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ABSTRACT

The use of computers in today's offices and factories is growing rapidly.
With the expansion in the number of computers there is an expanding need for
inter~computer communication. Local Area Networks can meet these needs.

There are many different network topologies and access protocols. The IEEE
has proposed a new standard local area network that uses a token passing access
protocol on a bus; this standard is known as 802.4.

This thesis studies 802.4 which is a complicated protocol with many features
such as bounded delivery times and support of four message priority levels. The
operation of the protocol is explained and an analytic model is developed that can
provide estimates of network performance. A better understanding was gained and
more comprehensive tests were performed through simulating representative network
configurations. The number of possible network configurations precludes exhaustive
testing; therefore care was taken so that the important parameters were identified
and well tested. The experience and information gained in the simulation process
illustrates several areas of importance when designing 802.4 networks.
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CHAPTER 1

Introduction

1.1. Computer Networks

There is a growing trend towards computer automation of today's offices and
factories. With this growth in the numbers of computers, there is a growing need
for intercomputer communication. Computers that need to communicate with other
computers across cities, states, countries, or even around the world are members of
Long Haul Networks. Computers that share information and communicate over
short distances like a building, a university campus, or a factory are members of

Local Area Networks.

1.1.1. Long Haul Networks

There are many significant applications of long haul networks. They can be
used to provide workers in a variety of geographically separate areas access 10
common databases as in an airline reservation system. They can be used to
quickly transmit files between separate computer facilities. They can be used by a
corporation to gather information from separate factories and offices for central data

processing and evaluation.

Because of the long distances involved, long haul networks generally cannot
use special high capacity communication media, like dedicated fiber optic or coaxial
cables; instead they generally employ existing communication facilities such as the
telephone lines or satellite communication. The problems and challenges to long

haul network design are ones of routing and flow control.



1.1.2. Local Area Networks

A local area network allows communication between separate data processing
devices located within a small area. Example devices are computers, terminals, sen-
sors, programmable controllers, or peripheral devices such as disk drives or printers.
The devices generally communicate over some high speed, low error rate, external

medium installed expressly for the use of the network.

Some of the major advantages of local area networks (LANs) are the sharing
of important resources, data and devices, the distribution of control processes 1o
ensure reliability, and the ability to increase the power of a system incrementally.
Some of the problems introduced with LANs are data integrity with distributed

data bases, data security on the network, and incompatible hardware or software.

The issues in network design are network topology and network access proto-
cols. The topology determines the method of station interconnection. The access

protocols determine how an individual station gains access to the network.

1.1.2.1. Network Topologies

There are many ways to configure the stations on a network. Figure 1.1
illustrates the most common LAN topologies: star, ring, and bus. Each of these

topologies has advantages and disadvantages.

1.1.2.1.1. Star

In a star configuration there is a central node to which every other station is
directly connected. All communication is routed from the source station to the

central node and then to the destination station.

There are two advantages to the star topology. First, the individual stations
do not need to have any complicated networking hardware or software; most of

the network functions can be assumed by the central node. Second, the maximum
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Figure 1.1 Network Topologies

delay of a message is the sum of the transmission time from the sender to the
central node, the switching and buffering time of the central node, and the

transmission time from the central node to the receiving station.

The main disadvantage of the star topology is that the central node represents
a single point of failure. If the central node goes down, no stations can talk to

each other.

1.1.2.1.2. Ring

In a ring each station has a point-to-point link with its two nearest neighbors.
Generally these are unidirectional links so a station always receives messages from

one neighbor and transmits the messages to the other neighbor.

The main advantage to the ring topology stems from this point-to-point com-
munication. Very high speed communication media can be used in the links.
Another advantage of rings is that because the entire message is regenerated at each

node, the chance of an error due to attenuation of the signal is reduced.



The disadvantages to the ring topology are that a break in a single link can
destroy the whole network, and because every station must read every bit of
every message as it retransmits the message there is a minimum delay of one bit

time per station added to a message’s propagation delay.

1.1.2.1.3. Busses

In the bus topology, all the stations are directly connected to a shared
transmission medium with no closed loops. When a message is placed on the bus

it is heard by all of the stations connected to the bus.

One advantage of the bus is that all stations share a common perception of
the state of the network. Another advantage is that breaks in the transmission

medium may leave a large portion of the network operating.

Disadvantages to bus topology networks are that a break in the medium can
isolate a station, and more complex network access hardware and software are

often needed.

1.1.2.2. Network Access Protocol

There is a need to control a station's access to the network. Without access
control, there is a chance that two stations will decide to broadcast messages at the
same time, causing a collision which would result in the loss of both messages.
The chance of a collision increases as the network load increases. It is the primary
goal of the network access protocol to reduce or eliminate the chance of a collision
and to recover if and when a collision occurs. Other goals of the protocol may be
to share the network bandwidth between the stations on the network, and to pro-

vide maximum bounds on delivery times for messages.

There are several types of network access protocols. Some of the types are

centralized control, time or frequency division multiplexing, carrier sense multiple



access, and token passing.

1.1.2.2.1. Centralized Control

In centralized control protocols, a single station is the master; it delegates the
right to transmit to subordinate stations. The master station must maintain a list
of all the stations in the network. Periodically, it must query the other stations
to determine if they have traffic pending, or it must delegate the right to transmit
to the stations. It is more efficient to ask the station if it has messages to send
rather than simply giving it the right to transmit when it might not have any
messages pending. A serious problem with the centralized control approach is that

the network is vulnerable to collapse if the master station fails.

1.1.2.2.2. Time and Frequency Division Multiplexing

In time or frequency multiplexing, the communication medium is divided into
discrete time slots or frequencies. In time division multiplexing, each station has
one or more time slots allotted for its sole use. If a station does not transmit
during its slot then the slot is wasted because no other station may transmit dur-
ing that slot. In frequency division multiplexing, each station is allotted a portion
of the the network’s frequency spectrum for its sole use. Frequencies allotted to
idle stations are wasted. The advantage to the multiplexing approach is that each
station is guaranteed access to the network. The disadvantages are that precious
bandwidth can be wasted by idle stations, the medium is partitioned to serve the
maximum number of stations, even when only a few are active, and the individual
messages of a single busy station can suffer large delays while the rest of the net-

work bandwidth is not consumed.



1.1.2.2.3. Carrier Sense Multiple Access

In carrier sense multiple access (CSMA) protocols, all station listens to the
state of the network before attempting to transmit. If the medium is idle and a
station has a message to send the station will transmit the message; otherwise it
waits until the medium becomes idle. There is a problem with the CSMA
approach; station A at one end of a bus may sense that the network is idle and
begin transmitting. One bit time before A's message gets to station B at the other
end of the bus, B may sense an idle medium and begin transmitting its message.
The messages from A and B will collide, interfering with each other. The details
of a particular carrier sense protocol determine how quickly a station will attempt
to transmit after the medium becomes idle, and what actions are taken when two

transmissions from two separate stations overlap.

The most widely known and used variation of the CSMA protocols is Ether-
net® [Xerox 82] which uses carrier sense multiple access with collision detection
and binary exponential backoff. When a station on an Ethernet network detects a
collision it aborts its transmission and sends a short jam message to ensure that all
stations on the bus know that there has been a collision. Aborting the transmis-
sion of the corrupted message reduces the network bandwidth wasted by erroneous
messages. Both stations involved in the collision then employ a binary exponential
backoff mechanism which delays their next attempts to rebroadcast the collided

messages.

1.1.2.2.4. Token Passing

Token passing access protocols attempt to remedy the problems of station star-
vation, long message delays, and static ring configuration. The station that

possesses the token is allowed to transmit. When the token holder has finished

Ethernet is a registered trademark of the Xerox, Intel, and Digital Equipment Corporations.



transmitting or a timer has elapsed it passes the token to is successor. A logical

ring is formed when the last station passes the token back to the first station.

There are two types of token access protocols. In the first type, the token is
an explicit message with a unique bit pattern. In the second type, called Implicit
Token Passing (ITP) [Weaver 84], there is no explicit token; station F "knows" that
it comes after station C, and that when station C is finished transmitting it will be
station F’s turn to transmit. Explicit tokens are advantageous when the network
configuration changes frequently, under high load conditions when the overhead of
passing the token is small, and in situations when the token holder might wish to
delegate the right to transmit to another station. The disadvantages of the explicit
token passing schemes are that: (1) there is a distinct message (the token) that if
lost requires expensive reinitialization of the network, (2) if the token is duplicated
it would render the network unusable due to collisions until the duplicate token is
destroyed, and (3) the token consumes network bandwidth as it is transmitted.
Implicit token passing schemes have the advantages that no bit stuffing or other
special processing is required to distinguish the token, there is no token that can be
lost or duplicated, and there is no wasted overhead due tob the token transmissions.
Disadvantages to implicit token passing are the extra complexity needed to handle

dynamic ring reformations.

1.2. The Study

This thesis describes the efforts involved in the study of the Institute of
Electrical and Electronic Engineers’ standard for Local Area Computer Networks
that employ a token passing network access protocol with a bus topology. This

standard is known as IEEE 802.4.

In Chapter 2 the IEEE 802 project is discussed. The full family of standards

proposed by the 802 committees is described and the relation between the 802



standards and the International Standards Organization's Open Systems Interconnec- _
tion model is explored. The majority of Chapter 2 is devoted to describing the

design and functioning of 802.4.

In Chapter 3, an analytic model for the idealized operation of simple 802.4
networks is developed. The model provides insight into the steady state behavior
of 802.4 and it provides a set of formulas that are useful when setting network

parameters.

To study the performance of 802.4, I created a program that simulates the
operation of 802.4 networks. Chapter 4 describes the program and the develop-
ment process used to create and test the simulator. There are two approaches to
the study the performance of proposed networks: simulation and analytic modeling.
I chose to use a simulator for studying the performance of 802.4 for the following
reasons. Simulation allows a study of the performance of the protocol for specific
cases while analytic modeling only provides expected values for the general opera-
tion of 802.4 networks. A simulator also can be much less susceptible to the sim-
plifying assumptions used in the analytic modeling process. The simulator can test

nondeterministic actions in the protocol that cannot be captured analytically.

Using the simulator, I studied the effects on network performance by varying
the values of network parameters. The simulations were designed not to test all
possible configurations, an impossibly large task, but rather to tests specific features
of 802.4 described in Chapter 2 and analytically modeled in Chapter 3. The tests

and their results are described and analyzed in Chapter 5.

Chapter 6 relates the results obtained from the simulation studies to expected
values generated by the analytic models. The final chapter summarizes the results

obtained from this study and offers a judgement about the performance' of 802.4.



CHAPTER 2

The IEEE 802.4 Standard

2.1. IEEE Project 802

The Institute of Electrical and Electronic Engineers has established a series of
standards for Local Area Networks. These standards are being established by the

IEEE’'s committee 802 [IEEE 802, 82]. There are six portions to the 802 standard.

2.1.1. 802.1

The first part, 802.1, describes the relationship between the other portions of
the standard and the International Standards Organization’s Open Systems Intercon-
nection model (ISO OSI) [Tanenbaum 81]. The OSI model establishes a hierarchical
decomposition of network structure by defining seven layers of protocol for inter-
machine communication. In the ISO model, layer 1 is the most primitive layer of
inter-machine communication and layer 7 is the most abstract. Figure 2.1 illus-
trates the mapping of the three lowest layers defined by the 802 standards to the
bottom two layers of the ISO model. 802.1 also explains the relationship between

the other 802 standards and higher level network protocols.

2.1.2. 802.2 and Logical Link Control

The standard 802.2 specifies the protocols at the Logical Link layer. The Log-
ical Link Control layer (LLC) is the highest level of the network protocol specified
by the 802 committee; this layer corresponds to the top of the OSI Data Link
layer as shown in Figure 2. The LLC is responsible for the formation of two
types of services for the higher level protocols. The first type is unacknowledged

connectionless service. Interstation messages are datagrams, and the LLC provides

9
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Data Link Layer Logical Link Control
(Layer 2)
Sl Medium Access Control
Physical Layer Tl
(Layer 1)
Physical
I1SO Model 802 Model

Figure 2.1 Relation of the ISO and 802 Models

services for message encapsulation, transmission and reception. The second type of
service is connection oriented with the LLC providing virtual circuits between sta-
tions. The connection oriented service also provides flow control, sequencing, and

error recovery services.

2.1.3. Medium Access Control

The standards 802.3, 802.4 and 802.5 define the Medium Access Control layer
for CSMA/CD busses, token passing busses, and token passing rings respectively.
The MAC layer is responsible for managing the access to the network through the
Physical Layer; it is responsible for frame encapsulation, address and error recogni-
tion, and node failure detection and recovery. The Medium Access Control (MAC)
layer extends the bottom portion of the OSI Data Link layer to provide services
tailored for local area networks not provided in the ISO model which has been
optimized for long haul networks. The extensions involve the MAC's actions in

maintaining the network and the increased address and error recognition capabilities.
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The three standards (802.3, 802.4 and 802.5) have'z some common features. In
all three standards, addresses are specified to be either 16 or 48 bits long. The
first bit of both 16 and 48 bit addresses is used to determine whether a message is
addressed to an individual station or a group of stations; the special destination
address of all ones is used for broadcast messages. The second bit of a 48 bit
address can be used to determine whether an address is locally or globally admin-
istered; globally administered addresses are unique for all stations across distinct

LANs. On any given network, all stations must use the same address size. FEach

standard requires that all messages be constructed of eight bit blocks known as
octets. All three also use a 32 bit checksum for all data messages to guarantee
that an invalid message is not erroneously accepted. Depending upon the address
size selected, 16 or 48 bits, the smallest possible messages in an 802 network are

either 96 or 160 bits respectively.

2.1.4. 802.3 - Contention Bus

It is the goal of the IEEE standard 802.3 to define the actions of a network
in the presence and absence of collisions during message transmissions on a
CSMA/CD bus. The standard also specifies the various media that can be used for
the physical layer, the minimum and maximum spacing of stations, and other phy-

sical specifications which we will not discuss further.

802.3 employs 1-persistent CSMA/CD [Tanenbaum 81]. When a station has a
message to transmit it enters a loop testing for an idle bus; when the station
senses an idle bus, it will wait a short period of time for any previous message 1o
have propagated to all the stations on the bus and then it will begin transmitting.
The delay from the sensing of an idle bus to the beginning of transmission is to
allow all stations to have a common sense of the bus state, and to allow the sta-

tion that received the previous message time to process the message. If two or
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more messages do collide on the bus, 802.3 specifies that the transmitting stations
will send a jam signal that will inform all of the stations on the bus that there
has been a collision, and the stations will then use a binary exponential backoff
mechanism to reschedule the transmission of the collided messages. A counter of
message transmission attempts maintained in each MAC is used to determine the
delay before the MAC reenters the loop waiting for an idle bus. Equation 2.1 is
used to compute the delay. No other messages can be transmitted by these sta-
tions until the collided messages have been successfully transmitted or the
retransmission process has failed and the MAC has notified the LLC layer that the

transmission failed.

From the above discussion it can be seen why 802.3 does not offer any
guarantees on message transmission and cannot offer any priority transmission facil-
ities. 802.3 was not designed to be used in real time environments where
guaranteed message delivery or bounded delivery times are required; it was
designed for use in an office environment with the associated bursty asynchronous

loads of file and message transfer.

By choosing appropriate operating specifications, an 802.3 network can be
configured as an Ethernet local area network; therefore it was the first of the 802

standards to be implemented since existing Ethernet chips, like the intel® 82586,

Let
n = number of collisions suffered by this message
s = slottime, fixed by the standard to be 512 bit times
m = min(n,10)

delay = random(0,2™) X s

Equation 2.1
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could be used.

2.1.5. 802.5 - Token Ring

The IEEE standard 802.5 describes a token passing ring local area network
[IEEE 802.5 84]. 802.5 uses an explicit token passing scheme and offers the LLC
eight levels of priority for message transmissions. 802.5 also offers immediate mes-
sage arrival acknowledgements by appending a Frame Status field to the message
which has two bits to be set by a station that 4recognizes the frame as being
addressed to it and two bits to be set by the station if it successfully copies the
message. Bvery station connected to the ring performs two functions; it provides
the LLC with the facilities to transmit messages through the Physical Layer, and
each station monitors the network state. One station is the active monitor and the

rest are operating as standby monitors.

The token is an explicit message with the following characteristics: a starting
delimiter, an access control field, and an ending delimiter, each of length 1 octet (8
bits). The first three bits of the access control field indicate the priority of the
token; only stations with messages queued at priorities greater than or equal to the
token's priority can claim the token, ensuring that the transmission of a low prior-
ity message cannot delay the delivery of a higher priority message existing any-
where in the network. If the fourth bit is a O the frame is a token, otherwise it
is a data frame. The fifth bit is set by the monitor station to prevent a message
or high priority token from continuously circulating on the ring. The last three
bits are the reservation bits; a station with a high priority message queued can

request that the next token be issued at that priority level.

The station holding the token has the right to transmit messages. The token

holder can transmit any number of message frames until the transmission of the

intel is the registered trademark of the Intel Corporation.
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next message would not complete before the expiration of the station’s Token Hold-
ing Timer. When a station has exhausted its queue or its timer is about to expire
it generates a new token of the appropriate priority and passes it to its neighbor.
Any station that increases the priority of the token is responsible for restoring the
priority to its current level. If the station should fail to reduce the priority, the
active monitor will reduce the priority after the same high priority token has cir-

culated the ring once.

2.2. 802.4

IEEE 802.4 [IEEE 802.4, 83] is a standard for bus topology local area net-
works using an explicit token passing scheme for network access. While the physi-
cal topology is a bus, 802.4 creates a logical ring of active stations through the
token passing process. 802.4 offers four priority classes for message transmissions.
The individual stations in an 802.4 network are free to leave and join the token
passing ring as dictated by their traffic or station management decisions. The stan-
dard describes a robust protocol able to withstand the loss or duplication of

tokens, and the failure or disconnection of stations.

2.2.1. General Operation Characteristics

The token in an 802.4 network is an explicit message of at least 96 bits for
networks using sixteen bit addresses and at least 160 bits for networks using
forty-eight bit addresses. Each station maintains the address of its successor in the
logical ring, and that address is loaded into the token's destination address field.
The token consists of one octet for the start delimiter followed by one octet of
control information identifying the message as a token; two or six octets for each
of the destination and source addresses; four octets for the frame check sequence;

and one octet for the end delimiter. A station can optionally add octets of data
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between the source address and the frame check sequence. The maximum size of
any message in an 802.4 network is 8191 octets, excluding the start and end del-

imiters.

The station holding the token becomes the temporary master of the network.
A series of timers, described below, limit the amount of time that a station can
hold the token. During that interval, the token holder can use the network in any
manner it wishes; it can even use its interval to implement other network access
protocols such as polled response, or it can delegate its right to transmit to another
station as long as that delegation obeys the time constraints. The option of impos-
ing another access protocol on the network is not specified in the 802.4 standard
except for the above mentioned time constraints. If the station has no use for the

token, it will forward the token to its successor.

The token is passed from station to station in descending address order. The
lowest addressed station passes the token back up to the active station with the
largest address to close the logical ring. A station does not have to be a part of
the token passing ring to receive transmissions or to respond to queries directed to

it by the current token holder.

2.2.2. Priority and the Access_Classes

802.4 offers four access classes of service for the eight LLC message priority
levels. The highest LLC priority levels, seven and six, are mapped into access_class
six, the Synchronous access_class. Levels five and four, three and two, and one and
zero are respectively mapped into class four, the Urgent_Asynchronous access_class,
class two, the Noran_Asynchronous access_class, and class zero, the I ime_Available
access_class. All 802.4 stations must offer all of the access_classes, or all transmis-
sions must be routed through the Synchronous access_class. A station that does use

the priority option must implement a queue for messages of each of the individual
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access_classes, and it ﬁlust provide three token_rotation_timers for  the
Urgent_Asynchronous, Normal_Asynchronous, and Time_Available access_classes. 'The
timers are count-down timers loaded with station-dependent values, the
Target_Rotation_Time for each access_class, every time the station receives the token.

The use of these timers and the reload values will be explained below.

