SELECTING VERTICES IN ARRANGEMENTS
OF HYPERPLANES

Jeffrey S. Salowe

Computer Science Report No. TR-87-19
November 13, 1987

SELECTING VERTICES IN ARRANGEMENTS

OF HYPERPLANES

ABSTRACT

Given any arrangement of n hyperplanes in R% there are O (n®) vertices. This
paper shows that the time complexity of selecting the vertex with k'* smallest
z,-coordinate in such an arrangement is O (n® !log3*n), which is sublinear in
‘the number of vertices. This extends the result of 6 from 2-dimensions to
d-dimensions.

1 Introduction

1.1 Background

Let S={z;,.,z,} be a totally ordered set of n items. The rank of z € S is given by
rank(z)=|{v:iv < z,v € §}.. Given S and an item z € S, the ranking problem is to deter-
mine rank(z); for inputs S and k, 1 < k < n. the selection problem is to return an element
z for which rank(z) =k, and the verification problem is to decide for input item z and in-
put rank k whether rank(z)=k. This paper deals with tne selection problem when § is

constrained to be the set of vertices of a d-dimensional arrangement.

Selection problems are interesting in several respects. First of all. order statistics suc-
cinctly describe a set of objects in a robust way. For instance. both the median and the
mean approximate the behavior of a “typical” member of a set. but the median is less sen-
sitive to erroneous data than the mean. The problem is also interesting since selection is

sometimes used to partition in divide-and-conquer or elimination algorithms.

The algorithm of '3 shows that for any set §. the k" largest (or smallest) element
may be selected in O (n) time. However. if order relations are known between elements of
5. we can sometimes select in o(n) time. This phenomenon was observed for problems
which are combinatorial in nature by Shamos. Jefferson and Tarjan in 22. and sub-
sequently by '12. 13. 14. 18 and many others. These algorithms have several known ap-
plications in statistics (calculating the Hodges-Lehman estimator. 12, 22') and operations

research (optimum distribution of effort. finding p-centers, 14. 15. 18).

In [4], Chazelle considered the selection problem when the set § is constrained by
geometry. He described one technique to build efficient selection algorithms for geometric
problems which consists of mapping the geometric set onto a combinatorial structure with a
known efficient selection algorithm. The combinatorial recipient is either a group of
matrices with sorted columns or a group of matrices with sorted rows and sorted columns.
If the time needed to map the set is sublinear in its size. the resulting selection algorithm

will run in sublinear time.

A second technique for geometric selection was described in [6] and [21]. This
method is based on the parametric search idea developed in 119, 17, 5' along with a notion
of approximate ranking. In |6j, an optimal time algorithm was presented for the selection
of slopes, a problem that was initially mentioned by {22} as computing the Theil estimator
and one which seems to resist Chazelle’s method. We use this second technique to extend
the slope selection result of [6; to the problem of selecting vertices in high dimensional ar-

rangements of hyperplanes.

1.2 Terminology

We define the following terminology with respect to sets of points in R A pflat is
an affine subspace of dimension p. A 0-flat is called a point. a 1-flat is called a line and a
(d—1)-flat is called a hyperplane. Let H={h...h,} be a sct of n hyperplanes. H induces
a cell corﬁplex of O(nf) cells in R? called a d-arrangement. and this arrangement will be
denoted by A,(H). Each cell is convex. and the dimension of a cell is the dimension of its
affine hull. The cells in Ay(H) of dimension 0 are called vertices and the cells of dimension

1 are called edges.

The complete skeleton of arrangement A4(H) is the set of all vertices and edges of

A4(H) 18, 9]. but we will shorten this name to the skeleton. By a theorem of 110, an in-
cidence graph representing the skeleton of an arrangement can be constructed in optimal
O (n%) time. From this graph, it is possible to list the vertex-edge sequence along any line
in the skeleton by simply following pointers. References ‘8. 10; provide a detailed descrip-

tion of this representation.

Initially. we assume that Ay(H) is simple. which means that the common intersection

of p hyperplanes in H, p < d, is a (d—p)-flat. The simplicity assumption makes the follow-
ing arguments easier to describe but can be removed without affecting the asymptotic time
complexity. We warn the reader that this requirement is dropped in the last section to al-

low vertices at infinity.

1.3 An Overview of the Paper

We wish to prove the following theorem.

Theorem 1: Given a set H of n hyperplanes, the vertex in Ay(H) with k"
smallest z,-coordinate can be selected in time O (d n? !log®/% n).

The proof of Theorem 1 will be in three stages. In Section 2, we show how to rank
a vertex in Ay(H) according to its z;-coordinate. In Section 3, this ranking algorithm is in-
corporated into Megiddo’s parametric search paradigm [17], which results in an
O (dn% tlog?n) time algorithm. We then complete the proof by showing how to shave off
a factor of \/m in Section 4 by approximating the rank of vertices in A4,(H). This proof
does not depend on the use of the z;-coordinate so the theorem generalizes to any direction
in R% The last section of the paper shows a difficulty in proving non-trivial lower bounds

for this problem.

