Misconceptions About Real-Time Databases

John A. Stankovic, Sang Son, Jorgen Hansson
Department of Computer Science
University of Virginia
Charlottesville, VA 22903

July 22, 1998

Abstract

More and more databases are being used in situations where real-
time constraints exist. A set of misconceptions have arisen regarding
what a real-time database is and the appropriateness of using conven-
tional databases in real-time applications. Nine misconceptions are
identified and discussed. Various research challenges are enumerated
and explained. In total, the paper articulates the special nature of
real-time databases.

1 Introduction

In 1988 a paper entitled Misconceptions of Real-Time Computing was pub-
lished [11]. This paper articulated the key differences between general pur-
pose computing and real-time computing. The impact of the paper was
significant in that it spurred a lot of research that specifically focussed on
real-time issues. We believe that there is now a significant body of scientific
and technological results in real-time computing, in part, due to the careful
definition of real-time computing and the articulation of the important dif-
ferences between real-time computing and general purpose computing found
in that paper.

It is now 10 years later and many computer systems, including general
purpose computing systems, need to support real-time properties, e.g., ap-
plications with audio and video require real-time support. In addition, the
level of data sophistication employed in many real-time systems is grow-
ing, ranging from sensor data and various derived data typically found in



the more classical real-time systems, to large, even global database man-
agement systems that must support real-time characteristics (such as the
air traffic control system). Unfortunately, many misconceptions have arisen
with respect to the real-time aspects of databases. The state of confusion
seems to be similar to what existed in 1988 with respect to the difference
between real-time computing and general purpose computing; except now
it is with respect to databases. Consequently, in this paper we carefully
define real-time databases, state and dispel the most common misconcep-
tions of real-time databases, and encourage increased research into real-time
databases.

In the following discussion we are addressing two distinct audiences. The
first is the mainstream database researchers and users who usually do not
have any experience with real-time issues and often feel that it is acceptable
to simply use a commercial database management system and make it go
fast! The second audience is the real-time system community who, in the
past, have dealt primarily with real-time data from sensors and data derived
from this sensor data. Usually, real-time data was in main memory, and
when higher level (non-real-time) data was required it was probably placed
in a totally separate database system, outside the real-time data purview.

2 Definition

A real-time database system is a database system where timing constraints
are associated with transactions and data have specific time intervals for
which the data are valid [9, 2]. The transaction timing constraints can be
deadlines to complete by, times by which they must start, periodic invoca-
tions, etc. It is not necessary that every transaction has a timing constraint,
only that some transactions do. See Figure 1 for an example of a real-time
database application. In addition to transaction timing requirements, data
has time semantics as well. Data such as sensor data, stock market prices,
and locations of moving objects, all have semantics that indicate that the
recorded values are only valid for a certain interval of time. A real-time
database makes this validity interval explicit, i.e., it is part of the database
schemas. Transaction correctness is then defined as meeting its timing con-
straints and using data that is absolutely and relatively timing consistent.
Absolute time consistency means that individual data items used by a trans-
action are still temporally valid (i.e., within their time validity interval).
Logically this means that the value of a data item reflects the true state of



Satellite

A Real-Time
Database

Troop
Positions Archival

DBs

World Wide
Network

News
Services

Need Summary
Report by 4 PM

Figure 1: A Real-Time Database Application.

the world to an acceptable degree of accuracy. A relative time consistency
constraint among multiple data items used by a transaction means that the
times at which those items were updated (sensed) are within a specified
time interval of each other. Logically, it means that the states each of the
data items represent are within an acceptable time interval of each other.
For example, if temperature and pressure are used by a transaction to make
some decision regarding a chemical process, that temperature and pressure
must correlate closely in time, else the computation would make no sense.
Note also that a system which simply has data with real-time require-
ments, such as sensor data, does not constitute a real-time database sys-
tem. Since a real-time database system is a database system, it has queries,



schemas, transactions, commit protocols, concurrency control support, and
storage management.

