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I N T R O D U C T I O N

The design and evolution of programming languages is one of the most important areas of
computer science.  Programming languages define the manner in which we communicate with our
machines.  They give us layers of abstraction with which to work, so we can accomplish our tasks
without reaching into the hardware.  They also attempt to increase our efficiency by automating
many hardware bound tasks.  Anyone who has attempted to write a large project in assembly
language understands the necessity for higher level languages.

Over the last 50 or so years, languages have continued to evolve in order to support their ever-
increasing usage.  Program design and maintenance became issues with the dawn of software
engineering.  People sought to formalize methods for constructing correct, efficient and easily
modified programs.  Languages evolved in order to support these new requirements.  Block
structure grew into existence from a desire for modularity.  Object-orientation (OO) was created
from a desire to have language constructs for modeling real world objects and encouraging
software reuse.  OO has been around for more than a decade now, and has become the default
paradigm in many peoples’ minds.

Object-orientation still has its problems.  While it encourages software reuse, practical experience
has shown that OO does not handle this as effectively as people originally thought.  Pre-packaged
software often does not suit the programmer’s needs, and ill-constructed interfaces make using
these packages difficult.  Furthermore, OO should enhance maintainability by causing redesign to
affect as few modules/classes as possible.  However, as our programs continue to get larger and
larger it becomes increasingly difficult to cleanly separate concerns into modules.

Enter aspect-oriented programming (AOP).  AOP could be the next step in the steady evolution of
the OO paradigm, or perhaps it will evolve into a completely new paradigm independent of OO.
Whatever the case, AOP offers a solution to a design and maintenance problem that has plagued
software developers for years.  That is, how can we create modules with little or no crosscutting
concerns?  AOP introduces the notion of Aspects, and shows how we can take crosscutting
concerns out of modules and place them in a centralized place.  While this paradigm is still
relatively new, it seems promising and perhaps given time will replace OO.

This paper serves several purposes.  The first section will attempt to give some background for
AOP and describe some of the motivation in more detail.  It will also briefly describe the syntax
and semantics of AspectJ, a Java based implementation of AOP.  We will also present a design
philosophy for using aspects on top of an object-oriented paradigm.  The second section discusses
some problems we have observed in the AspectJ implementation.  The third section discusses
alternative paradigms to which AOP might apply.  While current research seems to favor OO
languages as the basis for AOP, this does not necessarily need to be the case.  Procedural
languages will be considered to see if they also might benefit from AOP.  An implementation for C
will be briefly outlined here.  Perhaps in a later incarnation of this paper, this skeletal
implementation will be more developed.  Finally, we will give some concluding remarks about
AOP and its usefulness.
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1  –  A S P E C T  O R I E N T E D  P R O G R A M M I N G

A BRIEF HISTORY OF DEVELOP MENTS LEADING TO ASP ECT ORIENTED
P ROGRAMMING

Programming design principles began to emerge in the decade of the 70’s as a result of the crisis
created from increasing program complexity.  This increased complexity, combined with a growing
need for maintainable and evolvable programs led to the concept of structured programming.
[Lop97]  Structured programming is primarily concerned with finding, “a better organization of the
program development process to achieve objectives such as simplicity, understandability,
verifiability, modifiability, maintainability, etc.” [Weg76]  A related concept to structured
programming is the idea of functional decomposition.  This is the process of breaking down a
problem into more manageable sub-problems during the design phase of programming.  By
creating these smaller functional modules and then recombining them in structured ways we
achieve the goals of structured programming.

Structured programming was only the beginning of the software revolution.  Program requirements
continued to become more complex and involved more programmers.  Issues like software reuse
became prevalent, as people began to realize that they were potentially ‘reinventing the wheel’ each
time they created a new program.  Programmers had always reused their own software, but this
was no longer sufficient as programs began to outlive their creators and span corporations.  As
Fred Brooks states, “The best way to attack the essence of building software is not to build it at
all.” [Bro95]

The idea of modularity seemed to be a good starting point for software reuse.  Modularity,
introduced along with structured programming, provided the programmer with clean interfaces to
the functional units of a program.  Even people other than the original programmer could reuse
these units multiple times without modification (as long as the interface was well defined).
However, a module’s implementation was open and therefore subject to change at the
programmer’s discretion.  This created even more problems in maintaining code, and the idea of a
‘black box’ was introduced.  If the implementation could be encapsulated in the module and
programmers could only see the interface, the implementation could remain constant. [Bro95]

However, what happens when a programmer does not want exactly what a module provides, but
some variant of it that has a slightly different functionality?  The programmer cannot modify the
original module and he/she has no language constructs to easily reuse the module in another
implementation.  This need prompted the introduction of inheritance, which allowed programmers
to extend or limit the functionality of a module without redefining the original module.  These ideas
were combined and evolved into our modern day conception of Object Orientation (OO).
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OO seemingly solves many problems.  It provides design and language constructs for supporting
modularity, encapsulation and inheritance.  It eliminates many of the above-discussed problems
with software reuse and if used properly motivates the programmer to focus on good design before
implementation.  This could have been ‘Silver Bullet’ that Brooks discusses in several papers, but
with the advent of OO we still have not seen the drastic increase in programmer productivity that
was anticipated.

CROSSCUTTING CONCERNS,  ASP ECTS AND TANGLED CODE

One problem, according to Kiczales and other prominent researchers, lies in the existence of
crosscutting concerns.  That is, concerns which cannot be constrained easily into modular form.
These concerns destroy the modularity that we strive for in our OO programs.  They introduce
related or even duplicated code into one or more modules. [Kic97]

Examples of crosscutting concerns are not hard to find in large systems. A group of crosscutting
concerns that seem common to many programs already exists.  Some examples of these are
performance, synchronization, communication, graphics manipulation and debugging.  Kiczales
and several other researchers have published many papers illustrating examples of what constitutes
a crosscutting concern.  To read more about some examples of crosscutting concerns refer to
[Kic97], [Lop97], [Men97] and [Aks98].