Whenever a station receives the token, it is guaranteed a certain amount of
time for serving messages at the Synchronous access_class. This interval is a system
wide parameter known as the High_Priority_Token_Hold_Time. ‘When a station
receives the token it enters the Use Token state and loads its token_hold_timer with
the High_Priority_Token_Hold_Time. If there are any messages enqueued for the
Synchronous access_class, it begins to transmit those messages. If, after the comple-
tion of a transmission, the foken_hold_timer has expired or the queue has been emp-
tied, the station enters the Check_Access _Class state. A station in the
Check_Access_Class state performs the following procedure: if the current
access_class is the Time_Available access_class or the station is not implementing the
priority option, the station will enter the Pass_Token state; otherwise it will (1)
decrement the current aé;é;s_class; (2) reload the token_hold_timer with the
token_rotation_timer for the new access_class; (3) reload the token_rotation_timer with

the Target_Rotation_Time for this class; (4) return to the Use_T oken state.

The amount of time left in the token_rotation_timer that is loaded into the
token_hold_timer determines how long the station will be able to serve the queues
of the Jlower priority access_classes. To  guarantee service at  the

Urgent_Asynchronous access_class Equation 2.2 must be true.

The Target_Rotation T ime(Urgent_Asynchronous) must also be large enough to
allow for expiration of the foken_hold_time during messagel transmission, and the

possibility —of other protocol traffic due to ring reconfiguration. The
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Let
TRT 4, = Target_Rotation_T imef( Urgent_Asynchronou.st),
HPTHT = High_Priority_Token_Hold_Time,
n = the number of stations that are members of the token passing ring,
X; = time to transmit a token to successor.

TRT, > (HPTHT + X7) X n

Equation 2.2

Target_Rotation_Time for the both of the lower priority access_classes should be
larger than the value of the next higher priority Target_Rotation_Time if service at
the access_class needs to be guaranteed. To correctly use the priority feature of
802.4, the transmission of Time_Available messages should not interfere with the
transmission of Normal_Asynchronous‘ messages whose transmissions should be secon-
dary to that of Urgent_Asynchronous messages, the timers should be set with
TRT 4 > TRT, > TRT

With this relationship there is more time available for serving Urgent_Asynchronous
traffic than traffic at the lower priority access_classes, and as the token cycle time
increases, a station will be able to transmit Urgent_Asynchronous messages after ser-
vice at the lower classes is stopped. The relationships of the timers are discussed

further in section 5.5.3.

2.2.3. Logical Ring Membership

An 802.4 network usually consists of two or more stations connected in a
logical ring. Using the ability to delegate the right to transmit, a network could
consist of one active station and a series of inactive stations only capable of
responding to messages and unable to initiate "conversations'. Generally, if a sta-
tion believes itself to be the only member of a token passing ring, 802.4 assumes

that the station is in error. Stations can leave and join the ring dynamically, and
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any station must be able to patch the ring around a failed neighbor. This section
discusses dynamic station membership leaving the error conditions mentioned above

for the next section.

There are station variables used for maintaining the logical ring. The
inter_solicit_count is a counter that is decremented each time the station passes the
token; when it expires, the station will check for the existence of neighboring sta-
tions waiting to join the token passing ring. Each station saves its own address
and the addresses of the preceding and following stations in the variables 7. S, PS
and NS respectively. The boolean variable NS_Known is set to true when a station
knows the address of its successor. Lowest_Station is true if the station has the
lowest address of any active station. The Bus_Idle_Timer determines how long a
station will listen to an idle bus before it will attempt to claim the token and ini-

tialize or reinitialize the token passing ring.

2.2.3.1. Joining the Token Passing Ring

Each time a station receives the token, it decrements the inter_solicit_count. If
the value equals zero the station will open a response window by transmitting a
Solicit_Successor frame and entering the Await_Response state. The Solicit_Successor
frame is a MAC management frame with the destination address equal to this
station’'s NS. After transmitting the Solicit_Successor frame, the transmitting station
will open a response window, an interval of one network slottime, during which
the station listens for the transmission of Set_Successor frames from stations waiting
to join the ring. Only stations whose addresses lie between the destination address
and the source address can respond to the Solicit_Successor frame. As a special
case, if the token holder is the lowest station it will open two response windows;
the first to enable stations with addresses less than its address to join the token

passing ring, and the second window to allow stations with addresses greater than
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the highest station a chance to join.

If the token holder does not receive any responses to the Solicit_Successor
frame, it will reload the inter_solicit_count with another station management param-
eter, the Max_Inter Solicit_Count, and it will enter the Pass_Token state. To avoid
the situation of all stations on the network opening their response windows on the
same token rotation cycle, 802.4 specifies that the least significant two bits of the
Max_Inter_Solicit_Count must be randomized every 50 milliseconds or after every
use of the value. The Max_Inter_Solicit_Count must be an integer in the range 16

to 255.

If one station responds to the Solicit_Successor frame, the token holder sets its
NS to the source address of the Set_Successor frame. The token holder does not
reload its inter_solicit_count when a successful Set_Successor frame is received. The
token is then passed to the new ring member which sets its PS to the token's
source address and must have set its NS to the Solicit_Successor frame's destination

address.

If more than one station responds to the Solicit_Successor frame the responding
stations enter the Demand_In state to contend for the single ring addition for this
token cycle. Whén the responding stations attempt to transmit their Set_Successor
frames, the transmissions will overlap and the collision will be noted by the token
holder. The token holder will enter a loop transmitting Resolve_Contention frames
and opening four response windows until it receives a valid Set_Successor frame.
To resolve the contention, every station in the Demand_In or Demand_Delay states
will enter a loop where a pair of bits from the station’s address is used to deter-
mine which window to use for transmitting the next Set_Successor frame. If the
pair of bits is (0,0) the station responds during the first responée window; if (0,1),

then during the second: if (1,0), then during the third; if (1,1), then during the
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fourth window. The pair of bits is selected by the contend_pass_count which is
incremented on each iteration of the contention algorithm. If a station hears a
transmission during an earlier response window it drops from the contention process
and returns to the Idle state. If the contend_pass_count is equal to the
max_pass_count the stations have exhausted all of their address bits which means
that two stations share the same address; a last try at resolving the contention
uses a random number between 1 and 4 to determine which response window to
use. The station (or stations) that loses the contention reports its duplicate address
to the station management procedures and takes itself off line. As above, when
the token holder receives a valid Set_Successor frame, it records its new successér
and passes it the token. On the next token rotation the token holder will open
another series of response windows to allow stations to join that lost the conten-

tion process on this token cycle.

2.2.3.2. Leaving the Token Passing Ring

Each station has two boolean variables, in_ring desired and any_send_pending,
which are used to determine if the station should leave the token passing ring.
The in_ring_desired variable is set by the station management and as long as it
remains true a station will remain an active participant of the token passing ring.
The second variable, any_send_pending, is true whenever the MAC has any message
in any of the access_class queues. A station that is a member of the token passing
ring with in_ring_desired false but any_send_pending true will remain in the ring

until it has emptied its queues.

When a station decides to leave the token passing ring there are two possible
methods to effect the departure. The most drastic method is for the station to
ignore the token when it is passed to the station on the next token rotation. This

method uses the error recovery mechanism to patch the departing station out of
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the ring. The more graceful method requires the station to wait until it receives
its next token: as the token holder, the station transmits a Set_Successor frame to

the station's PS with the station’s NS as the new next station field of the message.

An ambiguity in the protocol concerns the actions to be taken when two or
more neighboring stations patch themselves out of the ring on the same token rota-
tion. For example, station 21 tells station 25 that station 18 will be 25’s new
next station, and then station 21 passes the token to station 18. Upon receipt of
the token, station 18 tells station 21 that station 17 will be 21's next station, and
passes the token to station 17. On the next token cycle, station 25 will attempt
to pass the token to station 18 and fail. Through the use of the error recovery
mechanism station 18 will be patched out of the network with a minimum of
additional overhead. Two things should be noted: station 18’s Set_Successor
transmission to station 21 was a wasted transmission, and if more than two sta-
tions had left the ring, the error recovery mechanism will be more complex as will
be shown in the next section. A solution to this situation would be to have all
stations listen for any Set_Successor frames transmitted by their successor and to
use the destination address of the Set_Successor frame as their predecessor’'s address,
but this conflicts with page 7-7 of the Revision E 802.4 Standard which states that
the PS "is set to the value of the source address of the last token addressed to the

station".

2.2.4. Error Recovery

The 802.4 standard lists the errors that a MAC must be able to handle. The
errors are lost or multiple tokens, a token-pass failure, a deaf station, and stations
with duplicate addresses. One obvious type of error, the corruption of a data mes-
sage, is not handled by the MAC layer; the reception of a bad message is reported

to the LLC layer, and it is the responsibility of the LLC layer to deal with the
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error by requesting retransmission or whatever other algorithm it wishes to employ.

2.2.4.1. Lost or Multiple Tokens

For the correct operation of the token passing protocol there has to be one
and only one token in the network. If there is no token then no station would be
able to transmit. If there is more than one token multiple stations could attempt

to transmit at the same time, losing messages through collisions.

The token could be lost in several ways. The token holder could fail before
passing the token, the token could be lost in a noisy environment that convinced
the token holder that even though it is not receiving valid frames some other sta-
tion must be transmitting something (see the discussion below on token pass

failure), or the whole network has just powered up and no token has been created.

FEach station starts its bus_idle timer whenever it is in the Idle station state
and it senses an idle bus. If the bus_idle timer expires, the station is in the Idle
state, the bus is idle, and the station has messages to send or it wants to be a
ring member and is not the sole active station, the station will transmit a
Claim_Token frame and enter the Claim_T oken state. A station in the Claim_Token
state will, if the bus is quiet and the claim_pass_count is less than the
max_pass_count, increment the claim_pass_count transmit a Claim_Token frame with a
data unit 0, 2, 4, or 6 slottimes long, and wait 1 slottime before repeating the
process. If the station senses another station transmitting when the claim_timer
expires it has lost the contention for the token and returns to the Idle state. If
the claim_pass_count equals the max_pass_count the station has won the contention

process and enters the Use_Token state.

The station with the lowest address sets the bus_idle_timer to six slottimes; all
other stations wait seven slottimes. Since waiting stations drop out of the conten-

tion process when they detect other transmissions, the lowest addressed station
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should win the contention for the token on network initialization.

Multiple tokens could be generated on an 802.4 network by a station with a
faulty receiver. The station with a faulty receiver could erroneously timeout
thinking that the bus was idle. The station would then generate a new token
through the method described above. A duplicate token could be generated through
the following scenario; H passes the token to F and F, having no messages to send,
passes the token to C. When H's token_pass_timer, (see below) times out, H could
sense an idle bus if C has not begun transmitting and pass the token to F, again
creating two tokens. Another method of creating a duplicate token is to join two

separate busses, each with its own token.

Regardless of the manner in which a duplicate token is generated, 802.4
specifies that the duplicate tokens will be removed from the network. A station in
the Idle state will proceed to the Use_token state upon reception of a token. A sta-
tion in the Use _Token state will transmit its messages even if there is other traffic
on the bus. If the station does not have any messages queued (station F in the
example above) it will check the variable just_had_token before it atiempis to pass
the token. just_had_token is set to true when the station passes the token, and it is
reset when the station hears a valid frame from another station. If the variable is
set then the station assumes that it has received a duplicate token and does not
pass the token. A station in the Check Token Pass state will defer to other traffic
on the bus assuming that either its successor has received the token and is
transmitting or that there are duplicate tokens and it should not continue attempt-
ing to pass the token. If all of the stations with duplicate tokens decide that
their tokens’ are duplicates, then the token can be lost if all stations go to the Idle

state.
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2.2.4.2. Token-Pass Failure

When a station transmits a token to its successor, it starts the
token_pass_timer and enters the Check_Token Pass state. If the station hears a
transmission from another station before the timer expires, the station assumes that
its successor has received the token, and the station enters the Idle state. If the
timer expires and the station is still in the Check_Token_Pass state, it will assume
that the token pass has failed. If the failed attempt was the first attempt at pass-
ing the token the station will transmit another token to its successor, restart the
token_pass_timer, and reenter the Check Token_Pass state. When the second .attempt
at passing the token has failed the station will enter the Pass_Token state and try

to reconnect the token passing ring.

After two attempts at passing the token to the successor station, the token
holder first must evaluate the state of the bus to determine the course of action
needed to repair the ring. A station seeking to repair the ring after two failed
token passes has not heard any valid messages from any other stations since it first
started the token passing process; if it had it would not be in this state. If the
station senses a non-idle bus, then it assumes that its receiver is at fault (valid
messages are being transmitted but not received by this station), and enters the Idle

state.

A station that has had two token passes fail and that senses an idle bus will
first assume that its successor has failed or has left the token passing ring without
notifying its predecessor. The station will transmit a Who_Follows frame with its
failed successor's address, open three response_windows, and enter the Await_Response
state. If the successor to the failed station responds with a Set_Successor frame the
token holder sets its NS to the source address of the received Sef_Successor frame

and passes the token to the failed station’s successor, thereby patching the failed
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station out of the ring. If the token holder does not get a response to the

Who_Follows frame it will retransmit the frame.

When two attempts to elicit a response from the successor to the failed sta-
tion have failed, the token holder will transmit a Solicit_Any frame to allow any
other active station to respond with a Set_Successor frame and reconnect the ring.
If a single valid response to the Soliciz Any frame is received the token holder will
pass the token to the responder. If more than one station responds to the frame
the resolution process described previously in section 2.2.3.1 is used to resolve the
contention. - Stations which were ring members between the token holder and its
new successor will have to rejoin the ring as response windows are opened. If no
response to the Solicit_Successor frame is received the token holder assumes that it
has a faulty receiver; the faulty receiver is reported to the LLC layer, and the

station enters the Offline state.

2.2.4.3. Deaf Station

A station with a broken receiver can pollute the network because it cannot
hear the transmissions of other stations. Each station maintains several variables

which will limit the duration of this error condition.

A deaf station in the Idle state will timeout believing the token has been lost.
Because it cannot hear the transmissions of the other stations it will progress
through the entire process of claiming the token. Once a deaf station has claimed
the token it will begin to transmit its messages. Once it has emptied its queues or
its timers have expired, it will attempt to find a successor to which it may pass
the token. The station will not be able to hear the responses of other stations.
When it does not receive a response the station will check to see if there are any
messages enqueued, and if so it will "silently" pass the token to itself and resume

transmitting. If the queues are empty the station will set in_ring to false, set
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sole_active_station to true, increment the transmitter fault_count, and return to the
Idle state. If more messages for transmission arrive at the station’s queues the
station will repeat the process of claiming and using the token, otherwise it will

remain idle.

2.2.4.4. Duplicate Addresses

Addresses must be distinct in an 802.4 network. If two or more stations
have the same address, a token addressed to a single station would be received by
more than one station, each of which would become the token holder and begin
transmitting. Duplicate addresses are detected through the contention process and
by an idle station monitoring network traffic. The duplicate addresses are detected
by the MAC layer and reported to the LLC layer, but it is the duty of the LLC

or higher layers to change the station’s address.

A station which is contending for admission to the token passing ring uses the
bits of its address to sequence through the contention process. As described in sec-
tion 2.2.3.1, the station uses a pair of bits from its address to determine which
window to use -in responding to Resolve_Contention frames. If a station cycles
through its complete address and is still involved in the contention process, then at
least one other station has the same address. The station or stations that lose the
contention process report their duplicate addresses to the LLC layer and go to the

Offline state.

Stations in the Idle state listen to all bus traffic. If a station bears a valid
frame with a source address equal to the stations address, it reports the duplicate

address and goes to the Offline state.



CHAPTER 3

Analytic Modeling

3.1. Modeling

An analytic model of the operation of simplified 802.4 networks is developed
in this chapter. The model is useful for analyzing the steady-state behavior of
networks. It is also useful for generating expected results to be compared with
simulation results, and the formulas used to develop the model are useful when

the network designer is setting network parameters.

The second section of this chapter defines the notation used to develop the
model and the relationships between the variables. The third section discusses the
assumptions made in the simple model and provides simplified expressions for some
network parameters. The fourth section provides a general expression for the
throughput, and the fifth section discusses and analyzes the components of message
delays. In the final section of the chapter the deficiencies of the modeling process

are discussed.

3.2. Definitions

The following notation is used:
N = number of distinct stations on the logical ring
R = set of distinct servers on the logical ring

A\, =the message arrival rate at server reR (messages/second)

i, = the mean message service rate at server r€R (messages/second)
p, = the traffic intensity at server r
7. = the mean message length at server reR (in bits)

27
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C = the bus capacity (bits per second)
0O, = the number of messages enqueued at server rek
u, = the bus utilization at server reR

Yu, =U = the total bus utilization

rer
X, = duration of a message transmission from server re€R '(seconds/message)
X; = duration of a token transmission (seconds/token transmission)
T, = time server r transmits per token cycle (seconds/token cycle)
T. = token cycle time (seconds/token cycle)
V = protocol management overhead (seconds/token cycle)

N is the number of stations that participate in the token passing process and

are therefore members of the logical ring.

R is the set of message servers in the ring. Each active access_class at each
station is represented by a server. A server has a queue for messages awaiting
transmission, and if the server is not a Syncﬁronous access_class server it has a
token_rotation_timer which determines the time available for message transmission

by the server.

Fach server r has a message arrival rate A, which is measured in messages per

second.

The mean message service rate i, in messages per second at server r can be

expressed as

_ 1 I;
b= X, Tc

-

which is the product of the message service rate and the fraction of a token cycle

spent transmitting at server r. If the queue is emptied on each token cycle
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r, AT X

Hr = er'TC B er'TC = Ar

The actual service rate while » is transmitting is which can be used to deter-

mine the traffic intensity:
Pr = A, 'er
The number of messages enqueued at a station on token rotation i consists of
two terms: the messages not transmitted on the previous token cycle, and the mes-
sage arrivals during the current token cycle.

Ti-1

Xm

'y

Qr, = Qr,-_.l - + }\r .Tci»—l

To prevent losing messages because of the finite length of the queues, the average
number of messages transmitted by the server must equal the message arrival rate;
so the average number of message arrivals O, during an average token cycle T¢ is
Q‘ =\ T-C
The utilization u, is the ratio of how long r is served per token cycle. It

can be expressed as

Using /M, as the mean message length at server r, including the necessary
framing and address bits, C as the capacity of the bus, and g as the interframe
gap required between all message transmissions, then the message transmission time

X, is computed as

1,
anr = C + g

The token transmission time Xr is the sum of the time needed to transmit

the token, the time for the token transmission to propagate to its destination, and
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the time needed for the recipient to switch to the Use Token state. Xr is assumed

to be constant for all token transmissions.

T,.. the time that server r transmits in seconds per token cycle, depends upon
the number of messages enqueued at r and the maximum time r has available for
message transmissions. The number of messages enqueued at a server r is equal to
the number of messages enqueued but not transmitted on the last token cycle and

the number of messages that arrived during the current token cycle.

If r is a Synchronous access_class server then
T, = min(Q, Xp . T'6)
where T is the effective High_Priority T oken Hold_Time (HPTHT). The effective
HPTHT can be one message transmission time greater than the actual HFTHT since

the expiration of the token_hold_timer will not abort a message transmission.

Determining 7, for the non-synchronous access_classes is not as straightforward

as determining 7, for synchronous servers. For T, to be equal to AT c-er, the
Target_Rotation_Time, TRT,, for server r must be greater than T¢ + A.-T c-er. As

explained in Section 2.4.2, when r becomes the active access_class for a station in
the Use_Token state the token_rotation timer for server r will be loaded into the
token_hold_timer, and the token_rotation_timer will be reloaded with the
Target_Rotation_Time. Server r will be served only if there is time available in
the token_hold_timer. T, depends upon the current token cyclé time as follows:
T, < TRT, — Ik,

If TRT, = X seconds and the last token cycle took X seconds then the
token_rotation_timer will expire just as server r attempts to begin service on the
current token rotation. Assuming that the server rarely exceeds the

Target_Rotation_Time the average time r transmits can be expressed as
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T, = min(Q, 'er,max(O,TRTr o))
The token cycle time 7¢ is measured from when a station receives the token
on one token. rotation until it receives the token on the next token cycle. It can

be computed as

TC =N'XT+ ET,- +V
reR

If the overhead V is ignored and the queues are drained at each server on each
cycle, T, would equal A, -T¢ X, for every server r and

N - Xr

“I= 3N X,
reR "

Tc

The protocol management overhead V consists of the Solicit_Successor frames
transmitted by token holders to allow other stations a chance to join the token
passing ring, the response windows associated with the Solicit_Successor frames and
any Resolve_Contention and Set_Successor frames transmitted. As explained in sec-
tion 2.2.3, the period between windows is controlled by the Max_Inter_Solicit_Count
and the number of stations waiting to join. Also included in the overhead are the
retransmissions of tokens which were not correctly received by destination stations.
If the probability of errors is small the number of retransmissions will also be
small. There are other factors that can contribute to the overhead value, but gen-

erally V will be very small if not actually zero.

