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Abstract
A typical consumer desktop computer has a multi-core CPU
with at least two and possibly up to eight processing ele-
ments over two processors, and a multi-core GPU with up to
512 processing elements. Both the CPU and the GPU are ca-
pable of running parallel code, yet it is not obvious when to
utilize one processor or the other because of workload con-
siderations and, as importantly, contention on each device.
This paper demonstrates a method for dynamically deciding
whether to run a given parallel workload on the CPU or the
GPU depending on the state of the system when the code is
launched. To achieve this, we tested a selection of parallel
OpenCL code on a multi-core CPU and a multi-core GPU,
as part of a larger program that runs on the CPU. When the
parallel code is launched, the runtime makes a dynamic deci-
sion about which processor to run the code on, given system
state and historical data. We demonstrate a method for using
meta-data available to the runtime and historical data from
code profiling to make the dynamic decision, and we out-
line the runtime information necessary for making effective
dynamic decisions, suggest hardware, operating system, and
driver support.

1. Introduction
Because consumer computer systems are already heteroge-
neous, and because each of the heterogeneous processors has
many cores that are able to run parallel code, there is a need
for a method to determine how to optimally schedule paral-
lel workloads for such systems. In general, if a programmer
wants to run parallel code, he or she must decide what type
of processor to target, write and compile the code for that
architecture, and then assume that the processor will (1) be
available to run the code when it becomes ready to launch,
and (2) be the best processor to run that code on at that time.
Because this decision is made statically at development and
compile time, it may not be the best choice for every given
state of the system. For instance, if the code is compiled to
run on the GPU, and the GPU is busy with a graphical task
at the moment the code is launched, there will be contention
for the GPU resource. It may be the case, however, that the
multi-core CPU could also have run the code and the paral-
lel job could be completed in less time than it would have if
it had to wait for the GPU. The task of handling a dynamic
decision about which processor should be utilized could be
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Figure 1. Parallel benchmarks demonstrating significant
slowdown for GPU kernels when the GPU is under con-
tention.

handled by a dynamic runtime (as we demonstrate in this
paper), or it could be handled by the operating system, in
a similar way that multicore scheduling for a single proces-
sor is done today. In either case, contention on a processor
should be a large consideration in making that decision.

Figure 1 shows a set of benchmarks for OpenCL kernels
that are run on both a CPU and a GPU in a heterogeneous
system under different conditions. When the GPU is not un-
der contention, it runs the kernels faster than on the CPU, but
significantly slower when the GPU is processing other work
as well. It is therefore our assertion that it is imperative to
know whether devices are busy or not when making a dy-
namic decision about scheduling in a heterogeneous system.

In this research, we investigated what meta-information
is available to a given runtime that is relevant to determin-
ing the most efficient use of heterogeneous resources, and
we demonstrate a method for using that information along
with historical data gathered from profiling to make dynamic
scheduling decisions. We created a baseline framework for
this sort of decision-making, and the framework includes
a proof-of-concept demonstration of the idea, along with
an initial set of rules for gathering and utilizing the run-
time metadata. We show five programs containing parallel
OpenCL kernels that can run on a CPU and a GPU. Four of
the five kernels ran faster on the GPU under baseline condi-
tions, and one had a crossover point when, given an increas-



ing set of input data, it would switch from running faster on
the CPU to the GPU. Specifically, we targeted contention on
each processor, e.g., is the CPU busy with many threads, and
would it be better to run the process on the GPU?, and strict
speed per processor, e.g., is the code so favorable to the GPU
that it is worth waiting if there is contention for the resource?

Our results show that a dynamic decision can be made
with information available at runtime, such as device param-
eters, e.g., number of cores and processor speed, historical
data (from profiling and in-process logging), problem size,
and device status, e.g., busy or free, and we demonstrate that
it is worthwhile to make such a decision on heterogeneous
systems.

2. Background and Related Work

There are three main factors that determine whether a ker-
nel will run faster on a GPU or CPU. The first is simply the
result of the baseline profiling information: if the device for
which the baseline runs fastest is not busy, the kernel will
most likely run faster on that device. In the case of kernels
that are twice as fast running on the GPU as on the CPU, the
baseline profiling data dominates the scheduling decision.
The second main factor is also simple: if one of the devices
is currently running another kernel (or doing other process-
ing, such as handling graphics routines), then the kernel of
interest will most likely run faster on the other device. If
specific information is available about what the processor is
currently busy doing (i.e., running a short or a long kernel,
handling graphics processing, etc.) then this informationis
particularly useful. For this paper, we reasoned that if a de-
vice was “busy,” the decision should be made to run on the
other device. The third factor that could affect running times
for each device is the data input size for each kernel. If the
algorithm depends on the data fitting completely into the de-
vice memory, some cases will only fit on the device with
the greater amount of memory. In cases where this happens,
there is a tradeoff for the programmer: he or she could spend
time re-writing the application and kernel to take into ac-
count the memory constraints of the GPU, or he or she could
accept that the code would only run on the CPU for larger
input sizes.

