
appropriate in severe overload conditions because even high priority clients may get extremely long
delays. In nominal overload conditions, however, the proportional differentiated service may be more
desirable than absolute guarantee because the proportional differentiated service can provide adequate and
precise service differentiation without requiring artificial, fixed deadlines being assigned to each service
class. Therefore, a hybrid guarantee is desirable in some systems. For example, a hybrid policy can be
that the server provides proportional differentiated service when the delay received by each class is within
its tolerable threshold. When the delay received by a high priority class exceeds its threshold, the server
automatically switches to the absolute guarantee model that enforces desired delays for high priority
classes at the cost of violating desired delays of low priority classes. This policy can achieve the
flexibilit y of the proportional differentiated service in nominal overload and bound the delay of high
priority class in severe overload conditions.

In this paper, we present a web server architecture to support delay guarantees including the absolute
guarantee, proportional differentiated service, and the hybrid guarantee described above. A key challenge
in guaranteeing service delays in a web server is that resource allocation that achieves the desired delay or

1 Another scheme to implement absolute guarantee is to apply admission control on incoming requests during
overload conditions. However, from the perspective of web clients, request denial by admission control is no better
than service failure due to overload.

 5

conditions. The absolute delay guarantee requires that all classes receive satisfactory delay if the
server is not overloaded; otherwise desired delays are violated in the predefined priority order, i.e.,
low priority classes always suffer guarantee violation earlier than high priority classes.

Based on the relative and absolute delay guarantees, different hybrid guarantees can be composed for

the specific requirements of the application. For example, the hybrid guarantee described in Section 1 can
be formulated as follows.

• A Hybrid Delay Guarantee: Each class k is assigned a value Wk that represents both its desired

delay and its desired relative delay. The hybrid guarantee {Wk | 0 ≤ k < N} provides the relative delay
guarantees if the desired absolute delay of every class is satisfied. When the server is severely
overloaded and desired delays cannot be provided to all classes, the hybrid guarantee provides
absolute delay guarantees to high priority classes at the cost of violating the delays of low priority
classes. This hybrid guarantee provides the flexibility of the proportional differentiated service in
nominal overload while bounds the delay of high priority classes in severe overload conditions.

TCP listen queue

TCP connection
requests Connection

Scheduler

HTTP response

Web
ServerWeb

ServerServer
Process

monitorControllers

{Wk | 0 ≤≤ k < N}

{Ck | 0 ≤≤ k < N}

{Bk | 0 ≤≤ k < N}

HTTP service requests

Figure 1 The Feedback-Control Architecture for Delay Guarantees

4. A Feedback Control Architecture for Web Server QoS
In this section, we present an adaptive web server architecture (as illustrated in Figure 1) to provide the
above delay guarantees. A key feature of this architecture is the use of feedback control loops to enforce
desired relative/absolute delays via dynamic reallocation of server process. The architecture is composed
of a Connection scheduler, a Monitor, a Controller, and a fixed pool of server processes. We describe the
design of the components in the following subsections.

4.1. Connection Scheduler
The Connection Scheduler serves as an actuator to control the delays of different classes. It listens to the
well-known port and accepts every incoming TCP connection request. The Connection Scheduler uses an
adaptive proportional share policy to allocate server processes to connections from different classes3. At
every sampling instant m, every class k (0 ≤ k < N) is assigned a process budget, Bk(m), i.e., class k
should be allocated at most Bk(m) server processes in the mth sampling period. For a system with absolute
delay guarantees (Section 4.4.1)), the total budgets of all classes can exceed the total number of server

3 Note that the Connection Scheduler uses process allocation instead of CPU allocation as a mechanism to control
the delays of different classes. This is because processes may hold idle (persistent) connections and therefore CPU is
not necessarily the bottleneck resource under HTTP 1.1 protocols (as discussed in Section 2).

 6

processes in overload, which is a condition called control saturation. In this case, the process budgets are
satisfied in the priority order until every process has been allocated to a class. This policy means that the
process budgets of high priority classes are always satisfied before those of low priority classes, and thus
the correct order of guarantee violations can be achieved. For a server with relative delay guarantee, our
Relative Delay Controllers always guarantee that the total budget equals the total number of processes
(Section 4.4.2). For each class k, the Connection Scheduler maintains a (FIFO) connection queue Qk and a
process counter Rk. The connection queue Qk holds connections of class k before they are allocated server
processes. The counter Rk is the number of processes allocated to class k. After an incoming connection is
accepted, the Connection Scheduler classifies the new connection and inserts the connection descriptor to
the scheduling queue corresponding to its class. Whenever a server process becomes available, a
connection at the front of a scheduling queue Qk is dispatched if class k has the highest priority among all
eligible classes { j| Rj < Bj(m)} .

For the above scheduling algorithm, a key issue is how to decide the process budgets { Bk | 0 ≤ k < N}
to achieve the desired relative or absolute delays { Wk | 0 ≤ k < N} . Note that static mappings from the
desired relative or absolute delay { Wk | 0 ≤ k < N} to the process budget { Bk | 0 ≤ k < N} (e.g., based on
system profili ng) cannot work well when the workloads are unpredictable and vary at run time (see
performance results in Section 7.3.1). This problem motivates the use of feedback controllers to
dynamically adjust the process budgets { Bk | 0 ≤ k < N} to maintain desired delays.

Because the Controller can dynamically change the process budgets, a situation can occur when a
class k’ s new process budget Bk(m) (after the adjustment in saturation conditions described above)
exceeds the total number of free server processes and processes already allocated to class k. Such class k
is called an under-budget class. Two different policies, preemptive vs. non-preemptive scheduling, can be
supported in this case. In the preemptive scheduling model, the Connection Scheduler immediately forces
server processes to close connections of over-budget classes whose new process budgets are less than the
number of processes currently allocated to them. In the non-preemptive scheduling model, the Connection
Scheduler waits for server processes to voluntaril y release connections of over-budget classes before it
allocates enough processes to under-budget classes. The advantage of the preemptive model is that it is
more responsive to the Controller’s input and load variations, but it can cause jittery delay in preempted
classes because they may have to re-establish connections with the server in the middle of loading a web
page. Only the non-preemptive model is currently implemented in our web server. The preemptive model
will be investigated in our future work.

4.2. Server Processes
The second component of the architecture (Figure 1) is a fixed pool of server processes. Every server
process reads connection descriptors from the connection scheduler. Once a server process closes a TCP
connection it notifies the connection scheduler and becomes available to process new connections.

4.3. Monitor
The Monitor is invoked at each sampling instant m. It computes the average connection delays { Ck(m) |
0 ≤ k < N} of all classes during the last sampling period. The sampled connection delays are used by the
Controller to compute new process proportions.