3.3. A Simple Model

To derive a simple model of 802.4 the following assumptions will be used.
First, the bus is error-free. Second, all the stations are permanent ring members;
no Solicit_Successor frames are transmitted and no response windows are opened; the
overhead V is zero. Third, all the stations are homogeneous, each offering the

same access_classes, each with identical A.. Fourth, all timers are set such that the
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queue at each server is emptied on each token rotation.
3.3.1. Synchronous Only
In the simple, Synchronous-only case, the token cycle time can be expressed as

Tce =N -Xpr + N-NT¢c - Xp
which reduces to
_ N -Xr
T1-NAX,

From the above equation, it can be seen that the token cycle time is uniquely

Tc

determined by the message arrival rate A. ¢ is bounded by

N'XT STC $N(XT +T6)

The total utilization of the bus, U, is bounded by

T
< <
O\U\—-———T6+XT

because no more than T seconds of message transmissions can occur before a token

has to be passed.

3.3.2. Asynchronous Service

A simple case will be used to determine the mean token cycle time and the
bounds upon the token cycle time in the presence of asynchronous service. Assume
that all non-token traffic belongs to a single asynchronous access_class and that all

members of the token passing ring use the same Target_Rotation_Time. The general

formula
Te =N-Xr + 3T,
reR
reduces to
N 'XT
Te = 1= N Xom

and T¢ is bounded by
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N Xy £ Tc £ TRT,
The total utilization of the bus, U is bounded by
TRT, — N Xr

TRT,
where TRT, — N -X; is the portion of the token cycle time not consumed by token

0<U <

transmission.

3.4. Throughput

The throughput S is the ratio of the number of data bits transmitted per bit
time. No distinction is drawn between the bits that are actual data and those
address and framing bits necessary to create a data frame. Token and other proto-
col frame transmissions are not included in the throughput. If the queue at each

server r is drained on each cycle the average throughput is

ZTC ‘A T
S = rekR
Tc-C
where T¢ -\, is the number of messages transmitted by server r and 7, is the

mean message length.

3.5. Delay

Every message transmitted by a server is subject to a delay before it reaches
its destination. There are three components to the delay. The first component is
the queuing delay which measures the delay from when a message enters a server’s
transmit queue until it reaches the front of the queue. The second delay com-
ponent is the acquisition delay; how long does the message wait at the front of the
queue before it begins transmission. The third component is the transmission
delay, which is the difference between the start of the message's transmission and
its completion. It is possible that a message will suffer no gueuing or access

delays, but all messages will encounter a transmission delay.
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The first message to arrive in the queue of an idle server has a queuing delay
of zero and an acquisition delay equal to the time that will elapse before the
server begins transmitting. The acquisition delay of all messages that arrive after
the first will be equal to the interframe gap unless the message arrives at an
empty queue just before the server relinquishes the token. The acquisition delay is
bounded by

0< Dy <T¢c -1,
No message can have a larger acquisition delay as long as every server can empty

its queue on each token rotation.

Of the A, -T¢c —1 omessages that arrive after the first message,
A, -T¢c —T,)— 1 messages arrive while server r is idle. The queuing delay for
these messages is the sum of the delay until r begins service and the delay of
transmitting the messages enqueued in front of the message. Each of the A, T,
messages that arrive while r is transmitting messages have a queuing delay equal

to the transmission time for the messages enqueued ahead of the message.

3.5.1. Mean Delay

To determine the mean delay, the distinction between the acquisition and
queuing delays will be ignored. The M/G/1 Vacation Model described by
Fuhrmann and Cooper [Fuhrmann 84] is used to determine the wait time for mes-
sages in a queue. The first model described in the Fuhrmann and Cooper paper
describes a single server which switches service around a ring of queues, stopping

to serve any queue with pending messages.

The M/G/1 vacation model differs from the normal M/G/1 queuing model
because when a message arrives at an empty queue in the vacation model it is not
immediately transmitted as in the regular M/G/1 model; the message must wait

until the token reaches the server for this queue. The first element of the wait
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time is the delay before r is served. The second element of the wait time is the
time needed to transmit the messagés enqueued before the average message. The
following definitions are needed for the model: A is a Poisson message arrival rate;
7 is the mean service time, and o is the variance in the service time. Fuhrmann

and Cooper derive the equilibrium cycle time to be

c
1-p
where ¢ is the constant length of time for a token cycle with no traffic and

E(T)= (p<1)

p = A7 is the server utilization. They then derive the equilibrium waiting time to

be

E(W) = 2 E(T) + E(Wo)
where E(W,) is the waiting time in the queue derived from the Pollaczek-

Khintchine formula and defined as

: 2
- PT o

By the following substitutions the expected wait time formula can give an

expression for the mean delay defined in terms developed in this chapter.

The delay due to the transmission of the succeeding messages can be expressed
as
T pr .Xm,.

i =
20—p) 2-(1-p)
Since the message size is constant the variance in the message transmission delay o?

E(WO) =

:DQ

will be zero.
The expected token cycle time E(I') can be rewritten
N -Xr

p B 1- Zxr'Xm
rekR "

E(T) == =Tc
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The transmission delay for a message is the sum of the time needed to
transmit the message, and the time needed for the message to propagate to the
receiver. Assuming the average message propagation time is approximately equal to

the interframe gap, the average delay in delivering a message can be expressed as

pr'er

This expression for the average delay in delivering a message can be used 1o

D‘=_;_T“C+ + X,

'

make observations about the general behavior of 802.4 networks. The minimum
delivery time is bounded by the time required to transmit the message. When the
network has lightly offered loads, small A, most of the average delay derives from
the contribution of the token cycle time, and will be approximately equal to one
half the token cycle time. As the load increases more of the average delivery time

is based upon the queueing delays caused by the load in the station.

3.6. A Real Model

The simple model developed in the preceding two sections provides a good
description of idealized 802.4 networks. The formulas and expressions developed
are very useful for setting the Target_Rotation_Times and other network parameters.
However, the simple model is quite limited in its description of actual 802.4 net-
work operations. Some of the problems with the simple model are discussed in

this section.

The simple model assumed that there were no station failures or lost mes-
sages; the robustness of 802.4 is one of its major advantages, and the model cannot
provide statistics on how well 802.4 meets the robustness criteria. Dynamic station
membership was also not dealt with, so the varying overhead V was ignored. In
the simple model it was assumed that all messages enqueued at a server are

transmitted on each token cycle, but as can be seen in the expression for the token
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cycle time, increasing the load will increase the token cycle time, and there are
situations where that increase would be unacceptable. For example in an industrial
control application, critical monitors may need to transmit their information every
tenth of a second. The model cannot be used to provide anything other than
steady state information. The model shows that if the load is changed then the
token cycle time will, with time, adjust to the new load level, but how does a
network react to transient loads? All of the above problems concern how the net-

work reacts over time instead of how it reacts in the steady state.

Modeling a network's functioning over time is very difficult. As Steven

Lavenberg points out in Computer Performance Modeling Handbook [Lavenberg 83]:

A queuing model is a dynamic probabilistic model; ie. it uses probabilities to
represent the evolution over time of a system. It is very difficult to analyze the
transient behavior of such a model, ie. the behavior as a function of time. The
transient behavior is most readily studied via simulation. However it is often pos-
sible to analyze the steady-state behavior of such a model.

Instead of attempting to derive an analytic model for a limited number of excep-
tional cases, this thesis effort concentrated on developing a simulator that would
allow the user to compare results with the simple analytic model and to explore

the time dependent functions of 802.4.



CHAPTER 4

The Simulator

4.1. Introduction to the Simulator

To study the performance of 802.4 networks, a Pascal program was created
that simulates the major functions and station states specified in the 802.4 stan-
dard. The simulator allows the user to create a network configuration, to simulate
the operation of the network, and to generate traces of network actions and reports
of network statistics. This simulator provides the network designer with a tool he
can use to quickly create and test varying network configurations. The simulator
was based upon the work done by Alex Colvin [Colvin 84] which had its origins

in the simulator of David Albrecht [Albrecht 82].

The simulator is a 5000 line Pascal program called tokbus running on a Digi-
tal Equipment Corporation VAX 11/780 and on Apollo DN-300 workstations.
While there exist programming languages which are specifically designed for simula-
tion, Pascal was chosen as the development language because of programmer fami-
liarity and the availability of Pascal compilers on the machines used for running
the simulations. Another advantage was the ability to use the work of Colvin as

the basis for tokbus.

Colvin created a Pascal program that simulated a subset of 802.4. In that
simulator, the number of stations was fixed at the start of the simulation; there
were no station arrivals, departures or failures. The Colvin simulator operated in
an error-free environment, therefore it did not incorporate any of 802.4’s error
correcting capabilities. The simulator was designed to generate results to be com-

pared with an analytic model of Colvin's subset of 802.4. It was not designed to

38



39

be used by anyone else other than its author.

The simulator designed as a part of this thesis used some of the basic struc-
ture of the Colvin simulator to which was added error generation and correction
capabilities, dynamic station ring membership, and a simpler user interface. Some
portions of the Colvin program were included directly, some portions were used
after modification, and in other cases the Colvin program was simply used as a

reference.

The second section of this chapter details the simulator’s design. Section three
covers the simulator’s functions and capabilities. The fourth section discusses the
limits of the simulator. Section five describes the validation testing methods. An

appendix to the thesis contains the simulator’s instruction manual.

4.2. Simulator Design

The design of the simulator required three choices: the selection of a method
for performing the simulation, the selection of a representation of simulation time
and station timers, and‘ the selection of a user interface. The simulation method
determined how the program represented network states, and how it made the
transitions between the states. The goal in designing the user interface was to

select a simple method for creating and running simulations.

4.2.1. Simulation Method

There are several methods for simulating queuing networks. The three
methods investigated for use in this simulator were a finite state representation of
the possible network states, a concurrent execution approach, and event driven

simulation.

The finite state representation approach was not selected because of the

difficulty of trying to represent the very large number of states in which an 802.4
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network could operate. Any reduction in the number of station states used would
simplify the simulator such that the results would not correctly model the perfor-

mance of 802.4.

In the concurrent execution approach, the simulator would loop through all of
the stations involved in a simulation for each time increment. If a station needed
to perform any action in this small time period it would be able to perform the
action. On most cycles, the stations would simply decrement any of the active
timers and perform very few other operations, which is very similar to the actual
operation of an 802.4 station. The simulator overhead required eliminated this

approach. A related problem is deciding how fine a time increment to use.

The method chosen for the simulator’s operation was event driven simulation.
In event driven simulation, the transitions in network states are represented as
events. An event consists of an event type, a time in the future at which the
event occurs, and the address of the station where the event occurs. Some typical
tokbus events are the arrival of a message in a server's queue, the completion of a
transmission by the token holder, or the arrival of the token at the next station
on the logical ring. Each event is scheduled to occur at a specific time in the
simulator's future. The events are maintained in a time ordered queue. A new
event is not added to the end of the queue, but rather inserted in time order.
The next event is always at the head of the queue. The simulator’s global time is
updated to the time of each event as the event is dequeued, skipping periods of
inactivity and concentrating the program’s processing in the simulation of network

transitions.

4.2.2. Time in the Simulator

The simulator’s global clock is initially zero. As the simulator operates and

events are dequeued, the global clock is set to the time of the last event. Because
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more than one event can occur at the same point in time the clock is set to the
time of the event rather than incremented. The global clock is available to all

stations.

The 802.4 standard specifies that the timers in each station are countdown
timers without wraparound; when the timer reaches zero it remains zero until reset
by the station management software. The simulator represents the countdown
timer in software by comparing the value in the timer with the global time. If
the difference between the two values is positive, tha’; is the time left in the timer.
Negative differences indicate an expired timer. Timers are reset by adding an offset
to the current global time; for example, when station 25 accepts the token and
begins to serve its Synchronous access_class, the token_hold_timer is reloaded with the

sum of the global clock and the High_Priority_Token_Hold_Time.

4.2.3. User Interface

The simulator uses menus and interactive questioning to lead the user through
the complete simulation process. Menus are used when the user has more than
two options for the next action or selection. Questions are used for binary selec-
tions or when the simulator requires a specific type of input with variable values,

e.g. numbers.

When the user is required to enter information, the simulator will cycle until
the user provides an appropriate response. Invalid input is ignored in most cases.
The exception to the above statement is the inability of the simulator to ignore
character input when it is reading a numerical value. This problem is inherent in
the Berkeley Pascal used in the VAX implementation of tokbus. This restriction
does not apply to the Apollo implementation, and the reasons why are explained in

Appendix B.
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The menu selection and question and answer approaches were chosen because
the simulator should be an easy-to-use tool for network designers who should not

have to worry about the exact syntax or order of commands.

4.3. Simulator Functions and Capabilities

The simulator can be used to perform three tasks for the network designer.
He can create and save network configurations. He can run a simulation based
upon a configuration, and he can generate reports of network and station status

and utilization.

4.3.1. Network Configuration

To run a simulation, the user has to create and load a network configuration.
A network configuration is created as the user enters values for a variable number
of system parameters. After the values have been entered, the simulator must

build the actual network configuration.

4.3.1.1. Configuration Parameterization

The first function of the simulator is to enable the user to easily create and
modify configurations. There are two types of information needed by the simula-
tor to construct a network configuration to be simulated. A method of saving and

reusing configuration information was developed to reduce the configuration effort.

The first type of information is the set of network-wide parameters such as
the High_Priority_Token_Hold _Time, the bus rate and the address size. It is also the
set of values needed by the simulator to determine the actions of the simulator

itself including the random number seed and the number of station classes.

The second type of information needed is the parameterization of the station

classes. [Fach "physical' station on the simulated network belongs to a station
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class. All stations that are members of the same station class have the same
number of active access classes with the same message creation rate and distribu-
tion, mean length and length distribution.  The Target_Rotation_Time and
Max_Inter_Solicit_Count values are the same for all class members, and the type of
ring membership is constant in a class. The simulator uses the class structure for
generating reports on message delays and ring membership. There can be stations
from more than ome type of station class on a simulated network; this feature

allows the user to study networks consisting of nonhomogeneous stations.

To aid the network designer in quickly creating simulations and to prevent
duplication in the configuration effort, the simulator allows the user to save and
edit the configuration information. The system wide parameters and other global
information can be saved in a file known as DfitVals. The user is given the
option of using the defaults or creating their own values. The simulator also
maintains a library of station class information in the file ClassLib from which the

user can select classes to be used.

The files DAtVals and ClassLib are special files that are required for the
correct operation of the simulator. Therefore, when the user requests the simulator
to write any output file the simulator will not let the user use either of these file
names. When saving class information, the simulator will query the user if he is
about to overwrite an existing class file, but it will allow him to overwrite the file
if he desires. The class information files are also treated as reserved when the

user tries to write out reports or traces, see section 4.3.3.

Without the ability to modify the saved information, the default values and
library of classes would be of little value. The user could run the same simula-
tions again and again, but he could not study the effects of adjusting network or

station parameters without re-entering the majority of the information. The simu-
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lator provides the user with the ability to modify the saved information and
newly entered information. The modification of the information just entered by
the user allows a user to change mis-entered information. The editing method is

explained more fully in the simulator's user manual in Appendix A.

After reading the default file or querying the user for the system parameters,
the simulator displays the values and allows the user 1o modify any value. The
modified or created values can then be saved, overwriting the old default values.
After the default values have been set, the simulator will loop, for the number of
classes specified by the defaults, reading station class information from the library

or the user and allowing the user to modify and save the information.

As the user constructs the network configuration, the simulator performs some
limited range checking. The user is constrained to selecting either the sixteen or
forty-eight bit address modes, and the size of the token is lower bounded by the
address size selected. It checks to be sure that the number of stations is less than
the simulator limit of 512. The simulator does not allow station address conflicts.
The simulator will not function if the user specifies a network without at least
two initial members; there must be a logical ring on network startup, and the logi-
cal ring must be maintained throughout the simulation. These constraints are not
designed to limit the user, but rather to establish minimums needed for correct

configurations.

4.3.1.2. Loading the Configuration

After the user has entered the information for a station class, the simulator
loads the class. For each station, the simulator constructs a record with elements
(a) to record niessage statistics and maintain the queues of messages awaiting
transmission for each active access_class, (b) fo save its own address and the

addresses of its predecessor and successor, and (c) to represent the token_hold_timer
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and other timers and counters required in the standard, plus the station state.

As the simulator creates stations, it links them together into three lists. The
first list consists of all stations that are members of the same station class; this
list is traversed when generating class statistics. The second list is a circular,
address-ordered list consisting of all stations. The third list is also circular and
address-ordered, and it represents those stations that are members of the logical

token ring.

If the station is not an initial member of the token passing ring it is not
linked into the third list. Stations that are supposed to join a simulation in the
future have an event scheduled that will awaken them and set their in_ring_desired
flags and allow them to contend for ring membership. Stations that leave the
token passing ring after some period of time have their departures scheduled and
added to the event queue while they are being loaded. The station state is set to
idle for all of the stations that are initial members of the token passing ring. The

state of other stations is set to unpowered.

The first message arrival event for each of the station’s active access_classes is
scheduled when the station is created. If any of the station’s queues are to be

pre-loaded, they are loaded with messages.

4.3.2. Simulating

To run a simulation, the simulator must present the user with the ability to
control the actions of the simulator, and it needs to schedule and manage the
events representing the actions of the stations and the state of the network. As
mentioned above, the simulator starts with a configured token passing ring, and the

event queue will contain the pending message arrivals for each station.
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After the last station class has been loaded, the simulator creates an initial
token and passes it from the lowest addressed station to the station at the top of
the ring. The event of the token's reception at the next station will be added to

the event queue.

4.3.2.1. Controlling the Simulator

Once the simulator startup has been completed, the simulator will display the
menu of Figure 4.1, the top level of the command structure, and wait for the user
to select a command. At this level, the user is given several options for the com-
mands that control the simulator's actions. After each command selection, if the
user has not turned on the simulator’s display capabilities, the main menu is

displayed again to remind the user of the available commands.

The commands can be grouped into four types. The first type of commands
are for running the simulator; they allow the simulation to progress by dequeuing

and processing events. The second type of command is the report command; enter-

Enter Command Character

Menu of Simulator Commands

D - Display statistice and stations;
- get an Error condition;
- Help by displaying this menu;
- a gtation Joins the token passing ring;
- Kill a station;
a gtation Leaves the token passing ring;
- Report statistics;
- run the simulator for a number of Steps;
- run the simulator for a period of Time;
- eXit the simulator.

MHEanWYHRG HHE
|

Figure 4.1 Simulator Main Menu
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ing thé R command will provide the user with. a selection of reports that can be
generated and simulator traces that can be turned on or off. Commands of the
third type control the state of the network; the user can alter the network state
without altering the current time. The fourth type of commands control the simu-
lator interface; they provide the user with displays that monitor network activity

and can recall the main menu.

4.3.2.1.1. Running the Simulator

The S, T, and X commands allow the user to control the progress of the simu-
lations. The S and the T commands run the simulator, and the X command exits

the simulator stopping the simulation.

The S command steps the simulator by dequeuing a user specified number of
events; one event is dequeued for each step. When the user enters the S command,
he will be prompted for the number of steps he wishes the simulator to perform.
After the simulator has dequeued and processed the correct number of events it
returns to the command level. Entering a number less than one is a no-op, and
the user is returned to the higher level command menu. Because there is no res-
triction on the number of events that can occur at a single point in time, stepping
the simulator through a number of events will not necessarily cause changes in the
global time or the user’'s view of the simulator’s displays. Stepping the simulator
is very useful when the user wishes to observe or trace simulator actions at some

point in the simulation.

The user can run a simulation for a period of time with the T command.
The user will be queried for the duration of time for which to run the simulator.
If the user‘enters a value greater than O, a stop_simulation event is scheduled at a
time equal to the sum of the user entered value and the current global time.

Running the simulator for periods of time is very useful for generating the
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necessary traffic to provide accurate reports of message delays, and traffic loads by

overcoming the effects of the simulator startup.