3 Misconceptions

To better understand what real-time databases are and how important they
are, 9 common misconceptions are enumerated and discussed. The first
three misconceptions are variations of the misconstrued theme that real-
time relates to speed. The next three are variations of the misconception
that current databases can be used. In spite of the similarity of the issues
within each of these groups of misconceptions, it is instructive to separate
these general themes into these three related aspects.

Advances in hardware will take care of the real-time database
requirements.

Technology will exploit parallel processors to improve system through-
put, but this does not mean that the timing constraints will be automatically
met. In fact, with the increased size and complexity of the database and
hardware it will become more and more difficult to meet and show that the
timing constraints will be met. Hardware alone cannot ensure that trans-
actions will be scheduled properly to meet their deadlines, nor ensure that
the data being used is temporally valid. For example, if a transaction more
quickly uses out of date data, it is still an incorrect transaction.

Advances in standard database technology will take care of real-
time database requirements.

Sometimes database designers claim that better database buffering, faster
commit protocols, and novel query processing techniques will speed up
databases to permit them to be used in real-time systems. While these tech-
niques will help, they will not ensure that deadlines are met nor support the
requirement that transactions only use valid (in time) data. The advances in
database technology that will be required include time cognizant protocols
for concurrency control, commit processing, transaction scheduling, and log-
ging and recovery. There now exists ample evidence that such protocols are
considerably better at supporting real-time transaction and data correctness
than standard database protocols which simply go fast [1, 6, 7, 10, 12].

Real-time computing is equivalent to fast computing.



The objective of fast computing is to minimize the average response time
of a set of transactions. However, the objectives of real-time databases are
to meet the timing constraints and the data timing validity requirements
of individual transactions and to keep the database time valid via proper
update rates. Again, to do this it is necessary to have time cognizant pro-
tocols. A simple, contrived example can illustrate this fact. Consider two
transactions, A and B. Transaction A starts at time 1 and uses data item
X and has a deadline at time 20 and an execution time of 10. Assume that
transaction A begins executing at time 1 and locks X at time 2. At time
3 transaction B is invoked and it uses X, has an execution time of 2 and
a deadline at time 6. Standard database protocols would have transaction
B block (or possibly not even begin executing). Transaction A would then
complete and release the lock on X at time 11. However, this is too late for
transaction B and B misses its deadline. A time cognizant set of protocols
would preempt transaction A at time 3 (because transaction B’s deadline
is earlier than transaction A) and when B attempts to obtain X, one time
cognizant solution (there are others) would be to abort transaction A, let
transaction B finish (at time 5) and then restart transaction A. In this case
both transactions complete correctly and on-time.

There is no need for a real-time database because we can solve all
the problems with current databases.

This is a tricky issue. For example, using a current database system,
it is possible to define a field for every relation (object) that contains the
validity interval of that data. Then the transaction itself can check these
fields to ensure absolute and relative validity. Further, the system can be
modified to run some form of earliest deadline scheduling by controlling the
priority of each transaction. However, this means that every transaction
must program this capability itself instead of having the system support the
capability. And, by placing these two features into the system, the designers
are, in fact moving towards a real-time database system. The problem is
that if the transactions have timing constraints and data validity timing
constraints then it is more efficient to build this support into the system
rather than trying to cajole, manipulate, force fit a current typical database
system into this needed set of capabilities. Further, if you actually do this
force fitting, then you now have a real-time database system (but it will not
likely be as efficient as if you developed these capabilities from the ground
up). After all, all algorithms are programmable on a Turing machine, but



few people would advocate using a Turing machine to build real systems.

Using a conventional database system and placing the database in
main memory is sufficient.

It is sometimes argued that placing a conveuntional database in main-
memory is a viable approach in order to gain performance and thereby make
them suitable for real-time systems. Although it is true that main-memory
resident databases eliminate disk delays, conventional databases still have
many additional sources of unpredictability (such as delays due to blocking
on locks, transaction scheduling, stolen processing time to handle external
interrupts, etc.) that prevent time constraints of transactions from being
ensured. Again, increases in performance can not completely make up for
the lack of time-cognizant protocols in conventional database systems.

A real-time database MUST reside totally in main memory.

