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ABSTRACT

Simulated annealing is a stochastic process that has
proven to be an effective method for approximat-
ing globally optimum solutions to many types of
combinatorial optimization problems, especially
in the field of VLSI computer-aided design. The
major drawback to the simulated annealing algo-
rithm is its typically very long running times. Sev-
eral methods have been proposed for accelerating
the simulated annealing algorithm. One method is
to replace a significant portion of the stochastic
operations with a fast heuristic. Simulated anneal-
ing can then begin from a lower starting tempera-
ture—a latter stage of the algorithm—to further
improve the solution produced by the heuristic.
This paper presents a method for approximating
this starting temperature in general, as well as
experience with two-stage systems for solving the
VLSI partitioning, traveling salesperson, and mini-
mum-length rectilinear Steiner tree problems.

1. INTRODUCTION

The simulated annealing process is an effective
tool for computer-aided design (CAD) of VLSI cir-
cuits [1, 2, 8, 11, 15, 17, 19, 23, 25, 32]. This stems
both from its applicability to a wide range of NP-
hard combinatorial optimization problems and
from the fact that it produces high quality approxi-
mate solutions to these problems. However, simu-
lated annealing suffers from being very
computationally expensive.

The simulated annealing process is used to

search the state space of some particular combina-
torial optimization problem, in order to find a con-
figuration that closely approximates the global
optimum of the given cost fumction, (). This 18
accomplished by iteratively perturbing configura-
tions according to some chosen generation mecha-
nism. The generation mechanism will determine
the size of the neighborhoods. A neighbohood is
the set of all configurations reachable from the cur-
rent configuration by one application of the genera-
tion mechanism. Acceptance of the perturbed
configuration is determined by the acceptance
function, which is a function of the change in cost
of the perturbed configuration and its correspond-
ing femperature. Change in cost, Ac, is equal to the
difference in cost of the perturbed configuration
and the configuration from which it was derived.
Temperature, 1, with respect to simulated anneal-
ing, refers to the stage at which the algorithm is
currently executing. As the algorithm proceeds, the
temperature is lowered from a predetermined ini-
tial value until the algorithm terminates at some
temperature close to zero. In terms of implementa-
tion, the temperature is sometimes referred to as
the control parameter. The manner in which the
temperature is lowered is determined by the chosen
cooling schedule. Cooling schedules will be dis-
cussed in more detail in Section 2.

The most common acceptance function used
for simulated annealing implementations is known
as the Metropolis criterion [24]. According to the
Metropolis criterion, a perturbed configuration is



accepted as the next configuration if Ac £ 0. If
instead Ac > 0, then the probability of the perturbed
configuration being accepted is given by

[

Simulated _Anmealing()

{

/*Get the initial state { = iy and the initial value of
the control parameter ¢ = fy. Also set the cur-
rent minimum-cost state equal to ip.*/

initialize(l, 1);

imin = Dewminstate(:);

do {
do {

/*Create a new state j by a smali, random
perturbation of state i.%/

j = perturb(i);

{#Calculate the difference in cost between
state j and state £.%/

Acij = ¢(f) - cfi);

/*Use Metropolis criterion to determine
acceptance. random() is a pseudo-random
number generator with a uniform distribu-
tion over [0,1). If accepted, replace state i
with state j.*/

if ((Acy <= 0) i (random() < exp(-Ac;/1)))

i = newstate(j);

/*1f the cost of state i is less than the cost of
the current minimum-cost state, save state
i as the new minimum-cost state.*/

if (e(d) < e(lym))
imin = Dewminstate(i);
} while (“not in equilibrium’);
/*Update the value of the control parameter.*/
t = update(z);
} while (“stop criterion has not been met”),
returni,,;,);

}

Figore 1: Pseudocode for the simulated annealing
algorithm.

An outline of the simulated annealing algorithm
using the Metropolis criterion is shown in Figure 1.

There has been considerable effort aimed at
speeding up the simulated annealing algorithm.
The majority of this work has concentrated on the
development of faster cooling schedules [1, 7, 8,
11, 18, 19]. Another suggested approach is fnwo-
stage simulated annealing [9, 30, 31]. In a two-
stage system, a fast heuristic 1s first used to replace
the simulated annealing actions occurring at the
highest temperatures of the cooling schedule, fol-
lowed by a simulated annealing approach at the
lower temperatures to further optimize the heuristic
solation.

A major consideration for two-stage systems is
the determination of the temperature at which to
start the simulated annealing phase. If the starting
temperature is too low, final solution quality will
most likely be degraded. This arises from the fact
that a significant amount of probabilistic hill
climbing will most likely not be done due to the
lower acceptance probabilities at the lower temper-
atures. Probabilistic hill climbing is a property of
the algorithm that allows the acceptance of states
with higher cost than the current state of the system
according fo a specific probabilistic acceptance cri-
terion [29].