One example that was particularly useful was given in a presentation by Kiczales.  A program
called SpaceWar was constructed.  It was written in Java with OO techniques and resembled the
arcade game Asteroids.  The user flew a spaceship, represented by a movable triangle form, and
attempted to eliminate any enemy spaceships (same triangle form, different color) before they
eliminated him/her.  Each physical object in the field of view corresponded to a class definition (i.e.
object) in the program.  Some of the objects in the system were the user’s spaceship, the enemy
ships, bullets and energy packets. [AOP99]

In the original OO design, each object contained its own paint method.  That is, the object
encapsulated information relating to how it should be represented on the screen.  Ships were
represented as moving triangles, bullets as white dots and energy packets as larger blue dots.  To
change something specific about the way a ship or an energy packet behaved, one simply needed to
modify the corresponding class.  However, what if one wanted to change the entire ‘look and feel’
of the game?  Perhaps the programmer wished to make the program more complex and use pre-
drawn graphical images (JPEG’s or bitmaps perhaps) for the object representations, instead of
using the Java AWT primitives and stick figure designs.  This change would involve modifying the
paint method in every class that has one. [AOP99]

Each class encapsulates a functional component of the system.  There are other concerns that are
not addressed by individual modules, but rather by crosscutting sections throughout multiple
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modules.  The programmer can address this concern in one of two ways.  Either he/she can
implement a paint method in each of the affected classes, or he/she can create an “intermediate”
class that intercepts an object’s call to paint and executes the correct method based upon the calling
object’s type.  The first method is efficient, but it results in a need to touch each class should the
look and feel need to be changed.  This becomes a nightmare in software maintenance.  The second
option encapsulates the look and feel into a class and therefore has a well-defined interface and
locality, but is inefficient.  Each time an object wishes to paint itself on the screen, a method call to
another object must be made. [Kic97]  Another problems is that there is no way of restricting the
set of objects that can access the member functions.  Perhaps there are several definitions of paint,
one for each type of object that needs to be displayed.  What prevents a ship from calling paint for
an energy packet?  This lack of access control to member functions destroys the interfaces that are
provided in OO.

It should be clear from both the example above and in the papers cited, that crosscutting concerns
do exist in programs, and their representation can cause problems with both maintainability and
efficiency.  In some situations, redesign of the system might transform a crosscutting concern into
an object.  That is, the crosscutting concern is now no longer crosscutting; it is cleanly
encapsulated in a module.  One might be tempted to think that this method of module re-factoring
might eliminate this problem altogether.  Kiczales argues (but does not prove) that there are
invariably some situations where no matter how you re-factor the system some crosscutting
concerns will exist.  Although a formal proof to show this does not exist, it seems intuitive that this
is true.  Therefore, the remainder of this paper will be written under the assumption that
crosscutting concerns exist and cannot be simply re-factored out of the design in all situations.

An aspect then is a representation of a crosscutting concern.  A component is a modular unit of
functional decomposition, which addresses a specific concern or function of the system.  An aspect
is similar, in that it addresses a concern of the system, but it cannot be cleanly decomposed into a
component.  Kiczales provides some more concrete definitions to differentiate between aspects and
components.  He states that a property that must be implemented is:

A component, if it can be cleanly encapsulated in a generalized procedure.
By cleanly, we mean well localized, and easily accessed and composed as
necessary.

An aspect, if it can not be cleanly encapsulated in a generalized procedure.
Aspects tend not to be units of the system’s functional decomposition, but rather
to be properties that affect the performance or semantics of the components in
systemic ways.

[Kic97]



�

Another definition of aspect is provided by Czarnecki.  A domain is defined as an area of expertise
or more formally, “an area of knowledge or activity characterized by a set of concepts and
terminology understood by practitioners in that area.” [Cza98]  Program design involves capturing
the domain and presenting it in an acceptable form.  For example, OO models operational domains
by capturing functionality in classes.  Decomposition is the process of breaking down a problem
into a set of smaller problems.  Problem solving is simply a process of capturing the appropriate
domains, by breaking down the problem into smaller problems and then recomposing the solutions
in a way that satisfies the original specifications.  A domain that defines the manner in which the
original problem should be decomposed is called a concern.  Using this terminology, an aspect is a
partial representation of some concepts that relate to a concern. [Cza98]  This method of defining
the meaning of an aspect results in a definition that seems similar to the one above, but is defined
purely in terms of Domain Engineering.  This just provides an alternate perspective from which to
look at aspects.

Crosscutting concerns wreak havoc on the maintainability of code if they are not handled properly.
If one of these concerns needs to be changed at some point in the program’s lifetime, multiple
(sometimes all) modules need to be modified (as in the SpaceWar example).  Design by functional
decomposition often results in programs that do not adequately satisfy one or more aspects.  These
programs are re-worked by hand to satisfy the aspects, and in doing so the code often becomes
cluttered.  Just as indiscriminate usage of the goto caused “spaghetti code”, as Knuth described it,
the re-working of the code to satisfy aspects creates “tangled code” in Kiczales and Lopes’
terminology. [Lop97]

Lopes’ explanation of why aspects exist is very concise and summarizes the problem nicely.  She
states that functional components (i.e. modules) can be composed together via the ‘uses’ relation.
Modern software systems are complex enough that, “many issues that must be programmed relate
to other parts of the system in sophisticated ways that the ‘uses’ relation doesn’t quite capture.”
[Lop97]  The existing composition mechanisms provided in programming languages do not
adequately represent these issues in the program.