The previous misconception is the view held by some non real-time
database designers. Real-time designers often hold the related view, but
from a different perspective, i.e., you must place the database in main mem-
ory. This is not correct either. The primary reasons for placing data in
main-memory are speed and to avoid delays introduced by disks, e.g., un-
predictable seek and rotational delays. The issue to discuss here is the
I/O. In most systems, I/O requests are scheduled in order to minimize av-
erage respounse time, maximize throughput or maintain fairness. Typical
disk scheduling algorithms for this type of disk scheduling are First-Come-
First-Served (FCF'S), Shortest-Seek-Time-First (SSTF) and the elevator al-
gorithm SCAN. Typically, a database transaction performs a sequence of
database read operations, computations, and then writes the data back to
the database. However, since the deadline and the importance of the trans-
action are not considered when disk requests are scheduled, the timeliness of
the transaction is jeopardized. In the same way traditional CPU scheduling
algorithms, attempting to minimize response time or maximize throughput,
have been shown to be inappropriate for real-time systems, the use of non-
time-cognizant disk scheduling algorithms are not appropriate for schedul-
ing disk requests. It has been shown that disk scheduling algorithms that
combine a scan and deadline requirement works considerably better than
conventional algorithms [4]. It is likely that some combined solution will
prevail where critical data is placed and pinned in (non-volatile) main mem-
ory, and other, less critical data is stored on the disk using time cognizant



disk scheduling.

A temporal database is a real-time database.

Although both temporal databases and real-time databases support the
notion of time, the aspects of time they support are not the same. While a
temporal database is aiming to support some aspects of time associated with
information (e.g., time-varying information such as stock quotes), a real-
time database tries to satisfy timing constraints associated with operational
aspects of the database.

Time has several dimensions, but in the context of databases, two di-
mensions are of particular interest: valid time which denotes the time a fact
was true in reality, and transaction time during which the fact was present
in the database as stored data [8]. These two dimensions are in general or-
thogonal, although there could be some application-dependent correlations
of the two times. A temporal database identifies those dimensions of time
associated with the information maintained in the database and provides
support to the user/applications to utilize such timing information, while in
real-time databases those time dimensions imply some timing constraints.

Consider the difference between a temporal database and a real-time
database via the following example. The military rank of Beetle Bailey
can be specified in a temporal database as private during January 1, 1998,
through June 30, 1999, at which time he will be promoted. It only states the
timing fact that is believed to be true, regardless of when that information
was entered. In most real-time databases, such static timing facts are not
of primary concern. In a real-time database, the valid time is specified
according to the semantics of the counterpart (external object) in the real
world. When a value is entered into the database, its valid time specifies
that the value can be assumed to represent the actual value (absolute time
consistency). If the value of a sensor data was inserted into the database
at time T and its valid time is t, then the value must be updated within
T+t, and if not updated in time, the value becomes stale and useless, or even
dangerous. Current temporal database research does not pursue operational
timing counstraints such as maintaining correlation to real-time events in the
real world and meeting deadlines.

Since meeting timing constraints is essential in certain safety-critical
database applications, a real-time database needs to provide a range of
transaction correctness criteria that relax ACID properties. However, such
approach is, in general, not acceptable in temporal databases. Because



of their different objectives, the policies and mechanisms used to resolve
data and resource conflicts in real-time databases are different from those
in temporal databases. Temporal databases, along with other conventional
databases, attempt to be fair while maximizing resource utilization. In real-
time databases, timely execution of transactions is more important, and
hence fairness and resource utilization are secondary considerations.

There is no way to make guarantees or achieve predictability in a
real-time database system.

It is sometimes argued that the predictability can not be enforced in a
real-time database partly due to the complexity of making accurate and not
too pessimistic estimates of the transaction execution times. The complexity
rises from the fact that database systems have a number of sources of unpre-
dictability [9]: dependence of the transaction’s execution sequence on data
values; data and resource conflicts; dynamic paging and I/O; and transac-
tion aborts resulting in rollbacks and restarts. We have already mentioned
two solutions to overcome the unpredictability due to disk delays, namely,
placing the database in main memory or adopting time-cognizant protocols
for scheduling disk requests and managing memory buffers.