If instead, the starting temperature is too high,
unnecessary work may be performed. In this case it
is likely that too much probabilistic hill climbing
will occur, essentially wasting some of the optimi-
zation resources used by the heuristic. This paper
presents both a methed for approximating the start-
ing temperature and results from three two-stage
simulated annealing systems that utilize the
method to solve the VLSI partitioning, traveling
salesperson, and minimum-length rectilinear
Steiner tree problems [12, 14, 20].

Our proposed method for determining the
starting temperature is a function of (i), the
cost of the configuration returned by the first-stage
heuristic; £, the expected value of the cost func-
tion over the uniform distribution of configura-
tions; and Cfmz, the variance of the cost function
over the uniform distribution of configurations.
Based on our experimental results, starting temper-



ature can be approximated very closely at middle
to low temperatures with the function

i/

o0

Eoo =c (iheur)

t(theur) =
This method of approximation is based on results
pertaining to the general behavior of the cost of the
best-seen configuration over the course of the sim-
ulated annealing algorithm, cfi,,;,). In the above
equation, i, is the configuration returned by the
heuristic and ¢(iy,,,) is its associated cost, which is
assumed to be the cost of the best-seen configura-
tion for a running simulated annealing process at
the calculated starting temperature. Because our
method is based on general behavior of the algo-
rithm, it has the desirable property of being appli-
cable to different problems as well as different
simulated annealing formulations. Our method is
described in more detail in Section 4.

Some effort has been previously directed at
determining a starting temperature in two-stage
simulated annealing systems [9, 30]. For these ear-
lier approaches, a constant starting temperature
was typically chosen based on experience with the
problem as opposed to formalizing a method for
true starting temperature determination. Unfortu-
nately with such approaches, the previous constant
starting temperature is of no value as soon as the
simulated annealing formulation or the problem
itself is changed. Only Rose, Klebsch, and Wolf
present a generalized method of temperature deter-
mination [31]. This will be discussed in more detail
in Section 3.

Section 2 gives some background on standard
simulated annealing cooling schedules. Section 3
describes general two-stage simulated annealing
systems and the problem of starting temperature
determination. Section 4 presents our method for
determining the starting temperature in two-stage
systems. Sections 5, 6, and 7 present results from
two-stage simulated annealing systems incorporat-
ing our method that are intended to solve the VLSI
partitioning, traveling salesperson, and minimuom-
length rectilinear Steiner tree problems respec-

tively.

2. COOLING SCHEDULES

Kirkpatrick, Gelatt, and Vecchi [15] first recog-
nized that one can simulate the annealing process
in order to generate sequences of configurations for
the purpose of solving combinatorial optimization
problems. Since their initial paper, many research-
ers have investigated the various aspects of the
algorithm. One significaiit avenue of research has
been on the cooling schedule [1, 11, 18, 19, 25, 29,
33]. There are four components to a cooling sched-
ule.

+ The initial value of the control parameter, #y,
corresponding to temperature;

* A rule for decrementing the value of the con-
trol parameter;

» A siop criterion, specifying conditions under
which to terminate the algorithm; and

+ A rule to determine the length of the sequence
of moves at each value of the control parame-
ter. The sequence is in fact a homogeneous
Markov chain [29].

Cooling schedules tend to fall into one of two
categories: exponential or logarithmic [2, 17).
Exponential schedules generally have a decrement
rule that is independent of algorithmic evolution,
usually of the form

S L
tn—tOO(.

where ot is some constant less than but close to one,
usually in the range 0.90 - 0.99. A decrement rule
of this type is often referred to as a constant decre-
ment rule. Logarithmic schedules generally have
decrement rules that vary dynamically over the
course of the algorithm, usually of the form

-1
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where T,,_; is some function of one or more statis-
tics from the latest Markov chain, such as the mean
or standard deviation of the cost [2, 17]. Since
these statistics will change at each new tempera-
ture, decrement rules of this type are often called
variable decrement rules. For each of the two-stage



simulated annealing systems described later, two
different cooling schedules are used in an effort to
show that our method is compatible with schedules
of each type as well as with different problems.
The chosen exponential schedule is similar to the
original one proposed by Kirkpatrick, Gelatt, and
Vecchi [14], We will refer to this as the classic
schedule. The chosen logarithmic schedule was
developed by Aarts and van Laarhoven [1].