2 The Ranking Procedure

The first step in proving the main theorem is to construct an efficient ranking algo-
rithm. It turns out that the rank of the z;-coordinate of a vertex in a d-arrangement can
be calculated using information in the skeleton of the intersection of arrangement A,(H) and
hyperplane z,=t. This structure will be called the intersection skeleton at t, and will be

denoted by Ay_;(H)t..

There are two distinct subproblems in the ranking computation. First. the vertex
with the smallest z;-coordinate (the leftmost vertex) must be found to establish a starting
skeleton. Second, there must be a procedure which compares the intersection skeletons at

t; and t, and returns the number of vertices vi=(z;,..,2;,) for which t; < z; <t

Lemma 2: The leftmost vertex in Ay(H) can be found in time O (n% !logn).

Proof: Determining the leftmost vertex in Ay(H) is solved by induction on d. A

recursive algorithm can be built to simulate the induction.

As a basis, let P be a plane in R® with unit vector e, and let Ay(Hr P) be a
2-arrangement of n I'ines in P. Also, let ¢; be the upit vector corresponding to the ith
coordinate axis. If e==e;, any vertex in Ay(HNP) is a leftmost vertex. Otherwise. or-
thogonally project A,(HM P) onto the z,z, plane, where i>1 is the smallest index with
e # aey+ Pe;. Call this projected arrangement A, (H" P). The leftmost vertex in
Ay’ (H~ P) may be found in O(nlogn) time by sorting the projections of the lines in H~ P
by slope, determining the intersection points of adjacent lines with respect to this sorted
order and choosing the leftmost intersection point. Since the direction of projection is or-

thogonal to the zj-axis, the leftmost vertex in A, (H~ P) corresponds to the leftmost vertex

in AZ(HP P)

Assume inductively that the leftmost vertex in any (d—1)-arrangement lying on an ar-
bitrary hyperplane of n (d-2) flats in R? can be found in O (n% %logn) time. Arrangement
Ay (H) may be decomposed into a collection of n (d-1) arrangements of (n—-1) (d-2)-flats
which we denote by A;_I(H~{hi})=Ad(H)”hi. Every p-face in Ay(H), p < d-1. is in
(H — {h;}) (this is true be-

and a leftmost vertex must be in exactly d of the A4

A 4

1

d-1
cause of the simplicity assumption). To find the leftmost vertex in Ay(H). we choose the
vertex with minimum z,-coordinate in each of the A;_I(H - {h;}) and pick the minimum of

this set. This procedure can be effected in O(n-(n—l)d—zlogn*hﬁ) =0 (n% liogn) time. e

Ranking is accomplished by relating the intersection skeleton passing through a point
to the left of every vertex (the starting skeleton) to the intersection skeleton passing
through the vertex to be ranked (the ranked skeleton). Specifically. the idea is to compare
the number of inversions determined by the permutation of vertices along the 1-flats in the
ranked skeleton with the number of inversions in the starting skeleton. This procedure is
based on the following observation. Suppose hyperplane z; =t sweeps past a vertex v, of
A4(H) with zj-coordinate t; Let vy=h, ~h, 7.7 hy, and pick an arbitrary (d-2)-sized
subset of these hyperplanes, {hil‘“"hid-:'}' Examine the order in which the rest of the hy-
perplanes in H intersect line hjl"..."”‘. hjdﬁ,:’“{q:tj—e} of Ay (H)it;— e, ¢>0. and suppose

h

Jae1 precedes h;. There are two such sequences. one the reverse of the other: we require

that the orientation be consistent throughout the computation. As the hyperplane z, =t
sweeps further to the right, h;, , and hj coincide in Ay (H)it;, and h;, . follows: h;, in
Aq_y(H)[t;+¢€|, ¢>0. In the ordered list for {hil"”’th~2}’ there is one additional inversion
with respect to the starting sequence. Likewise, there is one additional inversion in the

lists for each of the (di2> = (q) subsets of {hfl""’hid}" At every vertex v, the total num-

ber of inversions along all the lines of A4, ;(H)iti is increased by exactly <f> one for each

line incident with v,

To implement this procedure, we construct the starting intersection skeleton
A4_1(H)it), for an appropriate t. For each line in the intersection skeleton, the initial list
of vertices is computed by following pointers in the representation of the skeleton. Then,
given an input vertex v;=(z, ...,z;)), We construct Ad_l(H)[z,»l-»ef and compute the ordered
list of vertices along the lines determined by each (d-2)-set of hyperplanes. (The term e
disambiguates the order of coincident vertices at t.) By i10!. this takes O (n%"!) time and
space. For each line. we calculate the number of inversions from the starting list for that

line. The rank is this total number of inversions divided by (g)

Correctness of the procedure follows from the argument in the previous paragraphs.
and the time complexity of the procedure is dominated by the time to do inversion counts.
Counting the number of inversions in one list of length n takes O (nlogn) time {16., so for
O (n%"?) lists this amounts to O (n? " !logn) time.

Theorem 3: A vertex in Ay(H) can be ranked with respect to a given coor-
dinate (or direction) in time O (n* liogn).