While general purpose transactions are difficult to evaluate in terms of
their dependence on data values, many real-time transactions are specialized
(such as a periodic sensor update transaction), fixed (it uses the same type
and amount of data each time), and/or pre-written and evaluated off-line.
This set of features enables associated protocols to utilize such information
and improve predictability. Due to data conflicts, transactions may be rolled
back and restarted, which increases the total execution time of the transac-
tion, and in the worst case, unbounded number of restarts will occur, causing
not only the transaction to miss its deadline, but may also jeopardize the
timeliness of other transactions requesting resources. Again, in real-time
systems the set of transactions are normally well-known and can therefore
be pre-analyzed in order to give estimates of the resources required, both
in terms of execution time and data that is needed. By scheduling trans-
actions based on this information, conflicts and the number of transaction
restarts can then be minimized and bounded. Even though much progress
has been made on improving predictability, this issue is still very much an
open research question.

A real-time database is a specialized database.



It is true that each real-time database application may have different
timing constraints. However, it does not imply that a specialized database
system must be developed from scratch for each application. An analogy
would be to state that each real-time application needs to develop its own
specialized real-time operating system, since its resource requirements and
scheduling policies are different from others. Although the specifics of tim-
ing requirements can vary among applications, each application need the
database support for specifying and enforcing its requirements.

At the same time, conventional database systems cannot be used for
real-time applications simply by adding a few functional improvements.
Since supporting timing constraints deals with the lowest level database
access mechanisms, the overall architecture of database systems needs to
be changed to be time cognizant. The reason is similar in explanation as
to why certain time-critical applications need real-time operating systems
(require fixed priorities, have known worst case latencies, be able to pin
pages in memory, etc.) instead of conventional operating systems. However,
different real-time operating system don’t have to be developed for each
application.

4 Research Challenges

While a significant amount of real-time database research has been done [3],
this field is still in its early stages. Several key research challenges are now
itemized and discussed.

4.1 System Support

In comparison to traditional tasks (processes), database transactions dif-
fer in several ways. One area is the differences with respect to obtaining
worst case execution times. Obtaining useful worst case execution times for
transactions is a complex issue since transactions normally involve multiple
resources, such as CPU, I/O, buffers, and data, and the impact of blocking
on the transaction response time is also difficult to assess. While the purpose
of a concurrency control protocol is to ensure that database consistency is
maintained, by controlling the interleaved execution of transactions running
concurrently, it also affects the response time of the transaction. Further,
the transaction execution time is usually very data dependent, i.e., the exe-
cution of a transaction depends on the volume of data and the data values
themselves that it reads from the database. Hence, in order to enforce the



timeliness of the transactions and maintain database consistency, schedul-
ing algorithms must consider both hardware resources and the scheduling
of data resources. Critical issues are obtaining better worst case execution
time estimates and determining how concurrency control and the scheduling
of transactions should be integrated.

In conventional databases, serializability has been the primary correct-
ness criterion for transaction schedules, i.e., the result produced by the in-
terleaved execution of a set of transactions should be equal to the result
produced by executing the transactions in some serial order. Although se-
rializable schedules ensure correctness under a wide range of circumstances,
the cost of enforcing serializability in real-time database systems is some-
times too high. This is especially true for the class of real-time applications
where timeliness is of utmost importance, in which case it could be advanta-
geous to trade serializability for timeliness, i.e., a non-serializable schedule
producing a useful result on time is better than a serializable schedule pro-
ducing a result too late. A key challenge is to define new and alternative
criteria for database correctness, and develop methods which trade serializ-
ability for timeliness.

Earlier, the importance of 1/O scheduling was discussed. A related and
important issue is buffer management. In conventional systems the goal of
buffer management is to reduce the transaction response time, and buffer
items in these systems are normally allocated and replaced based on the
reference behavior of the transactions. The consequence of only consider-
ing transaction reference behavior when allocating and replacing buffers in
a real-time system is that the performance can be degraded. For exam-
ple, consider that buffer slots referenced by currently executing (and not
yet committed) transactions are replaced, in which case completion of the
transactions may be delayed, and in the worst case, deadlines are missed.
Other semantics such as periodic transactions must be accounted for in the
buffer management policy (a poor policy might have pages replaced just
prior to the transaction being reactivated for its next periodic invocation).
The research challenge is to develop buffer management policies that con-
sider the importance and the temporal requirements of the transactions and
also enforce predictability.