For our implementations of these cooling
schedules, the initial value of the control parameter
is determined by a method independently described
by Otten and van Ginneken [25] and White [33]. A
large number of independent random configura-
tions is generated. The scores for these configura-
tions are then used to estimate the expected value,
E._., and the variance, 6.2, over the uniform distri-
bution of configurations. We chose this number to
be 107, Our experimental results indicate that this
number is generally high enough to insure that the
actual value of E_, lies within the 99% confidence
interval of the computed value, regardless of the
size of the state space under consideration. The
value of 7y can then be set such that

b
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For all of our implementations, we chose to set 7o =
o,,. It should be noted that the calculation of £,
and ©..2 is central to our proposed method of start-
ing temperature determination in two-stage anneal-
ing systems. For this reason, the above method for
calculating #, is used in all of our implementations.

The classic schedule uses a constant decrement
rule with either a constant or variable Markov
chain length. For our implementations, we chose to
set o = 0.95 for the decrement rule. For our imple-
mentations employing a variable Markov chain
Jength, the chains are terminated when either the
number of accepted configurations equals the size
of the neighborhoods or the total number of gener-
ated configurations equals twice the size of the
neighborhoods, whichever comes first. The exact
variation of the classic schedule used for each of
the three problems examined later is described in
the corresponding section.

The Aarts and van Laarhoven schedule uses a

variable decrement rule with a constant Markov
chain length. The decrement rule for the Aarts and
van Laarhoven schedule is given by the equation

t - In(1 +6)J‘1
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where & is a small positive constant called the dis-
tance parameter, and Gy is the standard deviation
of the cost for the Markov chain generated at tern-
perature f; [1]. For our implementations, we set
§ = 0.085 in order to achieve the desired quality of
solution. The Markov chain length for the Aarts
and van Laarhoven schedule is equal to the size of
the neighborhoods.

Our implementations of the classic schedule
terminate when four consecutive Markov chains
end with the same value for the cost function. The
Aarts and van Laarhoven schedule is terminated
when the following relation holds:

0%
s < 0

where 0 is a small positive constant called the szop
paraimeter and Ey is the average value of the cost
function for the Markov chain at temperature £ [1].
For our implementations, we set 6=0.00001.
Again, this value was chosen in order to insure the
desired solution quality.

The various implementations of the simulated
annealing algorithm described above [1, 15}, as
well as others not examined here [8, 11, 18, 19,
251, have proven to be quite effective for solving
combinatorial optimization problems. With only a
few exceptions, simulated annealing usually pro-
duces higher quality solutions than iterative
improvement heuristics given the same amount of
computation time [17]. Unfortunately, the algo-
rithm suffers from usually prohibitive running
times. Two-stage simulated annealing attempis to
address this problem. The next two sections
present an overview of two-stage annealing sys-
tems as well as a new method for starting tempera-



ture determination in {wo-stage systems.

3. CURRENT TWO-STAGE
ANNEALING SYSTEMS

Two-stage simulated annealing addresses the meth-
od’s problem of long computation times. Two-
stage annealing systems consist of a heuristic algo-
rithm designed to solve the given problem and a
simulated annealing algorithm for the same prob-
lem. The heuristic algorithm is executed first. Sim-
ulated annealing is then performed in order to
further improve the solution generated by the heu-
ristic. Since a certain amount of optimization is
performed by the chosen heuristic, simulated
annealing can be started at a lower temperature
than would normally be required to achieve the
desired level of solution quality. If a heuristic is
chosen that generates high quality solutions, a sig-
nificant percentage of the simulated annealing
algorithm can be skipped. This would correspond
to the highest temperatures of the cooling schedule.
If the chosen heuristic also has a low-order polyno-
mial-bound complexity, time savings can be con-
siderable. Thus, the major problem in the design of
two-stage annealing systems is the determination
of this starting femperature.

As noted above, most of the early work involv-
ing a two-stage simulated annealing approach
made use of a constant starting temperature for the
simulated annealing phase [9, 30]. This constant is
generally derived through extensive experimenta-
tion with the chosen heuristic as well as the specific
simulated annealing implementation being used. A
constant starting temperature has the advantage of
being computationally inexpensive once incorpo-
rated into the two-stage system. The obvious disad-
vanatge, however, is the fact that the constant is of
no value once the heuristic, simulated annealing
implementation, or the problem itself is changed.

Unfortunately, less effort has been directed at
finding a general method for determining the start-
ing temperature in two-stage simulated annealing
systems. Rose, Klebsch, and Wolf [31] present a
method for measuring the temperature of simulated
annealing standard cell placements, which could be
used in a two-stage standard cell placement sys-

tern.