It is possible for the simulator to stop simulating before the specified number
of steps or period of time-has elapsed if the user has specified that the simulator
should stop when a pre-loaded queue is emptied. When such a breakpoint is
encountered, the simulator will offer the user the options of continuing the simula-
tion, exiting to the command level, or turning off the breakpoint trap. The empty
queue breakpoint feature allows a user to determine how long it takes a server to

transmit the specified number of messages;

4.3.2.1.2. The Report Command

Entering the R command will transfer the user to the report sub-system. Fig-
ure 4.2 shows the menu of possible actions the report sub-system offers the user.
The user can generate reports, toggle simulator traces, or return to the command
level This section will not discuss the body of the reports and traces which is the

subject of Section 4.3.3.

Enter Selection

- Report Bus Statistics;

- Report Class Statistics;

- Turn On Execution Trace;

- Turn On # of Messages Transmitted Trace;
Turn On Queue Level Trace;

- Turn On Token Trace;

- eXit to Command Level;

HHOREQW
!

Figure 4.2 Report Sub-system Menu
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The reports display cumulative network statistics. The bus report provides
statistics on network usage; the class report provides statistics on a station class’
service. If there is more than one type of station class in the simulated network
the user is given the option of generating reports on individual classes or all of the
classes. The reports can either be displayed on the user’s terminal or written to a
file. If the user selects to have the report displayed, the screen will be cleared;
the report will be displayed; the simulator will pause until the user has finished
reading the report, and then either the main menu or the screen display will be
redisplayed. If the user selects to have the report written to a file, he will be
prompted for the name of the file. The procedure that opens the output file
prevents the user from overwriting the files DfitVals, ClassLib, or any member of

the class library.

The trace commands allow the user to turn on or off a trace of the
simulator's execution, the number of messages transmitted by a station on each
token cycle, the number of messages enqueued at a station when the station
receives the token, and the duration of each token cycle. The traces allow the
user to study the actions of the simulator over a period of time. When the user
turns one of these traces on, he will be prompted for the name of the file into
which the trace information will be written. As described above, the user is also

prevented from overwriting any of the reserved files with traces.

4.3.2.1.3. Altering the Simulator State

The E, J, K, and the L commands can be used to alter the simulator state
without changing the current time. The E command enters an error sub-system.
The other commands query the user for the address of the station that should

wake up and join the ring., be killed by the user, or be told to leave the ring.
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The user has three options in the error sub-system. He can either kill the
current message, set a noise condition of user specified duration, or return to the
command level. The robustness of the protocol can be tested by selectively killing
the current message and observing the network’s actions. The noise bursts can also
be used to study robustness. A noise burst lasts from the current time until the
user specified delay has elapsed; no messages can be transmitted by any station
during the noise burst. The noise burst is similar to the condition when a station
with a faulty receiver pollutes the network with invalid or out of order transmis-

sions.

When the user enters either a J, a K, or an L command, bhe will be asked to
specify the address of the station he wishes to have join, be killed, or leave. If
the user specifies a non-existent station, he will be asked for the address again. If
he enters a zero for the station address the simulator will return to the command

level.

The J command allows the user to specify that an unpowered station should
power up and contend for ring membership when the next Solicit_Successor frame
spanning the station’s address is opened. If the station is already a ring member

this command is ignored.

The K command kills the specified station. If the station is idle, then after it
is killed it will be patched out of the token passing ring on the next token cycle.
If the station is the current token holder, its death will cause a bus_idle event to
be scheduled by its successor and cause a ring reconfiguration when the

bus_idle_timer expires.

A station that is told to leave by the user will stop accepting new messages
for its transmission queues and allow the queues to drain. As soon as the queues

have been emptied the station will patch itself out of the token passing ring by
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sending a Set_Successor frame to its predecessor before transmitting the token to its

SUCCEeSSor.

4.3.2.1.4. Simulator Interface

The user can modify the interface with the simulator by replacing the main
menu with a display of the states of the stations on the bus, an in-depth display
of a single station, the current elapsed simulator time, and the number of simu-
lated token cycles. The command interface will question the user for the next
command selection without displaying the menu. The user has the ability to turn
the display on and off and to temporarily overwrite portions of the display with
menus. The displays show the general state of the network and the specific state

of a single station with its timers and message queues.

The user can control the display with the D command. Figure 4.3 shows the
options available to the user after entering the D command. He can either turn the
display on or off, specify that a particular station will be displayed in depth,
specify that the in depth display will be the token holding station, or return to
the command level. When the display is turned on, the main menu, Figure 4.1, is
not displayed. If the user does not remember the command characters, the main

menu can be temporarily displayed without turning off the display by entering the

Display Commands; Please Enter Selection

|

turn On Station Display;

give the full display for a Station;

give the full display for the Token Holder;
eXit to Command Level;

|

|

H}HEmno
|

Figure 4.3 Display Sub-system Menu
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H command. If the user selects any command with a menu of selections (the D, E,
and R commands) the menu will overwrite the top portion of the display while the
user makes his selection; the display will be refreshed after the selection has been

made.

Figure 4.4 shows that there are four components to the display. On the top
line there is the command prompt where the user will enter the next command
character. The second line displays the elapsed simulation time and the number of
token cycles that have been completed. The third part of the display starts on
line 3 and extends to line 17; it shows the addresses of the bottom forty stations
on the bus and their station states. When the token is at one of these stations an
@ symbol is displayed to the left of the station’s address and the state will be
displayed as usetokn. The fourth part of the display is the in depth station

display, which displays the station’s address and station state. It displays the time

Enter Command Character :

elapsed time = 0.01050512 # of token cycles = 30
20 21 22 23 24 e 25 26 27 28
idle idile joining idlie idle wusetokn idle idle idle
29 3e 31 32 33 34 35 36 37
idle dead idle idle idle unpowrd joining idle idle

address = 25 state = use token

©.00838871 seconds left for Synchronous service
Access Class # Messages Queued Token Rotation Timer
Synchronous 2
Urgent Asynchronous 4 0.01067810
Normal Asynchronous 2 . ©.01050327
Time Available inactive

Figure 4.4 Sample Simulator Display
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remaining in the token_hold_timer and the access_class currently being served, and it
displays the number of messages enqueued at each active access_class and the
token_rotation_timer for the non-synchronous classes. If an access_class is inactive
that message is displayed. By default this element of the display is assigned to
the token holder, but the user can specify the station which he wishes to have
displayed if he wishes to observe the station while the token is elsewhere in the

network.

4.3.2.2. Managing the Events

The user runs simulations by requesting the simulator to run for a period of
time or a series of steps. The simulator performs this function for the user in a
loop where events are removed from the event queue and processed by the correct
event handlers. When the event handler or some other procedure retiuires some
action to be performed in the future, it creates a new event and schedules it for

the appropriate time.

As described in section 4.2.1, each event occurs at a specific time. Whenever
an event is removed from the event queue, the simulator updates the global time
to the time of the event and, after determining the type of event, calls the neces-
sary event handler. When the simulator is being run for a series of steps or a
period of time it loops through this process for the specified number of steps or

until a stop simulation event sets the loop exit condition.

For the simulator to faithfully represent 802.4 networks it needs to create
events that represent transitions in the state of the network being simulated.
There are two types of events in the simulator. The first type of events
represents non-802.4 specified events; this type includes message arrivals at a sta-
tion, the delayed powering up of a station, or a stop simulation event specified by

the user. The second type of events represents the 802.4 specified actions of a
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station that is in one of the simulated 802.4 station states.

Whenever a message arrival event occurs, it specifies a station and an
access_class. The message arrival event causes a new data message to be generated
and added to the access_class’ queue, and it causes the generation and scheduling of
the next message arrival event for the station and access_class. There will always
be pending message arrival events unless the station is scheduled to leave the token
passing ring in which case it will not generate the new events. A message arrival
cén trigger changes in the state of the simulated network if the message arrives at
a station that is powered up but not a member of the token passing ring; the
arrival will cause the in_ring_desired flag to be set to true. The other non-802.4

specific events do not schedule other events; they are under user control.

The 802.4-specific events represent transitions in the state of the simulated
network. Some of the transitions from one state to another require only a very
small switching time; transitions like the changing of the current access_class or the
powering up of a station are not modeled as events. The 802.4 events model tran-
sitions in the network state that occur over time. Typical 802.4 events are the
completion of a message or token transmission or the .expiration of the bus_idle or
token_pass timers. The simulator will schedule the completion of these events and
return to the main simulation loop. The uninteresting period from the start of a
message transmission or timer until the end of the event is skipped, and the simu-
lator can process any other events or perform needed actions that occur during the

interval.

4.3.3. Reports and Traces

The simulator provides the user with the ability to generate reports of simu-
"lation results and traces of simulator actions. The details of how the user selects

reports and traces were discussed in section 4.32.12. There are two different
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reports that the user can select and four types of traces.

4.3.3.1. Reports

The two reports are the bus report and the class report. The bus report, Fig-
ure 4.5, provides the user with global data representing the network usage. The
class report, Figure 4.6, can be used to determine statistics about the service
obtained by the stations that are members of a particular simulator station class.
The reports provide the user with cumulative, average, minimum, and maximum
values from which information about the steady state operation of the network can

be drawn.

The bus report shown in Figure 4.5 is an actual output file from the simula-
tor. The version of the bus report displayed on the user's screen is identical to

the figure except for the line giving the title of the report.

busout .8

Efapsed Time = 16.00000000

Token Cycles = 6023.
Average Token Cycle Time = ©.00265606
Minimum Token Cycle Time = ©.08111300
Maximum Token Cycle Time =  0.00446460
Total Traffic of 761333. messages for a total of 132981728. bits transmitted
Number of Ring Reconfigurations = ]
Type Of Message Number Transmitted Total Bits ZBandWidth
Data 374336. 95830016. 59.89
Overhead 35936256, 22.46
Actual Data 598893760 . 37.43
Token 385525. 37010400. 23.13
Protocol 1472. 141312, 0.09
Corrupted 0. 0. .00
Propagation Delay 16.77
Bus Idle .11

Figure 4.5 Actual Bus Report
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This simulation configuration was a variation of the basecase used in the per-
formance testing. It consisted of 64 stations that were constant members of the
token passing ring; 16 bit addressing was used, and the token was 96 bits; A was
exponential with a mean value equal to 366; the message size was a constant 160

bits. The offered load in this simulation was sixty percent.

The first line of the report is the title of the report and the file name under
which it was saved. By having the name of the file visible in the report the user
can easily determine which results belong to which file. The second line reports
the elapsed time from the start of simulation until the report was generated. The
third line shows that in the 16 seconds of simulation there were 6023 token
cycles. The next three lines report the average, minimum, and maximum values of
the token cycle time seen during the simulation. The seventh line of the report
displays the total traffic in both messages and bits. If stations had left or joined
the ring or the token had been lost then the number of ring reconfigurations would
reflect those events. The remaining lines detail the network utilization during the

simulation.

The utilization figures are based upon the user-selected bus rate of 10 mega-
bits per second, and the duration of the simulation; in 16 seconds, 16 X107 bits
could have been transmitted. The "data", "token", "protocol". and "corrupted”
categories list the actual number of bits transmitted by those types of messages,
and the percentage of the total bandwidth they consumed. The propagation delay
figure records how much of the bandwidth was consumed in message propagation
delays. The bus idle figure is how often the bus was idle while stations opened
response windows, and possibly the difference between the start of a message

transmission and the generation of this report.
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clsout.6

Class basecase
Stations have joined the Token Passing ring 64 times.
Synchronous Service Access Class
Total Number of Messages sent from these queues = 374337 .
Average Queue Delay = 0.00035376
Minimum Queue Delay = ©.00000000
Max imum Queue Delay = 0.00411018
Average Access Delay = ©.00098775
Minimum Access Delay = ©.00000000
Maximum Access Delay = ©0.00411018
Average Transmission Time = ©.00002760
Minimum Transmission Time = ©.00002760
Maximum Transmission Time = ©.00002760
Average Delivery Time = 0.00136911
Minimum Delivery Time = 0.00002762
Maximum Delivery Time = 0.00436294

Urgent Asynchronous Service Access Class
Access Class Inactive

Normal Asynchronous Service Access Class
Access Class Inactive

Time Available Service Access Class
Access Class Inactive

Figure 4.6 Actual Class Report

The class report pictured in Figure 4.6 is another output file generated by the
same simulation as described above in the description of the bus report. Because
of the limits of most terminals, the screen version of the class report is much
more condensed with short identifiers to the left of four columns of the delay

statistics instead of one statistic per line.

Like the bus report the class report prints the name of the output file as the
first line of the report. The second line displays the name of the class being
reported; if there is more than one class involved in the simulation, the user can

determine which statistics belong to which class. The third line tells the user how
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many times stations of this class joined the token passing ring. In this case each
station in the class joined once, but the user can determine how many times sta-

tions with dynamic ring membership joined and left the ring.

After reporting the membership statistics, the class report displays statistics on
the delays experienced by the messages transmitted by the stations of this class.
For each of the active access classes, the name of the access_class, the number of
messages transmitted, and the two delays and two times are reported. Inactive
access_classes are denoted with the "Access Class Inactive’ message. The Queue
delay reports the delay from when a station entered the queue until it reached the
front of the queue. The Access delay is the delay from when a message reaches
the front of the queue until the message’s transmission begins. The Transmission
time reports how long it takes the message to be transmitted, and the Delivery
time reports the total delay from message arrival in a queue until the completion

of its transmission.

4.3.3.2. Traces

The four types of traces are the execution, number of messages transmitted,
queue level, and token cycle traces. Traces are very useful for studying the tran-
sitions in a network during a simulation. The study is useful for the naive user
who wishes to gain an understanding of the operation of 802.4, and it is useful
for thé experienced user who wishes to study particular network actions in

response to certain events.

The execution trace records the times of message transmissions and token
receptions. It records the time that an inactive station powers up or the time at
which an idle station leaves the ring. It records all error conditions and ring
reconfigurations. It records the time at which each active access_class is checked

for queued messages. Following an execution trace while an identical simulation is
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being run can allow a novice user to gain a better grasp of the operation of 802.4.
The user is warned about turning the execution trace on and requesting a large

simulation time; the resulting file can grow quite large, quite quickly.

The simulator will report the number of data messages transmitted by a sta-
tion each time it is the token holder if the message trace is turned on. The trace
also reports the address of the station and the time at which the token arrived at
the station. The number of token cycles is reported each time the token is
transmitted by the station with the lowest address. This trace can be used by the
network designer who wishes to determine the number of messages transmitted

with limited High_Priority_Token_Hold_Time and Target_Rotation_Times.

If the network designer wishes to trace the queue lengths, he can use the
queue trace. The queue trace reports the station’s address, the time at which the
token arrived at the station, and for each access_class the number of messages
enqueued for active classes and an “inactive' message for inactive classes. The
token cycle count is reported on each token cycle. This trace can be used to mon-
itor the queue levels in the individual stations to check for service starvation that

might not be reported if the other stations are lightly loaded.

The token cycle trace records the token cycle number, the duration of the last
token cycle, and the time at which the lowest addressed station passed the token
back to the top of the logical ring. It can be used to determine the effects of
transient loads by observing how long it takes the simulator to return to an aver-

age token cycle time after the application of a transient load.

4.4. Simulator Limits

The simulator is a powerful tool for the network designer, but it does have
some limits. There are two types of limits with the simulator tokbus. Limits of

the first type stem from the limitations of the Pascal programming language. The
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second type of limits is due to the simplifications to 802.4 made in designing the

simulator.

4.4.1. Pascal Limitations

As mentioned in section 4.1 there exist programming languages that have been
designed for use in simulation, but Pascal was still chosen as the development
language for the simulator. The limits Pascal imposed on the simulator are input
and output and string size limits with the VAX implementation and numeric preci-

sion and the lack of a random number generator in Apollo’s DOMAIN Pascal®.

The Berkeley Pascal used to implement the simulator on the VAX has several
limitations to its Input/Qutput system. Whenever an exceptional condition is raised
in the I/0 system the program ceases execution; there is no method of trapping and
handling these errors within the program itself. The I/O exceptions that can cause
the premature termination of tokbus are a request to open a non-existent file, and
the reading of non-numeric data during a numeric read. To satisfy the require-
ment that a file must exist before it can be read the simulator must have a file
with the name ClassLib in its current working directory before attempting to read
or save station class information. The first time the user creates a simulation he
must make and save the default values because an attempt to open the file
DfitVals will cause the simulator to terminate. The problem of dealing with char-
acter input while reading numeric values limits the simulator because an unwary
user could cause the simulator to terminate with a misplaced keystroke or the
common substitution of a letter ‘o’ for the numeral ‘0. Unlike the requirement
that dummy files be present in the working directory before program execution, the

numeric problem requires user awareness and handling of the problem.

Apollo and DOMAIN are trademarks of the Apollo Computer Inc.
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The string size limitation due to the Berkeley Pascal definition of type alfa to
be ten characters long prevents the simulator from using long file names that could
be more descriptive or could include pathnames that would allow the simulator to
reference or write to files in other directories. The type alfa is required for the

reset and rewrite functions needed to open files for input and output.

The implementation of Pascal on the Apollos provided strings of arbitrary
length and the ability to trap errors when opening files. What the DOMAIN Pas-
cal lacked was a random number generator, and numeric precision in its simple real

and integer types.

DOMAIN C does provide an integer random number generator which was used
to generate real random numbers, and DOMAIN C routines can be linked to
DOMAIN Pascal to provide a random number generator for real numbers. One
problem with the implementation of this random number generator is that the
DOMAIN C random number function will return a value of zero, and tokbus
requires that all random numbers be in the range 0 < X £ 1. To counter this
problem a value of 10715 is added to each real random number generated. There-

fore the distributions are always biased by this small amount.

The limited precision of the real and integer types is due to the processor
used in the Apollos. To obtain the necessary precision for real values the type
double was used for all floating point variables. The limit of 32767 as a max-
imum integer value was an inconvenience that could have been circumvented
through the use of long_integers but was not because the precision of the integers

was determined to be sufficient.

4.4.2. Simplification of 802.4

In the discussion of the analytic model, section 3.5, it was stated that simula-

tion allowed the network designer to analyze systems that were too complex to be
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modeled analytically because the simulator would be free of the simplifying
assumptions needed to create an analytic model. To simulate 802.4 some simplify-
ing assumptions have been made which reduce the number of situations that can

occur but do not reduce the functionality of the simulator.

The assumption that all addresses are unique has already been mentioned in
section 4.3.1.1, and it is indicative of the types of simplifications made; errors or
states that have no effect on the operation of the simulator are either not allowed
at startup, ignored, or collected into a single state. Duplicate addresses in 802.4
can be a problem at most once in a network’s operation; two stations would
attempt to join the ring with identical addresses, and the one that lost the resolu-
tion process would take itself Offline and report the duplicate address to the station
management software. One time, the resolution process would consume all of the
maximum time due to sequencing through all the windows after which that situa-
tion would never occur again and is therefore of little interest in observing the

behavior of networks.

Another state that is not allowed in the simulator but is allowed in the 802.4
standard is a ring with one member. The simulator requires that there are at
least two stations that are part of the token passing ring so that there will always

be events to process and time can progress.

A related state that is ignored is the formation of the initial token passing
ring. When tokbus begins the simulation process it starts with a configured ring of
stations with empty message queues and expired token_rotation_timers (unless the
user preloads the queues when creating the configuration). The initial token is gen-
erated at the lowest addresses station and is passed to the highest station before

the simulation begins.
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The loss of the token in a configured token passing ring is an example of a
series of events that have been collected into one process. The actual action of an
802.4 station when the token is lost was described in section 2.2.4.1. The simula-
tor does not model the transmission of Claim_Token frames or the detection of
those frames from other stations and the changing from the Claim_Token to the Idle
state in all of the contending stations as the contention process proceeds. Instead
the simulator schedules a ring_reconfiguration event for a time in the future equal
to the time needed for the full contention process, increments the bus protocol
frame statistics for the equivalent number of messages, and modifies the pointers to
reflect the reconfigured ring. The same reconfiguration process is used when more

than one station could respond to a Solicit_Successor frame.

The simplifications described above were made because the ability to handle
the situations was deemed unnecessary for the use of the simulator as a tool to
test the performance of 802.4. The situations described above should be rarely

encountered in actual network implementations.

4.5. Testing Methods

Two methods were used to test the program and its validity. A series of
tests was run on the program testing its abilities to handle extreme values and to
generate results matching the results predicted for certain network configurations.
It was also tested through constant use in generating the results of the performance

tests that are the subject of Chapter 5.