Transaction aborts and transaction recovery are tricky issues in several
ways. Performing transaction aborts and recovery consume valuable process-
ing time which may affect other currently executing transactions, and hence,
the decision at what time recovery should be performed should be consid-
ered cautiously. In systems where lock-based concurrency control protocols

10



are adopted, it is of interest to avoid prolonged waiting for transactions
accessing resources locked by the recovering transaction, and hence, locks
should be released as early as possible. With optimistic protocols, detection
and resolution of data conflicts are both done at the end of the transaction
execution, in which case the concurrency control manager is notified and it
checks for conflicts. If a conflict is detected, the transaction is aborted and
then restarted. A transaction may be restarted a number of times before it
can commit successfully. It is not hard to see how this causes a problem in
a real-time database system. Not only may the increased processing time
due to transaction restarts cause the transaction to become tardy, it may
jeopardize the timeliness of other transactions at the same time.

4.2 Distributed and Global Systems

Many real-time systems are built to achieve a specific set of goals and are
centralized. The set of tasks to be performed is well understood at system
design time and static solutions abound. Large real-time systems typically
operate in complex non-deterministic environments where database require-
ments become important. This gives rise to the need for dynamic solutions
and real-time databases. Such applications include, defense systems such as
early warning aircraft, command and control, autonomous vehicles, missile
(control) systems and complex ship systems, as well as other applications
such as air traffic control, the stock market, or video server systems over
the Internet. These systems operate for long periods in fault inducing and
nondeterministic environments under time constraints. These systems need
to be robust while delivering high real-time performance.

Composition has long been recognized as a key research issue for these
systems. However, composition has largely focussed on functional composi-
tion. A current research objective is to develop the notion of composition
across multiple interacting domains: function, time, fault tolerance, and se-
curity. Both off-line and on-line solutions are required. The results should
permit verification. Thus, the results will lead to adaptive high-performance
fault tolerant embedded systems that dynamically address real-time con-
straints, and provide both a priori acceptable system-level performance
guarantees and graceful degradation in the presence of failures, time con-
straints, and database access. Any on-line composition is itself subject to
time and fault tolerance requirements as well as needing to produce func-
tional, timing and fault tolerant components that create the system actions.
How low level real-time techniques interact with real-time database technol-

11



ogy is a critical issue.

The distributed nature of the systems gives rise to new database research
issues including distributed real-time concurrency control and commit pro-
tocols, distributed transaction scheduling, meeting end-to-end timing con-
straints when database accesses are involved, supporting replication of data
in real-time, and interoperability.

Another challenge facing the real-time systems community is how to
build and deliver general-purpose, open real-time systems and applications
that permit a dynamic mix of multiple independently developed real-time
applications to coexist on the same machine or set of machines, possibly
embedded in the Internet. Such a real-time architecture would allow con-
sumers to purchase and run multiple applications of their choice, including
applications with real-time requirements, on their general-purpose home and
business computers, just as they do with non-real-time applications today.

Some of the difficulties of an effective real-time architecture supporting
open real-time database computing include:

e Hardware characteristics are unknown until runtime (processor speeds,
caches, memory, busses, and 1/O devices vary from machine to ma-
chine).

e The mix of applications and their aggregate resource and timing re-
quirements are unknown until run-time.

e Perfect a priori schedulability analysis is effectively impossible. This
means that somewhat different and more flexible approaches will likely
be needed than those typically used for building fixed-purpose real-
time systems today.

e How to get real-time performance out of legacy databases.

e How to interoperate between heterogeneous databases with time sen-
sitive data and where transactions have deadlines.

e How to partition data to meet time requirements.

e How to create parallel, distributed recovery so that the system can
interface to the external world as quickly as possible, even before the
complete recovery occurs.