4.4. Controllers
The architecture uses one Controller for each relative or absolute delay constraint. At each sampling
instant m, the Controllers compare the sampled connection delays { Ck(m) | 0 ≤ k < N} with the desired
relative or absolute delays { Wk | 0 ≤ k < N} , and computes new process budgets { Bk(m) | 0 ≤ k < N} 4,
which are used by the Connection Scheduler to reallocate server processes during the following sampling

4 It is the exact algorithm for this computation that control theory enables us to derive as described in the remainder
of this section and Section 5.

 7

period. We first describe the Absolute Delay Controllers and the Relative Delay Controllers in Sections
4.4.1 and 4.4.2, respectively. The Hybrid Delay Controllers based the Absolute and Relative Delay
Controllers are described in Section 4.4.3.

4.4.1. The Absolute Delay Controllers
The absolute delay of every class k is controlled by a separate Absolute Delay Controller CAk. The key
parameters and variables of CAk, are shown in Table 1.

Reference VSk The reference of an Absolute Delay Controller CAk is the desired delay of class k, i.e.,

VSk = Wk.
Output Vk(m) From the Absolute Delay Controller CAk’s perspective, the system output Vk(m) at the

sampling instant m is the sampled delay of class k, i.e., Vk(m) = Ck(m).
Error Ek(m) The difference between the reference and the output, i.e., Ek(m) = VSk – Vk(m).

Control input Uk(m) At every sampling instant m, the Absolute Delay Controller CAk computes the control
input Uk(m), i.e., the process budget Bk-1(m) of class k.

Table 1: Variables and Parameters of the Absolute Delay Controller CAk

The goal of the Absolute Delay Controller CAk is to reduce the error Ek(m) to 0 and achieve the

desired delay for class k. Intuiti vely, when Ek(m) = VSk – Vk(m) < 0, the Controller should increase the
process budget Uk(m) = Bk(m) to allocate more processes to class k. At every sampling instant m, the
Absolute Delay Controller calls PI (Proportional-Integral) control [23] to compute the control input. A
digital form of PI control function is

Uk(m) = Uk(m-1) + g(Ek(m) – rEk(m-1)) (1)

g and r are design parameters called the controller gain and the controller zero, respectively. The
performance of the web server depends on the values of the controller parameters. An ad hoc approach to
design the controller is to conduct laborious experiments on different values of the parameters. In our
work, we apply control theory to tune the parameters analytically to guarantee the desired performance in
the web server. The design and tuning methodology is presented in Section 5.

For a system with N service classes, the Absolute Delay Guarantee is enforced by N Absolute Delay
Controllers CAk (0 ≤ k < N). At each sampling instant m, each Controller CAk computes the process
budget of class k. Note that in overload conditions, the process budgets (especially those of low priority
classes) computed by the Absolute Delay Controllers may not be feasible if the sum of the computed
process budgets of all classes exceeds the total number of server processes M, i.e., ∑jPk(m) > M. This is a
situation called control saturation. Because low priority classes should suffer guarantee violation in
overload conditions, the system always satisfy the computed process budgets in the decreasing order of
priorities until every server process has been allocated to a class5.

4.4.2. The Relative Delay Controllers
The relative delay of every two adjacent classes k and k-1 is controlled by a separate Relative Delay
Controller CRk. Each Relative Delay Controller CRk, has following key parameters and variables. For
simplicity of discussion, we use the same notations for the corresponding parameters and variables of the
Absolute Delay Controller and the Relative Delay Controllers.

5 To avoid complete starvation of low priority classes, the system may reserve a minimum number of server
processes to each service class.

 8

Reference VSk The reference of the Relative Delay Controller CRk is the desired delay ratio between
class k and k-1, i.e., VSk = Wk/Wk-1.

Output Vk(m) From the perspective of the Relative Delay Controller CRk, the system output is the
sampled delay ratio between class k and k-1, i.e., Vk(m) = Ck(m) / Ck-1(m).

Error Ek(m) The difference between the reference and the output, Ek(m) = VSk – Vk(m).

Control input Uk(m) At every sampling instant m, CRk computes the control input Uk(m) defined as the ratio
(called the process ratio) between the number of processes to be allocated to class k-1
and k, Uk(m) = Bk-1(m) / Bk(m).

Table 2: Variables and Parameters of the Relative Delay Controller CRk

Intuitively, when Ek(m) < 0, CRk should decrease the process ratio Uk(m) to allocate more processes to
class k relative to class k-1. The goal of the controller CRk is to reduce the error Ek(m) to 0 and achieve the
correct delay ratio between class k and k-1. Similar to the Absolute Delay Controller, the Relative Delay
Controller also uses PI (Proportional-Integral) control (Equation (1)) to compute the control input (note
that the parameters and variables are interpreted differently in the Absolute Delay Controller and the
Relative Delay Controller).
 For a system with N service classes, the Absolute Delay Guarantee is enforced by N-1 relative Delay
Controllers CRk (1 ≤ k < N). At every sampling instant m, the system calculates the process budget Bk(m)
of each class k as follows.

control_relative_delay ({Wk | 0 ≤ k < N}, {Ck(m) | 0 ≤ k < N})
{

Set class (N-1)’s process proportion PN-1(m) = 1;
S = PN-1(m);

 for (k = N-2; k ≥ 0; k--) {
Calls CRk+1 to get the process ratio Uk+1(m) between class k and k+1;
The process proportion of class k Pk(m) = Pk+1(m)Uk(m)
S = S + Pk(m);

}
 for (k = N-1; k ≥ 0; k--)

Bk(m) = M (Pk(m) / S)
}

4.4.3. The Hybrid Delay Controllers
The hybrid delay guarantee described in Section 3 can be implemented via dynamic switching between
the Absolute Delay Controllers and the Relative Delay Controllers. The server switches from Relative
Delay Controllers to Absolute Delay Controllers if the absolute delay guarantee of the highest priority
class is violated, i.e., C0(m) > W0 + H; On the other hand, the server switches from Absolute Delay
Controllers to Relative Delay Controllers if C0(m) < W0 - H. The use of a threshold window ±H in the
mode switching condition is to avoid thrashing between the two sets of Controllers. Since the hybrid
delay guarantee is a straightforward extension of absolute and relative delay guarantees, we focus on the
design and evaluation of absolute and relative delay guarantees in the rest of this paper.

In summary, we have presented a feedback control architecture to achieve absolute, relative and
hybrid delay guarantees on web servers. A key component in this architecture is the Controllers, which
are responsible of dynamically computing correct process budgets in face of unpredictable workload and
system variations. In the rest of the paper, we use the closed-loop server to refer to the adaptive web

 9

server with the Controllers (Figure 1), while the open-loop server refers to a non-adaptive web server
without the Controllers. We present the design and tuning of the Controllers in the next section.

5. Design of the Controller
In this Section, we apply a control theory framework [23][33] to design the Relative Delay Controller CRk
and the Absolute Delay Controller CAk. In Section 5.1, we specify the performance requirement of the
Controllers. We then use system identification techniques to establish dynamic models for the web server
in Section 5.2. Based on the dynamic model, we use the Root Locus method to design the Controllers that
meet the performance specifications (Section 5.3).