The Rose, Klebsch, and Wolf method involves
approximating the probability distribution of the
change in cost function by generating a large num-
ber of random moves from a given configuration
that is assumed to be in quasi-equilibrium at some
temperature, i.¢. the configuration returned by the
heuristic in a two-stage annealing system. This dis-
tribution is different at each temperature of a run-
ning simulated annealing process. The
approximate distribution is used in a binary search-
like algorithm to find the corresponding tempera-
ture. At each proposed temperature, the approxi-
mate distribution is used to calculate the magnitude
of the expected value of negative cost moves and
the magnitude of the expected value of positive
cost moves. These values are compared and the
next trial temperature is determined in a binary
search-like manner. When these two values are
found to be equal, the resulting temperature is
returned as the quasi-equilibrium temperature of
the given placement.

The above method produces good results when
determining the temperature associated with a
given solution to the standard cell placement prob-
lem. Unfortunately, the method has drawbacks.
First, the accuracy of the method is both problem-
and formulation-dependent. This arises from the
fact that the approximation of the probability distri-
bution for the change in cost function is measured
from only one state [31]. The true distribution can
only be found by measuring the distribution at all
states. Thus, certain problems as well as certain
formulations of the same problem will produce
approximations of varying quality. In addition, the
configuration used for the measurement process
cannot be a local minimum. Since local minima
have no lower cost neighbors, the measured distri-
bution would be zero for all negative cost moves.
This would generally not be the case in the true dis-
tribution [31]. As a result, the method cannot be
used with greedy heuristics that use the same cost
function as the simulated annealing formulation,
since these formulations will usually terminate at a
local minimum. This limits the number of applica-
ble heuristics from which to choose. Finally, the



method has a significantly long running time. This
stems from the fact that a large number of random
configurations (~105) must be generated to get an
accurate probability distribution. This, in conjunc-
tion with the fact that a search procedure must be
used in order to locate the corresponding tempera-
ture, leads to a computationally expensive method.

4. A NEW METHOD FOR STARTING
TEMPERATURE DETERMINATION

Analysis of the Rose, Klebsch, and Wolf method
does offer insight to desirable properties for a pro-
posed method of starting temperature determina-
tion. First, the method should be generally
applicable to all problems and all simulated anneal-
ing formulations. Second, the method should not
be sensitive to the given starting configuration.
Finally, the method should be as computationally
inexpensive as possible. A method with these qual-
ities is described here and is used in the two-stage
simulated annealing systems described in the next
three sections.

Our proposed method is based on the fact that
any determined temperature will be an approxima-
tion to the actual temperature of the given configu-
ration. The ideal approximation shouid be greater
than the actual temperature to help insure that the
proper amount of probabilistic hill climbing can
occur while at the same time being as close as pos-
sible to the actual temperature in order to minimize
the amount of unnecessary work done. Knowledge
of the general behavior of the simulated annealing
algorithm is essential to specifying a method of
starting temperature determination that is to be
generally applicable.

We first needed to determine what, if any,
known general characteristics of the simulated
annealing algorithm could be used as a basis for a
method of starting temperature determination.
Studies by Aarts and van Laarhoven [17] and Otten
and van Ginneken [26] show the general behavior
of the mean and standard deviation of the cost over
the course of the algorithm, Unfortunately, the only
information available prior to the simulated anneal-
ing phase in a two-stage system is the cost of the
configuration returned by the heuristic. General
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Figure 2: Behavior of minimum-cost configuration
fin With respect to distance @ from E,, vs. normal-
ized temperature ¢, -

behavior of the mean or standard deviation of the
cost is of little value since neither can be extrapo-
lated from the cost of a single configuration with-
out a method similar to that of Rose, Klebsch, and
Wolf. If, however, we assume the heuristic solution
to be the current simulated annealing minimum-
cost configuration, knowledge of the behavior of
the minimum-cost configuration over the course of
the algorithm could be used in a general method for
starting temperature determination.

We examined the behavior of the minimum-
cost configuration, i,,;,, over a large number of
runs of the simulated annealing algorithm. Both the
actual score of the minimum-cost configuration
and its corresponding temperature were found to be
too problem- and formulation-dependent to give a
true general behavior at decreasing temperatures.
A more general way to express the score of the
minimum-cost configuration seen so far, ¢(i,,), 1
its distance in standard deviation units from the
expected value over the uniform distribution of
states E,,. This distance, @, is easily calculated for
any configuration { with the function

. E_-c(i)
0() =
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Figure 3: Approximation curve compared to simu-
lated annealing solutions to the bipartitioning of
SIGDA Benchmark Primary 1. Plots (a) and (b} con-
cern respectively the schedules of Aarts and van
Laarhoven and Kirkpatrick, Gelatt, and Vecchi.
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where c¢(i} is the cost of configuration i. This value
plotted against a normalized temperature £, = 1}/
10, gives a good indication of the general behavior
of the minimum-cost configuration over the course
of the algorithm. A generic plot of this type is
shown in Figure 2.