The programmer has a choice between two implementations. She can choose the one that is clear,
easy to modify and represents the design well.  Conversely, she could choose the one that better
satisfies one or more aspects of the program.  With the second type of implementation, tangled
code is the result.  This is because it attempts to address crosscutting concerns without support for
representing these concerns in a modular way.  Most languages provide mechanisms for composing
units of functionality together but do not provide support for co-composing functional units with
aspects.  It is the process of manually co-composing which results in the tangled code.  [Lop97]

ASP ECT ORIENTED P ROGRAMMING AND WEAVING

Now that the nature of the problem is understood, the next logical step is to provide a solution.
Kiczales’ solution is to provide support in the language (or provide another language) for defining
aspects along with the already present support for defining components.  This new approach to
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programming is known as Aspect Oriented Programming (AOP) and is still in its infancy.  AOP
puts a greater focus on crosscutting concerns than is present in OO or many other language
paradigms.  It allows aspects to be cleanly separated and placed into modules that can be
composed with other components (including other aspects) in the system.

AOP began as an experimental language framework, called D, created as part of Lopes’ thesis
work.  The language D contained three components, a language for defining components (like Java
or C) and two special languages for describing aspects of the problem domain: COOL and RIDL.
Lopes was specifically working with a problem domain that had synchronization and
communication as crosscutting concerns.  These crosscutting concerns were modeled as aspects
through the two aspect languages.  COOL modeled thread coordination and RIDL modeled remote
access.  The component definition language was Jcore, which was a subset of Java. [LoK97]

The two aspects were written in their corresponding aspect languages and the other components
were written in Jcore.  A preprocessor then combined the three programs and produced a complete
Java program through a process called weaving. [LoK97]  The weaving process is similar to the
hand optimization process that creates tangled code.  The aspect languages and the weaver simply
allow the programmer to specify how the optimization should be done, and where code should be
changed.  However, the programmer need not be concerned with the woven code, just as he/she is
not concerned with the intermediate results of a compiler.  The woven code is never modified.
Modifications are made in the original programs (Jcore, RIDL and COOL) and then the programs
are re-woven and re-compiled to create an executable program.

Another piece of terminology related to weaving is the join point.  A join point is a location that is
affected by a crosscutting concern. [Oss98]  The place where a weaver inserts aspect code is a join
point.  Join points can be present at either the statement level or the operation level.  Statement
level implies that the set of possible join points include every statement (line of code) in the system.
Operation level implies that the possible set of join points includes every operation (method
invocation) that the system performs. [Oss98]  As will be seen later in this section, the current
implementation of AOP uses operation join points instead of statement join points.

It would seem from the example that the concept of aspects and crosscutting are tied to OO.  This
is not the case.  While it appears that AOP has grown out of the OO paradigm, it is more pervasive
than that.  An aspect is simply a concern in the design of a system that cannot be cleanly captured
into a unit of modularity.  This unit could be a class (as in OO), a procedure (in the procedural
paradigm) or a function (in the functional paradigm).  The important idea to remember is that the
mechanism for breaking the original problem into sub-problems resulted in modules that share a
common concern.

In [Kic97] and [Men97] an image processing system is described and programmed in Common
Lisp.  An aspect of this system is discovered (performance through loop-fusion) and is
programmed in a designed aspect language.  The component and aspect programs are ‘woven’
together and a C program is output. [Kic97]  Notice that in this example there is no mention of
objects or object orientation.  Although Kiczales is eager to point out that aspects are not
constrained to OO, not much information about support for aspects in procedural or other types of
languages is given.  Section 3, “AOP and Non-Object Oriented Languages” will go into more depth
on this issue.
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The idea of creating a separate language for each aspect eventually was replaced by the idea that
support for defining generic aspects should be included in the language or added in as an extension
to the language.  A generic aspect weaver could then be implemented and reused regardless of the
type of aspect designed.  This is in contrast to having to create a separate aspect weaver for each of
the custom aspect languages (like COOL and RIDL).  This resulted in the eventual subsuming of
other aspect definition languages into AspectJ, a generic aspect programming language built on top
of Java.

ASP ECTJ IMP LEMENTATION

AspectJ is one implementation of AOP.  AOP is not limited to AspectJ in the same way that OO is
not limited to Java or C++.  It is the first attempt at a general AOP language, and is built on top of
Java.  This section will attempt to describe some of the syntax and semantics of AspectJ in more
detail so that the reader will have a solid foundation with which to understand our arguments in
Section 2.

In AspectJ the definition of an aspect is very similar (in some cases identical) to the definition for
class.  A class contains data and operations (variables and methods, respectively).  Classes can be
instantiated to create Objects.  Classes can be defined to inherit from other classes.  Classes have
multiple protection mechanisms at their disposal in order to protect/hide their representations.
Aspects have all of these features and add one more.  They have the ability to enhance the behavior
of other classes through a mechanism called weaving.  To summarize, classes contain variables
and methods, while aspects contain variables, methods and weaves. [AsJ99]

The syntax for declaring an aspect is very similar to the syntax for declaring a class.  The basic
syntax looks like the following:



�

aspect <aspect_name> {
   // The following two components have the same structure as a normal
   // Java class declaration
   <variable declarations>...
   <method declarations>...

   // The following lines are specific to aspects

   advise <designator> {
      [static] before {
         // Code to be executed before the method begins goes here
      }
 

   [static] after {
         // Code to be executed after the method ends goes here
      }

[static] catch (<exception type> e) { <exception handler> }

      [static] finally {
         // This is executed after the method is finished executing
         // regardless of whether or not an exception was thrown

}

introduce <class>.<variable declaration>; ...

   introduce <designator> {
      // the body of the method
   }
} // end <aspect_name>

Designators are a way of specifying the methods or classes that are affected by a weave.  A
designator can be either a method, a constructor or a field.  The designators allowed for introduce
weaves are very simple.  They can be methods, constructors or fields where all information is
specified.  Therefore, an introduce statement can have the following forms:

introduce <type> <class>.<variable> = <initialization>;
introduce <modifiers> <return type> <class>.<method>(<parameters>) {}
introduce <class>(<parameters>) {}

An introduce clause can contain multiple designators as long as they are of the same type.
Constructor designators cannot be mixed with method designators.  This allows the same
method/constructor to be used by multiple classes.  Exactly how the classes use the method from
an introduce will be discussed later.