Although desktop heterogeneous computing is relatively
new as of the last few years, heterogeneous computing has
been present in distributed computing systems for decades,
and there has been significant research in how to sched-
ule jobs across grid computers to satisfy load balancing
and task throughput concerns. There has been much re-
search in the static assignment of tasks to processors. Oh
and Ha use a static method dependent on profiling on indi-
vidual processors, and make a scheduling decision based
on this information[5]. Sih and Lee make compile-time
scheduling decisions that balances loads across heteroge-
nous processors[8]. Siegel et al. [7] published work related
to code profiling for heterogeneous systems, and they out-

lined a method for automatic construction of code that can
be run on any machine in a heterogeneous computing sys-
tem. Maheswaran et al. [4] considered mapping heuristics to
use for dynamic scheduling of jobs across many machines,
considering both task affinity for certain processors, aging of
tasks waiting to run, and machine ready times. Our research
is similar yet is specific to desktop heterogeneous computing
on a single machine. Others have investigated scheduling on
desktop heterogeneous platforms, and YuHai et al. [9] have
developed an algorithm similar to what we propose, but with
a greater focus on deadline scheduling for a set of heteroge-
neous tasks. Our work emphasizes what to do with tasks as
they become ready to launch, instead of a set of tasks that
all need to run in any order. Jiménez et al. [2] have also pub-
lished work that schedules code on a CPU or GPU based on
run-time history, and Becci and Crowley [1] also published
work that uses historical thread behavior to schedule recur-
ring work. Our research utilizes run-time history as part of
our solution, but our solution also includes a more robust set
of meta-data to complement the scheduling algorithm.

The idea of using meta-data to inform scheduling deci-
sions has been investigated before. Shelepov and Fedorova
[6] developed a signature-based framework that embeds
meta-data about heterogeneous jobs into program binaries
and presents this data to a scheduler when a job needs to be
run. Our work is also similar to this, but it further incorpo-
rates real-time system state into the calculation as well.

Some of the newest research on dynamic scheduling on
heterogeneous systems has been done by Luk et al.[3]. In
their work, they use system configuration, problem size, and
historical data to break up a parallel application into pieces
that run efficiently at the same time on both the CPU and the
GPU. They do not, however, consider contention of either
device, whereas our proposed method does.

3. Approach

For this paper, we chose five different parallel applications
to test, as shown in Table 1. The applications were imple-
mented in C++ and the parallel kernels in OpenCL, enabling
the kernels to run unmodified on either the CPU or GPU, re-
quiring only a recompilation. We measured baseline kernel
running times on an Intel Core 2 Duo dual-core processor
running at 2.66GHz and an AMD Radeon HD 4350 GPU
with 40 stream processors. The computer operating system
was Linux (Ubuntu 9.04). To collect the baseline times, we
ran a series of benchmarks for both the CPU kernels and the
GPU kernels with the system in a relatively idle state. It is
important to note that the run times were for the kernels only,
and do not include the setup time for each kernel. OpenCL
kernels are setup and compiled at runtime, and the setup
times vary significantly for the CPU kernels and the GPU
kernels. In all cases, the GPU kernels took longer to compile
and set up than the CPU kernels; for our applications, the
time to setup and compile a CPU kernel ranged from0.1s to



0.3s, and the time to setup and compile a GPU kernel ranged
from 0.3s to 2.3s. For this paper, we decided to compile the
kernels for both the CPU and GPU at the start of each pro-
gram and time the kernels only. Our rationale was two-fold:
first, because the setup for a kernel is distinct from the kernel
launch, overall performance for critical kernel sections is in-
dependent from the setup time. Second, the performance for
short running kernels (the majority of our test cases) that run
faster on the GPU get masked by the slower setup and com-
pile time, which is a fixed value for each kernel, but faster
for CPU kernels. The methods for dynamic scheduling that
we lay out in this paper could be modified to include setup
and compile times, if desired.

We investigated how the data input size changed the run-
ning times on each device, and whether or not different in-
put sizes should be considered in the decision making pro-
cess. For each baseline experiment, we chose a data set that
ranged from small to large according to the amount of mem-
ory used on each device. In certain cases, the input size mat-
ters greatly because the amount of memory on the CPU is
much larger than that of the GPU, and certain test inputs
failed with anout of memory error when run on the GPU
but not on the CPU. In cases such as this, the runtime would
schedule the kernel on the CPU so that it would actually
complete.