3 The Selection Procedure

The selection algorithm is a search procedure. There are a total of O (n?) vertices.
each of which can be ranked in O(n% !logn) time. We use the technique of Megiddo
19, 17. 5 to "parametrically” find a subset of vertices of size O (dlogn) which must con-

k" smallest z;-coordinate. Roughly. the procedure consists of (1)

tain the vertex with
viewing the selection problem as a group of sorting problems which guide the algorithm to
the k" vertex, (2) using the ranking procedure to resolve comparisons in the sorting algo-
rithm and (3) implementing the sorting algorithm with a serial version of the AKS sorting

network. In the next few paragraphs we briefly review the parametric search technique.

In the special case when the guiding algorithm is sorting, Megiddo’s technique can be
sketched as follows. Suppose a “search” problem can be efficiently reduced to a sorting
problem; although solving a sorting problem amounts to resolving O (n log n) comparisons,
the comparisons m this sorting algorithm may be expensive (i.e. w(l) time). Nevertheless,
it may be the case that the comparisons have an ordering property such that the resolution
of a single comparison can in turn resolve many other comparisons. That is, depending on
the outcome of a given comparison C, either all the 'comparisons less than C can be

resolved in constant time each or all those greater than € can be resolved,

Although any sorting algorithm based on comparisons will solve the search problem, a
sequentialized parallel sorting algorithm affords the greatest flexibility and can be completed
with the fewest expensive comparison resolutions. By a sequentialized version of a parallel
algorithm, we mean an algorithm which performs each level in series so that the com-
parisons on the first level are executed in any order, then the comparisons on the second
level, and so on. We use the AKS network as our parallel sorting algorithm [1], and it is

made up of O (logn) levels with g comparisons on each level.

Since the output of the sequentialized algorithm is nor affected by the order in which
comparisons on a given level are performed. the comparisons can be analyzed to determine
the one that, regardless of its outcome. resolves the greatest number of other comparisons
on that level. A natural idea is to resolve the median comparison, partition the com-
parisons into those that are resolved and those that are not and recurse on the latter set.

Instead of expensive comparison computations per level. only O (logn) expensive com-

[-]

parisons are needed to resolve all comparisons on that level. O (log* n) over the entire net-
work. In fact. the network can be resolved in O (logn) expensive comparisons (see 5 for

details).

For the current problem of selecting the vertex in a d-arrangement with & smallest

zj-coordinate, the sarting problems determine the ordering of vertices in the (_dfq) lists cor-

responding to the intersection skeleton at the unknown k" vertex. " = (2 ,nzy'). Suppose

iy, < h,, In the initial ordering for {hfl’“"hid—:'}‘ Each comparison is in the form

* Y.

"Is hid~1<hid in the list for {hil""’hid—e} in Ag_y(H)'z; °

This comparison can be resolved by ranking the vertex v, =h; N..7hy. The number of

vertices to the left of z;=t (i.e. the rank) is monotonically nondecreasing with respect to

z;-coordinate. Therefore, if rank(viest) <ky z1(v) > z1(vien), and hy,_| >h;, in the list for
{hi)-ihiy o} in Ag_,(H)|z,"}, where zi(v) is the zj-coordinate of v. If rank(v,,) >k,

21(v") < 2, (vrew). and hy,_ <k, in the list for {hy,...h, ,} in Ag_1(H)[z;". Otherwise,

t 3
rank(viy,) =k and v = vyy.
kth

The following lemma shows that the vertex with smallest z;-coordinate must be

ranked if all the sorting problems are solved.
Lemma 4: Any algorithm that sorts the vertices along each line in the in-

tersection skeleton at u'=hi1h...ﬂh,~d by comparisons must compare hiy_y and h;,
in the list for {h;....h;; ,}.

Proof: In the list corresponding to {hfr'“'hid—z} in the intersection skeleton passing

through v, h and h;, must be adjacent since they are coincident at v Suppose the

-1
sorting algorithm does not compare h;, | with h;. Then the results of all other com-
parisons are the same regardless of whether h;, , <h;, h,,_,>h; or hiy 1 =hiy This con-

tradicts the assumption that the algorithm obtains the sorted list. e

Theorem 5: The vertex in Ay(H) with k* smallest z,-coordinate can be
selected in O (d n% !log’n) time.

Proof: We use Cole’s improvement to implement the parametric search .5.. The

vertex selection problem satisfies the two criteria mentioned in that paper.