After many runs using both of the cooling
schedules described in Section 2 for our three cho-
sen problems, it became clear that the normalized
temperature is inversely proportional to the dis-
tance M(i,,;,). More precisely, the normalized tem-
perature can be approximated quite closely by

c

oo

f (], . ) . SRS
norm " min I )
E_—c {zmm)

Figures 3 and 4 illustrate this relationship. For
these figures, the value of ¢y, in terms of distance
o from E,, was tracked over the course of actual
simulated annealing runs and plotted against nor-
malized temperature. These resulting curves are
then compared with the curve defined by the above
equation.

Using this fact, the actual starting temperature
AppProximation £,.x for a two-stage simulated
annealing system can be found by:

tOG

oo
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where cj,,, is the cost of the configuration returned
by the heuristic and is assumed to be the current
minimum value of the cost function for the simu-
lated annealing phase (i.e. cpgy,, is an approxima-
tion of ¢,,,). If £ is set equal to O, as described in
Section 2, then the numerator is simply the vari-
ance over the uniform distribution of configura-
tions and the formula becomes:
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The above observations form the basis of our
method for approximating the true starting temper-

ature in a two-stage simulated annealing system.
Our method can be summarized with the following
algorithm:

» Execute the problem-dependent heuristic to
obtain the initial configuration and its corre-
sponding cost cjgym

» Obtain estimates for expected value E., and
variance Gwz of the cost over the uniform dis-
fribution of configurations using the technique
described in Section 2.

* Use ¢joyp Eoor and 6.2 in the above formula to
obtain the starting temperature approximation

Lapprox:
* Set 1=ty and begin the simulated anneal-
ing phase.

Figures 3 and 4 indicate that our method does
indeed produce approximations that are quite close
to the true temperatures at which the configuration
in question would be produced during an actual
simulated annealing run. Although we only show
plots for two of the three problems we are consid-
ering, it should be noted that the corresponding
plots for the minimum-length rectilinear Steiner
tree problem show similar behavior. Our approxi-
mation curves show close agreement with actual
simulated annealing runs independent of the prob-
lem being considered or the cooling schedule being
used, Figure 5 indicates that once the simulated
annealing phase begins from the determined start-
ing temperature, the algorithm has the expected
convergence behavior. Again, while we plot this
for only two of our chosen problems and one
schedule type per problem, the corresponding plots
for the other schedule-problem combinations are
similar. These plots indicate that there is significant
further optimization being performed during the
simulated annealing phase to improve upon the
solution obtained by the heuristic. The next three
sections present results for a variety of problems
from two-stage annealing systems incorporating
our method of starting temperature determination.

5. THE VLS PARTITIONING PROBLEM
The input to the VLSI partitioning problem con-
sists of a set of circuit elements, or cells, connected



by a set of ners. A net electrically connects a group

of at least two cells. Pins are the interconnection
points on cells. The goal of the VLSI partitioning
problem is to partition the cells into two blocks so
as to minimize the number of nets that have cells in
both blocks. This problem is often referred to as

the mincut partitioning problem, since the goal is
to minimize the number of nets that are cut by the

partition. Figure 6 illustrates the VLSI partitioning
problem.

There is often a balance criterion associated
with block assignment. A value is given that speci-
fies the maximum percentage of the sum of the
sizes of the cells that may be in one block. This
prevents the migration of all blocks onto the same
side of the partition. Usually this value is given as
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Figure 5: Approximation curve vs. post-heuristic
simulated annealing solution. (a) Primary1 instance
using the Aarts and van Laarhoven schedule. (b}

318 city TSP instance using the Kirkpatrick, Gelatt,
and Vecchi schedule.

50%. There is also a tolerance associated with the
balance criterion. This tolerance is normally cho-
sen to be the size of the largest cell [6].

In order to use a simulated annealing approach,
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Figure 6: The VLSI partitioning problem. The
above example has 11 cells (circles) connected by
four nets (hashed lines). {a) All four nets are cut by

the partition. When the filled cell is moved, (b), two
nets are no longer cut.




configurations must be defined and a generation
mechanism must be specified. A configuration for
the VLSI partitioning problem is simply the speci-
fication of the block in which each cell is currently
placed. A mew configuration is generated from the
current configuration by changing the block of a
randomly chosen cell as long as the new configura-
tion meets the balance criterion. If the chosen cell
would cause imbalance by changing its partition,
another cell is chosen at random unti! one is found
that meets the balance criterion if moved. This gen-
eration mechanism produces a neighborhood struc-
ture of size equal to the total number of cells.