5.1. Performance Specifications
In [34], we presented a set of performance metrics to characterize the performance of adaptive real-time
systems based on control theory [27]. Compared with traditional metrics that only describe steady state
performance, the specifications and metrics presented in [34] can characterize the dynamic performance
of adaptive systems in both transient and steady state. In this paper, we use similar metrics to specify the
performance requirements of the closed-loop server. The performance specifications of the closed-loop
server include in following.

o Stability: a (BIBO) stable system should have bounded output in response to bounded input. To the

Relative Delay Controller (with a finite desired delay ratio), stability requires that the delay ratio
should always be bounded at run-time. To the Absolute Delay Controller, stability requires that the
service delay should always be bounded at run-time. Stability is a necessary condition for achieving
desired relative or absolute delays.

o Settling time Ts is the time it takes the output to converge to the vicinity of the reference and enter
steady state. The settling time represents the efficiency of the Controller, i.e., how fast the server can
converge to the desired relative or absolute delay. As an example, we assume that our web server
requires the settling time Ts < 5 min.

o Steady state error Es is the difference between the reference input and average of output in steady
state. The steady state error represents the accuracy of the Relative Delay Controller or Absolute
Delay Controller in achieving the desired relative or absolute delays. As an example, we assume that
our web server requires a steady state error |Es| < 0.1VS. Note that satisfying this steady state error
requirement means that our web server can achieve the desired relative or absolute delays in steady
state.

5.2. System Identification: Establishing Dynamic Models
A dynamic model describes the mathematical relationship between the input and the output of a system
(usually with differential or difference equations). Modeling is important because it provides a basis for
the analytical design of the Controller. From the perspective of a Relative Delay Controller CRk, the
(control) input of the controlled system is the process ratio Uk(m) = Bk-1(m)/Bk(m). The output of the
controlled system is the delay ratio Vk(m) = Ck(m)/Ck-1(m) (see Table 2). From the perspective of an
Absolute Delay Controller CAk, the (control) input of the controlled system is the process budget Uk(m) =
Bk(m). The output of the controlled system is the delay Vk(m) = Ck(m) (see Table 1). We intentionally use
the same symbols for input and output for Relative and Absolute Delay Controllers because the design
methodology described below applies to both cases. Assuming the controlled system models for different
classes are similar, we skip the class number k of Uk(m) and Vk(m) in the rest of this Section.

Unlike traditional control theory applications such as mechanical and electronic systems, it is often
difficult to directly describe a computing system such as a web server with differential or difference
equations. To solve the modeling problem, we adopt a practical approach by applying system
identification [8] to estimate the model of the web server. The controlled system (including the
Connection scheduler, the server processes, and the Monitor) is modeled as a difference equation with

 10

unknown parameters. We then stimulate the web server with pseudo-random digital white-noise input
[37] and use a least squares estimator to estimate the model parameters. Our experimental results (Section
7.2) established that, For both relative and absolute delay control, the controlled system can be modeled
as a second order difference equation with adequate accuracy for the purpose of control design. The
architecture used for system identification is illustrated in Figure 2. We describe the components of the
architecture in the following subsections.

Web
ServerWeb

ServerTCP listen queue

TCP connection
requests Connection

Scheduler

HTTP response

 Server
Process

Least squares
estimator

white-noise
generator

{ C0, C1 }

{ B0, B1 }

Model
parameters

monitor

HTTP service requests

Figure 2 Architecture for system identification

5.2.1. Model Structure
The web server is modeled as a difference equation with unknown parameters, i.e., an nth order model can
be described as follows,

∑∑
==

−+−=
n

j
j

n

j
j jmUbjmVamV

11

)2()()()(

In an nth order model, there are 2n parameters {aj, bj | 1 ≤ j ≤ n} that need to be decided by the least-
squares estimator. The difference equation model is motivated by our observation that the output of an
open-loop server depends on previous inputs and outputs (experimental results are not shown in this paper
due to space limitations). Intuitively, the dynamics of a web server is due to the queuing of connections
and the non-preemptive scheduling mechanism. For example, the connection delay may depend on the
number of server processes allocated to its class in several previous sampling periods. For another
example, after class k’s process budget is increased, the Connection Scheduler has to wait for connections
of other classes to voluntarily release server processes to reclaim enough processes to class k.

5.2.2. White Noise Input
To stimulate the dynamics of the open-loop server, we use a pseudo-random digital white noise generator
to randomly switch two classes’ process budgets between two configurations . White noise input has been
commonly used for system identification [8]. The white noise algorithm is not presented due to space
limitations. A standard algorithm for white noise can be found in [37].

5.2.3. Least Squares Estimator
The least squares estimator is the key component of the system identification architecture. In this section,
we review its mathematical formulation and describe its use to estimate the model parameters. The
derivation of estimator equations is given in [8]. The estimator is invoked periodically for at every
sampling instant. At the mth sampling instant, it takes as input the current output V(m), n previous outputs

 11

V(m-j) (1 ≤ j ≤ n), and n previous inputs U(m-j) (1 ≤ j ≤ n). The measured output V(m) is fit to the model
described in Equation (2). Define the vector q(m) = (V(m-1) … V(m-n) U(m-1) …U(m-n))T, and the vector
θ(m) = (a1(m)…an(m) b1(m)… bn(m))T, i.e., the estimations of the model parameters in Equation (2).
These estimates are initiali zed to 1 at the start of the estimation. Let R(m) be a square matrix whose initial
value is set to a diagonal matrix with the diagonal elements set to 10. The estimator’s equations at
sampling instant m are [8]:

)5())1()()()()(1()(

)4())1()()()(()()1()1()(

)3()1)()1()(()(1

−−−=

−−−+−=

+−= −

mRmqmmqImRmR

mmqmVmmqmRmm

mqmRmqm

T

T

T

γ
θγθθ

γ

At any sampling instant, the estimator can “predict” a value Vp(m) of the output by substituting the current
estimates θ(m) into Equation (2). The difference V(m)-Vp(m) between the measured output and the
prediction is the estimation error. It was proved that the least squares estimator iteratively updates the
parameter estimates at each sampling instant such that ∑0≤i≤m(V(i) - Vp(m))2 is minimized.

Our system identification results (Section 7.2) established that, the controlled system can be modeled
as a second order difference equation,

V(m) = a1V(m-1) + a2V(m-2) + b1U(m-1) + b2U(m-2) (6a)

In the case of relative delay control, V(m) denotes the delay ratio between the two controlled classes, and
U(m) denotes the process ratio between the two controlled classes, and the estimated model parameters
are (Section 7.2):

(a1, a2, b1, b2) = (0.74, -0.37, 0.95, -0.12) (6b)

In the case of absolute delay control, V(m) denotes the delay of one controlled class, and U(m) denotes the
process budget of the controlled class. The estimated model parameters based on system identification
experiments (Section 7.2) are

(a1, a2, b1, b2) = (-0.08, -0.2, -0.2, -0.05) (6c)

5.3. Root-Locus Design
Given a model described by Equation (6a), we can apply control theory methods such as the Root Locus
[27] to design the Relative Delay Controller and the Absolute Delay Controller. The controlled system
model in Equation (6a) can be converted to a transfer function G(z) in z-domain (Equation 7). The transfer
function of the PI controller (Equation 1) in the z-domain is Equation (8). Given the controlled system
model and the Controller model, the transfer function of the closed loop system is Equation (9).