1. The problem can be solved by sorting where each comparison costs O (% logn).

2. The comparisons can be ordered by z,-coordinate. That is. let C; and C, be
two comparisons. Each comparison is in the form "Is h;, | <h;, in the list for
{hil"“'hid—:} in A4,;_y(H)iz; 7.7 so each comparison corresponds to a vertex
vi=hy 7.7 hy. Then C;<C, if and only if z;(v;) < z{{va).

n . . ' . .
There are (d_q) sorting networks. one for each line in the intersection skeletons. and

if they are run simultaneously, they can be considered to be a single algorithrﬁ with
O (logn) levels and O (n%%).0(n) =0 (n%"!) processors per level. The results of {51 show

that O (dlogn) expensive comparisons (i.e. rankings) suffice to resolve all O (n%"liogn) com-

parisons. Since the cost of each expensive comparison is O (n% llogn) and the cost of all
other comparisons is O (1), O (d nd~1llog?n) time is needed. Correctness follows by the dis-
cussion above, Lemma 4 and a similar argument proving that v’ must be one of the

ranked comparisons in the network. e

4 Faster Selection by Approximate Ranking

It is not necessary to rank a vertex in order to resolve a comparison. All We need is
the relative position of v, with respect to v.. In the previous section, this step took
O (n% llogn) time, but in this section, it is shown that relative position can be determined
by an approximation at an average cost of O (n? !log!/Zn) per vertex. This leads to an
O (dn% 110g3/%n) time selection algorithm. When d =2, this approximation was developed
by Cole, Salowe, Steiger and Szemeredi, but it was replaced by a more economical ap-
proximation in [6.. We first present the approximation for d =2 and then extend this ap-

proximation to higher dimensions.

4.1 The Approximation

In the case d =2, the starting intersection skeleton consists of n points along the ver-
tical line z, =t. where t is less than the smallest z,-coordinate in Ag(H). If we assume the
lines in the arrangement are indexed according to decreasing slope, point y(t) is the
z,-coordinate of the intersection of vertical line z; =1t with the i** line in the arrangement.
so the y;(t) are initially sorted. At any other intersection skeleton. the top-to-bottom order
of indices is permuted. and the number of inversions in this permutation is precisely the
rank of the corresponding vertex. It is evident that the key to approximating the rank is

to approximate the number of intersecting lines between two z;-coordinates.

kth

Theorem 6: (Cole. Salowe. Steiger. Szemeredi) The vertex in a

2-arrangement can be found in O(n log>* n) time.

We prove this result by a series of lemmas. First. we describe the top level of how
the approximation works. and then we present the actual approximation algorithm. The
approximation is analyzed by first bounding its error and then determining how much ad-

ditional work must be done to ensure the approximation is accurate.

.

The top level of the approximation algorithm estimates the number of inversions be-
tween the intercepts along reference line r and the intercepts along the vertical query line ¢
incident to v,,. A reference line has the property that its rank is known exactly; the ap-
proximate rank of vertex v, is thus the sum or difference of the number of inversions at
the reference line and the approximate number of inversions between the reference line and
q. The absolute error e of the latter approximation depends on the true number of inver-

sions between r and g.

Denote the approximate number of inversions between r and ¢ by K, let K be the
true number of inversions, let K" be the number of inversions between r and the vertical
line incident to v', and suppose that both ¢ and v are to the right of r. Note that
K e (K —e K +e¢) by definition. Whenever K ¢ (K’ —e. K’ +e¢), the relative ordering of
Ve and v can be determined by the approximation. That is, if K '>K' +e, v is to the
right of v, and if K'<K —e. v is to the left of vy,,. If K € (K —e K’ +e), the or-
dering of v,y and v cannot be determined by the approximation. In this case, rank (v)
is computed exactly and ¢ is made the new reference line. An algorithm for the top level
of the approximation is given in Figure 1. In this description. we assume that the relative

.. *
position of v, and v cannot be determined by transitivity.

Algorithm APPROX was called by the top level of the algorithm and consists of the
following steps (see Figure 2). Assume that r and ¢ are as before and that the intercepts
along r are numbered in top-to-bottom sequence from 1 to n. If G Zin. let the image of

the ** point in G at ¢ be Tg(:). The algorithm will sort a small subset of My, and use

the number of inversions to find the estimate for K. K'.

The first step is to divide the points at r into :n.r contiguous intervals of size :r
and possibly one group of size less than 'r'. For each interval G, merge-sort Ig(i).
1 < i <iG.. This has the effect of ordering the image of G as well as counting the num-

ber of inversions between elements of G. This number of inversions is added to A".

The elements Ig(i) are now sorted. Assign the first 7'*~ ¢ % elements and the last

34~ €/} glements weight 1. A small sample of the remaining elements is taken. Divide

them into intervals of length = 7}/?", assign the median of each interval weight 7. and

assign the rest weight zero. For the topmost interval G, to the bottommost interval. place

10

ALGORITHM TOP-LEVEL (v, 1 k, position)

g — z1(vtest)
IF rank(r) <k THEN
K — k—rank(r)
K° — Approx(r,q)
IF K e (K'—e. K’ ~¢) THEN
Pose rank(”teat)
¥, >k THEN
position « Tright”
ELSE IF p,, <k THEN -
position — Tleft”
ELSE
position — “on”
Record sequence of intercepts at g
ro— g
ELSE
IF K <K' —¢ THEN
position — "left”
ELSE

position ~ Tright”

ELSE

K' — rank(r) -k

K° — Approx(r.g)

IF K' = (K" -e. K" —¢) THEN
— rank(vy,)