In the case of advising, advice can be specified to be run before the method executes, after a
method’s execution or both.  If the before or after advice throws an exception, an optional catch
can be used.  Advice can also be specified as finally advice, which is similar to the finally keyword
in Java: it will run even if the exit from the method is due to an exception.  Advise has the same
restriction on combining designators as introduce. Multiple designators can be used as long as they
are either all methods or all constructors.  The optional keyword static can be applied to the before
and/or after statements.  Static weaves are relatively simple to describe, but if the keyword static is
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omitted the result is dynamic weaving which is much more complicated.  The difference between
static and dynamic weaving will be discussed shortly.

Additionally, wildcards (*) can be used in place of explicit names in all places except the class
designator.  The wildcard for the method modifier is simply omitting it entirely.  For example:

advise public & !static * Foo.*(*)
// Advise all public and non-static methods in Foo.

advise int Foo.bar(char fooBar)
// Advise all methods named bar in class Foo that return an int and
// take a char as a parameter.

The syntax for weaves is quite simple; it does not seem to be terribly difficult to define the aspects
once you have identified what the aspects of a given system are.  The bulk of the work is in the
design process and identifying what the aspects are and which classes aspects should affect.

One thing to keep in mind when programming aspects is that the methods that are introduced and
the sections of methods that are advised share scope with the aspect and their associated class.
Therefore, if an aspect Foo introduces a method A into class Bar, A has scope in both Foo and
Bar.  That is, it can access all of the other methods and data members.

Advising and introducing into interfaces is also slightly different than working with classes.  It is
possible to introduce methods, fields and constructors into an interface.  However, because an
interface is devoid of implementation and data members, the only thing introduced into an interface
is the method’s signature.  The implementation is actually introduced into all classes that
implement that interface.  If a field was introduced, it is simply introduced into all classes
implementing the interface.  This feature is powerful, as it allows for multiple inheritance in Java.
[AsJ99]  Nevertheless, it also seems dangerous because multiple inheritance was considered and
not included in Java for many reasons, and reintroducing it seems both counterintuitive and a
violation of the principle of security [Mac87].

As mentioned before, advised and introduced methods have scope in multiple places.  The order of
scope resolution in AspectJ is the following:

1. Local variables and classes declared in the weave
2. Parameters of the advised methods, as named in the formal parameters of the weave
3. Variables, methods and classes defined locally in the aspect
4. Variables, methods and classes defined locally in the class [AsJ99]

AspectJ includes several variables to be used in case of name shadowing.  These are
thisJoinPoint.aspect and thisJoinPoint.object.  These variables represent the given aspect instance
in question and the object that is currently invoking the advice or introduced method in the aspect.
The name of the current method whose advice is being executed in is referenced by
thisJoinPoint.methodName.  The name of the current class that is executing the advice is referenced
by thisJoinPoint.className.  Finally, the return value of a given method is stored in
thisJoinPoint.result. [AsJ99]
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In the case of static weaving (i.e. advice with the keyword static used) the advice is executed for
every instance of the class and every invocation of the method.  In contrast, dynamic weaving
allows advice to be applied to only certain instances of the class and advice can change throughout
the course of an object’s lifetime.  Because dynamic weaving is such a complex topic, and much of
our critique of AspectJ concerns it, the next few sections will be devoted to explaining it.

DYNAMIC WEAVING AND ASP ECT INSTANCES

What is an aspect instance?  It is easiest to first examine what an instance is.  Let us consider the
more familiar concept of a class and class instance.  A class instance, of course, is better known as
an object.  What does it mean to say an object is an instance of a class?  The class defines the form
of the object, but the object is a distinct entity of its own.  There may be several objects of the same
class.  That means that they have the same form but they are each distinct entities.  Each distinct
object of the same class has its own values for the variables defined in the class, but each distinct
object has the same methods available to be called on it.

An aspect instance is similar to an object in many respects.  One can be created just like an object
is created:

Aspect foo = new Aspect();

The above line of code creates a new aspect instance and binds it to the variable foo.  Aspect
instances and objects are so similar that if the aspect has no weaving built into it, AspectJ treats an
aspect instance and an object as equivalent entities.  (In this case, one might wonder why an aspect
was used in the first place.)  In AspectJ, an aspect is simply a class with crosscutting capabilities;
those capabilities are found in the weaves.  If an aspect does not utilize those crosscutting
capabilities, it really is just like a class.  Considering an aspect merely a special type of class may
or may not be a wise decision, though.  This will be investigated further in a later section.

An aspect instance, then, has its form determined by an aspect but is a distinct entity of its own.
Analogous to classes and objects, each distinct instance of the same aspect has its own values for
the variables defined in the aspect, but has the same methods available to be called on it.  Beyond
that, each aspect instance may have its own particular set of join points associated with it.

When discussing aspect instances, there is an innate tendency to abbreviate.  An abbreviation from
"aspect instance" to simply "aspect" is unacceptable because "aspect" denotes the module that
determines the form of an aspect instance, not the aspect instance itself.  On the other hand, an
abbreviation to "instance" is also unacceptable because it is ambiguous.  There can be instances of
many things, not just aspects.  (Class instances are just one example.)  For this reason, we suggest
that aspect instances be referred to as aspins.  This creates a simple one-word notation to represent
aspect instances, just as the word object represents class instances.  We hope that this terminology
is adopted by the AOP community, and we will be using it throughout the rest of this paper.