)9(
)()(1

)()(
)(

)8(
1

)(
)(

)7(
)(

)(
)(

21
2

21

zGzD

zGzD
zG

z

rzg
zD

azaz

bzb

zU

zV
zG

c +
=

−
−=

−−
+==

According to control theory, the performance of a system depends on the poles of its transfer function.
The Root Locus is a graphical technique that plots the traces of poles of a closed-loop system on the z-

 12

plane (or s-plane) as its controller parameters change. We use the Root Locus tool of MATLAB [28] to
tune the controller gain g and the controller zero r so that the performance specs can be satisfied. Due to
space limitations, we only summarize results of the design in this paper. The details of the design process
can be found in control textbooks such as [27].

To design the Relative Delay Controller, we use the Root Locus tool to plot the traces of the closed
loop poles (based on the model parameters in Equation (6b)) as the controller gain increases are illustrated
on the z-plane in Figure 3. The closed-loop poles are placed at

p0 = 0.70 p1,2 = 0.38±0.62i (10a)

(see Figure 3) by setting the Relative Delay Controller’s parameters to

g = 0.3 r = 0.05 (10b)

Similarly, to design the Relative Delay Controller (based on the model parameters in Equation (6c)), the
closed-loop poles are placed at

p0 = 0.607 p1,2 = -0.30±0.59i (11a)

by setting the Absolute Delay Controller’s controller parameters to

g = -4.6 r = 0.3 (11b)

The above pole placement is chosen to achieve the following properties in the closed loop system [27]:

• Stability: The closed-loop system with the Relative Delay Controller (with parameters in Equation

(10b)) or the Absolute Delay Controller (with parameters in Equation (11b)) guarantees stability
because all the closed-loop poles are in the unit circle, i.e., |pj| < 1 (0 ≤ j ≤ 2) (Equations (10a) and
(11a)).

• Settling time: According to control theory, decreasing the radius (i.e., the distance to the origin in the
z-plane) of the closed-loop poles usually results in shorter settling time. The Relative Delay
Controller (with Equation (10b)) achieves a settling time of 270 sec, and the Absolute Delay
Controller (with Equation (11b)) achieves a settling time of 210 sec, both lower than the required
settling time (300 sec) defined in Section 5.1.

• Steady state error: Both the Relative Delay Controller and the Absolute Delay Controller achieve
zero steady state error, i.e., Es = 0. This result can be easily proved using the Final Value Theorem in
digital control theory [23]. This result means that, in steady state, the closed-loop system with the
Relative Delay Controller or the Absolute Delay Controller guarantees the desired relative delays or
the desired absolute delays, respectively.

In summary, using feedback control theory techniques including system identification and the Root

Locus design, we systematically design the Relative Delay Controller and the Absolute Delay Controller
that analytically provide the desired relative or absolute delay guarantee and meet the transient and steady
state performance specifications described in Section 5.1. This result shows the strength of the control-
theory-based design framework for adaptive computing systems.

 13

�����������
	���
 ��� �����������
��������� ���

Figure 3 The Root Locus of the web server model

6. Implementation
We now describe the implementation of the web server. We modified the source code of Apache 1.3.9 [7]
and added a new library that implemented a Connection Manager (including the Connection Scheduler,
the Monitor and the Controllers). The server was written in C and tested on a Linux platform. The server
is composed of a Connection Manager process and a fixed pool of server processes (modified from
Apache). The Connection Manager process communicates with each server process with a separate UNIX
domain socket.

• The Connection Manager runs a loop that listens to the web server’s TCP socket and accepts

incoming connection requests. Each connection request is classified based on its sender’s IP address 6
and scheduled by a Connection Scheduler function. The Connection Scheduler dispatches a
connection by sending its descriptor to a free server process through the corresponding UNIX domain
socket. The Connection Manager time stamps the acceptance and dispatching of each connection. The
difference between the acceptance and the dispatching time is recorded as the connection delay of the
connection. Strictly speaking, the connection delay should also include the queuing time in the TCP
listen queue in the kernel. However, the kernel delay is negligible in this case because the Connection
Manager always greedily accepts (dequeues) all incoming TCP connection requests in a tight loop.

• The Monitor and the Controllers are invoked periodically at every sampling instance. For each

invocation, the Monitor computes the average delay for each class. This information is then passed to
the Controllers, which implements the control algorithm to compute new process budgets.

• We modified the code of the server processes so that they accept connection descriptors from UNIX

domain sockets (instead of common TCP listen socket as in Apache). When a server process closes a
connection, it notifies the Connection Manager of its new status by sending a byte of data to the
Connection Manager through the UNIX domain socket.

The server can be configured to a closed-loop/open-loop server by turning on/off the Controllers. An

open-loop server can be configured for either system identification or performance evaluation.

6 Other criteria for connection classification include HTTP cookies, Browser plug-ins, URL request type or filename
path, and destination IP address of virtual servers [12].

 14

7. Experimentation
All experiments were conducted on a testbed of ten PC’s connected with 100 Mbps Ethernet. Each
machine had a 450MHz AMD K6-2 processor and 256 MB RAM. One machine was used to run the web
server with HTTP 1.1, and up to four other machines were used to run clients that stress the server with a
synthetic workload. The experimental setup was as follows.

• Client: We used SURGE [13] to generate realistic web workloads in our experiments. SURGE uses a

number of user equivalents (also called users for simplicity) to emulate the behavior of real-world
clients. The load on the server can be adjusted by changing the number of users on the client
machines. Up to 500 concurrent users were used in our experiments.

• Server: The total number of server processes was configured to 128. Since service differentiation is
most necessary when the server is overloaded, we set up the experiment such that the ratio between
the number of users and the number of server processes could drive the server to overload. Note that
although large web servers such as on-line trading servers usually have more server processes, they
also tend to have many more users than the workload we generated. Therefore, our configuration can
be viewed an emulation of real-world overload scenarios at a smaller scale. The sampling period S
was set to 30 sec in all the experiments. The connection TIMEOUT of HTTP 1.1 was set to 15 sec.

In Section 7.1, we present experimental results that compare connection delays with response time of

a server with HTTP 1.1. The experiments on system identification are presented in Section 7.2. We
present the evaluation of the closed-loop server in Section 7.3.