¥, >k THEN
position — Tright™
ELSE IF p,, <k THEN
position « T left”
ELSE
position «— Ton~
Record sequence of intercepts at ¢
r— 9

ELSE
IF K" <K -¢ THEN
position — “right”
ELSE

position — "left”

Figure 1: ALGORITHM Top-level

11

ALGORITHM APPROX (r,9)
K «~ 0
DIVIDE the intercepts at r-into consecutive intervals of size /7’

Gi={yg(r): (i-1)[r]+1 < j < i[r}}, o sorts {na(r)ss9a(r)}-

FOR each group G;
SORT Iig(s, 1 <5< .Gy, and
CALCULATE the number of inversions C within G,.
K ~— K ~C
ASSIGN
{7:Tg,4) € (L[4t
(TG, () € (17 1R en, i)
weight 1.
ASSIGN
{7 TG (5) = (R/47€ o (kr1/2) T4/ 20),
0< kg Trog e ity il
weight [71/2,
FOR Iig (1) TO Ig (ir)
IF weight (Il (s) >0 THEN
APPEND to list !
Weighted-Inversions(l.A.! k)

K — K —k

Figure 2: ALGORITHM Approx

et

12

the elements of positive weight, in their order at g, into the list {. Therefore, the elements

within a group are ordered with respect to g, but elements in different groups are ordered

with respect to r. -

The estimate K’ for the number of inversions between r and ¢ is the number of in-
versions within the G,,'s plus the estimated number of inversions between the G,’s. The
number of inversions within the G, ’s was counted when the groups were sorted, and the
estimated number of inversions between the G,’s is calculated by algorithm
Weighted-Inversions(/,4,|/[,k). (See Figure 3.) Algorithm Weighted-Inversions has the
property that whenever ¢ and j invert (i is above j at r but j is above i at g),

wetight(t)-weight(j) is contributed to the weighted sum.

Lemma 7: (Correctness) For list I

1. Weighted-Inversions does not detect an inversion within a group G.

2. If zy € G, 2z, € G, ¢ # j, invert between r and ¢. then weight(z,)-weight(z,)
is contributed to K.

3. If z; € Gy, z; € G;. i # j, do not invert, nothing is contributed to K.

Proof: For an arbitrary weighted permutation. if weright{z,)-weight(z,) is contributed
to the output sum whenever z; and =z, invert and if nothing is contributed to the sum
whenever z; and z; do not invert. then all three claims are true. The sort is stable and

the elements in G are placed into [according to their ordering at g.

Assume z; is before z, in (. During the execution of Weighted-Inversions, z; and z,
are eventually in adjacent lists. with the list containing z, immediately to the left of the
list containing z,. Element z; precedes element z, initially. and the only time they can in-
vert is when these lists are merged. During this merge. the weight of z, is multiplied by
the sum of the weights of the elements in the left list which are below z, at ¢. If z; and

I, cross, weight(z,)-weight(z,) is contributed: otherwise. nothing is contributed. e

13

ALGORITHM Weighted-Inversions (L, 4,n, k)

/* L is the input list, n is its size, A is the sorted output and k is the

/* total of weighted inversions. Elements are compared based on their order at gq.

IF n=1 THEN
A—L
k—0
RETURN
idydp — 1
Weighted-Inversions (Lil:'n/2 .. A1.'n/2, k1)
Weighted-Inversions (L; n/2 ~l:in. A2, n—in/2], k2)
k — k1 — k2
T~0
" FOR i="n/2) DOWNTO 1
T — T weight(ALil)
W, — T
WHILE i, < 'n/2° AND ¢, < n—"n/2
IF Ali;<A2i, THEN

Al — Al4,

1y — 17 — 1

i - 1~ 1
ELSE

Al — A2,

1o — o — 1

T o= 1 = 1

k — k — wez’ght(AZig)-Wl1
IF i, >"n/2 THEN

Aiiin' — A2iain— n'2
ELSE

Ain — Alipn 2

Figure 3: ALGORITHM Weighted-Inversions

14

4.2 The Analysis of the Approximation
Throughout this section, we assume that 7 is sufficiently large. If K’ is the number
of inversions counted by algorithm APPROX, the following series of lemmas show that
e < —, 0<e<1/2; we show why this error behavior is useful in Lemma 11. The bound
7] |
on the error is done by comparing the estimated number of inversions between two groups

b

G; and G, i <j, with the true number of inversions. For notation. let
Ker=W{(z,y):z € S,ye T,z <y Il(z) > II(y)} .
and let K'gr and egr be the restrictions of K* and e to sets S and 7. If K'G‘_G]. and KG,-Gj

are respectively the estimated and the true number of inversions between the elements of

G; and Gj i # j, we show that for every G,~G; pair.

2K 66, 2K GG,
Kgi; € (K G,-Gj_——’—:'“vK GiGj""_"—E""')-
. .
C e . ' 2K . e .
This implies K € (K —-——-;—,K ~~—). The proof of this statement is divided into cases
- L€

based on the weights of the elements. First. we bound the error contributed by the weight

1 elements.