��

Let us take a closer look at aspins in AspectJ.  An aspect without weaves is just like a class;
therefore, the weaves are obviously the distinguishing features of the aspect. It is not always
necessary to instantiate an aspect for it to be useful because the weaves can be used to statically
affect classes.  This is different from a class because a class that is not referenced anywhere else in
the program is simply unused.  The aspect, merely by being compiled with a class, can change the
class by giving it advice or introducing new variables or methods.  Any objects instantiated from
the affected class will include the changes imparted by the weave.  This only applies to introduce
weaves and static advice to methods.  The other alternative is advice that involves dynamic
weaving and aspins.

EXP LICIT AND AUTOMATIC COMP OSITION

Before discussing dynamic weaving, it should be noted that the use of aspins does not necessarily
mean that dynamic weaving will be used.  There is a manner of using aspins without dynamic
weaving.  The AspectJ primer refers to this as explicit composition.  With explicit composition, a
variable of the aspect’s type can be placed in a class through an introduce weave.  Whenever the
class is instantiated, the resulting object will have an aspin as one of its data members.  Through
static advice to the class, the aspin can be appropriately modified whenever there are calls to
methods of the object.  The primer makes a note that it is an important style issue to not include
any “gluing” code like the introduced aspect variable in the actual class.  All of the “gluing” code
should be in the aspect itself. [AsJ99]  We argue even more strongly for this issue later.

That, then, is explicit composition.  Another method of using aspins involves automatic
composition and dynamic weaves.  Automatic composition refers to when the binding takes place
between an object and an aspin.  In explicit composition, the binding takes place at compile time,
because it is explicitly stated that any object of class A will have an aspin of aspect B.  In
automatic composition, the binding takes place at run time.  The following example from the
AspectJ primer illustrates automatic composition.  Binding does not occur until the run-time
invocation of the addObject() method.  In AspectJ terminology, the addObject() method places the
parameter object into the domain of the aspin. [AsJ99]
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aspect PointShadow {
    int x, y, offset;
    PointShadow(int _x, int _y, int _offset) {
        x = _x + _offset;
        y = _y + _offset;
        offset = _offset;
    }

    advise Point(int _x, int _y) {
         static after {
              PointShadow psh = new PointShadow(_x, _y,
                                10).addObject(thisJoinPoint.object);}
    }

    advise void Point.setX(int _x) {
        after { thisJoinPoint.aspect.x = thisJoinPoint.object.x +
                                         thisJoinPoint.aspect.offset; }
    }
    advise void Point.setY(int _y) {
        after { thisJoinPoint.aspect.y = thisJoinPoint.object.y +
                                         thisJoinPoint.aspect.offset; }
    }
}

DYNAMIC WEAVING

Advice that is not static does not affect a class itself.  Rather, it affects only specific instances
(objects) of the advised class.  Also, it is not the aspect itself that is giving advice to the specific
objects, but certain instances of the aspect (aspins) giving advice to certain objects.  AspectJ
provides the aforementioned addObject() method, which is available in aspins.  It places an object
in the domain of an aspin.  The non-static advice from an aspin will be executed whenever the
associated method is invoked on an object in its domain.  If the same object is in the domain of
more than one aspect instance (which is quite possible), then whenever a method is invoked on that
object, all of the relevant pieces of advice from the various aspins will be executed.  There is an
obvious question here, though.  In what order will the pieces of advice be executed?  This topic is
slightly out of the scope of this paper, and will not be discussed further.

When AspectJ weaves an aspect, all of the advice is actually weaved into the advised class.  This
includes the non-static advice.  In that sense, the term dynamic weaving is a bit of a misnomer.
The weaving itself is done statically at compile time, but the decision of whether or not to execute
the weave, and how many times to execute the weave, is done dynamically at run time.  The
weaves are all moved to their appropriate classes while the aspect itself is transformed into a class
which has any aspect-specific methods or variables as well as a small set of special methods:
getObjects(), addObject() and removeObject().  After the weave, the aspect-turned-class also has a
very important data member that is a vector of objects: the list of all objects in the aspects’s
domain.  This list can be retrieved via the getObjects() method and modified by the methods
addObject() and removeObject().
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The advised classes also have a new data member added to them, in addition to the advice
modifications.  This data member, _aspects, is a vector which contains all of the aspins that have
the object in their domains.  This list of aspins is also modified by calls to addObject() or
removeObject(), and can be retrieved through the getAspects() method on an advised object.

These data structures are used to implement the non-static weaves.  The actual execution of the
non-static weaves is carried out via the following mechanism.  Whenever a method is invoked, all
static advice is run, as previously discussed.  The code for the non-static weaves is also present,
but access to it is guarded by checking the _aspects vector.  Each aspin in the _aspects vector is
checked.  If an aspin’s aspect type matches the type associated with a weave, that piece of advice is
run on that object for that aspin.  For more information see the PointShadow example in [AsJ99].
The example illustrates that dynamic weaving is particularly useful when several (possibly
different types) objects need to be associated with one particular aspin. [AsJ99]

AN ASP ECT ORIENTED P ROGRAMMING DESIGN P HILOSOP HY

While examining aspect-oriented programming, and especially AspectJ, it became apparent that
AOP ignores many of the principles that are central to OOP.  Among these are separation of
concerns and information hiding.  Examples of these principles were given in the previous section
discussing AOP and its emergence into the programming language community.

AOP introduces a new type of module: the aspect.  This new type of module, however, is very
different from an object.  It has the ability to break all the rules of object separation.  We propose a
philosophy of aspects that allows an aspect to crosscut the object hierarchy while still maintaining
a separation of modules.  There are four points to this philosophy:

1. An object is a something.
2. An aspect is not a something.  It is a something about a something.
3. Objects are not dependent on aspects.
4. Aspects represent some feature or property of objects, but they do not have control over

objects.
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We hold these truths to be self-evident but we will defend them anyway.