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

0 200 400 600

Number of Users

T
im

e
(s

ec
)

Connection Delay Response Time

Figure 4 Connection delay and response time

7.1. Comparing Connection Delays and Response Times
In the first set of experiments, we compare the average connection delay and the average response time
(per HTTP request) of an open-loop server (see Figure 4) to justify the use of connection delay as a metric
for service differentiation in web servers with HTTP 1.1. All connections are treated as being in a same
class and all server processes are allocated to the class. Every point in Figure 4 refers to the average
connection delay or average response time in four 10-minute runs with a same number of users. The 90%
confidence intervals are within 0.58 sec to all the presented average connection delays, and within 0.21
sec to all the presented average response times. The connection delay is significantly higher and increases
at a much faster rate than the response time as the number of users increases. For example, when the
number of users is 400, the connection delay is 4.9 times the response time. Note that the average
response time is computed based on two types of requests, i.e., the response time (including the
connection delay and the processing delay) of the first request of each connection and the response time
(including only the processing time) of each subsequent request. The difference between connection delay

 15

and response time is due to the fact that processing delay is on average significantly shorter than
connection delay. We also run similar experiments with 256 server processes (the maximum number
allowed by the original Apache on Linux). With 256 server processes, the ratio between the connection
delay and the response time is similar to that presented in Figure 4. For example, the connection delay
was 5.3 times the response time when 400 users are used. The complete result for this case is not
presented due to space limitations. This result justifies our decision to use connection delay as a metric for
service differentiation in web servers with HTTP 1.1.

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

Time (second)

-1

0

1

E
st

im
at

ed
 p

ar
am

et
er

s

(a) Estimated model parameters (second order model)

a1
a2
b1
b2

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

Time (second)

0

2

4

6

8

D
el

ay
 R

at
io

(b) Modeling error (second-order model)

actual
estimate

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

Time (second)

0

2

4

6

8

D
el

ay
 R

at
io

(c) Modeling error (first-order model)

actual
estimate

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

Time (second)

0

2

4

6

8

D
el

ay
 R

at
io

(d) Modeling error (third-order model)

actual
estimate

Figure 5 System identification results for Relative Delay

7.2. System Identification
We now present the results of system identification experiments for both relative delay and absolute delay
to establish a dynamic model for the open-loop system. Four client machines are divided into two classes
0 and 1, and each class has 200 users. We begin with the relative delay experiments. The input, process
ratio U(m) = B0(m)/B1(m), is initialized to 1. At each sampling instant, the white noise randomly sets the
process ratio to 3 or 1. The sampled output, the relative delay V(m) = C1(m)/C0(m) is fed to the least
squares estimator to estimate model parameters (Equation (2)). Figure 5(a) shows that the estimated
parameters of a second order model (Equation (6)) at successive sampling instants in a 30 min run. The
estimator and the white noise generator are turned on 2 min after SURGE started in order to avoid its
start-up phase. We can see that the estimations of the parameters (a1, a1, b1, b2) converge to (0.74, -0.37,
0.95, -0.12). Substituting the estimations into Equation (6), we established an estimated second-order

 16

model for the open-loop server. To verify the accuracy of the model, we re-run the experiment with a
different white noise input (i.e., with a different random seed) to the open-loop server and compare the
actual delay ratio and that predicted by the estimated model. The result is illustrated in Figure 5(b). We
can see that prediction of the estimated model is consistent with the actual relative delay throughout the
30 min run. This result shows that the estimated second order model is adequate for designing the
Relative Delay Controller. We also re-ran the system identification experiments to estimate a first order
model and a third order model. The results demonstrate that the estimated first order model had larger
prediction error than the second order model (see Figure 5(c)), while an estimated third order model does
not tangibly improve the modeling accuracy (see Figure 5(d)). Hence the second order model is chosen as
the best compromise between accuracy and complexity.

The system identification experiments are repeated with the same workload and configurations for the
absolute delay. The input of the open loop system is the process budget U(m) = B0(m) of class 0, which is
initialized to 64. At each sampling instant, the white noise randomly sets the process budget to 96 or 64.
The output is the sampled delay V(m) = C0(m) of class 0. To linearize the model, we feed the difference
between two consecutive inputs (B0(m) - B0(m-1)) and the difference between two consecutive outputs
(C0(m) - C0(m-1)) to the least squares estimator to estimate the model parameters in Equation (2). Figure
6(a) shows that the estimated parameters of the second order model (Equation (6)) at successive sampling
instants in a 30 min run. The estimations of the parameters (a1, a1, b1, b2) converge to (-0.08, -0.2, -0.2,
-0.05). To verify the accuracy of the model, we re-run the experiment with a different white noise input to
the open-loop server and compare the actual difference between two consecutive delay samples with that
predicted by the estimated model (Figure 6(b)). Similar to the relative delay case, the prediction of the
estimated model is consistent with the actual delay throughout the 30 min run. This result shows that the
estimated second order model is adequate for designing the Absolute Delay Controller.

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

Time (second)

-0.5

0.0

0.5

E
st

im
at

ed
 m

od
el

 p
ar

am
et

er
s

(a) Estimated model parameters (second-order model)

a1
a2
b1
b2

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

Time (second)

-20

-10

0

10

20

C
0(

m
)-

C
0(

m
-1

)
(s

ec
on

d)

Modeling error (second-order model)

actual
estimate

Figure 6: System Identification Results for Absolute Delay

7.3. Evaluation of the Adaptive Web Server
In this section, we present evaluation results for our adaptive web server. In Section 7.3.1, we first present
the evaluation results of the Relative Delay Controller. The results for guaranteeing the relative delays of
a server with three classes are presented in Section 7.3.2. The evaluation results of absolute delay
guarantee are presented in Section 7.3.3.

 17

7.3.1. Evaluation of Relative Delay Guarantees between Two Classes
To evaluate the relative delay guarantee in a server with two classes, we set up the experiments as
follows.

• Workload: Four client machines are evenly divided into two classes. Each client machine has 100

users. In the first half of each run, only one client machine from class 0 and two client machines from
class 1 (100 users from class 0 and 200 users from class 1) generate HTTP requests to the server. The
second machine from class 0 starts generating HTTP requests 870 sec later than the other three
machines. Therefore, the user population changes to 200 from class 0 and 200 from class 1 in the
latter half of each run.

• Closed-loop server: The reference input (the desired delay ratio between class 1 and 0) to the
Controller is W1/W0 = 3. The process ratio B0(m)/B1(m) is initiali zed to 1 in the beginning of the
experiments. To avoid the starting phase of SURGE, the Controller is turned on 150 sec after SURGE
started. The sampled absolute connection delays and the delay ratio between the two classes are
ill ustrated in Figure 7(a) and (b), respectively.

• Open-loop server: An open-loop server is also tested as a baseline. The open-loop server is fine-
tuned to have a “correct” process allocation based on profili ng experiments using the original
workload (100 class 0 users and 200 class 1 users). The results of the open-loop server are ill ustrated
in Figure 7(c)(d).