The extreme value testing was conducted through the use of input files that
were created with the knowledge that they contained invalid inputs followed by
the correct inputs, and some files that generated degenerate network configurations
where the results of executing the simulator reading from the specified file should

be failure. The execution trace was used extensively to guarantee that the
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simulator was correctly modeling the actions of 802.4 and that specific inputs were
producing the correct actions and outputs. Through the use of shell scripts that
could feed the simulator the correct series of input files, the testing process could
be repeated as new versions of the program were created or updated. The Unix

diff program was used to highlight differences in the versions of output files.

The values that were tested were known to be difficult cases for the simula-
tor. This knowledge was derived through the development process and preliminary
testing. The testing literature is undecided about whether it is better to target
tests for situations the designer knows to be troublesome or to simply exercise the
code in general. Because of the limited time available for this project the former
method was used in the validation testing, and the general exercising of the code
came during the performance testing. Any problems or deficiencies noted during
the performance testing were corrected; the validation tests were supplemented by

the new cases, and the supplemented validation tests were run again.



CHAPTER 35

The Performance of 802.4

5.1. The Performance Studies

The major focus of this thesis was to study the performance of various possi-
ble 802.4 network configurations by observing the sensitivity of the protocol to
various parameters such as the number of active stations, the distribution of the
load among the access_classes and the timer values. Another test of great interest
was the performance of 802.4 networks under conditions of high transient loads
and in error prone environments. The tests were performed using the simulator

discussed in Chapter 4.

The second section of this chapter discusses the testing methods used to gen-
erate the reports discussed in the following sections. In the third section results
for the base configuration are presented and compared with the results of the ana-
lytic model developed in Chapter 3. The fourth section discusses the testing of
sensitivity of the protocol to the number of stations and the size of packets. The
fifth section of this chapter describes the effects of dividing the load among the
access_classes and the  effects of  changing the  values of the
High_Priority_Token_Hold_Timer and the Target_Rotation_Timers. The sixth section
describes the studies of nonhomogeneous loading of the stations. The effects of

transient loadings and error conditions are discussed in the seventh section.

5.2. Testing Methods

To accomplish the performance studies, the simulators on both the VAX and

the Apollos were used to generate reports and traces that were then processed to

65
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provide the data used in evaluating the performance of the protocol. Limited use
was made of the VAX because of the high loads under which it normally runs.
The Apollos were used much more extensively because two nodes were dedicated to

this use and other nodes were also frequently available.

There were several issues in determining the testing method. The main issues
were the design of the tests, the organization of the tests and testing process, and

the presentation of the results.

5.2.1. Designing the Tests

There were two parts to designing the tests. The first part was deciding what
information or series of commands the simulator would need to perform the
desired tests. Secondly, what factors must be taken into account to ensure the

validity and usefulness of the generated results.

The simulator requires the user to provide certain information that is used in
configuring and running the simulations. The details of this information are
presented in Chapter 4 and in Appendix A and the discussion here assumes the
reader is familiar with the terms. Chapter 3 provides the network designer with
useful formulas to employ in setting configuration values. In addition to establish-
ing configurations that correctly test protocol sensitivity to the desired parameters.
the type of results had to be selected. To study queueing delays the class report
of Figure 4.6 was used. To study bus utilization the bus report of Figure 4.5 was
used. The studies of the effects of transient loads used the token traces described

in section 4.3.3.2.

To test the effects of changing a configuration parameter, as many factors as
possible should remain constant between simulation runs, so it is advisable to use
the simulator's ability to save and modify configuration information (see section

4.3.1.1 and Appendix A section 3.1). For example, to test the effect of the offered
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load in messages per second on the average message delays, for each of the percen-
tages of offered load from 10 to 100 percent, the basecase file, shown in Figure
5.1, had the mean message creation rate modified by replacing the base mean mes-
sage creation rate (10% load) with the base mean message creation rate multiplied
by 2 for a twenty percent load, 3 for a thirty percent load, etc. This method of

varying the offered load was used in all simulation tests.

As another example to test the effect of varying the number of stations, sec-
tion 5.4.2, new station classes were created by modifying the basecase station class.
In the modified station classes instead of having 64 stations with a mean message

creation rate of 61 messages per second the new classes had number of stations

Editing the Class Information
1 — Name of Class = basecase
2 — Number of Stations = 64
3 — Priority Option is Not Used.

Synchronous Urg Asynch Nm! Asynch Time Avail
4 — active g — inactive 15 — inactive 21 — inactive

Mean Msg Crt Rate : 5 — 61.00 10 - 16 ~ 22 ~

Msg Crtn Distrib : & — expont 11 - 17 - 23 -

Mean Msg Length : 7 — 160 12 - i8 - 24 -

Msg Lngth Dist : 8 — constnt 13 - 19 - 25 —

Target Rotation Time 14 - 20 -~ 26 —

27 — Stations are Always Members of the Token Passing Ring.

29 — Stations open response windows after every 255 token cycles

30 ~ Low Address = 1 31 — High Address = 64

32 — The Queues are not Preloaded.

Enter the Number of the Field to be Changed (@ to stop) :

Figure 5.1 basecase as Displayed by Simulator’s Editing Function
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ranging from 8 to 256 with corresponding mean message creation rates ranging

from 488 to 15.25 messages per second.

To obtain valid results, the tests had to simulate realistic network
configurations, the tests had to run for sufficient periods of time to compensate for
transient effects of simulator startup and shutdown and representative data should

be generated.

The simulator will not prevent the user from simulating infeasible or nonsen-
sical network configurations; simulating the action of a two station network where
the stations are always members ‘but have no messages arriving and no messages
preloaded could be performed, however the results of the test would have limited
value. The user must be aware of the limits under which successful networks
could be configured. The offered load in bits per second should not exceed the
capacity of the transmission medium. The T arget_Rotation_Time values should not
be less than the time required for passing the token around the logical ring. The
formulas of Chapter 3 can be very useful to the network designer in aiding the
determination of the limits to values such as the High_Priority_Token Hold _Time or

the Target_Rotation_Time values.

There are two transient effects in the simulator, both dependent upon the
queues of messages awaiting transmission. The first effect arises when the simula-
tor is started. At startup, the token_rotation_timers have expired and the queues
are empty unless the user has specified that they should be preloaded. If the
queues are not preloaded then usually several token cycles will pass before mes-
sages begin to arrive in the queues. If the queues are preloaded then the access
and queueing delays of the preloaded messages in the stations at the top of the
ring will be shorter than the delays for the messages at other stations. The second

transient effect of the engueued messages is due to the messages that are waiting
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transmission when the simulator is stopped. If the traffic on the network is
bursty, then the failure to transmit these messages may reduce the reported bus

utilization.

To overcome the transient effects, simulations should run for long periods of
time so that the averages reported in the bus and class reports will be more indi-
cative of actual network operation. All simulations that were used to generate the

data used in these performance reports were run for 16 seconds of simulated time.

The value of 16 seconds was chosen after a series of simulations of the base
network configuration (see section 5.3, Appendix C) were performed for simulation
times of 1, 2, 4, 8, 16, and 32 seconds. The results obtained for the series of
simulations were compared to determine how much simulation time was required to
overcome the transient effects; the statistics observed were the percentages of bus
utilization, the average delivery times and the components of the average delivery
times for messages. The mean values of the above statistics were computed. The
system was assumed to be stable when the differences between the mean values
and the reported statistics produced by increasing the simulation time were less
than one percent. The 16 second duration was chosen because it met the criteria
above for all cases except when the offered load was greater than 95% of the bus

capacity, and because of infinite queue growth, those systems will never stabilize.

The performance studies test the sensitivity of the protocol to changing net-
work parameters. Before the values generated by the simulator could be used to
analyze protocol performance, the sensitivity of the simulator itself had to be
examined. The two areas of sensitivity that were examined are sensitivity to the
duration of simulation time and the sensitivity to the random number seed. The

sensitivity to simulation time was discussed above.
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The sensitivity to the effects of dﬁ'ferent random number seeds was determined
by running a series of simulations where the only parameter that was varied was
the random number seed. Fifteen random number seeds varying from 1 to 120258
that were themselves selected randomly were tested. Simulations were run for
networks operating at offered loads of 10, 40, 50, and 90% of the bus capacity.
Again, the percentages of bus utilization and the average delivery times were com-
pared to the mean values. The differences between reported values and the means
were less than one tenth of a percent in all cases. These small differences show
that the dependence upon the random number seed is very small and that the
results achieved in the performance studies are representative values from the dis-

tribution of possible results for different seeds.

5.2.2. Test Organization

A method was needed to organize the tests and testing process such that the
testing process would be as automated as possible and the results of a series of
simulations could be grouped together for latter processing. It was desirable to
automate the simulation process because of the very large number of tests needed
by the performance study. The large number of tests with the resulting large

number of output files made result organization necessary.

While the simulator tokbus was designed to be used interactively, the simula-
tion process was performed in a batch style through the use of shell scripts like
the one in Figure 5.2 and simulator command files, Figure 5.3. The program
tokbus is reading from standard input which is being fed from the files sim1l
through sim10. As discussed below, the sim files contain the information to drive
the simulator. The standard output of the simulator is being dumped to the file
sout; this output is not important in this application of tokbus, so it can be dis-

carded. Multiple runs of the series of simulations can be invoked by executing the
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tokbus <siml >sout
tokbus <sim2 >gout
tokbus <simd >sout
tokbus <sim4 >sgout
tokbus <simB >gout
tokbus <simé >sgout
tokbus <sim7? >sout
tokbus <sim8 >gout
tokbus <sim@ >sout
tokbus <simlO >sout

Figure 5.2 Simulator Shell Script

shell script.

The simulator command file shown in Figure 5.3 consists of the same series of

commands that the user would enter from the keyboard if the simulator was being
used interactively. The C style comments have been added to clarify the inputs.
The simulation being run by this file will use the system parameters saved in the
file DAtVals. The only station class is basecase, and it will be used with the
mean message creation rate modified to 366 (60% offered load). The modified file
is not saved. After the sixteen seconds of simulation, a bus report is generated
and written to the file busout.6 and a class report is written to the file clsout.6.

This simulation input file would produce the reports of Figures 4.5 and 4.6.

The shell script of Figure 5.2 and the simulator input file of Figure 5.3 are
examples of VAX scripts and command files; the different formats of Apollo scripts

and input files and the reasons for the differences are explained in Appendix B.

The hierarchical file structuring of the UNIX® file system was used to organize
the simulation process and results; the results of each test were saved under a sin-
gle directory which was the child of a directory that described the common type

of tests. To simplify the actual testing process and to take advantage of the



72

N /* use default values */
0. /* mno changes */
T /* read a file */
basecase /* select basecase from library */
5 /* change field 5, see Fig 5.1 */
366 /* change to 366 */
0 /* no more changes */
n /* do not save modified file */
t /* run simulator for a period of */
16.0 /* 16 seconds */
T /*¥ gelect report sub-system */
b /* select bus report */
w /¥ write report to file */
busout.6

T /* select report sub-system */
¢ /* gelect a class report */
W /* write report to file */
clsout .6

x /* exit the simulator */

Figure 5.3 Simulator Input File

distributed processors of the Apollo network, each directory contained links to the
pertinent class library and default values files and a link to the simulator itself.
The simulator could be run simultaneously on several nodes simulating several

variations of network configurations.

For example the tests of the number of stations are grouped under a directory
named nstations and the results of each simulation are grouped under 8stations,
16stations, 32stations, etc. The directory 8stations contained the links to the files
base8, ClassLib, DAtVals, and tokbus, and it contained copies of the simulation
input files and a submit script. At the shell level the directory was changed to

8stations and the submit script was executed.

UNIX is a trademark of Bell Laboratories
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5.2.3. The Presentation of Results

The reports and traces generated by the simulator provide the user with data
from a single simulation. The reports provide informative legends for each statistic
reported. There are two ways to study the results. In the first approach, the
user could save copies of simulator reports and compare the data by reading the
pertinent sections of a series of reports. A better approach, which was used in
this thesis, was to employ UNIX tools such as awk and leroy to process the

information and present it in a more concise, often graphical, form.

The awk editor allows the user to process a stream of input searching for
patterns or conditions and performing actions based upon the pattern recognized.
To generate the delay curves like the ones in Figures 5.6 and 5.9, the class report
files were fed through awk which was instructed to filter the input and to pro-
duce as output the numerical value of the average delivery time reported in the

class reports.

The leroy plotting package was used to plot the test results. It was used
to draw the legends and scales of the result figures, and it generated the curves
based on the simulator output. The awk processed data could be used as points
to be graphed with the leTroy plotting command of graphxy. Graphical presenta-
tions of the test results allows the reader to gain a more complete understanding

of the performance of 802.4 than would be possible with tabular data.

As stated above, simulations were run for offered loads varying from 10 to
100 percent of the bus capacity; the offered load was incremented by 5 percent to
create 19 test cases. In many of the graphs all 19 points are not displayed
because attempts to display the delay values at some of the higher loadings would
distort the scale of the graphs and obscure variations in the displayed values of

the majority of the results.
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5.3. Base Configuration Results

The base configuration was chosen to recreate the base configuration used by
Alex Colvin in his modeling of 802.4 [Colvin 84]. The details of the configuration
are in Appendix C, but the reader should be aware of several facets of the
configuration. It consisted of a single class of stations with 64 stations that were
always members of the token passing ring. The addresses were 16 bits, and the
token was 96 bits long. The message creation distribution was exponential, and the

message length was a constant 160 bits.

In studying the base configuration, there are three items of interest. The first
item is the relationship of throughput, which measures the number of bits
transmitted per unit time, to the offered load. The second relationship discussed
concerns the effect of offered load upon the average delay in delivering a message;
the effect of the varying load on the three components of this delay is also dis-
cussed. The third part of this discussion is the relationship of the éﬁered load

and the average token cycle time.

5.3.1. Throughput and Utilization

Figure 5.4 illustrates that the throughput or utilization achieved in the test,
the solid black line, was almost exactly equal to the theoretical maximum values,
the dashed diagonal line running from the lower left to upper right corner of the
graph. At ten percent offered load at most ten percent of the network capacity
can be consumed by the data transmissions. As the offered load increases to one
hundred percent of the bus capacity, the throughput does not also go to one hun-
dred percent. The maximum throughput must be less than one because of the
need to pass the token and the time consumed in message propagations and other

protocol traffic.
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In 802.4, whenever there are no messages to send the token should be passed
to maintain the logical ring; except for brief response windows the bus should
never be idle. Three components of the total utilization of the bus are shown in
Figure 5.5. The components are the percentage of bus capacity consumed by data
transmissions (including all message framing bits), token transmissions, and propaga-
tion delays. There are other components of bus utilization that are not presented
in Figure 5.5, such as the percentage of bus capacity consumed by corrupted
frames, other protocol transmissions, and idle time during response windows. These

components do not consume significant portions of the total bus capacity.

At low offered loads, token passing and propagation delays consume most of
the bus capacity. As the load increases, more of the bandwidth is consumed by
message transmissions. At low loads many token transmissions may be required
before the token is received at a station with an enqueued message. With
moderate offered loads, fewer token transmissions are required before a station with
an enqueued message receives the token. For very high offered loads, each station
has several messages to transmit every time it receives the token. In all of the

cases, as the load increases token traffic decreases.

The amount of bus capacity consumed by propagation delays also decreases as
the offered load increases as seen in Figure 5.5. There are two factors responsible
for this decrease. The first factor is the different sizes of the tokens and the data
messages; when transmitting the larger data frames more of the bandwidth is con-
sumed before transmission stops and the next propagation delay occurs. The second
factor responsible for the decreasing amount of bandwidth wasted by propagation
delays is the different possible values for the propagation delay itself; during a
token transmission, no new messagé transmissions can commence until the token is

received at the next station, and it begins transmitting. After a data message
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transmission, the sender only has to wait two microseconds, the interframe gap,

before beginning the next transmission.

5.3.2. Delay vs. Offered Load

The curve of Figure 5.6 displays the average time, in milliseconds, between a
message arrival in a station’s queue and the completion of the message transmis-
sion. This average delivery time plot was generated by the average delivery times
reported by a series of simulations. Figure 5.7 decomposes the delivery time into

its component parts.

The delay versus offered load curve of Figure 5.6 illustrates the ability of
802.4 to perform well under low to moderate loads, but when driven to the limits
of the communication medium, performance declines as queueing delays increase
exponentially. The rapid increase in the average delivery time shown in Figure 5.6
corresponds to the increases predicted in section 3.5.1; as the load increases the
average token cycle time increases contributing to an increase in the delivery time,
and as the token cycle time increases more messages arrive which requires more

time for message transmissions increasing the delay for the average message.

Figure 5.7 illustrates two of the three components of the average delivery
time and the average delivery time itself. The two components illustrated are the
average queue delay and the average access delay. The average transmission time
is not shown for two reasons; it depends upon the size of the messages, not the
offered load, and in this case with the small, constant message sizes it is a trivial

contributor to the delivery time.

The average queue delay measures how long messages wait in the transmitting
station’s queue before reaching the front of the queue. At low loads, most mes-
sages are the only ones awaiting transmission at the station when it receives the

token. Therefore the average queue delay is very small. At high loads, there are
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two factors increasing the average queueing delay. The first factor contributing to
the increase is that as the load increases, the average message is less likely to be
the only message enqueued at a station, and it will therefore have ‘to wait longer
to be served even when the station is holding the token. The second cause of the
increase is the increased delay before the station receives the token and begins to
serve the queue. The queueing delay can be seen to be increasing dramatically

once the offered load passes seventy percent of the bus capacity.

The average access delay measures the average of the time from when a mes-
sage reached the front of the station’s queue until the message’'s transmission began.
At low loads most of the delay incurred by a message is due to the access delay;
the message may arrive when the token is elsewhere in the logical ring, and it will
remain enqueued at least until the station receives the token. Comparing Figures
5.7 and 5.8 illustrates how closely the average access delay curve matches the
average delivery time curve at low offered loads. The average access delay is
approximately equal to one half of the average token cycle time for low loads, as

was predicted in the description of mean delay in section 3.5.1.

It is interesting to note that as the load increases, the contribution of the
access delay to the total delay in delivering a message does not increase as dramat-~
ically as the queueing delay. This small increase can be attributed to the fact that
while the message at the front of the queue has a larger access delay than a mes-
sage in a lightly loaded network, the messages that follow the first message have
access delays equal to the interframe gap which is small. Averaging the few large

values with the many smaller values produces a moderate value.

5.3.3. Token Cycle Time

The graph of the average token cycle time displayed in Figure 5.8 shows that

as the load was increased the token cycle time also increased. Because the value
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of the High_Priority_Token_Hold_Time was set to an effective infinity (ten seconds)
in this series of simulations the token cycle time was not (effectively) bounded
from above. REach station would hold the token until its queues had been emptied.
As the load was increased, each station held the token longer, increasing the aver-
age token cycle time. The token cycle time is obviously bounded from below by
the time required for the 64 token transmissions needed to pass the token around

the logical ring.

5.3.4. Observations

With the information displayed and discussed above, it is possible to make
some simple observations about the performance of 802.4. Qbservations can be

made about throughput, utilization and message delays.

As expected, throughput is very nearly equal to the maximum possible
throughput until very high offered loads are reached. The penalty paid for this
nearly perfect throughput is the exponential growth in the average delivery and
token cycle times as the load increases in the absence of any token timer restric-

tions.

Because of the large values set for the Max_Inter_Solicit count and the con-
stant ring membership of all of the stations, very little ‘of the available bandwidth
is consumed by protocol frames. Most of the bandwidth is available for any mes-
sage which needs to be transmitted. At low loads most of the bandwidth is con-
sumed by token transmissions and propagation delays but most of the bandwidth is

available for message transmissions.

At low loads stations have to wait, on the average, half of the token cycle
time before they can transmit a message on a bus that is mostly used just for
token passing. In these situations a simpler access protocol could reduce the aver-

age delivery time to the minimum of message transmission time plus the
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propagation delay. However, as the load increases 802.4 will still provide short,
bounded delivery times that other protocols might not be able to provide, and the
percentage of the network bandwidth consumed by 802.4 protocol frames decreases

as the load increases.