Our dynamic scheduling algorithm depends strongly on
whether or not there is contention on the CPU and GPU. We
ran into some difficulty determining how “busy” each device
was, as there are limited ways to find out this information,
and it changes regularly. Unfortunately, we were unable to
directly query the load on the CPU or GPU, nor were we able
to determine even that there was a kernel running at all on the
GPU. When a kernel is queued on a device, the device blocks
other kernels from running until the first is complete. We
recommend that future versions of the OpenCL SDK include
the ability to query a device to determine whether a kernel is
running, but at this point it is not possible. For our algorithm,
we included acheckIfGpuIsBusy() function and seeded it
with either “busy” or “not busy” depending on how we ran
each individual experiment.

4. Analysis and Results

The initial baseline profiling of the selected applications
yields varying patterns of runtime comparisons between the
CPU and GPU, shown in Figures 3–7. For some applica-
tions, such as matrix multiplication, matrix transpose, and
“embarrassingly parallel,” there was a near constant factor
between the CPU and GPU running times, as shown in the
constant differences on the corresponding logarithmic plots.
For the Binary Search, there appears to be a less clear dif-
ference in performance for smaller input sizes, but the CPU
clearly dominates in performance by a 2x or 3x factor. Yet,
in the Mersenne Twister application neither processor seems
to dominate in performance over various input sizes. These

Application Faster Processor (Baseline)
Binary Search Depends

Embarrassingly Parallel GPU
Matrix Multiply GPU
Matrix Transpose GPU
Mersenne Twister GPU

Table 1. Parallel Applications used in this paper. OpenCL
was used for the parallel sections of code, which can run on
both the CPU and GPU, without modification.Faster Pro-
cessor (Baseline) refers to the processor for which the base-
line data runs fastest. TheEmbarrassingly Parallel applica-
tion used a very simple kernel that simply adds1 to the val-
ues of an input vector.

results indicate that the role of input size in determining
the preferred processor is application-dependent,and knowl-
edge of the relationship to input size is most useful when a
crossover point exists between the input size range that fa-
vors the CPU and that which favors the GPU. These results
also demonstrate the relevance of a runtime decision for the
subset of applications that exhibit similar performance be-
tween the CPU and GPU across a full range of input sizes.

A pseudocode implementation of the runtime processor
selection is given in Figure 2. The code reads the historical
running time data for the kernel with the associated data size
from a file, and determines whether or not the CPU or GPU
is busy. If the historical running time is less than the over-
head of measuring CPU load, then the CPU is automatically
selected. Next, the relative expected running time between
the CPU and GPU is considered, and if the GPU will be
faster and is not under contention, it is selected; otherwise,
the CPU is selected. After each kernel finishes, the runtime
for that kernel is updated in the historical data file and aver-
aged with previous results.

Ultimately, the potential speedup of a dynamic run-
time decision is the ratio of execution time when a static
(development- or compile-time) decision is made to the ex-
ecution time when the decision is made dynamically. This
speedup may be a function of any of the above-described
factors, such as program input size and processor contention.

Figure 3 shows the results with the Matrix Multiply ap-
plication when the GPU is under contention. Because the
GPU baseline times are almost always more than twice the
CPU baseline times, even with contention the GPU still pro-
duces better results. Figure 5 shows similar results for the
Embarrassingly Parallel application, in which case the GPU
runs the kernel significantly faster than the CPU. This was
the one application which also produced relatively long run-
ning kernels, up to 256 seconds on the CPU and 14 seconds
on the GPU. For the largest input sizes, the GPU is unable
to run the kernel because of memory overflows, and the al-
gorithm therefore chooses to run the kernel on the CPU, in
which case it is better to run the kernel slowly instead of re-



int chooseDevice(int inputDimensions[],bool dataInCache,
                 float choiceOverheadTime) {
  int useGpu = 1;
  int useCpu = 2;
  int contentionFactor = 2;

  GpuBaselineTime = getHistoricalGpuBaseline(inputDimensions);
  CpuBaselineTime = getHistoricalCpuBaseline(inputDimensions);  

  if (CpuBaselineTime < choiceOverheadTime) return useCPU;

  bool cpuBusy = checkIfCpuBusy();
  bool gpuBusy = checkIfGpuBusy();

  if ((gpuBusy && cpuBusy) || (!gpuBusy && !cpuBusy))
  
  if (GpuBaselineTime < CpuBaselineTime) return useGPU;
  
  else return useCPU;
  else if (gpuBusy && (GpuBaselineTime * 
                       contentionFactor < CpuBaselineTime)
     return useGPU;
  else if (gpuBusy && (GpuBaselineTime * 
                       contentionFactor >= CpuBaselineTime)
     return useCPU;
  else if (cpuBusy && (CpuBaselineTime * 
                       contentionFactor < GpuBaselineTime)
     return useCPU;
  else return useGPU;
}

void updateHistory(deviceType, inputDimensions[], 
                   newKernelTime){
  readHistoryFromFile(deviceType,inputDimensions[],
                      &historicalTime,&historyCounter);
  historicalTime = (historicalTime * historyCounter 
                    + newKernelTime) / ++historyCounter;
  writeHistoryToFile(deviceType,inputDimensions[],
                     historicalTime,historyCounter);  
}