Each configuration specifies the number of
nets that contain cells on both sides of the partition.
This is the number to be minimized and is the basis
for a simulated annealing cost function. An addi-
tional term is added to the cost function to take into
account the balance criterion. If the balance crite-
rion is specified as 50%, the cost of a configuration
iis given by

¢ = gy +h- (AI-IB)?

where [E_,| is the number of nets cut by the parti-
tion, IAl and IB! are the sums of the sizes of the
cells in each of the two blocks of the partition
respectively, and A is an imbalance factor. We
chose to let A = 0.02 according fo experimental
results presented by Lam and Delosme [19].

The Fiduccia and Mattheyses heuristic [6] was
selected for use as the first stage in the two-stage
simulated annealing system. It is closely related to
the method of Kernighan and Lin [14]. This heuris-
tic was selected due to its fast running times and
quality of solution. The complexity of the algo-
rithm is shown to be linear in the total number of
pins. Fiduccia and Mattheyses point out that their
algorithm generally converges to a final solution in
a small number of passes, with the bulk of the opti-
mization being done in the first pass.

Our own experimental results show that one
pass of the Fiduccia-Mattheyses algorithm gives
solutions that on average are 5-25% less than simu-
lated annealing solutions in terms of , the distance
from E,, measured in standard deviation units, with

Two-
Pata Cf!ﬁ\U SA tour stage :::0- % CPY
instance : CPU £e time
time length j tour
{cetls) (sec) time length decrease
’ {sec) £
50 1.26 kith) 1.01 30.9 19.8
160 4.89 63.7 249 63.7 491
250 3313 154.5 14.44 156.2 564
500 16844 306.0 61.52 308.4 633
1500 228642 904.6 71275 %07.5 68.8
Primaryl 618.20 812 187.93 82.0 69.6

Table 1: Results for a two-stage VLSI partitioning sys-
tem using the Aarts and van Laarhoven schedule

Two-
Daia SA stage Two- % CPU
. Cpy SA tour stage .
instance . CPU time
time length . tour
{celis) (sec) time leneth decrease
(sec) 8
30 144 30.1 121 303 16.0
100 5.26 62.8 342 626 350
250 24.68 154.2 15.82 157.5 359
500 82.14 3109 56.12 309.5 317
1500 724.38 926.6 461.01 928.9 364
Primaryl 26112 108.4 160.43 107.5 386

Table 2: Results for a two-stage VLSI partitioning sys-
tem using a variation of the Kirkpatrick, Gelatt, and
Vecchi schedule.

the majority of the solutions closer to the lower end
of the range. In order to minimize the time used by
the first stage, only one pass of the Fiduccia-Mat-
theyses algorithm is used as a precursor to simu-
lated annealing in the two-stage VLSI partitioning
system. .

As noted in Section 2, both the classic cooling
schedule and the schedule of Aarts and van Laar-
hoven are used for the simulated annealing phase.
Our implementation of the classic schedule fea-
tures a constant decrement rule with ¢ =0.95 and a
variable Markov chain length, Markov chains are
terminated after the number of accepted configura-
tions equals the size of the neighborhoods or the
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Figure 7: Evolution of the best-seen solution for a
randomly generated 20 city TSP using a two-stage
SA system. (a) Random initial solution with cost =
751.13 and temperature = 60.90. (b) Solution after
first-stage heuristic with cost = 364.78 and tempera-
ture = 12.98. (c) Final solution after SA phase with
cost = 262.09 and temperature = 0.72,

o

(b)

total number of generations equals two times the
size of the neighborhoods. The algorithm is
stopped when four consecutive Markov chains end
with the same value for the cost function.

All algorithms discussed in this and other sec-
tions are implemented in the C programming lan-
guage and executed on a Sun SparcStation 2.
Experimental data used for evaluating the two-
stage VLSI partitioning system is made up of
twenty-five randomly generated networks with
average edge degrees generally greater than five,
plus the SIGDA standard cell benchmark circuit
Primaryl [28]. The network sizes range from 50
cells with 50 nets to 1500 cells with 1500 nets. For
the twenty-five randomly generated networks,
there are five instances for each of five different-
sized networks. The results discussed for each net-
work size are the average results of the five random
instances of the network size in question. Each ran-
dom instance was averaged over two runs, for a
total of ten runs for each network size. The results
for Primaryl are also averaged over ten rums.
Results are gathered for both cooling schedules.
The results are given in Tables 1 and 2 for the Aarts
and van Laarhoven schedule and the classic sched-
ule respectively. As can be seen from the tables,



significant speedup is observed in the two-stage
systems over standard simulated annealing, while
average solution quality for the two-stage systems
deviates from standard simulated annealing solu-
tion quality by only 0.7% and 0.2% for the Aarts
and van Laarhoven schedule and the classic sched-
ule respectively.