Lemma 8: Let z £ G, weight(z)=1. Then either

or

K’Gi:c > ;T3/4+€/2~" €G,z < 412,

Proof: If = crosses all of G;, K'g,=HKg .= r. while if z does not cross any ele-
ment in G; of weight 1, K'¢,=~Ag,=0. Otherwise. the image of z lies between the im-
age of z; and the image of z,. z,z, € G,. If 2 and z; have weight 1, then K'g .= K¢,
If z; has weight 1 and z; has weight 7. then K'g might overestimate K¢, by v/2. If z

has weight 7 and z; has weight 1, K'g . might underestimate K¢, by /2. Otherwise

weight(z;) = weight(z;) =+. In this case. the error can vary from -7/2 to v/2. In each of

the latter three cases, element z has crossed the lower [/2/4+€/%

which has weight -t and is therefore counted in the approximation. e

elements of G;, each of

Denote the set of elements in G; of weight 7 as g;. A bound on the error con-

tributed by these elements is given in the following lemma.

Lemma 9:

£ 3/2"
g9, < ir

Proof: Suppose that G; is above G; at r, and consider the ordered sequence of g;ug;

at g. Denote this as

o Fipe T Yy Vi Figa o TgYipe

where z; €y and y, < g; Each z or y is the median of a small group of size 7. Let p

be the number of alternations from y to z in this sequence and note that 0 < p < 1.

Each z,a,corresponds to an interval in G. of size 4. but errors may occur due to the
coarseness of the approximation. If z,, inverts with adjacent y; . then the approximation
[

adds v to the sum. though only e inversions must occur in the exact count. Similarly.

if z,, does not cross y, . the approximation counts 0 inversions. though as many as

(v/2 = 1)* may occur in the exact count.

The worst overestimation happens in the following situation. At a y;.y, — 7.7,
block. (7/2-1) of the elements in the group represented by vy, do not cross the block
zy..z,. Similarly, (7/2 = 1) of the elements in the group represented by z; do not cross the
block y;..y,. These blocks are isolated from the remainder of the list by the (pbssibly
nonexistent) z _that precedes y, and the y that follows =z, This means that
(v/2 + 1)+(m—1)y of the y's must cross (y/2+ 1)+ (s—1)y of the z’s. The approximate count

is thus smi7 while the actual count may be as small as (s-1/2)(m—1/2)/7.. The error per
. . 'T1 :‘T. . . .
alternasion is therefore at most (a+m)T—T. Summing this error over all the alternations

gives

16

as asserted.

The worst underestimation is similar. e

Now that we have bounded the errors contributed by weight 1 elements and weight «
elements, we present two main lemmas describing the approximation. The first lemma
gives the accuracy of the approximation and the second counts how many expensive up-

dates are needed.
Lemma 10:
Ko, € (K'g6,~
OD<ex<1/2.

Proof: Assume that G, is above G, at r. For the proof. abbreviate KG‘.G] to K,

-

: there are two cases.

and do the same for K* and e. The goal is to show that - -
€

;

Case 1: No weight v items cross. Then the only intersections which contribute to

the estimation are those between weight 1 elements or those between weight 1 elements

with weight 7 elements. Denote the lowest ‘*'* 7€ %" elements from G, as Lg, and denote

the highest 77> %~ €2 elements from G; as Ug.: If min (LG 1 is below some element of Lg..

then the only intersections and errors possible are those determined by Lemma 8. There-

fore for each element. either e=0 or

3
e 8 —<
2

?’T3/4 ~€/2 A

If min(UGJ.) crosses maz (Lg). then there may be an additional error of (7/2—1)° due

to the weight 0 items between the weight v items. Nevertheless.

17

[T3/2+E’i K’

T .
e<u+‘ [T5/4+€/2't < 1”1.3/2f < ~———--€""'" < -
4 b T

Case 2: Some weight 4 items cross. Then Lemmas 8 and 9 show that the total er-

ror is bounded by

32 2r(ra/q +€/2) _%< g 312

The first term is due to weight 7 elements and the second term is due to weight 1 ele-

ments. However, since all of UG]. crosses all of Lg.,

. 2 B2 e 2K’
e<?2 P < ———m < '}
1r€v :_rt_

As a consequence of the error bound. we have the second main lemma which gives a

bound on the number of reference line upaates.

. . 2K . 2K’ logn
Lemma 11: Let A = (K* - — K’ ——). Then at most O(lg) reference
€ € €log7
i T
line updates are needed.
Proof: Let K'j be the actual number of inversions between the ;** reference line

and the vertical line passing through ¢". Recall that an update is needed whenever

-
. . oK 2K
K e (K - K’ +==). Then. the maximum number of inversions between the vertical
€
. o
T o B

line incident with v" and ¢ is

Therefore.