1. An object is a something.

 An object exists on its own.  It is a something.  How does one determine what a particular
object is?  A programmer should be able to look at the code for a class and determine what the
object is (the variables that make up the object) and what the object can do (the methods of the
object).  Some of what it is and what it can do may be based on a superclass, but that is also
evident from the definition of the class.  It is based only on the interface of the superclass, not
on its implementation.  An object may also be associated with a number of aspects.  Those
relationships are determined by the aspects, not the object.  If the object was not associated
with those aspects, it would be a less detailed object, but it would still be an object.  An object
is an entity in itself.

2. An aspect is not a something.  It is a something about a something.

 An aspect is written to cleanly modularize a crosscutting concern.  This concern, by definition,
cuts across a number of different components.  In object-oriented programming these
components are called objects.  If an aspect is not associated with any class, then its concern
cuts across zero classes, and thus the aspect is meaningless in this context.  Therefore, it does
not make sense to talk about utilizing an aspect without keeping in mind the classes that it
crosscuts.  It does make sense to discuss what an aspect is capable of providing, but the aspect
does not have functionality unless it is actually applied to a class.  They are not functional
units themselves and should not be treated as such.

3. Objects are not dependent on aspects.

 An aspect should not change the interfaces of the classes it touches.  It should only augment
the implementations of those interfaces.  Because it only affects the implementations of the
classes, and does not change the interfaces of the classes, encapsulation is maintained. The
classes retain their original black box interfaces, though the insides of the boxes may be
changed.  The inclusion of an aspect in a program should (and does) affect the behavior of the
objects in the program, but it should not be required to enable the objects to be functional
units.  The classes of a program should be functional units by nature of their design.
“Components tend to be units of the system’s functional decomposition.” [Kic97]

4. Aspects represent some feature or property of objects, but they do not have control over
objects

Aspects are over and above objects.  That means that they can violate information hiding in
certain ways because they can know things about an object that are hidden from other objects.
However, they should not intrude upon the internal representation of an object any more than
other objects are allowed to intrude.  Aspects should be allowed to have this special view of
many objects, but should be bound to manipulating objects in the same way that other objects
do, through their available member functions.
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This philosophy of design grew out of an attempt to balance a number of generally accepted design
principles that tend to work against each other.  In particular we want to enable aspects to do their
job of providing abstraction and automation, while still maintaining the principles of information
hiding and manifest interface.  [Mac87]

Let us for a second step out of the realm of computer science and into a different world...

In this world, there are deaf hunchbacks (objects) living in houses.  From these houses, messages
are occasionally sent to other houses.  Each house may have a different number of doors, but
messages are only accepted at a mailbox by a door.  Being hunched over, the people never look up.
Being deaf, they do not hear.  They are often unaware that there are dragons (aspects) flying
overhead.  They don’t realize that some of the houses they send messages to are owned by those
dragons.  The hunchbacks are also unaware that the ceilings of their own houses are made of glass.
The flying dragons see the hunchbacks placing messages in various mailboxes.  Occasionally, a
hovering dragon may fly down and take a piece of mail out of a mailbox, unbeknownst to the
hunchbacks.  While deciding what to do with the stolen piece of mail, the dragon may peer down
into a house through the glass ceiling.  She is not able to swoop down into the house, but she
enjoys her special view.  The dragons may choose to do a number of different things.  They may go
paint a house, for example.  The dragons also have a code of honor.    They may read someone
else’s mail, but they would not steal it.  They always eventually put it back in the proper mailbox.
Every once in a while, the dragons go to a neighboring state for the National Dragon Festival
(NDF, because the wizards who created the dragons have to use acronyms in order to survive).
While the dragons are gone, the hunchbacks continue to go about their business as usual. They
notice that the houses stop changing colors (since the dragons are not painting), but this does not
affect their lives at all.  When the dragons are around, they do their best to keep the hunchbacks
from bumping into each other.  While the dragons are at the NDF, the hunchbacks fall down more.
Despite the lack of color and all the falling down, the hunchbacks’ messages are still delivered and
received just like always.

Our fanciful land of hunchbacks and dragons illustrates our philosophy of the relationship between
objects and aspects.  The dragons are still trying to understand how best to relate to the
hunchbacks;  the hunchbacks are not offering much insight.

They will all live happily ever after anyway.
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2 – AspectJ Critique

The philosophy we have presented in the previous section gives a rough framework that attempts to
keep aspect-oriented programming from violating the structure that object-oriented programming
provides, while still allowing aspect-oriented programming to accomplish its goals.  That is, to
provide support for co-composing crosscutting concerns with components, while maintaining the
integrity of the components themselves.  The current implementation of AspectJ violates some of
our stated principles.  Many of these violations result from intentional decisions to give freedom to
the developing user base and allow “them more room to experiment and discover what really is
right.” [EMa99]  We offer some suggestions, which we attempt to base more on the accepted
principles of programming language design rather than upon personal opinions of the usefulness of
language constructs.  We examine places where AspectJ violates these principles and offer some
ideas on how these violations might be resolved.

COMMENTS ON DYNAMIC WEAVING

Dynamic weaves are a powerful mechanism, but the capabilities they provide seem like self-
modifying code.  In AspectJ, a method call involves more than simply the method body.  It also
involves the advice associated with that method call.  If a program can change its own advice
patterns and then execute a method with advice that it had tailored for itself, then it would seem
that the program has succeeded in modifying and then executing its own code.  In reality, it is quite
a bit of a stretch to say that AspectJ supports self-modifying code.  Specifically, AspectJ does not
quite fit the description as outlined in [Mod92].  The dynamic modifications do not actually involve
modifying lines of code; they only involve dynamic decisions of where certain specific sections of
code are located.  Even this capability can be dangerous, though.  We will illustrate with an
example: the third-party modifier.