6. TRAVELING SALESPERSON
PROBLEM

The input to the traveling salesperson problem con-
sists of a symmetric n X » distance matrix d, repre-
senting distances between n cities [20, 27}. The
goal is to find a minimum-length tour that visits
each city exactly once while terminating at the city
of origin.

A configuration is simply a list of cities, each
appearing exactly once and in the order specified
by the current tour. A common generation mecha-
nism for a simulated annealing approach to the
traveling salesperson problem is the inversion or 2-
opt transition first introduced by Croes [4] and
later by Lin [21]. A 2-opt transition consists of
choosing two cities at random from the current tour
and reversing the order of the cities between them.
This generation mechanism defines a neighbor-
hood structure of size n(n-1)/2. The cost of a con-
figuration is the sum of the distances between the
cities specified by the current tour. More precisely,
the cost function for the traveling salesperson prob-
lem is:

n-1

C(N) = zdrcn +d1t :m
ia1 1l nl

where 7 is a permutation of the list of cities ordered
according to the current tour.

A natural choice for the heuristic phase of the
two-stage annealing system is an algorithm based
on the 2-opt heuristic presented by Croes [4]. Our
experimental results show that solutions produced
by our variation of the Croes algorithm are on aver-
age 5-20% less than simulated annealing solutions
in terms of w, the distance from E, measured in
standard deviation units. The Croes algorithm gen-
erally produces relatively better-quality solutions

Two-
S5A Two-
: Data cpy SA tour Stage stage %,C U
instance . CPU time
- time length . tour
(cities) (sec) tme lensth decrease
! (sec) 8
20 2.21 258.6 1.38 254.3 37.6
42 2343 704.6 12.43 037 469
50 36.37 2403 17.66 236.4 514
57 52.55 13075.3 2431 13133.0 53.7
100 309.51 316.0 139.65 3073 549
318 13633.97 | 420437 | 558825 | 428350 59.0

Table 3: Results for a two-stage traveling salesperson
system using the Aarts and van Laarhoven schedule

Two-
5A Twe-
Data stage % CPU
fostance | Cre | SAINT | opy stage time
e time length . tour
{cities) (se2) time leneth decrease
(sec) g
20 0.90 256.6 0.67 255.1 256
42 531 705.4 3.41 7048 35.8
50 123 236.3 439 2380 397
57 11.61 13164.6 6.53 13106.5 43.8
0 42.38 326.8 21.03 3208 50.4
38 1088.81 43347.7 363.62 | 433608 66.6

Table 4: Results for a two-stage traveling salesperson
system using a variation of the Kirkpatrick, Gelatt, and
Vecchi schedule.

to the traveling salesperson problem than does one
pass of the Fiduccia-Mattheyses algorithm for the
VLSI partitioning problem. However, the Croes
algorithm is more computationally expensive than
the Fiduccia-Mattheyses algorithm. Figure 7 illus-
trates the evolution of the best-seen solution for the
two-stage traveling salesperson system..

Two different cooling schedules are again used
for the simulated annealing phase. The first sched-
ule is again that of Aarts and van Laarhoven. The
second schedule is another variation on the classic
schedule. A constant decrement rule with o = 0.95
and a constant Markov chain length equal to the
size of the neighborhoods are used in this particular
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Figure 8: Evolution of the best-seen solution for a randomly generated 20 terminal network in a two-stage SA
system intended to sofve the RSMT problem. (2) Random initial solution with cost = 4512 and temperature =
225.76. (b} Solution after first-stage heuristic with cost = 3929 and temperature = 60.74. (¢) Final solution after

SA phase with cost = 3584 and temperature = 0.91.

implementation of the classic schedule. As before,
the algorithm is terminated when four consecutive
Markov chains end with the same value for the cost
function.

Experimental data used for evaluating the two-
stage traveling salesperson System consists of the

following: the 20 city problem of Croes [4]; the 42
city problem of Dantzig, Fulkerson, and Johnson
[5]; a randomly generated 50 city problem,; the 57
city problem of Karg and Thompson [13]; a ran-
domly generated 100 city problem; and the 318
city problem of Lin and Kernighan [22]. Results



are again gathered for both cooling schedules, tak-
ing the average of ten runs for each problem. The
results are given in Tables 3 and 4. As is the case
with the two-stage VLSI partitioning system, sig-
nificant speedup is noted over standard simulated
annealing. Average solution quality for the two-
stage systems is slightly better than that of standard
simulated annealing by 1.2% for the Aarts and van
Laarhoven schedule and 0.4% for the classic
schedule.