=t

I 4 .. 4 * 2 -1
K 1 = K -1 < K 1—1(1 -)
L € W€

7 i i

4 .
so the errors are cut by a factor of — at each update. Since

€

;

18

the recurrence leads to

{
*

K <

n?(1- —L)"',

€1 Lr€£

(7

The smallest number of iterations to ensure K; < 1 is

logn

elogr’

Proof of Theorem 6: The cost of algorithm APPROX is made up of the following
terms. First, rlogr is needed to sort each G, and determine its internal inversions. For

all = groups, this is 2-rlagvr:nlogr time. Second, given this sorting information the list {
; -

. . cn . n- . «
is formed in —-ir2/*T€?" time. and Weighted-Inversions makes its approximation in
T

O (1. log I') time. Since ' is -—‘——cf———- the cost of the approximation is
1 a-€

cn
Of(nlogr- —-1—4—Tlog nj.

L

and at most O (logn) approximations are made.

By Lemma 11. at most

logn

O(e logr

full inversion counts are needed when the approximation cannot distinguish the relative or-

der of v" and v,,. Including the operation of the AKS network. this leads to

logn
elogr

n
logn {nlogr~ —————Ilogn} ~nlogn { } ~-nlogn.

Thg D
rl/4 €/2

A balance is reached when logr= Viegn. or r=2"19" in which case the total cost is
g

19

nlogn

nlog®?n + —,
2{1/4-5/2)\&0“

The former term dominates the latter as n gets large. e

Proof of Theorem 1: For d>2, the 2-dimensional approximation is a subcom-
ponent of the d-dimensional approximation. Let ! be an arbitrary line in the intersection
skeleton of A,_;(H)lt. Let K, be the true number of inversions between Ay _,(H)ir: and
Ay_,(H)|¢ along !, where z;=r is a reference hyperplane and z;=g¢ is the hyperplane
through the vertex to be ranked. Using the same notation as before, the approximation
K’ returned by APPROX satisfies

K K
Ke(K\-— K |-—)
l.T€J ‘.Te.r
If K is the total number of inversions between r and ¢ summed over all the lines in the
intersection skeleton. then
K’ K’
Ke (K ~— K’ ——).

T 7

Choosing r=2"109" Jeads to O(n%llog!’*n) time approximate rankings with only
O (dlog'’® n) full rankings. The analysis is identical to Theorem 6. and the main theorem

is proved. o

5 Remarks on Lower Bounds

Obtaining a good lower bound on the vertex selection problem seems to be difficuit
because of its association with bounds on the complexity of determining whether a set of n

points is in general position. Though the definition of general position varies from problem

to problem. we consider the case of deciding whether there is a (d+1)-sized subset of n
points in R? which lie on a single hyperplane. This problem will be called (d)-general posi-
tion. It is known that (d)-general position can be decided in time O (n% for d>1 and in

time O(nlogn) time for d =1 [10. 11. However, the only tight lower bound is d=1 in

20

that 7] proved that ”element distinctness” requires Q (nlogn) steps in the linear decision

tree model. This result was subsequently strengthened to the algebraic decision tree model

by [2, 23] (see [20]).

There is a natural correspondence between finding the leftmost vertex in Ay(H) and
(d—1)-general position, provided we allow a vertex at infinity to be the leftmost (as well as
the rightmost) vertex. For notation, A < (n) B means that an instance of problem A can

be transformed to an instance of problem B in C(n) time.

Theorem 12: For d > 2,

(d—1)-general position < g, Leftmost vertex in Ay(H).

Proof: Suppose there is an algorithm which on input H = {hy,...,h,;}, returns the
leftmost vertex in Ay(H). Note that if d hyperplanes do not intersect in a point, they
describe a vertex at infinity. The vertex at infinity is both a leftmost and rightmost ver-
tex. We now present a method to decide (d—1)-general position using a subroutine which

returns the leftmost vertex in Ay(H).

To decide if n points are ir (d—1)-general position. we define two transformations, T
and D Let p;=(t;,.ntg—;) € RY"! be an input point. T:R%! — R? is defined by
Tp;=(ty..ty_1.7) < RY. and D:R? — R? is the standard point-hyperplane duality

p: (tl""'td) —_ Dp LIy =t111 -— td_lzd_l -— td

hizg=tyzy— ... =ty 1Zq1 +~tg — Dh: (—tl""!-td—l)td)'

The first step is to map each point p; =(t;,...t5-y) to p," =T p;. Then we use duality
D to form H={Dp;’} and call the leftmost vertex subprogram on H. If the input set is
not in (d—1)-general position. there are d points lying on a (d-2)-flat in R¢"!. The image
of this set lies on a hyperplane in R? whose normal vector has no z;component. Under
duality D. the duals of these points "meet”™ in a veftex at infinity. On the other hand. if
the input set is in (d—1)-general position. then there is no vertex at infinity in A4(H) and

so the z;-coordinate of the leftmost vertex is finite. e

21

Again, this theorem does not yield a non-trivial lower bound on finding the leftmost
vertex in Ay(H), but it does state that may be difficult to build an algorithm that can find

the leftmost vertex in Ag(H) in o(n®"!) time since, despite years of effort, there are no

o(n%!) time algorithms for (d—1)-general position

There is a second correspondence between selecting the leftmost vertex in Ay(H) and
(d—1)-general position. For convenience, we define the decision problem (d}-vertices at in-

finity: does arrangement Ay(H) have a vertex at infinity?