5.4. Sensitivity to Packet Size and Number of Stations

In the base configuration used to generate the graphs displayed above the
packet size of 160 bits of actual data could be classified as ‘small data packets.
The 64 stations that constituted the token passing ring can be viewed as a medium
size network. The effects of varying the packet sizes from 160 to 5120 bits and

the effects of varying the number of stations from 8 to 256 are analyzed below.

5.4.1. Packet Size

Intuitively, as the size of the data increases the average delivery time also
increases; it takes longer to transmit a large packet versus a small packet. Figure
5.9 shows this to be true for lightly loaded networks, but as the offered load
increases the average delivery time for small data packets increases at a much fas-
ter rate than the increase for large data packets. (It should be noted that the
average delivery time scale in Figures 5.9 and 5.10 is much larger than the scale
in Figures 5.6 and 5.7; the change in scale was necessary 10 illustrate the

differences in the delivery times.)

The reasons for the smaller increases in the average delivery time for the net-
works with the larger data sizes are illustrated by Figure 5.10 which compares two
of the components of average delivery time for the 160 bit and the 5120 bit data
packets. Similar to the discussion in section 5.3.2, the average transmission delay
is not shown in Figure 5.10; the values of the delay are obviously different, but

the differences are constant with respect to the offered load. The average queuing
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and access delays show the two reasons for the different rates of increase.

As seen before in Figure 5.7 and as shown by the dashed line of Figure 5.10,
the queuing delay for the 160 bit messages is very small for lightly loaded net-
works, but it increases exponentially as the load increases. At higher loads it is
more likely that the average message must wait a longer period of time before
reaching the front of the queue. For the network transmitting 5120 bit messages,
the queueing delay remains small even when the offered load increases. towards the
total bus capacity. Given the low message arrival rate of the large messages, even
at high offered loads it is rare that several of the large messages are simultane-

ously enqueued at a station.

The dotted curves of Figure. 5.10 illustrate the effect of offered load on the
average access delays. The access delays for the smaller packets are a large portion
of the average delivery times for lightly loaded networks. As the load increases
the average access delay increases because the token cycle time has increased, but it
does not increase as rapidly as the average queueing delay. For the large data
packets the average access delay increases at approximately the same rate as the
average delivery time. As mentioned above rarely is there more than a single mes-
sage enqueued at a station so the increase in the average delivery time depends
more upon the traffic in the rest of the network than on the traﬁic at a particular

station.

There are advantages to both types of packet sizes. The advantages to smaller
packets come from the reduced average delivery time in lightly to moderately
loaded networks; at loads less than sixty percent the small packet has a shorter
average delivery time than a large packet. At higher loads, as the small packet
message delivery time increases exponentially, it can take less than two milliseconds

to deliver the average large packet. If the application was the transfer of general
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messages to all machines or a single machine, it would be advisable for the station
management software to encapsulate many small messages into one big message for
a single transmission on a heavily loaded network. If the individual stations are
too busy or too limited to filter out their messages from the large data packets, or
if time critical information needs to be reported, then smaller packets would have
to be used and care should be taken to ensure that loads did not increase and

drive the average delivery time into the exponential portion of the delay curve.

Another advantage to the larger packet size is the increase in the throughput
of actual data when compared to the smaller .packet sizes. As mentioned in sec-
tions 2.1.3 and 3.2, all data messages are framed with either 96 or 160 bits of
addresses, frame identifiers and checksums. The ratio of actual data to protocol
overhead is much larger for large messages than for small ones. More bits of data
are transmitted for every protocol bit and more data is transmitted before the sta-

tion must wait an interframe gap and resume transmitting.

5.4.2. Number of Stations

A network consisting of a small number of stations should have better perfor-
mance than a network with a larger number of stations operating under the same
loads because less time is required to pass the token around the logical ring. Fig-
ure 5.11 illustrates the average delivery times for five network configurations where
the number of stations varies from 8 to 256. To maintain even loading across the
series of simulations the message creation rates at each station were modified such
that, whereas a 64 station configuration has a mean creation rate equal to 61 mes-
sages per second, the rate for the 8 station configuration was 488 messages per

second.

As can be seen in Figure 5.11 the network consisting of 8 stations has the

best performance in this test. It has a very short delivery time for all messages
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until the average delivery time becomes exponential as the offered load passes
eighty percent. The reasons for this short delay are the short time required for a
token cycle and the very high message creation rate even at low loads; very few

tokens are passed before a station with an enqueued message receives the token.

The network consisting of 256 stations has much poorer average delivery times
because of the increased number of token passes required before a queued message
is encountered. Whereas the base configuration has acceptable delay characteristics
until it reaches the definite knee of the delay curve, the average delivery time for

the 256 station network is increasing rapidly under moderate loads.

From the discussion above, the fewer the number of stations that are members
of the token passing ring the better the performance of the network will be. Net-
works with a small number of stations are not as quickly affected by changes in
the offered load; however, when they do approach the limits of the bus capacity
the average delivery time grows exponentially. Stations with a larger number of
active stations have poorer performance that decreases more rapidly as the load
increases, and because of the increased bandwidth consumed by the token passing

process, less of the bus is available for message transmissions.

5.5, Access Classes and Timers

In the tests performed above all message traffic was at the Synchronous
access_class, and the High Priority_Token_Hold _Time was set to an effective infinity
of ten seconds; every station could drain its queue of all messages on each token
cycle. The effects of distributing the load across several access_classes and of vary-

ing the timer values are explored in this section.

The first tests described below analyze the effect on average delivery time
when the messages are evenly distributed across the access classes. The second

tests describe the average delivery times when the loading is not evenly distributed.
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In the third set of tests the effect of changing the timer values is analyzed for the

base configuration and for distributed loads.

5.5.1. Even Load Distributions in the Access Classes

In the absence of any timer restrictions, all of the queues at all of the sta-
tions should be drained on each token cycle as in the base configuration. Simi-
larly, at low loads most of the average delivery time is caused by the access
delays. As the offered load increases, the contribution of the average queueing

delay to the average delivery time increases and becomes the predominant factor.

Figure 5.12 shows the results of a set of simulations where both the Synchro-
nous and Urgent Asynchronous are active with identical message creation rates and
no time restrictions. The average delivery times for both access_classes are almost
exactly equal; the variation was always less than four tenths of one percent. The
agreement between the average delivery times for both access_classes can be seen in
both Figures 5.12 and 5.13. Both access_classes also share identical average access

and queueing delays as shown in Figure 5.13.

It is interesting to note that the average delivery times for both access_classes
are equal to the average delivery time for the base configuration. Again, there is
less than four tenths of one percent difference between the results for the base
configuration which has all of the load in the Synchronous queue and this test
which has the load equally split between the Synchronous and the
Urgent_Asynchronous access_classes. In the absence of any time restrictions, all
queues should be served equally, and that was observed for tests where the load

was evenly distributed across all of the access_classes.

The even distribution of the load across separate access_classes without any
timer restrictions does not use the access_classes to control the loading or provide

priority service, both of which are the functions that the separate queues were
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designed to perform. This distribution would provide a user with several queues

in which to place messages if the physical size of each queue was limited.

5.5.2. Uneven Load Distributions in the Access Classes

The next test was to examine the effects of uneven load distributions. Two
types of uneven loading were examined. In the first set of simulations, ninety
percent of the offered load was at the Synchronous access_class and the other ten
percent was in the Urgent_Asynchronous access_class, and in the other test the load-
ings were reversed. Both access_classes had exponential message creation distribu-

tions and constant 160 bit data messages.

In contrast to the negligible differences between all of the delay components
that were observed in the cases where the load was evenly distributed, the average
delays shown in Figure 5.14 possess very different characteristics than the average
values in the base configuration. Both the Synchronous access_class, which is respon-
sible for ninety percent of the offered load, and the Urgent_Asynchronous
access_class, which has the remaining ten percent of the offered load, experience
very similar average delivery times. The differences lie in the two components of

the delivery time.

The most remarkable differences are between the average access delays for the
access_classes. The average access delay for the Synchronous class illustrates the
same behavior seen in the previous tests; at low loads the access delay is the
major portion of the delay, but as the load increases the rate of increase in the
average access delay is not as great as the overall rate of increase. The average
access delay for the Urgent_Asynchronous class behaves quite differently. As the
load increases, the access delay also increases rapidly, much more rapidly than the
increase for the other access_class. The different queue loads and resulting queue

lengths are the causes of this difference. A message that arrives in an empty
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queue for either access_class will have a larger access delay if the total network
traffic is high than it would have with low network loads. The average access
delay will be smaller for the station with more messages in its queue because all
of the succeeding messages transmitted on this token cycle will have access delays
equal to the interframe gap. The message in the lightly loaded queue will not
have as many other messages with short access delays to compensate for the large

delay incurred by the initial message.

“For the same reasons, light load in a queue while the network load is much
higher, the average queueing delay is substantially smaller for the lightly loaded
class; most messages are enqueued in empty queues and most of the delay is from
the average access delay. The Urgent_Asynchronous messages experience very little
queue delay until the network load passes seventy percent. As the total offered
load grows past seventy percent of the bus capacity and as the load for
Urgent_Asynchronous queues approaches ten percent of the capacity, the average
queueing delay grows exponentially. This rapid growth has two interdependent
causes based upon the token cycle time. Given the longer token cycle time, more
messages can arrive at a queue during the token cycle. Because the token cycle is
so long the larger number of messages will all experience larger queueing delays

and drive the average queueing delay up exponentially.

The second test performed upon stations with highly imbalanced load distribu-
tions divided the offered load such that ten percent came from the Synchronous
access_class and the other ninety percent was processed by the Urgent_Asynchronous
access_class. Similar to the observed effects for the reversed load distribution
described above, the lightly loaded Synchronous queue experiences very small aver-
age queueing delays because there are rarely multiple messages awaiting transmis-

sion. The Synchronous messages experience proportionally much larger delays than
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the messages in the Urgent_Asynchronous queues, but both types of messages experi-

ence the same average delivery times.

It should be noted that there were no time restrictions on either the Synchro-
nous or the Urgent_Asynchronous service in the tests described above. Very
different results are possible if timers are used to partion the time available for

either or both of the access classes as discussed below.

5.5.3. Timers

The function of the token_hold_timer is to guarantee that no station should
hold the token forever and prevent other stations from transmitting. As discussed
in section 2.2.2, the token_hold_timer is reloaded every time a station begins to
serve an access_class; if the timer has not expired then messages from the current

access_class’ queue can be transmitted until the timer has expired.

In the tests in this section, limits on the High_Priority_Token_Hold_Time. and
the Target_Rotation_Time values are set, and the effects of various settings upon
some of the configurations tested earlier are examined. The first test examined the
effect of changing the High Priority Token_Hold_Time for the base configuration.
The second test examined the effects of changing the value of the
Target_Rotation_Time for the imbalanced load configuration of Figure 5.15. Also
tested was the effect of identical, ascending, and descending Target_Rotation_Times

for networks with identical loadings at all of the access_classes.

5.5.3.1. High Priority_Token_Hold_Time

The sensitivity of message delays and throughput to changing values of the
High_Priority_Token_Hold_Time was tested by varying the time allotment from one
to ten packet times where a packet time is defined as the time required to transmit

a single packet. Using the message transmission time formula of section 3.2 the
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packet time value in this experiment was defined as 27.5 microseconds. The effect
of using values of one, two, four and ten packet times on network performance is

shown in Figure 5.16.

When the High_Priority_Token_Hold_Time is equivalent to the transmission time
of a single niessage, the arrival of more than one message per token cycle will
make the queues grow to infinity. The maximum token cycle time is given by

Te =N - (X7 + X,,,)
and in this case with N = 64, Xr = 14.6 microseconds, and X,, = 27.6
microseconds,
T¢ = 0.0027 seconds/token cycle

At 2.7 milliseconds per token cycle the offered load must be less than 370 mes-
sages per second at each station; the throughput is limited to be less than sixty
percent of the bus capacity. This limit can be seen in Figure 5.16 where loads
above fifty percent cause exponentially increasing average delivery times when the
High_Priority_Token_Hold_Time is equal to one packet time. The other curves on
Figure 5.16 also illustrate rapid growths in the average delivery time for all of the
configurations once the maximum token cycle time limit for the configuration is

reached.

In the case where at most one message can be transmitted by a station on a
token cycle, 802.4 becomes the much simpler protocol of round robin service; each
station has one chance to send one message once every token cycle. With the bus
capacity consumed by the token passing process a simpler protocol would be advis-
able in this application to avoid the complexity of 802.4. In the other cases, the
use of 802.4 is justifiable, depending upon the value chosen; loads from fifty to
eighty percent of the bus capacity can be handled without incurring exponentially

increasing message delivery times, and the token cycle time is bounded in the
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absence of any ring reconfiguration or token losses.

5.5.3.2. Target_Rotation_Time and Imbalanced Loads

The configuration with ten percent of the offered load in the Synchronous
access_class and ninety percent in the Urgent_Asynchronous access_class was used in
the second timer test. As noted in the discussion in section 5.5.2 and as shown in
Figure 5.15, the messages in the Synchronous queue have very large average access
delays as the load increases. The transmission of Synchronous messages is being
delayed by the transmission of messages at the lower priority Urgent Asynchronous '
access_class. If the Synchronous traffic consisted of important, time-dependent infor-
mation, it would be desirable to transmit those messages in favor of the lower

priority messages.

To  achieve better service for the Synchronous access_class  the
Target_Rotation_Time values could be set to provide bounded token cycle time. If
the token cycle time is bounded, each station is guaranteed to receive at least
High_Priority_Token_Hold_Time seconds of service at the Synchronous access_class on
each token cycle. The High_Priority_Token_Hold_Time was not restricted because of
the light Synchronous loads. The values of the Target Rotation Time that were

tested were one, two, four, and ten milliseconds.

A value of one millisecond limits the bus to transmitting at most three mes-
sages per token cycle from the Urgent_Asynchronous queues because 934
microseconds are consumed by the token passing process. If the value is doubled
to two  milliseconds, 39 messages could be transmitted from  the
Urgent_Asynchronous queue on each cycle; a four millisecond Target_Rotation_Time
would allow the transmission of 111 messages, and ten milliseconds would allow

329 messages per cycle.
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Figure 5.17 illustrates the results of the simulations with Target_Rotation_Times
of two, four, and ten milliseconds. The results of the one millisecond test are not
shown because even at very low offered loads the average delivery time for the
Urgent_Asynchronous access_class was experiencing exponential growth and there was

too little Synchronous traffic to observe changes in the average delivery time.

A Target_Rotation_Time value of 10 milliseconds has very little effect in this
simulation until the offered load passes eighty percent of the bus capacity. Until
that threshold is passed both access_classes are experiencing the same increases in
the average delivery time. At offered loads greater than eighty percent of the
average delivery time for the Urgent_Asyﬁchronous class increases from 3 to 500
milliseconds while the Synchronous average delivery time only increases to 4.9 mil-
liseconds, approximately one half of the desired token cycle time of 10 mil-

liseconds.

The simulations with a Target_Rotation_Time of 4 milliseconds also show very
few differences between the Synchronous and Urgent_Asynchronous average delivery
times at low loads. The threshold in this series of simulations is seventy percent
of bus capacity. As the load passes seventy percent the average delivery time for
the Urgent_Asynchronous access_class increases rapidly as the Synchronous delivéry
time again is approximately equal to one half the desired token cycle time of 4

milliseconds.

The threshold for the 2 millisecond simulations was fifty percent of the bus
capacity as can be seen in Figure 5.17, after which the Synchronous average
delivery time approaches ome half of the token cycle time. Another interesting
result of the 2 millisecond test is the flattening of the average delivery time curve
for the Urgent_Asynchronous access_class as the offered load passes sixty percent.

The average delivery time has grown quite large but the queues still have finite
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length; messages may have long delays but they do get transmitted. The 4 mil-
lisecond curve also is starting to show the same behavior but it is too close to the

bus capacity where all delays become infinite.

From the above discussion, it can be seen that it is possible to bound token
cycle time and thus Synchronous delivery times through the wuse of the
Target_Rotation_Time. Small differences in the Target_Rotation_Time values can cause

large differences in the token cycle time and the delay of the restricted access_class.

5.6. Nonhomogeneous Stations

It is quite probable that all of the stations on a network will not share the
same loading characteristics. In factory automation applications some machines may
need only occasional messages or may generate messages infrequently while others
could hdave many messages to send at almost all times or require constant control
information. This section of the thesis examines several network configurations

with nonhomogeneous members of the token passing ring.

Several types of nonhomogeneous network configurations were studied. The
first variation from the base configuration is a network where fifty percent of the
total offered load originates in a single station. In the next set of simulations, two
stations shared fifty percent of the offered load. The third test describes the

effects of varying the load in all but one station.

The station which is responsible for fifty percent of the offered load is
identified as the "Monster" in the graph of Figure 5.18. The other 63 stations are
referred to as the "Base". The "Base” stations had a message creation rate of 31
messages per second for a ten percent offered load. The "Monster" had a message
creation rate of 1951 messages per second. Both types of stations were transmit-

ting the standard 160 data bit message.
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Unlike the previous cases where the queuing delay in the highly loaded sta-
tion varied little from the queueing delay in the base configuration, the average
queuing delay for the "Monster" station becomes the dominant factor in the average
delivery time much more quickly. The more rapid increase in the contribution of
the queueing delay to the total average delivery time is caused by the exireme
concentration of messages in the single station. In the test reported in Figure 5.15,
ninety percent of the load was concentrated in one access_class but distributed over

64 stations.

Figure 5.18 shows the "Monster’s" average access delay actually decreasing as
the load increases. As the load increases, the number of messages transmitted by
the "Monster" before it passes the token also increases. The first message that is
transmitted on a token cycle has an access delay equal to the time that the token
was elsewhere in the logical ring. The remaining messages have access delays equal
to the interframe gap. Therefore as the load increases more messages are transmit-
ted by the "Monster" with the short interframe gap rather than the longer cycle

time.

From the comparison of the average delivery times for the "Monster" and the
"Base" stations, it appears that to achieve better performance a station should
attempt to be as busy as possible with respect to the rest of the network. The
"Monster" could not receive such favorable treatment in the presence of token hold-
ing time restrictions because it would be forced to pass the token even though its

queues are not empty and even if there are no other messages in the system.

The second type of nonhomogeneous station loading separated the offered load
into three sources. One station was the source of twenty five percent of the
offered load, another was also responsible for twenty five percent of the offered

load, and the remaining 62 stations were responsible for the remaining fifty percent
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of the load. Two versions of this configuration were tested: once with the two
highly loaded stations as logical neighbors and again with the stations equally
separated on the token passing ring. There were no appreciable differences in the
results from either version, or in the values reported by both stations. In Figure
5.19 the average values of only one of the "Monster" stations are reported for rea-

sons of clarity.

As in the previous report, the average access delays for the monsters decrease
as the total load in the network increases. The base's'average access delay is very
large and follows the average delivery time curve until high loads are encountered.
The monsters have large and rapidly growing average queue delays caused by the
large amount of traffic in these queues. The base’s average queueing delay is small

because of the light loading in these stations.

Despite the similarities between the delay components of the two overloaded
stations and the single overloaded station, the average delivery time for the two
stations is much closer to the average delivery time for the base stations than in
the previous case. Because the average delivery time depends heavily on the traffic
offered by the rest of the network, each of the separate monsters does not have
the same performance as the one individual monster. High traffic stations in net-
works with multiple large servers will not achieve as high a performance as a sin-

gle high traffic station.

The third type of nonhomogeneous loading explored was to test the effect of a
varying load at all but a single station. The single station with a constant mes-
sage arrival rate is the "SteadyUser" in Figure 5.20. The "SteadyUser's" constant
message arrival rate was 305 messages per second. The remaining stations had

message arrival rates which varied from 61 to 610.
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In contrast to the results observed earlier, the steady user’s average delivery
time does not differ from the average delivery time for the N-1 other stations as
is shown in Figure 5.20. While at low loads the steady user has larger queuing
delays than the other stations, that is to be expected since -the other stations -have
very few messages. The average access delays in the steady user's queue increase
with the increase in offered load by the other stations. The queueing delay also
increases as the total offered load increases. These increases in the average delivery
time and its components as the network load increases are logical; with more mes-
sages in the rest of the network it takes more time for the token to return to the

steady user, creating larger access and queueing delays.