We first look at the first half of the experiment on the closed-loop server (Figure 7(a)(b)). When the

Controller is turned on at 150 sec, the delay ratio C1(m)/C0(m) = (28.5 sec / 6.5 sec) = 4.4 due to incorrect
process allocation. The Controller dynamically reallocates processes and changes the relative delay to the
vicinity of the reference W1/W0 = 3. The relative delay stays close (within 10%) to the reference at most
sampling instants after it converged. This demonstrates that the closed-loop server can guarantee the
desired relative delay. Compared with an open-loop server, a key advantage of a closed-loop server is that
it can maintain robust relative delay guarantees when workload varies. Robust performance guarantees
are especially important in web servers, which often face with unpredictable and bursty workload [20].
The robustness of our closed-loop server is demonstrated by its response to the load variation starting at
870 sec (Figure 7(a)(b)). Because the number of users of class 0 suddenly increases from 100 to 200, the
delay ratio drops from 3.2 (at 870 sec) to 1.2 (at 900 sec) - far below the reference W1/W0 = 3. The
Controller reacts to load variation by allocating more processes to class 0 while deallocating processes
from class 1. By time 1140 sec, the relative delay successfully re-converges to 2.9.

In contrast, while the open-loop server achieves satisfactory relative delays when the workload
conforms to its expectation (from 150 sec to 900 sec), it violates the relative delay guarantee after the
workload changes (see Figure 7(c)(d)). After the workload changes (from 960 sec to the end of the run),
connections from class 0 consistently have longer delays than connections from class 1.

In terms of the control metrics, the closed-loop server maintains stabilit y because its relative delay is
clearly bounded throughout the run. We observe from (Figure 7(b)) that the server renders satisfactory
eff iciency and accuracy in achieving the desired relative delays. In particular, in response to the workload
variation at time 870 sec, the duration of the distinguishable performance deviation from the reference
lasts for 180 sec (from 900 sec to 1080 sec), well within the theoretical settling time of 270 sec based on
our design (Section 5.3). The delay ratio stays close to the reference in steady state, which demonstrates a
small steady state error7.

7 Due to the noise of the server caused by the random workload, it is impossible to precisely quantify the settling
time and steady state error based on the ideal definitions (Section 5.1).

 18

0 500 1000 1500

Time (second)

0

20

40

60

C
on

ne
ct

io
n

D
el

ay
 (s

ec
on

d)

(a) Close-loop: Connection Delays C(0) and C(1)

Class 0
Class 1

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

Time (second)

0

1

2

3

4

5

D
el

ay
 R

at
io

 C
1(

m
)/C

0(
m

)

(b) Close-loop: Delay Ratio (C1(m)/C0(m)) and Process Ratio (P0(m)/P1(m))

reference
Delay Ratio
Process Ratio

0 500 1000 1500

Time (second)

0

20

40

60

C
on

ne
ct

io
n

D
el

ay
 (s

ec
on

d)

(c) Open-loop: Connection Delays C(0) and C(1)

Class 0
Class 1

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

Time (second)

0

1

2

3

4

5

D
el

ay
 R

at
io

 C
1(

m
)/C

0(
m

)

(d) Open-loop: Delay Ratio (C1(m)/C0(m)) and Process Ratio (P0(m)/P1(m))

reference
Delay Ratio
Process Ratio

Figure 7: Evaluation Results of Relative Delay Guarantees between Two Classes

7.3.2. Evaluation of a Server with Three Classes
In the next experiment, we evaluate the performance of a closed-loop server with three classes. Each class
has a client machine with 100 users. The Controller is turned on at 150 sec. The desired relative delays
are (W0, W1, W2) = (1, 2, 4). The process proportions are initialized to (P0, P1, P2) = (1, 1, 1). From Figure
8, we can see that the connection delay begin at (C0, C1, C2) = (14.6, 17.3, 17.5) which has the ratio (1,
1.2, 1.2), and then changes to (C0, C1, C2) = (9.3, 16.2, 33.9) which has the ratio (1, 1.7, 3.6), i.e., close to
the desired relative delay, 240 sec after the Controller is turned on. The relative connection delay remains
bounded and close to the desired relative delay in steady state. This experiment demonstrates the Relative
Controllers can guarantee desired relative delays for more than two classes.

0 500 1000 1500

Time (second)

0

20

40

60

C
on

ne
ct

io
n

D
el

ay
 (

se
co

nd
)

Class 0
Class 1
Class 2

Figure 8: Evaluation Results of Relative Delay Guarantees for Three Classes

 19

7.3.3. Evaluation of Absolute Delay Guarantees
In this section, we evaluate the absolute delay guarantee for two classes. The experiment is set up as
follows.

• Workload: The same workload described in Section 7.3.1 is used to evaluate the absolute guarantees.

In the first half of each run, 100 users from class 0 and 200 users from class 1 generate HTTP
requests to the server. Another 100 users from class 0 start generating HTTP requests 870 sec later
than the original users. Thus the user population changes to 200 from class 0 and 200 from class 1 in
the latter half of each run.

• Closed-loop server: The reference input (the desired delays for class 1 and 0) to the Controller is
(W0, W1) = (10, 30) (sec). The process budgets (B0(m), B1(m)) are initiali zed to 64 for each class in the
beginning of the experiments. To avoid the start up phase of SURGE, the Controller is turned on 150
sec after SURGE started. The sampled absolute connection delays of the two classes are ill ustrated in
Figure 9(a).

• Open-loop server: An open-loop server is tested as a baseline. The open-loop server is fine-tuned to
have a “correct” process allocation to achieve the desired absolute delays based on profili ng
experiments using the original workload (100 class 0 users and 200 class 1 users). The results of the
open-loop server are ill ustrated in Figure 9(b).

In the first half of the experiment on the closed-loop server (Figure 9(a)), the Controllers dynamically

allocate processes and the delays of both classes remain close to their desired delay (10 sec and 30 sec,
respectively). At time 870 sec, the number of users of class 0 suddenly increases from 100 to 200, and the
delay of class 0 increases from 8.4 sec (at time 870 sec) to 20.0 sec (at time 900 sec) – violating its
absolute delay guarantee (10 sec). The Controllers react to the load variation by allocating more processes
to class 0 and decreasing the number of processes allocated to class 1. By time 1020 sec, the delay of
class 0 successfully re-converges to 9.6 sec at the cost of violating the delay guarantee of the low priority
class (class 1)8.

In comparison, while the open-loop server achieves satisfactory delays for both classes when the
workload is similar to its expectation (from 150 sec to 900 sec), it fail s to provide delay guarantee for
class 0 with the highest priority, after the workload changes (see Figure 9(b)). Instead, connections from
class 0 consistently have longer delays than connections from class 1 after the workload changes, i.e., the
open-loop server fails to achieve the desired delay for the high priority class.