Consider an object that instantiates an aspect and adds itself to the aspin’s domain. The
instantiating object may then invoke a method on a different object.  This “third-party” object may
use the getAspects() method to access the aspin that was created by the first object.  Once it has
access to the aspin, it can use addObject() to put any object it wants into the aspin's domain.  This
may not seem like a major problem, but consider a large system.  If there is an instantiation of an
apect, it is reasonable to ask the question, “What objects may potentially be inserted into the
domain of this aspin?”  Where should a programmer have to look to be sure he found all of the
relevant addObject() calls?  If there is no restriction on where addObject() may be called from, the
programmer actually has to check the entire system, which is unreasonable in a very large
programming environment.  The abuse of addObject() and removeObject() is what makes dynamic
weaving seem like self-modifying code.  Failure to appropriately control their usage can lead to the
potential nightmare described here.
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It makes more sense (and is more feasible in an extremely large system) if modifications to the
aspin’s domain are limited to the code in the aspect itself.  The example described above
demonstrates one motivation for restricting access to the addObject() method to the aspins.
Another motivation is philosophical point number 3: the object should not be dependent on the
aspect.  If an object is making a call to addObject(), it is utilizing capabilities that can only be used
in the presence of aspects.  The simple instantiation of an aspect in an object actually makes the
object dependent on the aspect.  For that reason, we suggest that aspect instantiation also be
restricted to code that originates in the aspect.

COMMENTS ON P ROTECTION MECHANISMS

To what extent are aspects part of a class?  An aspect cuts across classes.  The part that cuts
across a class can be considered part of the class itself.  After all, in the AspectJ implementation,
the weaver actually makes the woven sections part of the classes they cut across.  If part of an
aspect is really part of a class then maybe it should have full access to the class data members.  On
the other hand, given that the aspect and the class are different entities, allowing the aspect full
reign over the class’ data members seems to violate information hiding.  It also violates our fourth
philosophical principle: aspects represent some feature or property of objects, but they do not
control the objects.  If an aspect has full reign over an object’s data members, then it can control
the object, and the functionality of the object can potentially be dependent on the aspect.

It is easy to argue that an aspect needs to be “over and above” the objects.  Consider a
synchronization aspect, which monitors access to several guarded data structures.  This
synchronization aspect needs to know which methods access these data structures, even if those
methods are private methods.  In order to see those private methods, the aspect must be “over and
above” the normal protection schemes of object-oriented programming.  Without full knowledge of
all of the methods that access the protected data structure, there could be a conflict if two
unguarded accesses are attempted at the same time.  This is an argument for allowing the aspect to
have knowledge of private information, but not an argument for allowing the aspect to control the
private information (i.e. modify the information).  For example, the synchronization aspect delays
the execution of a private method until the appropriate data structures are available, but the aspect
does not need to modify the method itself.

We propose that aspects be permitted to view class private elements, but not be permitted to
change them.  Whenever it seems that an aspect needs to modify a private element of a class,
several questions should be asked.  Does it make more sense for this private data member to be
public?  If an aspect needs to reach in and change the private element, is it also reasonable to
expect object to have a valid reason to reach in and change the element?  If so, the element should
be made available through the addition of inspectors and mutators.  Does it instead make more
sense for this private data member or method to be migrated to an aspect?  In an aspect, it may
simply be a data member of that aspect or it may be introduced by the aspect into the class.  If no
other object would ever have reason to modify the private member, it may make sense for that
member to be part of the aspect instead of the class.  Perhaps the aspect should be refactored into a
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class and related to the other classes through some inheritance mechanism.  However, the following
example illustrates a remaining difficult case.

There are several classes, and each class has a method that is related to a method in the other
classes.  We would like to collect these methods into an aspect to capture the crosscutting concern.
The methods all change data members which are private to their respective classes.  We want the
methods and the private data to be located together so that the state changes of the private data can
be seen easily. (See philosophical point number four.)  However, the private data members are also
modified by other methods within their respective classes, so moving the data members to the
aspect is not a viable alternative.  We now have three design goals competing against each other:
First, we want to capture a crosscutting concern into one place.  Second, we want classes to be
independent of the mechanism that captures the crosscutting concern.  Third, we want classes to
remain encapsulated entities, where we do not reveal to other objects any more than is necessary
and private data is not modified by the aspect.

We propose two possible solutions to this problem.  A first solution is delegation with access-
control lists.  With this solution, each class continues to have its respective method, but the
method’s body becomes a stub that merely invokes a method in the aspect (where the actual work
is done).  The stub passes as parameters to the method in the aspect any private data members that
need to be modified.  Because the stub is present and its body is merely a method invocation, two
important properties are provided.  First, it is still possible to look at only the class and tell when
the private data members are modified because the private data members are passed as parameters.
Aspects do not need to be able to reach in and touch the private data.  Second, because the body is
merely a method invocation, the class is not dependent on any knowledge of the aspects.  It is
dependent on the method, but in the absence of aspects the method could be provided by a class.
The bodies of all the methods are collected into the aspect, thus capturing the crosscutting concern.
The only question remaining is whether we have revealed more than is necessary.  If the methods
were originally private, we have.  All of the methods are now collected into a single aspect, but the
methods in the aspect are visible to everyone.  (Note that these are just methods in the aspect, not
methods that the aspect introduces somewhere else.)  If these methods were private in the first
place, we should not make them visible to everyone now.  Here, we propose the inclusion of access
lists similar to what will be described in detail in section three.  The access lists will ensure that the
only class that invokes the method is the class that originally contained it.