Figure 2. The dynamic decision pseudocode.
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Figure 3. Matrix Multiply results when GPU is under con-
tention. The dynamic algorithm chose correctly for all cases
except for512 × 64 × 512, where the baseline GPU mea-
surement was less than2x the baseline CPU measurement.

ceiving an out of memory error by trying to run on the GPU.
Figure 4 demonstrates how the algorithm compensates for
the out of memory error as well.

Figure 6 demonstrates what happens when historical
data is taken into consideration. In the first run, with CPU
contention, the algorithm chooses incorrectly for the three
smallest input values. However, after the historical data is
updated with the new running times, the algorithm can cor-
rectly chooses to run all the kernels on the best processor.
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Figure 4. The Matrix Transpose baseline, with a simple
dynamic choice without contention. Because of the algo-
rithm used in the OpenCL code, when the matrix dimen-
sion reached 3072 and higher, the GPU reported anOut of

Memory error. In those cases, the dynamic algorithm cor-
rectly chose to run the kernel on the CPU.
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Figure 5. The Embarrassingly Parallel results. The Embar-
rassingly Parallel application simply takes an array of val-
ues and increments each value. The GPU runs consistently
faster, even with GPU contention. The dynamic algorithm
chose correctly in all cases where the GPU baseline was2x

greater than the CPU baseline. For the largest input array
size, the dynamic algorithm recognized that the array would
not fit in the GPU memory, and correctly chose to run the
kernel on the CPU.

In the case of processor contention, it would be best to
make a decision based on the amount of contention each
device is currently experiencing. This is not an easy task,
although the operating system could make a good approxi-
mation based on the number of processes it is managing. In
order to demonstrate that even a small amount of contention
information can lead to a suitable decision, we decided on a
very simple metric: if the GPU is busy and the GPU baseline
is greater than2x faster than the CPU baseline for a given
application, run the kernel on the GPU, otherwise run the
kernel on the CPU. A similar calculation is made if the CPU
is under contention. Figures 3 and 5 shows that this metric is
appropriate in most cases, and Figure 6 shows that when this
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Figure 6. Binary Search results with CPU under contention.
For small values of input array size, the GPU is hindered by
data transfer onto the device. The dynamic algorithm did not
choose correctly for the lowest three input array sizes on the
first run, but on the second run the algorithm used the history
to correctly choose the best device.
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Figure 7. The Mersenne Twister results, with CPU con-
tention. When the CPU is under contention, the dynamic al-
gorithm makes the correct decision in each case.

metric is not appropriate, historical data can be used in sub-
sequent kernel runs to adjust and make the appropriate de-
cision. Figure 7 demonstrates that for the Mersenne Twister
application with CPU contention, there are times when run-
ning on the CPU is still preferable to running on the GPU,
and the algorithm chooses correctly in these cases.

In the case of the GPU, measuring contention is lim-
ited. The most knowledge a single application can obtain is
whether the kernel queue is blocked waiting for the GPU, in-
dicating the GPU is already running some other kernel. If an
application runs with comparable performance on either pro-
cessor, it could conceivably enqueue its kernel for the GPU,
query whether the queue was blocked, and if so, run the ker-

nel on the CPU. Unfortunately, this technique does not cur-
rently work, due to an apparent bug in OpenCL that enforces
serialization of all kernels. That is, if a kernel is enqueued for
the GPU and then the CPU, the CPU version will not execute
until the GPU version runs to completion.

5. Conclusions and Future Work
Parallelized applications could experience a speedup, in an
average sense, by dynamically selecting their target device
for execution at runtime, rather than statically at compile-
time. Input size, processor contention, and historical run-
ning time are variables of interest in making this runtime se-
lection, and processor contention, while difficult to directly
measure, can be extremely important to the dynamic deci-
sion.

An intelligent runtime decision, particularly with regard
to contention, would require knowledge of other active ker-
nels’ expected execution times. Future work might focus on
a more centralized, common kernel scheduler to achieve the
best performance for the whole set of active kernels. In ad-
dition to performing the decision-making algorithm in the
runtime environment, it would would also be beneficial if the
operating system (with more contention data available) takes
part in the scheduling decision. Additionally, the sample ap-
plications were tested with an input size up to the memory
limit of the GPU. Yet applications with larger data sets could
be refactored to use multiple kernel calls, incurring with as-
sociated overheads of transferring data between main mem-
ory and the GPU. Future work should explore the effects on
performance of splitting a task over multiple kernel calls.
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