Note that while both the open loop server and the closed loop server violate the delay guarantee of
one service class, the closed loop server provides the correct order of guarantee violation by
discriminating against the low priority class, while the open loop server fails to achieve the correct order.
In terms of control metrics, the unsaturated (high priority class) controller maintains stabilit y because its
delay is clearly bounded throughout the run. Note that because the system load can grow arbitraril y,
Absolute Delay Controllers (especially those of low priority classes) can saturate and becomes unstable in
overload conditions even if it is tuned correctly. We observe from (Figure 9(a)) that the server renders
satisfactory eff iciency and accuracy in achieving the desired delay for the high priority class (class 0). In
particular, in response to the workload variation at time 870 sec, the duration of the distinguishable
performance deviation from the reference lasts for 60 sec (from 930 sec to 990 sec), well within the
theoretical settling time of 210 sec based on the control design (Section 5.3). The delay of class 0 stays
close to the reference in steady state, which demonstrates a small steady state error for high priority class,

8 Note that the low priority class suffers extremely long service delay in the second half of the closed loop
experiment. In such overload conditions, the system devotes most processes to high priority classes to provide their
absolute delay guarantees, and consequently starves low priority classes. This situation is unavoidable in any servers
that provide absolute guarantees.

 20

i.e., the desired delay of the high priority class is guaranteed in steady state even when the server is
severely overloaded.

0 500 1000 1500

Time (second)

10
30

0

50

100

150

200

250

L
at

en
cy

 (
se

co
nd

)

(a) Connection Delays of the Closed Loop Server

Class 0
Class 1

0 500 1000 1500

Time (second)

0

50

100

150

200

250

L
at

en
cy

 (
se

co
nd

)

(b) Connection Delays of the Open Loop Server

Class 0
Class 1

Figure 9: Evaluation of Absolute Delay Guarantees

In summary, our evaluation results demonstrate that the closed-loop server provides robust relative

and absolute delay guarantees even when workload significantly varied. Properties of our adaptive web
server also include guaranteed stability, satisfactory efficiency and accuracy in achieving desired delay or
relative delay differentiation.

8. Related Work
Support for different classes of service on the web (with special emphasis on server delay differentiation)
has been investigated in recent literature. For example, the authors of [23] proposed and evaluated an
architecture in which restrictions are imposed on the amount of server resources (such as threads or
processes) which are available to basic clients. In [5][6] admission control and scheduling algorithms are
used to provide premium clients with better service. In [11] a server architecture is proposed that
maintains separate service queues for premium and basic clients, thus facilitating their differential
treatment. While the above differentiation approach usually offers better service to premium clients, it
does not provide any guarantees on the service and hence can be called the best effort differentiation
model.

Several other works such as [10][22][30] developed kernel level mechanism to achieve overload
protection and proportional resource allocations in server systems. Their work also did not provide
relative or absolute delay guarantees in web servers. Supporting proportional differentiated services in
network routers have been investigated in [21][31]. Their work did not address end systems such as web
servers.

There have been several results that applied feedback control theory to the design of real-time
computing systems. For example, several papers [11][16][17][23][36][43][44] focused on adaptive real-
time (CPU) scheduling techniques to improve digital control system performance by exploiting the elastic
timing constraints in such systems. These techniques are tailored to the specific characteristics of digital

 21

control systems instead of web servers. Transient and steady state performance of adaptive real-time
systems has received special attention in recent years (e.g., [15][40][45]). For example, Brandt et. al. [15]
evaluated a dynamic QoS manager by measuring the transient performance of applications in response to
QoS adaptations. Rosu et. al. [40] proposed a set of performance metrics to capture the transient
responsiveness of adaptations and its impact on applications. In [31], Li et. al. applied control theory
based techniques to achieve the desired throughput over the network in a distributed visual tracking
system. System delay and web servers were not addressed in their work. Adaptive QoS management
architectures (e.g., [2][4][9][29][39][46]) have been developed to support applications such as
communication, multimedia and embedded systems. However, these architectures were not designed
based on a unified theoretical framework such as control theory.

A least squares estimator was used in [1] for automatic profili ng of resource usage parameters of a
web server. However, the work was not concerned with establishing a dynamic model for the server. In
[3][5], a feedback control loop was used to control the desired CPU utili zation of a web server with
adaptive admission control. By controlli ng the CPU utili zation, the CPU utili zation control can guarantee
the desired absolute delay in web servers under HTTP 1.0 protocol and when CPU is the bottleneck
resource. This technique is not applicable to servers under HTTP 1.1 protocol. In [34], we proposed a
control-theory-based design framework for adaptive real-time systems to guarantee low deadline miss-
ratio in unpredictable environments. This paper extends the framework in [34] to web servers for
guaranteeing desired relative service delays among service classes.

9. Conclusion and Future Work
In this paper, we present the design and implementation of an adaptive architecture to provide relative,
absolute and hybrid service delay guarantees for different service classes on web servers under HTTP 1.1.
The first contribution of this paper is the architecture based on feedback control loops that enforce delay
guarantees for different classes via dynamic connection scheduling and process reallocation. The second
contribution is our use of feedback control theory to design the feedback loop with proven performance
guarantees. In contrast with ad hoc approaches that often rely on laborious tuning and design iterations,
our control theory approach enables us to systematically design an adaptive web server with established
analytical methods. The design methodology includes using system identification to establish dynamic
models for a web server, and using the Root Locus method to design feedback controllers to satisfy
performance specifications. The adaptive architecture has been implemented by modifying an Apache
web server. Experimental results demonstrate that our adaptive server provides robust delay guarantees
even when workload varies significantly. Properties of our adaptive web server also include guaranteed
stabilit y, and satisfactory eff iciency and accuracy in achieving desired delay or delay differentiation. In
the future, we will extend our architecture to provide QoS guarantees in networked embedded systems
and web server farms.

Acknowledgements
The authors would li ke to thank Gang Tao, John Regehr and Jorg Liebeherr for their valuable suggestions
to improve this paper.

10. Reference
[1] T. F. Abdelzaher, “An Automated Profili ng Subsystem for QoS-Aware Services,” IEEE Real-Time

Technology and Applications Symposium, Washington D.C., June 2000.
[2] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS Negotiation in Real-Time Systems and Its Application

to Automatic Flight Control,” IEEE Real-Time Technology and Applications Symposium, June 1997.
[3] T. F. Abdelzaher and N. Bhatti, “Web Server QoS Management by Adaptive Content Delivery,”

International Workshop on Quality of Service, 1999.
[4] T. F. Abdelzaher and K. G. Shin, "End-Host Architecture for QoS-Adaptive Communication," IEEE Real-

Time Technology and Applications Symposium, Denver, Colorado, June 1998.

 22

[5] T. F. Abdelzaher and K. G. Shin, “QoS Provisioning with qContracts in Web and Multimedia Servers,” IEEE
Real-Time Systems Symposium, Phoenix, Arizona, December 1999, pp. 44-53.

[6] J. Almedia, M. Dabu, A. Manikntty, and P. Cao, “Providing Differentiated Levels of Service in W eb Content
Hosting,” First Workshop on Internet Server Performance, Madison, WI, June, 1998.