Theorem 18: For d > 2.

(d)-vertices at infinity <o (n) (d-1)-general position.

The proof of this statement is basically the reverse of the last proof. Perturb A,(H)
so that there are no vertical hyperplanes, then apply transformation D. If there is a ver-
tex at infinity. then after D is applied. d points lie on a hyperplane in R? whose normal
vector has no zgcomponent. Truncating each point to R,_; by removing the last coor-

dinate, this set of points is not in (d—1)-general position.

This suggests that a non-trivial lower bound for (d)-vertices at infinity is a difficult
problem since it would imply the same lower bound for both {d-1)-general position ar
leftmost vertex in Ay(H). A more promising direction for future research is to lower the
O (dn® !10g®? n) time upper bound on selection. It is likely that. using the approximation

idea of [6]. the complexity of selection may be decreased to O (d n !logn).

22

References

1. Ajtai, M., Komlos, J., Szemeredi, E. An O (nlogn) Sorting Network. Proc. 15" Ann.
Symp. Theory of Comput., ACM, 1983, pp. 1-9.

2. Ben-Or, M. Lower Bounds for Algebraic Computation Trees. Proc. 15 Ann. Symp.
Theory of Comput.. ACM. 1983. pp. 80-86.

3. Blum, M., Floyd, R.W.. Pratt. V.R.. Rivest. R.L, Tarjan. R.E. ”Time Bounds for
Selection”. Jour. Comp. Sci. Sys. 7. 4 (1973). 448-461.

4. Chazelle, B. New Techniques for Computing Order Statistics in Euclidean Space.
Proc. 1** Ann. Symp. on Comp. Geom., ACM, 1985, pp. 125-134.

5. Cole, R. Slowing Down Sorting Networks to Obtain Faster Sorting Algorithms. Proc.
25" Ann. Symp. Found. Comput. Sci., IEEE, 1984, pp. 255-259.

6. Cole, R.. Salowe. J.S.. Steiger, W.L.. Szemeredi, E. Optimal Slope Selection. Sub-
mitted to SIAM J. Comput.

7. Dobkin. D.P., Lipton. R.J. "On the Complexity of Computations Under Varying Sets
of Primitives™. Jour. Comp. Sci. Sys. 18 (1979). 86-91.

8. FEdelsbrunner. H.. Arrangements and Geometric Computations. Springer-Verlag, 1986.
Forthcoming Book.

9. Edelsbrunner, H. "Edge-Skeletons in Arrangements With Applications”. Algorithmica 1
(1986), 93-109.

10. Edelsbrunner. H.. O'Rourke. J.. Seidel. R. "Constructing Arrangements of Lines and
Hyperplanes with Applications™. SIAM J. Comput. 15 (1986). 341-363.

11. Edelsbrunner. H.. Guibas L.J. Topologically Sweeping an Arrangement. Proc. 18th
Ann. Symp. Theory of Comput.. ACM. 1986.

12. Frederickson. G.N.. Johnson. D.B. ”Ti’xe Complexity of Selection and Ranking in
X — Y and Matrices with Sorted Columns™. Jour. Comp. Sci. Sys. 24 (1982), 197-208.

13. Frederickson. G.N.. Johnson. D.B. ™Generalized Selection and Ranking: Sorted
Matrices”. SI[AM J. Comput. 13. 1 (1984). 14-30.

14. Galil. Z.. Megiddo. N. A Fast Selection Algorithm and the Problem of Optimum
Distribution of Effort™. JACM 26 (1979). 58-64.

15. Johnson. D.B.. Mizoguchi. T. “Selecting the k' Element in X «Y and

X,+ Xg~..v X", SIAM J. Comput. 7 (1978). 147-153.

16. Knuth. D.E.. The Art of Computer Programming. Volume III: - Sorting and
Searching. Addison-Wesley. 1973.

23

17. Megiddo, N. ”Combinatorial Optimization with Rational Objective Functions”. Math.

Oper. Res. 4, 4 (1979), 414-424.

18. Megiddo, N., Tamir, A., Zemel, E.. Chandrasekaran, R. "An O (n log? n) Algorithm
for the k** Longest Path in a Tree with Applications to Location Problems”. SIAM

J. Comput. 10, 2 (1981), 328-337.

19. Megiddo, N. "Applying Parallel Computation Algorithms in the Design of Serial
Algorithms”. JACM 30, 4 (1983), 852-865.

20. Preparata, F.P.. Shamos. M.I.. Computational Geometry: An Introduction. Springer-
Verlag, New York, NY, 1983.

21. Salowe, J.S. Selection Problems in Computational Géometry. Ph.D. Th., Rutgers
University, 1987. '

22. Shamos, M.I. Geometry and Statistics: Problems at the Interface. In Traub, J.F.,
Ed.. Algorithms and Complezity: New Directions and Recent Results, Academic Press, New

York, NY, 1976, pp. 251-280.

23. Steele, J.M., Yao. A.C. "Lower Bounds for Algebraic Decision Trees”. J. Algorithms
3 (1982), 1-8.