The results of all three tests of nonhomogeneous station loadings demonstrate
quite clearly that a station’s performance depends heavily on the performance of
the rest of the network. In the absence of timer restrictions lightly loaded stations
can incur large delays while waiting for the token, and overloaded stations can
achieve high performance at the expense of the other stations. If there are several
stations with above average loads, they lose their advantage relative to the rest of

the network because of the presence of the other highly loaded stations.

5.7. Transient Loadings

To study the effects of transient loadings, a series of simulations was run
with active token traces. The transient loading was achieved by creating a station
class consisting of one station that transmitted four 32 kilobit messages once every

second. The other stations in the network had the usual base configuration.

The purpose of this experiment was to determine how quickly the transient
load could be absorbed and how long it would take the network to return to the
state it was in before the loads were applied. This was accomplished by charting

the token cycle times for the periods just before and just after the imposition of
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the transient load, Figure 5.21. This figure also charts the token cycle time for a
configuration without the transient loads. The "x's are token cycle times in the
network subject to the transient loads and the "+"s are the normal token cycle

times.

Because there were no timer restrictions, all stations could dump all of their
messages on all token cycles. During the time interval when the four large mes-
sages are being transmitted the other stations will receive a larger number of mes-
sages than they would receive on the normal token cycle. It will take longer to
transmit the extra messages, thus increasing the current token cycle time by more
than just the transmission time of the transient load. Succeeding token cycles will
also be‘ slightly longer because of the increased number of messages that arrived in
the previous token cycle. If the token cycle time never decreases then a dangerous
situation could develop as the cycle time increases on each imposition of the tran-

sient load and the network reaches an overloaded state with queues overflowing.

Figure 5.21 illustrates the results seen in these tests. The lower graph is for
the network operating at forty percent capacity. The effects of the transient load
quickly dissipate over the following few token cycles. Within five token cycles
the token cycle time has returned to the pre-transient load level. The simulations

for offered loads of sixty and ten percent show similar response.

The addition of a transient load to the ninety five percent loaded network
does not cause as drastic a change because the size of the load is not substantially
larger than the rest of the network traffic as in the other cases. The transient
load does drive the network to its high average delivery time more rapidly than in
the unloaded case. At the high level the transient load produces relatively small

perturbations in the average token cycle times.
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The ability of 802.4 to handle high transient loads has been shown in these
tests. With infinite timers, the stations are quickly able to transmit the extra
messages and return to normal operation. The possible effect of limiting the timers

both of the overloaded station and the other ring members was not explored.




CHAPTER 6

Conclusions

6.1. Analysis of 802.4

The main goal of this thesis was to gain an understanding of 802.4. The
large number of possible configurations prevented an exhaustive test of all 802.4
system parameters, but the ones tested and analyzed in Chapter 5 have provided a
large base from which to analyze the important parameters and functions of the

protocol.

6.1.1. Protocol Overhead

At offered loads below the capacity of the transmission medium many net-
work access protocols can provide acceptable performance. 802.4 suffers in com-
parison with many simpler access protocols at low loads because of the overhead

associated with the frame encapsulation method and the token passing process.

Every 802.4 message has at least 96 bits of addressing and framing bits
encapsulating the actual data. In a sustained conversation between two stations
these extra bits increase the overhead. While the framing bits can be a large over-
head for small messages, they provide the station with a high probability tﬁat
erroneous messages will not be accepted as valid because of the thirty two bit
checksum that is part of the framing sequence. This large checksum makes the

chance of accepting an erroneous message very small.

Protocols without explicit tokens do not lose bandwidth to the token passing
process. As discussed in section 1.1.2.2.4, implicit token passing frees that portion

of the bandwidth that would have been consumed by token transmissions, but does
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so ‘at the expense of more complicated ring membership management. Protocols
that do not use tokens either waste bandwidth through TDMA or FDMA, or they

can not offer bounded delays.

The token passing process on a neaﬂy idle ring maintains the logical ring and
adds very little to the average delivery times of messages. The amount of
bandwidth consumed by 802.4 token transmissions declines as network load
increases, providing better utilization of the bus as the offered load increases.
Throughput in 802.4 is limited by the token passing process, but in the absence of
time restrictions, the throughput in bits transmitted is approximately equal to the

offered load.

6.1.2. Packet Sizes and the Number of Stations

The performance in a network is very dependent upon the size of the mes-
sages being transmitted and the number of stations in the logical token passing

ring. Larger messages and smaller logical rings provide better performance.

Larger messages offer better performance when compared to smaller messages
because more bits are transmitted before the station has to pause and wait an
interframe gap before it begins to transmit the next message or passing the token.
The advantages of large messages are only evident at high offered loads; at lower
loads it is better to transmit the messages individually rather than encapsulating
them into single large messages because transmitting the messages individually could
give each message better service than if its transmission was delayed until a large

packet had been assembled.

Smaller token passing rings offer better performance than large rings. The
advantage is due to the fewer number of token transmissions required before a
token cycle is complete. Since the token cycle time is the major contributor to the

delay in delivering a message, the shorter the token cycle time the smaller the
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average delivery time.

6.1.3. Access_Classes and Timers

When there are no time restrictions on the access_classes, dividing the load
among the classes does not offer any improvement in network performance. In the
presence of time restrictions set by the High_Priority_Token_Hold_Time and the
Target_Rotation_Times service can be more precisely tailored. The token cycle time

can be controlled by setting both types of timers.

In general to provide the best service for the Synchronous access_class the
High_Priority_Token_Hold_Time should be set large enough that a station can
transmit all messages from the Synchronous queues on each token cycle. To imple-
ment the priority service of 802.4 the Target_Rotation_Time for the
Urgent_Asynchronous access_class should be set to the maximum desired token cycle
time. While this time can occasionally be exceeded by the transmission of Synchro-
nous messages or ring maintenance traffic, Urgent_Asynchronous traffic will defer to
Synchronous traffic. The Target_Rotation Times for the lower access_classes should
be smaller than the previous value if the priority is to be maintained for all

Servers.

6.1.4. Nonhomogeneous and Transient Loads

In the studies of nonhomogeneous loads, two facts were clear: a station that is
incredibly overloaded compared to the other stations in the network will receive
better performance than the other stations in the network; the performance at
non_overloaded stations depends more upon the traffic in the rest of the network

than traffic at the station.

The simple model for message delay is very close to actual performance. For

most loads, delay depends more upon the token cycle time than upon the time it
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takes to service the station. Stations that are highly overloaded do have a larger
contribution to the components of their own average delays but still the average
delivery time depends upon the total network traffic, to which an overloaded sta-

tion is a large contributor.

Even while operating at high offered loads, 802.4 can accommodate the appli-
cation of large transient loads. The transients do not cause permanent changes to
the operating environment; within a few token cycles the backlog of messages can
be transmitted and the token cycle time will return to its previous range. The
ability to handle the large transients, coupled with the ability to bound delivery
times and allow dynamic ring membership make 802.4 a good choice for many

applications in local area networking.

6.2. Suggestions for Future Research

There were many facets of 802.4 that were not fully explored. Several areas
in particular that would be of interest to study are the effects on delay of tran-
sient ring membership, combinations of number of stations and packet sizes to
determine if concentration is desirable, and specific message worst case delivery

time.

It was shown in the preceding chapter that smaller token passing rings pro-
vided better performance than larger rings under the same offered loads. Stations
with light traffic could improve network performance by removing themselves from
the token passing ring when they are idle, thereby reducing the size of the ring.
When the lightly loaded stations have messages to send they could attempt to
rejoin the ring. Questions are: (1) how much delay would the stations encounter
when trying to rejoin the ring? (2) would the increased ring reconfiguration trafic
consume more bandwidth than was saved by the departure of the lightly loaded

stations? and (3) under what conditions should a station decide to leave the token
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ring?

Smaller token passing rings have better performance than large rings, and
larger messages yield better performance than small messages. Is it desirable to
have single stations act as collectors, gathering information from many other
machines and transmitting a collection of messages as a large packet instead of
several small ones? In control applications where message delivery times are
important this method may not be desirable, but it should be studied for other
applications. A more exhaustive study may be able to find optimum ranges for

both the number of stations and the size of packets.

802.4 is a deterministic protocol; bounds upon delivery times can be deter-
mined through the wuse of the High_Priority_Token_Hold_Time and the
Target_Rotation_Times. In an industrial control application, it could be useful to
test and see how closely the bounds can be set. As an example, a message advis-
ing all machines in a factory to shut down because of a failure in the manufac-
turing "system should be transmitted as soon as possible to minimize any possible
damage. Through the use of the empty queue flag on a preloaded message queue
these times could be determined, and the designer could experiment with values
that provided the best response for the special message while still providing accept-

able performance under normal operating conditions.

6.3. Summary

There are, of course, many other areas of study that were not tested or men-
tioned above. More extensive tests of error handling, transient loading, and vari-
able load distributions would increase our knowledge of 802.4’s performance charac-

teristics.

The work presented in this thesis does offer the reader an understanding of

802.4, its uses, operation, and performance. It also has described limitations with
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the protocol such as the large overhead consumed by the token passing process on
a lightly loaded network. The IEEE has designed a complicated but efficient proto-
col and one with many applications. With physical implementations of 802.4 being
developed, it will soon be possible to validate the results obtained here through

simulation by comparison with actual performance data.



APPENDIX A

Manual for the IEEE 802.4 Simulator

1. Notation
The following conventions are used in this manual:

Words that are italicized are 802.4 variable names or reserved words.

Words that are in Bold Face are simulator reserved words or command
selections.

Words that are in Messenger Font are simulator prompts or menus.

The Messenger Italic Font is used for warnings.

2. Introduction

The simulator consists of four files; the executable binary code tokbus, the
default network parameter settings file DitVals, the class library file ClassLib, and
a sample station class file basecase. The three files tokbus, ClassLib, and DfitVals
are required to be in the user’s current working directory for the correct operation

of the simulator.

There are two versions of tokbus; the first runs on the University of
Virginia's Department of Computer Science Vax 11-780; the second runs on the
department’s Apollo DN-300 workstations. If the user is on the departmental Vax

he should be aware of the following restrictions:

(1) if the files ClassLib and DfitVals do not exist in the user's current
working directory, attempts to read the defaults or to read or save a class
will cause the program to terminate.

(2) file names for station classes and output files are limited to ten charac-
ters by Berkeley Pascal.

(3) if the user enters a character in response to a request for a numeric
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value, the program will terminate.
(4) when the user makes a menu selection or enters a single character

response to a prompt, he must enter a carriage return to complete the
response.

If the user is on one of the departmental Apollo workstations then he is no longer
bound by the ten character file name limit or dependent upon the existence of the

classlib or dfitvals files, but must allow for the following restrictions:

(1) file names must not contain uppercase letters and should not begin
with a numeral or underscore.

(2) the user must guarantee that the simulator is invoked in a window
large enough to accommodate the simulators menus and displays; at least
25 rows and 80 columns.

(3) the user can not use input redirection to drive the simulator because of
the raw input and output mode used in the Apollo implementation.

(4) characters entered as menu selections or in response to prompts do not

require carriage returns, so the user must be careful when entering such
responses.

In general, when the user is requested to enter a single character response 1o a
prompt or as a menu selection either upper or lowercase letters will be accepted,
but only characters matching the option or represented in the selections will be

accepted.

The file names tokbus, ClassLib and DfltVals are reserved; no class can be
saved or report written with those names. The simulator also prevents the user
from overwriting any of the user created station class files with reports or simula-
tion traces. A station class file can be overwritten by another station class, but

only after the user confirms his decision to do so.

3. Program Execution

The program is invoked by entering the command tokbus at the shell prompt.

The first action of the program is the configuration of the network to be simulated.
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The second function of tokbus is to provide the user with an environment to run

the simulation and collect statistics.

3.1. Configuring the Simulator

There are two main steps in the configuration process. The first step is to
determine the settings of system parameters such as the bus length, rate and pro-
pagation delay, the High_ Priority Token Hold_Time, the use of 16 or 48 bit
addresses, the size of the Token, and the Token_ Pass_Timer and Bus_Ildle Timer
values. The second step in the configuration process is the creation of the classes
of stations in the network being tested; stations that are members of the same sta-
tion class share common configuration parameters and exhibit common operating

behavior.

3.1.1. System Parameterization

In setting the system parameters, the user has the option to use a set of
default values saved in the file DAitVals or to enter the values in response to a
series of prompts. The simulator needs the following information from the user or

from the file DitVals .

The random number seed.
The bus rate in bits per second.
The length of the bus in meters.

The propagation delay in nanoseconds per meter; which should also include
the delays in the transmit machine and the receive machine.

The probability of a bit error; this is a constant error distribution which
implies that if the probability is 107® then for every million bits transmit-
ted the last bit will be in error.

The High_Priority_Token_Hold_Time which determines the maximum duration
of Synchronous access_class Service at every station in the network.

The size of the address field which is either sixteen or forty eight bits. If
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the - address is sixteen bits, then ninety six bits of protocol addresses and
overhead will be added to each message transmitted. If the address size is
forty eight, then one hundred and sixty bits will be added to each mes-
sage.

The size of the token. If the address is sixteen bits, the token must be at
least ninety six bits. If the address is forty eight bits, the token must be
at least one hundred and sixty bits. The token can be larger if the user
is including data in the token frame.

The number of classes of stations involved in this simulation.

The Token_Pass_Timer delay which controls how long a station waits in the
Check_Token_Pass state before it assumes that the token pass has failed. A
station assumes that the token pass has failed when the network is silent
after  the expiration of the timer.

The Bus_Idle Timer delay which controls how long a station that is in the

Idle station state waits for any transmission before it enters the
Claim_Token state.

Once the user has finished entering the parameters or if he has chosen to use

the default values, he will be presented with the display of Figure 1 which con-

sists of a number, a description of the variable, and the current value of each sys-

tem parameter. He will be able to edit any of the values by entering the number

displayed to the left of the description. For example to change the number of

classes of stations:

the

the

the

The user enters a nine (9) in response to the field to change prompt.

The simulator overwrites the field to change prompt with Enter the
Number of classes of stations : and reads the user's answer.
The number of station classes must be greater than zero (0).

The simulator updates the display of Figure 1 and waits for the user’s
next selection.

entering a zero (0) the user exits the editing of the system parameters.

After the user has entered a zero (0), he will be asked if he wishes to save
system parameters. If he responds with a Y, the current values will overwrite
old values in the default parameter file DAtVals. If the user selected to use

default values and did not change them there is no need to resave the default
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— Random Number Seed : 25

— Bus Rate (in bits per second) : 1.0000080E7

— Bus Length (in meters) : 1.000200RE3

— Propagation Delay (in nsecs per meter) : 5.0000000E7
Probability of a Bit Error : 0.0000000

— High Priority Token Hold Time(in seconds) : 0.0010
— Address Size : 16

~ Size of the token : 86

— Number of Classes of Stations : 2

©W 00N DA W -
i

The Token Pass Delay Time : delay in the Check_Token_Pass state before the
Token Holder assumes the Token pass failed.

Bus Idle Time Delay : how long a station listens to o quiet bus before
entering the Claim_Token state.

1@ ~ Token Pass Time Delay (in seconds) : ©.000100

11 — Bus Idle Time Delay (in seconds) : ©.000100

Number of Field to change (® to stop) :

Figure 1

settings.

3.1.2. Station Class Creation

The next step in the configuration process is the creation of the classes of sta-
tions. A class of stations all have the same access_classes active, the same message
arrival rates, sizes and length and creation distributions. They also have the same
ring membership properties, (always members, initial members, or members who
join after a specific time or join and leave depending upon their message queues)
and token_rotation_timers. The user will have specified in the system parameteriza-

tion pdrtion of the configuration process how many station classes will be created.

tokbus allows the user to create and modify a library of saved classes which

can be used in successive simulations. For each class of stations in the simulated
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network, the user has the option of creating a new class or using an existing class.
The names of the valid files that compose the library are saved in the file
ClassLib. File names for station classes must adhere to the restrictions listed in

section 2.

If the user selects to make a class, he will be asked to supply the following

information.

The name of the Class.

The Number of Stations. There is a Maximum Number of Stations ( 512
) for the simulator configuration.

Will the Priority Option for the access_classes be used.

If the Priority Option is not selected, the user will be asked to supply the
access_class parameters for the Synchronous access_class, otherwise he will be
asked to select the active access_classes and to enter their access_class
parameters. The access_class parameters are:

the mean message creation rate ( in messages per second),

the message creation distribution ( Constant, Exponential, or Uniform),
the message length (in bits; not including the protocol overhead),

the message length distribution ( Constant, Exponential, or Uniform),
and the Target_Rotation Time value (except for the Synchronous
access_class).

The type of Ring membership for stations of this class. The options are
the stations will Always be members of the TokenPassing Ring, the stations
will Join the ring after a user specified delay, the stations will be initial
members of the Token Passing Ring, but they will Leave the ring after a
user specified delay, or the stations can be dynamic members of the ring,
entering or leaving as they have Traffic, messages to send. Stations which
Join the ring can either remain as members or leave the ring after a furth-
er delay. Stations whose ring membership depends upon their Traffic can
be initial members of the ring, and the user can specify a delay in token
cycles or seconds from when the last message is sent to when the station
will patch itself out of the ring. Warning, at least two sta-
tions must be members of the token passing ring for
the simulator to function.

The Max_Inter_Solicit count. This value determines how often stations will
open response windows to enable other stations to join the token passing
ring. The integer entered must be between 16 and 255 and its value is
randomized by plus or minus three digits each time it is accessed.
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The Addresses of the stations. The user can specify a specific range of ad-
dresses for the stations, or he can allow the addresses to be assigned by
the computer. There is a Maximum Address of 1024 (2 * Mazximum
Number of Stations).

The PreLoading of the station message queues. The user can select to
preload the message queues for a class of stations. He can load all active
gueues (the access_class must be active), or he can select which of the ac-
tive queues he would like preloaded. For each preloaded queue, the user
will specify the number of messages to be loaded. The messages’ length
will be determined according to the message creation distribution and the
mean message length. The user can set a flag such that when any of the
queues are emptied the simulator will pause, and provide the user with the
option of continuing the simulation, turning the empty queue flag off, or
exiting to the command level.

After creating a new class or reading in an existing class, the user is
presented with a display of the number of each field. the name of the field and its

value, as shown in Figure 2. At the bottom of the screen the user is prompted to

Editing the Class Information
1 — Name of Class = multiclass
2 — Number of Stations = 64
3 — Priority Option is Used.

Synchronous Urg Asynch Nmi Asynch Time Avail
4 — active 9 — active 15 — active 21 -~ inactive
Mean Msg Crt Rate : § — 244.00 10 -~ 61.00 16 — 61.00 22 -
Msg Crtn Distrib 6 — expont 11 — expont 17 — constnt 23 -
Mean Msg Length 7 - 160 12 - 160 18 — 16@ 24 -~
Msg Lngth Dist 8 — constnt 13 — unifrm 19 — constnt 25 -~
Target Rotation Time : 14 — 1.00e-2 20 — 1.10e-2 28 -

27 — Stations are Always Members of the Token Passing Ring.

29 — Stations open response windows after every 128 token cycles.
30 — Low Address = 1 31 — High Address = 64 (, e
32 — The Queues are not Preloaded. ) \

Enter the Number of the Field to be Changed (@ to stop) :

Figure 2.
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enter the number of the field he would like to change or a zero ( 0 ) if the
values are correct. If the user selects one of the numbers preceding a field, he
will be allowed to change the value of the field. There are some instances where
changing the value of one field will require the user to change other values as
well. For example, using the class of Figure 2, if the user enters 32 he will be
asked if he wishes the simulator to stop when the queues are emptied, and he will
be ‘prompted for which of the active access_classes’ queues he wishes to preload.
When the user enters a zero, if the class was either edited or created, he will be
prompted to enter a Y if he wishes to save the class. If he elects to save a class
it will be added to the class library under a name the user specifies. This editing
allows the user to correct mistakes made while entering a class, and to modify an

existing class for parametric studies.

3.2. Running the Simulator

When the user has completed the configuration process, tokbus presents the

user with a menu of commands, Figure 3. The user can invoke the simulator

Enter Command Character

Menu of Simulator Commands

D - Display statistics and stations;
- set an Error condition;
- Help by displaying this menu;
- a station Joins the token passing ring;
- Kill a station;
a station Leaves the token passing ring;
~ Report statistics;
- run the simulator for a number of Steps;
- run the simulator for a period of Time;
- eXit the simulator.