12



4.3 Integration of Real-Time with Other Properties

As time-critical applications continue to evolve, real-time databases become
more complex and need to support other properties, in addition to real-time
requirements. Those requirements include fault-tolerance, security, avail-
ability, and survivability. Those requirements have been studied in isolation,
but the need for supporting them together poses scientific and engineering
challenges that should be tackled to develop practical solutions for advanced
real-time database systems.

The difficulty in supporting combinations of requirements stems from the
fact that in many cases, those requirements are not compatible with each
other or the tradeoff strategies are not clearly identified. Consider the inte-
gration of security and real-time requirements. In many real-time database
applications, security is an important requirement, since the system main-
tains sensitive information to be shared by multiple users and applications
with different levels of security requirements. For example, electronic com-
merce is an interesting application where both security and real-time re-
quirements should be considered together. In electronic commerce, a real-
time database is a critical infrastructure that is essential to support complex
and flexible services to manage requests in the context of a highly dynamic
workload with widely varying requirements. The problem is that in general,
when resources must be shared dynamically by transactions with different
security classes, requirements of real-time performance and security conflict
with each other. Frequently, priority inversion is necessary to avoid covert
channels (which are hidden timing channels that must not exist for secure
systems).

Consider a transaction with a high security level and a high priority
entering the database, and it finds that a transaction with a lower security
level and a lower priority holds a write lock on a data item that it needs to
access. If the system preempts the lower priority transaction to allow the
higher priority transaction to execute, the principle of non-interference is
violated, for the presence of a high security transaction affects the execution
of a lower security transaction. On the other hand, if the system delays the
high priority transaction, a priority inversion occurs. Therefore, creating a
database that is completely secure and strictly avoids priority inversion is
not feasible. A system that wishes to accomplish the integration of security
and real-time requirements must make some concessions at times. In some
situations, priority inversions might be allowed to protect the security of the
system. In other situations, the system might allow covert channels so that

13



transactions can meet their deadlines. When the system has to trade-off
security, the system is no longer completely secure; rather it only will be
partially secure. In that case, it is extremely important to define the exact
meaning of partial security. A key issue is identifying the correct metrics to
evaluate the level of security obtained.

Supporting fault-tolerance and real-time requirements has a similar trade-
off problem as in supporting security and real-time requirements. Different
levels of fault-tolerance support can be provided to avoid violating timing
constraints. For example, a transaction is allowed to proceed with other
nodes in which the data is replicated when a processor fails, be retried if
transient faults occur, and can produce partial results prior to the dead-
line to avoid a timing fault. Users/applications can request different levels
of service, depending on the importance of the timing constraints and the
system status. One key research issue to be investigated is mapping the
user level requirements to the underlying database system and object level
requirements. This research question is again one of composition. That is,
given the underlying object mechanisms that support fault tolerance how
can objects be composed to meet the service level requirements.

4.4 Other Research Areas

Many other research challenges exist: too numerous to discuss fully in this
paper. Some of these are briefly discussed below.

e Scaling: Understanding the complications introduced by the complex-
ity of a large-scale applications. This is particularly serious in real-time
databases, since the timing properties of the system is usually sensitive
to scaling factors.

e Query languages and requirements specification: Although there is an
on-going effort to include real-time specification in SQL, how to specify
real-time requirements in an unambiguous manner and how to enforce
them need further study.

e Modeling: Given the different kinds of timing properties of the vari-
ous types of data, the data types must be modeled so that temporal
properties can be associated with the data. Relationships between
consistency constraints and timing constraints need to be easily and
clearly specified.

14



New data formats: As more data is stored and manipulated using mul-
timedia, effective methods to support timing requirements to handle
them are necessary.

Benchmarks: A good benchmark should provide representative work-
load to evaluate important real-time capabilities of the system. While
several benchmarks have been used for traditional database systems
(e.g., TPC and 007 benchmarks) and real-time systems (e.g., Rheal-
stones and Hartstones benchmarks) benchmarks are needed for real-
time databases.

Integration of active and real-time databases: Since real-time systems
are inherently reactive, they must respond to external events occurring
in the environment as well as internal events triggered by timers or cal-
culated conditions/states. This requires the development of reactive
models that consider time constraints, formal reasoning of coupling be-
tween events occurring and actions executed as responses, and efficient
run-time algorithms for detecting events.