7. MINIMUM-LENGTH RECTILINEAR
STEINER TREE PROBLEM

The input to the minmum-length rectilinear Steiner
tree (RSMT) problem consists of a set of n points
in a plane, called terminals [12]. The goal of the
RSMT problem is to connect the terminals with
horizontal and vertical line segments such that the
sum of the lengths of the segments is minimized.
The connected terminals should form an acyclic
tree such that all of the terminals serve as endpoints
to various segments. Additional points, called
Steiner points, may also be used to connect the ter-
minals. The possible locations of the Steiner points
lie on a grid defined by the locations of the termi-
nals. Using a result of Hanan [10], we can restrict
the locations of the Steiner points to lie on a grid
imposed by the terminals, This grid defines at most
O(nz) possible Steiner locations. Hanan’s result
also allows us to limit the actual number of Steiner
points to at most s - I.

A configuration is a specification of the inter-
connections among the n terminals and the chosen
n - 1 Steiner points, Our generation mechanism
consists of randomly selecting one of the Steiner
points and moving it to a randomly selected cur-
rently unused Steiner location. This generation
mechanism defines a neighborhood structure of
size equal to the number of possible Steiner loca-
tions. The cost of a configuration is the sum of the
lengths of the line segments connecting the termi-
nals and the Steiner points. More explicitly,

e(i) = > length(l)
le L

where L is the set of all line segments used in the

TFwo-
54 Two-
. Data cru SA tree stage stage %.CPU
instance ) CPU time
time length : tree
Gomalials) (sec) time lenath decrease
(sec) &
9 2019 1554.4 16.06 i554.4 20.5
1 8221 28220 51.94 2822.0 36.8
£3 4787 1950.6 18.20 1949.6 62.0
i6 168.50 3008.4 81.55 3002.4 59.0
20 I287.86 3049 2284.25 304.5 30.5
30 | 2165418 359.3 155G2.77 3593 284

Table 5: Results for a two-stage RSMT system using
the Aarts and van Laarhoven schedule.

Two-
SA Twon
\ Data CPy SA tree stage stage %.C U
instance . CPU time
- tisme length . tree
{tenminals) (sec) time lenath decrease
(sec) ¢
9 21.83 1554.2 17.33 1554.0 208
1} 55.90 2822.0 38,63 2822.0 309
13 41.63 1946.8 27.83 1942.6 331
16 132,11 2999.6 85.82 2998.8 350
20 1657.09 305.4 738.32 304.7 30.2
30 | 536077 3602 | 3717257 358.9 318

Table 6: Results for a two-stage RSMT system using a
variation of the Kirkpatrick, Gelatt, and Vecchi sched-
ule.

construction of configuration i and length(l) is the
manhattan distance for the two endpoints that
define the edge [ L. .

The heuristic chosen for the first phase of the
two-stage RSMT system is based on Kruskal’s
minimum-spanning tree algorithm [16]. Kruskal’s
algorithm is first run to obtain the minimum-span-
ning tree for the n terminals using no Steiner
points. The » - 1 Steiner points are then added in a
greedy fashion from the set of possible Steiner
locations to form the initial configuration for the
simulated annealing phase. Solutions produced by
our variation of Kruskal’s algorithm are on average
5-20% less than simulated annealing solutions in



terms of @, the distance from E,, measured in stan-
dard deviation units. Figure 8 illustrates the evolu-
tion of the best-seen solution for the two-stage
RSMT system.

As is the case for the two previous problems,
both the Aarts and van Laarhoven schedule and a
variation of the classic schedule are used for the
simulated annealing phase. The implementation of
the classic schedule includes a constant decrement
rule with o = 0.95 and a constant Markov chain
length equal to the size of the neighborhoods. As is
the case with the two previous implementations of
the classic schedule, the algorithm terminates when
four consecutive Markov chains end with the same
value for the cost function.

Experimental data used for evaluating the two-
stage RSMT system consists of four of the larger
nets from the SIGDA benchmark Primary1[28] as
well as randomly generated 20 and 30 terminal net-
works The placements of the nets taken from Pri-
mary1 are intermediate solutions generated by the
Sharp placement and routing package [3]. The nets
taken from Primary] range in size from 9 terminals
to 16 terminals. Results are again gathered for both
cooling schedules, taking the average over ten runs
for each network. The results are shown in Tables 5
and 6. As is the case with the previous two prob-
lems, significant speedup is noted for the two-stage
RSMT system over standard simulated annealing.
Average solution quality for the two-stage systems
is again slightly better than that of standard simu-
lated annealing by 0.1% for both the Aarts and van
Laarhoven schedule and the classic schedule.

8. CONCLUSION

A method is presented to determine the starting
temperature of the simulated annealing phase in
two-stage simulated annealing systems. The
method is experimentally shown to be generally
applicable to different problems and formulations.
The resulting two-stage systems have significantly
lower rumning times than simulated annealing
alone with no loss in solution quality.
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