HHEn®e NG HE
i

Figure 3
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commands by entering the letter to the left of the command description at the
Enter Command Character : prompt. The simulator will always return to
the main menu, unless through station departures there are not enough stations to

maintain the token passing ring, or the user selects the X command.

3.2.1. Display Command

The Display command produces a menu of selections, Figure 4. The user will
loop until he enters one of the correct character selections. The commands are :

O - toggle the screen display ON/OFF. When the display is ON the user's
terminal will resemble Figure 5 otherwise it will show the main menu. The
screen display is off by default. Turning the screen display on slows the
simulator because of the extensive I/0 involved with constantly refreshing the
displays, but the display can provide a user who is unfamiliar with 802.4 a
better understanding of the protocol as he watches the actions in the simulated
network.

S - give the full station display to a speciﬁc station. The full station display
shows the station's address, the current station state, the time left for service
at this station, the priority level being served, and the number of messages and

the token_rotation_timer values for the active access_classes. This display covers

Display Commands; Please Enter Selection

turn On Station Display;

give the full display for a Station;

give the full display for the Token Holder;
eXit to Command Level;

MKHawmo
[

1

Figure 4
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Enter Command Character :

elapsed time = 0.01050512 # of token cycles = 30
20 21 22 23 24 e 25 26 27 28
idle idle . joining idle idle usetokn idle idle idle
29 30 31 32 33 34 35 36 37
idle dead idle idle idle unpowrd joining idle idle

address = 25 state = use token

©.00030871 seconds left for Synchronous service
Access Class # Messages Queued Token Rotation Timer
Synchronous 2
Urgent Asynchronous 4 ©.01067810
Normal Asynchronous 2 0.01050327

Time Available inactive

Figure 5

the bottom seven lines of the users terminal. The user is prompted to enter
the address of the station he would like to have displayed in full. If the user
enters a zero (0), the station display will not be changed.

T - give the full station display to the current token holder. This is the
default condition.

X - exit to the main menu without invoking any display commands.

3.2.2. Error Command

The Error Command presents the user with a menu of the following selec-
tions.

K - to kill the next messaée that is transmitted.

N - to set a bus noise condition. The user will be prompted to enter the

duration in seconds of the bus noise condition. For the duration of the noise

condition the bus will not be usable for transmission of data or protocol

frames. If the duration of the noise spans the token passing process, the token
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will be lost and the ring will reconfigure itself with the lowest addressed sta-
tion claiming the token.

X - exit to main menu.

3.2.3. Help Command

The Help command will display the main menu, Figure 3, on the users termi-
nal. If the user has turned the display on with the D command, the main menu
will not be displayed between commands. If the user needs to see the list of
commands and the corresponding command character, it can be recalled without

turning off the screen display.

3.2.4. Join Command

The Join Command allows the user to select a station that is waiting to join
the ring and power the station up setting the station’s in_ring_desired flag to true.
When the selected stations predecessor in the token passing ring opens a response

window, the station will be able to join the token passing ring.
In the network displayed in Figure 5, station 34 could be powered up by:

Entering a J at the Enter Command Character : prompt.

The user is prompted to Enter Station Address (0 to quit)
The user would enter 34 to select station 34. The simulator will loop
prompting for the station address until the user enters a valid address or a

zero (0) to abort the command.

Station 34 would be set to the joining state and the display would be up-
dated.

3.2.5. Kill Command

The Kill Command allows the user to select a station and to kill the station.
If the station is the token holder, its successor station will have its bus_idle_timer

timeout, and will enter the Claim_Token station state. When the successor station
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wins the contention for the token it will enter the Use _Token state and message

service will resume.

In Figure 5, station 30 has been killed by the user.

3.2.6. Leave Command

The Leave command allows the user to select a station that will patch itself

out of the token passing ring when it next receives the token.

3.2.7. Report Command

The Report command presents the user with a menu of options Figure 6. The
options are of two types; make a report of simulator statistics or toggle traces of

network states and transitions.

If the user selects a report, he can either have it displayed on the terminal or
written to a file of his selection. If a report is displayed on the terminal, it will
pause after it has printed the report and ask the user to enter a character to con-
tinuee. In the Vax implementation the user must enter a CHAR-

ACTER and a CARRIAGE RETURN.

Enter Selection

~ Report Bus Statistics;

~ Report Class Statistics;

- Turn On Execution Trace;

Turn On # of Messages Transmitted Trace;
- Turn On Queue Level Trace;

- Turn On Token Trace;

- eXit to Command Level;

HHEaoOoREHQWE
|

Figure 6
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busout.6

Elapsed Time = 16.00000000

Token Cycles = 6023.

Average Token Cycle Time =  ©.00265606
Minimum Token Cycle Time = ©.00111300
Maximum Token Cycle Time = ©.00446460

Total Traffic of 761333. messages for a total of 132981728. bits transmitted

Number of Ring Reconfigurations = ]
Type Of Message Number Transmitted Total Bits %BandWidth
Data 374336. 95830016. 59.89
Overhead 35936256 . 22.486
Actual Data 59893760 . 37.43
Token 385525, 37010400. 23.13
Protocol 1472. 141312, .09
Corrupted 0. 0. : .00
Propagation Delay 16.77
Bus Idle : 2.1
Figure 7

The traces are all written to files. When the user selects the type of trace he
wishes to have generated, he is asked to enter the name of the output file. The
user will not be able to name his output file DfitVals, ClassLib, or the name of
any file that is in the class library. The same restriction applies to written report
files.

B - Report the Bus statistics. This generates the report of Figure 7 which

provides the user with figures on total bus usage from which he can gauge

network performance.

C - Report the Class statistics. If there are more than one classes of stations

in the simulation the user will also be asked to select the class he would like

to have reported or to have all classes reported. If the user selects all classes
and has selected to have the report displayed on his terminal, the display will

pause after each class. A selection of all classes and writing the report to a
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file will create one file with each class reported separated by blank lines. Fig-
ure 8 shows a sample class report for a class of 64 stations that are only
transmitting from the Synchronous access_class.

E - toggle the Execution trace. The execution trace writes a trace of all mes-
sage transmissions and their sources, and all protocol events such as the passing
or receipt of the token, the checking of the access_classes, the failure of token
passes or stations, and the death, departure, joining, and powering up of a sta-
tion. The execution trace produces ocopious amounts of

output; use it sparringly.

clsout.b

Ciass basecase
Stations have joined the Token Passing ring 64 times.
Synchronous Service Access Class
Total Number of Messages sent from these queues = 374337 .
Average Queue Delay = 0.00035376
Minimum Queue Delay = ©.00000000
Maximum Queue Delay = 0.00411018
Average Access Delay = @.00098775
Minimum Access Delay = ©.00000000
Maximum Access Delay = 0.00411@18
Average Transmission Time = 0.00002760
Minimum Transmission Time = ©.00002760
Maximum Transmission Time = 0.00002760
Average Delivery Time = 0.00136911
Minimum Delivery Time = 0.00002762
Maximum Delivery Time = ©0.00436294

Urgent Asynchronous Service Access Class
Access Class Inactive

Normal Asynchronous Service Access Class
Access Class Inactive

“Time Available Service Access Class
Access Class Inactive

Figure 8
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M - toggle the Message Transmission trace. The Message Transmission trace
reports the address of the token holder, the time that the token arrived at the
station, and the number of messages transmitted by the station while it held
the token.

Q - toggle the Queue trace. The Queue trace reports the address of the new
token holder, the number of messages enqueued when the token arrives, and
the time of the token arrival.

T - toggle the Token Cycle Time trace. The token cycle count is incremented
each time the token is passed from the lowest addressed station to its successor
except for the initial token transmission on simulator startup. The Token
Cycle Time trace reports the number of completed token rotations, the duration
of the last token rotation, and the time when the cycle was completed.

X - eXits to the main menu.

3.2.8. Step Command

The Step command allows the user to enter the number of steps he wishes
the simulator to take before returning to the command level. Each step is
equivalent to removing the next event from the simulator’s event queue and pro-
cessing the event. If the user enters a number less than zero, this will be taken
as a null operation and the simulator will return to the main menu. In the
Apollo implementation the user can step the simulator one step by entering a Car-

riage Return at the Enter Command Character : prompt.

A simulator step can appear to have more than a single action by the simula-
tor and can appear to have no visible action. For example, if the token holder has
entered the Pass_Token state a single step could go as far as the receipt of the
token at the next station, and the start of a transmission from the next station.

A simulator step can also appear to have no action if the next event was the
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arrival of a message to a station’s queue.

3.2.9. Time Command

The Time Command allows the user to run the simulator for a period of
seconds. Once the simulator has been started on a time command, control will
return to the command level in three ways; time will advance the number of
seconds the user specified, if a station with the EmptyQueue flag set empties one of
its queues, if through station departures from the token passing ring there are not

enough stations to form a ring ( number of stations < 2).

If the user enters a value less than or equal to zero the simulator will return
to the command level without processing any events.

3.2.10. Exit Command

The Exit command stops the simulator and returns the user to the operating

system. Any trace files are automatically closed when the user exits the simulator.



136

Notes

There is an ambiguity in the standard about the action to be taken when suc-
cessive stations patch themselves out of the token passing ring. This ambiguity can

best be demonstrated with an example.
Consider five stations 10, 15, 20, 25, and 30.
30 passes the token to 25.

25 has no messages to send and to patch itself out of the ring it sends a
Set_Successor frame to 30 telling 30 that its successor will be 20. After the

Set_Successor transmission, 25 passes the token to 20 and leaves the ring.

20 receives the token from 25 and repeats the process of sending the
Set_Successor frame and then passing the token. However, 20 has sent the

Set_Successor frame to 25 not 30 so 30 still thinks 20 is its successor.

-

15 receives the token from 20 and also patches itself out of the ring.

When 30 trys to pass the token, it will attempt to pass the token to 20, a
statim; ihat has left the ring. If 20 does not accept the token and then patch
itself out again then station 30 will have to use the error recovery features to
rebuild the token passing ring. If 20 does accept the token it might not have a

valid view of the token passing ring.

tokbus handles the ambiguity by ignoring the receipt of the token by any

station that is dead or has left the token passing ring.



APPENDIX B

Apollo Implementation of the Simulator

1. Introduction

The IEEE 802.4 token bus simulator tokbus was originally developed on a
Digital Equipment Corporation VAX 11/780 under the 4.1 distribution of Berkeley
UNIX. The program was ported to a network of Apollo DN-300 workstations.

Several modifications to the original program were needed to accomplish the port.

Many of the modifications were minor mechanical changes caused by the
different implementations of the Pascal programming language, differences such as
different reserved words, a different syntax for include files, and a different con-
vention for file access. The major modifications were caused by the radically
different methods of screen control on the Apollos than on the VAX; the pro-
cedures for reading user input and displaying simulator output required major
changes to provide the user with a common interface to both versions of the simu-
lator. Some of the modifications resulted in improvements in the original version

of the program.

2. Minor Modifications

The implementation of Apollo’'s DOMAIN Pascal required several small changes
in the Apollo version of the simulator. DOMAIN Pascal has several different key-
words; the simulator had to be changed to reflect these differences. For example,
the phrase "next" is a keyword; "next" was used in many record declarations as a
pointer to dynamic instantiations of the record. It was a simple procedure to edit

the files and change all occurrences of "next” to "nxt". The modifications needed to

137
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accommodate the other keyword and syntactic differences were also easily per-

formed through the editing process.

Other modifications were because of the different conventions for file access.
Berkeley Pascal has a very limited interface with the UNIX file system. Apollo’s
Pascal has a much more extensive interface with the file system. A peculiarity in
the file system implementation on the Apollos does not allow Pascal programs to
reference file names that begin with uppercase characters or digits. For this reason,
the reserved file names ClassLib and DfitVals are classlib and dfitvals on the Apol-
los. The Apollo file interface does allow a Pascal program to test for the existence
of files. This improvement, allows the program to recover in the absence of the
files dfitvals and classlib when the user selects to use the defaults or a saved class
entry; the simulator has values for each variable that will be used if the files do
not exist, and the user will be presented with these values at the editing stages in

the simulator’s network configuration process.

Another limitation to the Pascal implementétion on the Apollos was the lack
of a Pascal random number generator. Random numbers are needed for the
scheduling of events and the determination of non-constant message sizes.
DOMAIN C does provide an integer random number function, and it was possible
to use the C random number function to provide the real random numbers needed
by simulator. Unfortunately and contrary to the documentation, the C random
number function can return a value of zero which is an illegal value for the
simulator’s use. To circumvent this limitation a small value of 107'° was added

to all real number values returned.

3. Major Modifications

The major modifications to the program were caused by the Apollo’s method

of screen management. The simulator needs full control of the cursor so that it
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can correctly update the screen displays during the network configuration and simu-
lation phases. This control is straight forward in the VAX implementation of
tokbus, but it was difficult to obtain and had large penalties associated with it in
the Apollo implementation. In addition to the obvious and expected changes needed
in the input-output procedures, all portions of the simulator dealing with the user

interface unexpectedly bad to be restructured.

After much experimentation it was found that to obtain the full screen
addressing needed for the user interface, the standard files input and output had to
be set to the "raw" mode. In "raw" mode full cursor control is available, but the
only input procedure available is the read character routine. To read both integer
and real numbers, the numbers had to be read a character at a time and then con-
verted to the correct representation. Having to create numbers from characters did
cause one improvement in the Apollo implementation, non-numeric input could be
ignored when reading a number making the simulator more tolerant of user mis-

takes.

The major disadvantage to using the "raw" mode of input and output was
that when in "raw" mode simulator input and output could not be redirected to
either read from or write to files. As stated in Chapter 5, the performance studies
were accomplished by using the simulator in a "batch" mode instead of interac-
tively. The Apollo implementation of tokbus does have the ability to read simula-
tor commands and user inputs from a filee DOMAIN Pascal allows a program to
test for the existence of a file on the command line when the program is invoked.
The simulator used this feature to test whether it was being run in batch or
interactive mode. The disadvantage to this feature was that separate reads of
every user input had to be encoded; the simulator needed the ability to read from

both an input file and from standard input.
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4. Conclusion

There are several limitations to the Apollo implementation of the Pascal pro-
gramming language,. and there are some advantages to it also. The requirement of
using "raw" input and output to obtain full screen control is a serious drawback to
using the Apollos in applications such as this simulator. Despite the problems, the
Apollo version of tokbus was used extensively in the thesis’ performance tests, and

it performed very well.



APPENDIX C

Simulator Test Cases and Results

The two tables below represent the information used in the base simulations.

The first table lists the system wide network and simulator parameters.

second table lists the class information.

Simulator Default Values

Random Number Seed 0

Bus Rate in bits per second 1.00E+07

Bus Length in meters 1.00E+03

Propagation Delay in nanoseconds per meter 5.00E+00

Probability of a Bit Error 0.00E+00

High_Priority_Token_Hold_Time 1.00E+01

Address Size in bits 16

Token Size in bits 96

Number of Station Classes 1

Token_Pass_Time in seconds 1.00E-05

Bus Idle Time in seconds 1.00E-05

Table 1
_Base Class Information

Class Name basecase
Number of Stations 64
Priority Option not used
Synchronous Message Creation Rate 61
Message Creation Distribution Exponential
Mean Message Length 160
Message Length Distribution Constant
Stations are Always Members
Station Addresses are Random
Token Cycles Between Response Windows 255
Queues are not Preloaded

Table II.

The

The following tables represent the results of the nineteen simulations used in

testing the base configuration. Table III is a synopsis of the class reports; it

presents entries for the offered load, the number of messages transmitted. and the
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average values for the queueing and access delays and the transmission and

delivery times.

Tables IV and V list data from the bus reports.

In Table IV the

number of token cycles and the average token cycle time are presented in addition

to the total number of messages transmitted and the decomposition into the types

of messages transmitted.

Table V list the percentages of bus utilization for data

messages, the proportion of data messages that was overhead and actual data,

tokens, protocol frames, the bandwidth consumed by propagation delays, and the

time the bus was idle.

Class Report Statistics

Offered # Mssgs Ave Queue Ave Access Ave Xmit Ave Deliv
Load Xmitted Delay Delay Time Time
0.10 62455 0.00001099 0.00051851 0.00002760 0.00055710
0.15 93738 0.00001871 0.00054347 0.00002760 0.00058979
0.20 124785 0.00002883 0.00057228 0.00002760 0.00062871
0.25 156010 0.00004072 0.00060357 0.00002760 0.00067189
0.30 187202 0.00005620 0.00064147 0.00002760 0.00072527
0.35 218504 0.00007618 0.00068278 0.00002760 0.00078656
0.40 249680 0.00010322 0.00073066 0.00002760 0.00086148
0.45 280924 0.00013860 0.00078151 0.00002760 0.00094771
0.50 312064 0.00018722 0.00084095 0.00002760 0.00105577
0.55 343227 0.00025549 0.00090995 0.00002760 0.00119304
0.60 374337 0.00035376 0.00098775 0.00002760 0.00136911
0.65 405591 0.00050506 0.00107878 0.00002760 0.00161144
0.70 436744 0.00074400 0.00118703 0.00002760 0.00195863
0.75 467918 0.00115999 0.00131071 0.00002760 0.00249829
0.80 499199 0.00198984 0.00144798 0.00002760 0.00346542
0.85 530276 0.00399250 0.00158738 0.00002760 0.00560749
0.90 561193 0.01310391 0.00170786 0.00002760 0.01483937
0.95 577434 0.22129283 0.00171388 0.00002760 0.22303431
1.00 578536 0.57830183 0.00163870 0.00002760 0.57996813

Table III.
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Bus Report
Offered # Token Ave Token # Mssgs # Data # Token # Protocol
Load Cycles Cycle Time Xmitted Xmitted Xmitted Xmitted
0.10 15169 | 0.00105473 1037090 62454 370860 3776
0.15 14252 0.00112262 1009434 93738 912157 3539
0.20 13341 0.00119926 981968 124784 853856 3328
025 . 12426 0.00128756 954381 156010 795299 3072
0.30 11510 0.00139001 926770 187202 736688 2880
0.35 10593 0.00151036 899114 218504 677986 2624
0.40 9678 0.00165313 871528 249680 619429 2419
0.45 8762 0.00182593 843913 280924 560813 2176
0.50 7850 0.00203809 816403 312063 502420 1920
0.55 6935 0.00230701 788817 343226 443863 1728
0.60 6023 0.00265606 761333 374336 385525 1472
0.65 5106 0.00313344 733666 405591 326795 1280
0.70 4193 0.00381566 706143 436743 268376 1024
0.75 3279 0.00487820 678602 467917 209917 768
0.80 2361 0.00677503 650912 499198 151138 576
0.85 1450 0.01102720 623457 530275 92862 320
0.90 543 0.02945076 596089 561192 34769 128
0.95 67 0.23564788 581736 577433 4303 0
1.00 34 0.42279754 580755 578535 2220 0
Table IV.
Bus Utilization Percentages

Offered Data Overhead Actual Token Protocol Propagation Bus
Load Traffic Data Traffic Traffic Delays Idle
0.10 9.99 3.75 6.25 58.25 0.23 31.24 0.29
0.15 15.00 5.62 9.37 54.73 0.21 29.79 0.27
0.20 19.97 7.49 12.48 51.23 0.20 28.35 0.26
0.25 24.96 9.36 15.60 47.72 0.18 26.90 0.24
0.30 29.95 11.23 18.72 44.20 0.17 25.45 0.22
0.35 34.96 13.11 21.85 40.68 0.16 24.00 0.20
0.40 39.95 14.98 24.97 37.17 0.15 22.55 0.19
0.45 44.95 16.86 28.09 33.65 0.13 21.10 0.17
0.50 49.93 18.72 31.21 30.15 0.12 19.66 0.15
0.55 54.92 20.59 34.32 26.63 0.10 18.22 0.13
0.60 59.89 22.46 37.43 23.13 0.09 16.77 0.11
0.65 64.89 24.34 40.56 19.61 0.08 15.32 0.10
0.70 69.88 26.20 43.67 16.10 0.06 13.88 0.08
0.75 74.87 28.08 46.79 12.60 0.05 12.43 0.06
0.80 79.87 29.95 49.92 9.07 0.03 10.98 0.04
0.85 84.84 31.82 53.03 5.57 0.02 9.54 0.02
0.90 89.79 33.67 56.12 2.09 0.01 8.11 0.01
0.95 92.39 34.65 57.74 0.26 0.00 7.35 0.00
1.00 92.57 34.71 57.85 0.13 0.00 7.30 0.00

Table V.
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