Resource management: Development and evaluation of priority-based
scheduling protocols and concurrency countrol protocols that can, in
an integrated and dynamic fashion, manage transactions with prece-
dence, resources (including processor, communication resources and
I/O devices), and timing constraints. In particular, resource alloca-
tion policies and distributed transaction management protocols must
be integrated.

Empirical research: The interaction between OS and real-time database
system can be best understood through empirical research. It is im-
portant since the correct functioning and timing behavior of real-time
database systems cannot be guaranteed without a thorough under-
standing of the impact of OS internals.

Trade-off analysis: It is important to understand the possible trade-offs
between satisfying timing constraints and maintaining database con-
sistency, and develop metrics for database correctness, performance,
and predictability. Methods that enable the trade-offs between serial-
izability and timeliness, between precision and timeliness, and other
types of trade-offs that can be used to improve the new real-time per-
formance metrics need to be studied. They are especially critical for
overload management in real-time database systems.

15



5

Conclusions

This paper defines real-time databases as well as two key aspects of real-time
databases: absolute and relative timing consistency. In these databases both
transactions AND data have timing constraints. These databases are often
involved with sensors and actuators (including audio and video). Using a
discussion of 9 common misconceptions and a list of open research challenges,
the special nature of real-time databases is articulated. More research is
required and the field is becoming more and more important as enterprise
systems of all types are utilizing sophisticated database information with
real-time requirements.

References

[1]

2]

[3]

[4]

[5]

[6]

7]

R. Abbott and H. Garci-Molina, Scheduling Real-Time Transac-
tions: A Performance Study, ACM Transactions on Database Systems,
17(3):513-560, September 1992.

A. Bestavros, K-J Lin, and S. Son, editors, Real-Time Database Sys-
tems: Issues and Applications, Kluwer Academic Publishers, Boston,
1997.

A. Bestavros and V. Fay-Wolfe, Real-Time Database and Information
Systems: Research Advances, Kluwer Academic Publishers, Boston,
1997.

S. Chen, J. Stankovic, J. Kurose, and D. Towsley, Performance Evalu-
ation of Two New Disk Scheduling Algorithms for Real-Time Systems,
Real-Time Systems Journal, Vol. 3, No. 3, September 1991.

M.J. Carey, R. Jauhari, and M. Livny, Priority in DBMS Resource
Scheduling, Proceedings of the 15th VLDB Conference, August 1989.

A. Datta, S. Mukherjee, P. Konana, 1. Viguier, and A. Bajaj, Multiclass
Transaction Scheduling and Overload Management in Firm Real-Time
Databases, Information Systems, Vol. 21, No. 1, pp. 29-54, March 1996.

J. Huang, J. Stankovic, K. Ramamritham, D. Towsley, and B.
Purimetla, On Using Priority Inheritance in Real-Time Databases,
Special Issue of Real-Time Systems Journal, Vol. 4. No. 3, September
1992.

16



8]

[9]

[10]

[11]

[12]

G. Ozsoyoglu and R. Snodgrass, Temporal and Real-Time Databases:
A Survey, IEEE Transactions on Knowledge and Data Engineering,
7(4), pp 513-532, August 1995.

K. Ramamritham, Real-Time Databases, Journal of Distributed and
Parallel Databases, Vol. 1, No. 2, pp. 199-226, 1993.

R. Sivasankaran, J. Stankovic, D. Towsley, B. Purimetla, and K.
Ramamritham, Priority Assignment in Real-Time Active Databases,
VLDB Journal, Vol. 5, No. 1, pp. 19-34, January 1996.

J. Stankovic, Misconceptions About Real-Time Computing: A Seri-
ous Problem For Next Generation Systems, IEEE Computer, Vol. 21,
No. 10, pp. 10-19, October 1988.

M. Xiong, R. Sivasankaran, J. Stankovic, K. Ramamritham and D.
Towsley, Scheduling Transactions with Temporal Constraints: Exploit-
ing Data Semantics, Real-Time Systems Symposium, December 1996.

17