[7] Apache Software Foundation, http://www.apache.org.
[8] K. J. Astrom and B. Wittenmark, Adaptive control (2nd Ed.), Addison-Wesley, 1995.
[9] C. Aurrecoechea, A. Cambell, and L. Hauw, “A Survey of QoS Architectures,” 4th IFIP International

Conference on Quality of Service, Paris, France, March 1996.
[10] G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers: A New Facility for Resource Management in

Server Systems,” Operating Systems Design and Implementation (OSDI'96), 1999.
[11] G. Beccari, et. al., “Rate Modulation of Soft Real -Time Tasks in Autonomous Robot Control Systems,”

EuroMicro Conference on Real-Time Systems, June 1999.
[12] N. Bhatti and R. Friedrich, “Web Server Support for Tiered Services.” IEEE Network, 13(5), Sept.-Oct. 1999.
[13] P. Barford and M. E. Crovella, “Generating Representative Web Workloads for Network and Server

Performance Evaluation,” ACM SIGMETRICS '98, Madison WI, 1998.
[14] A. Bouch, N. Bhatti, and A. J. Kuchinsky, “Quality is in the Eye of the Beholder: Meeting Users'

Requirements for Internet Quality of Service,” ACM CHI'2000. Hague, Netherland, April 2000.
[15] S. Brandt and G. Nutt, “A Dynamic Quality of Service Middleware Agent for Mediating Application

Resource Usage,” IEEE Real-Time Systems Symposium, December 1998.
[16] G. Buttazzo, G. Lipari, and L. Abeni, "Elastic Task Model for Adaptive Rate Control", IEEE Real-Time

Systems Symposium, Madrid, Spain, pp. 286-295, December 1998.
[17] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity Sharing for Overrun Control,” IEEE Real-Time Systems

Symposium, Orlando, FL, December 2000.
[18] Carr, R., Virtual Memory Management, Ann Arbor, MI: UMI Research Press, 1984.
[19] S. Cen, "A Software Feedback Toolkit and its Application In Adaptive Multimedia Systems," Ph.D. Thesis,

Oregon Graduate Institute, October 1997.
[20] M. E. Crovella and A. Bestavros, “Self -Similarity in World Wide Web Traffic: Evidence and Possible

Causes,” IEEE/ACM Transactions on Networking, 5(6):835--846, December 1997.
[21] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional Differentiated Services: Delay Differentiation

and Packet Scheduling,” SIGCOMM’99, Cambridge, Massachusetts, August 1999.
[22] P. Druschel and G. Banga, “Lazy Receiver Processing (LRP): A Network Subsystem Archi tecture for Server

Systems,” Operating Systems Design and Implementation (OSDI'96), Seattle, WA, October 1996.
[23] J. Eker: "Flexible Embedded Control Systems-Design and Implementation." PhD-thesis, Lund Institute of

Technology, Dec 1999.
[24] L. Eggert and J. Heidemann, “Application -Level Differentiated Services for Web Servers,” World Wide Web

Journal, Vol 2, No 3, March 1999, pp. 133-142.
[25] E-Soft Inc., “Web Server Survey,” http://www.securityspace.com.
[26] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, “Hypertext Transfer

Protocol -- HTTP/1.1”, IETF RFC 2616, June 1999.
[27] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems (3rd Ed.), Addison-

Wesley, 1994.
[28] Mathworks Inc., http://www.mathworks.com/products/matlab.
[29] D. Hull, A. Shankar, K. Nahrstedt, and J. W. S. Liu, “An End -to-End QoS Model and Management

Architecture,” IEEE Workshop on Middleware for Distributed Real-Time Systems and Services, Dec 1997.
[30] K. Jeffay, F.D. Smith, A. Moorthy, and J.H. Anderson, “Proportional Share Scheduling of Operating System

Services for Real-Time Applications,” IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.
[31] B. Li and K. Nahrstedt, “A Control -based Middleware Framework for Quality of Service Adaptations,” IEEE

Journal of Selected Areas in Communication, Special Issue on Service Enabling Platforms, 17(9), Sept. 1999.
[32] J. Liebeherr and N. Christin, “Buffer Management and Scheduling for Enhanced Differentiated Services,”

University of Virginia Tech. Report CS-2000-24, August 22, 2000.
[33] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “A Feedback Control Approach for Guaranteeing

Relative Delays in Web Servers,” Submitted to IEEE Real-Time Technology and Applications Symposium,
June 2001.

[34] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son and M. Marley, “Performance Specifications and
Metrics for Adaptive Real-Time Systems,” IEEE Real-Time Systems Symposium, Orlando, FL, Dec 2000.

 23

[35] C. Lu, J. A. Stankovic, G. Tao and S. H. Son, “Design and Evaluati on of a Feedback Control EDF Scheduling
Algorithm,” IEEE Real-Time Systems Symposium, Phoenix, AZ, Dec 1999.

[36] L. Palopoli , L. Abeni, F. Conticelli , M. D. Natale, and G. Buttazzo, “Real -Time control system analysis: An
integrated approach,” IEEE Real-Time Systems Symposium, Orlando, FL, Dec 2000.

[37] S. K. Park and K. W. Mill er, “Random Number Generators: Good Ones Are Hard to Find”, Communications
of ACM, vol. 21, no. 10, Oct. 1988, pp. 1192-1201.

[38] V. Pai, P. Druschel and W. Zwaenepoel, “Flash: An Eff icient and Portable Web Server,” USENIX Annual
Technical Conference, Monterey, CA, June 1999.

[39] D. Rosu, K. Schwan, and S. Yalamanchili , “FARA –a Framework for Adaptive Resource Allocation in
Complex Real-Time Systems,” IEEE Real-Time Technology and Applications Symposium, June 1998.

[40] D. Rosu, K. Schwan, S. Yalamanchili and R. Jha, "On Adaptive Resource Allocation for Complex Real-Time
Applications," IEEE Real-Time Systems Symposium, Dec 1997.

[41] M. Ryu and S. Hong, “Toward Automatic Synthesis of Schedulable Real -Time Controllers”, Integrated
Computer-Aided Engineering, 5(3) 261-277, 1998.

[42] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, "The Case for Feedback Control Real-Time Scheduling,"
EuroMicro Conference on Real-Time Systems, York, UK, June 1999.

[43] K. G. Shin and C. L. Meissner, “Adaptation and Graceful Degradation of Control System Performance by
Task Reallocation and Period Adjustment,” EuroMicro Conference on Real-Time Systems, June 1999.

[44] D. C. Steere, et. al., "A Feedback-driven Proportion Allocator for Real-Rate Scheduling," Symposium on
Operating Systems Design and Implementation, Feb 1999.

[45] L. R. Welch and B. A. Shirazi, "A Dynamic Real-time Benchmark for Assessment of QoS and Resource
Management Technology," IEEE Real-time Technology and Applications Symposium, June 1999.

[46] L. R. Welch, B. Shirazi and B. Ravindran, “Adaptive Resource Management for Scalable, Dependable Real -
time Systems: Middleware Services and Applications to Shipboard Computing Systems,” IEEE Real-time
Technology and Applications Symposium, June 1998.