There is still one objection to this solution, which was raised earlier in this paper.  What effect does
this solution have on efficiency?  This solution requires an extra method invocation.  This is the
main reason why the ‘intercepting’ class was rejected as a solution for crosscutting concerns.  We
offer this solution recognizing that it is a variation of the already rejected “intercepting” class.  We
would like to mention two things about this solution and its efficiency.  First, the modularity and
independence of code that this method provides is more important than the lost efficiency of an
extra method invocation.  Second, compilers could be optimized to recognize this delegation for
what it is and actually substitute the body into the stub to remove the extra method invocation.
Kiczales argues in [Kic97] that an advantage of AOP is that it does not rely on smart compilers,
and that the “weavers’ job is integration, rather than inspiration.”  However, this compiler
optimization seems simple in comparison to the optimizations he was considering.
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A second solution is to allow aspects to modify both public and protected members of classes.
This gives the aspect a relationship to classes that is similar to subclasses and other classes within
the same package.  A flaw in this solution is that there may be circumstances where an aspect
should have access to a member that the subclasses or other package members should not have (or
vice versa).  If applicable, it may be possible to make the class final to prevent subclasses from
accessing protected members, since there would be no subclasses.  The problem with restricting
access to packages when access by an aspect is needed is a difficult one.  Either the delegation
method discussed above could be used, or perhaps another level of protection could be specified in
the Java language.  While adding more syntax could make the language overly complex, it would
clear up a lot of this confusion.  We feel intuitively that the need for this specific protection scheme
would not happen very often.  In any case, we hold that an aspect should not be permitted to
modify either the values of private data members or the functionality of private methods.

COMMENTS ON ABSTRACT METHODS

In the current implementation of AspectJ, an abstract method that is defined in a superclass may be
supplied either by a subclass or by an aspect that advises a subclass.  If an abstract method is
supplied by an aspect, then the class is incomplete without that method and the class is then
dependent on the aspect.  We hold that the class should not be dependent on the aspect, and
therefore suggest that the subclass should always implement the abstract method if it is part of the
signature of any ancestor.

It is very likely that the different implementations of an abstract method will all be related.  In that
case, it makes sense to have those implementations collected into an aspect.  However, if all of the
implementations are in the aspect, it also makes sense to have the declaration of the abstract
method itself introduced from the aspect.  By doing this introduction, the removal of the aspect
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would still remove the implementations of the abstract method, but it would also remove the
specification that the method was necessary.  The class, therefore, is not dependent on the aspect in
this design.

It is less likely, but still possible, that some implementations of an abstract method will be related
while others are not related.  The programmer may want to group a subset of the implementations
of an abstract method into an aspect, while excluding other implementations.  Our proposition
above will not work.  In this case, the superclass can declare the abstract method.  Some subclasses
will contain an implementation for the abstract class.  Some implementations will be in an aspect.
However, the implementation is not provided through an introduce weave.  Instead, we propose a
new type of weave: an instead weave.  In order that the subclasses are still complete, they should
all have an "implementation" for the abstract methods of the superclass.  Some of those
implementations, however, should be null implementations.  An instead weave will replace a null
implementation with the implementation described in the aspect.  Any attempt to give instead
advice to a method that has a non-empty body should result in an error.

An alternative would be to use the introduce syntax but have the weaver automatically replace the
null implementation rather than giving a multiply-defined error.  The instead syntax is more
explicit, but the introduce syntax would keep the language syntax to a minimum.  In any case, all
abstract methods declared in a superclass should (for completeness) be mentioned in the subclass,
and not merely introduced by an aspect.
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The following code example shows an implementation of the structure represented in the above
figure.

class A {
  abstract void foo();
}

class B extends A {
  void foo() {}
}

class C extends A {
  void foo() {}
}

class D extends A {
  void foo() { /* D’s foo implementation
                  (unrelated to B’s or C’s) */ }
}

aspect FooAspect {
  advise void B.foo() {
    static instead { /* B’s foo implementation */ }
  }

  advise void C.foo() {
    static instead { /* C’s foo implementation */ }
  }
}

--OR--

aspect FooAspect {
  introduce void B.foo() { /* B’s foo implementation */ }
  introduce void C.foo() { /* C’s foo implementation */ }
}

In the SpaceWar example that is included with AspectJ 0.3 alpha 3, there is a section of the code
where all implementations of a particular abstract method are contained in an aspect.  The
declaration of the abstract method itself is contained in a class though.  Moving the declaration of
the abstract method to the aspect would be a better design decision, but the declaration of the
abstract method originates in a Java AWT class.  Additionally, the current development of AspectJ
does not support introduce weaves for abstract methods.  We attempted to move an abstract
introduce weave to an aspect, but the AspectJ compiler had an internal error.  When we discovered
this bug, we contacted the AspectJ technical support staff and were informed that the bug that
relates to introducing abstract methods will be corrected in future releases.  We initially suggested
a design change to SpaceWar that would move an abstract declaration to an aspect, and we
received positive feedback on the suggestion. [EMa99]  This was before noting that the abstract
method was actually inherited from the Java AWT class.  Because the abstract method is present in
the signature of the superclass and cannot be removed, we now suggest a design similar to Figure 2
rather than Figure 1.
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COMMENTS ON EXCEP TION HANDLING

Exception handling tends to create many issues in programming language design.  These
complexities occur not so much due to exception handling itself, but through its interactions with
other language features.  As would be expected, the introduction of AspectJ into Java creates some
interesting situations.  There is not much specified about AspectJ concerning how exceptions
should be handled.  This section will attempt to create a few guidelines for using exceptions within
aspects, based upon our design philosophy.

When a method throws an exception, it is generally thought that the best place in which to handle
that exception is the caller.  This is why exceptions are generally propagated up the dynamic call
chain, rather than the static scoping chain.  Aspects create an ‘exception’ to this rule, however.
When an aspect advises a method, it could potentially throw an exception.  The calling
environment is not generally suited to handle this exception because it could be something entirely
unrelated to the method’s intended functionality.  To illustrate, let us return to the land of dragons
and hunchbacks.

A hunchback is delivering a message to a mailbox with a giant division symbol painted on it.  The
message contents say, “What is 2 divided by 2?”  The hunchback dutifully places the message in
the mailbox, and awaits a response.  While waiting, he falls into a deep sleep.  A dragon appears,
and swoops into the mailbox to retrieve the message and read its contents.  She won’t change the
message at all, and normally would place the message back into the mailbox before the hunchback
awakes.  However, this time the dragon gets really confused while flying around with the message,
and can’t place the original message back in the mailbox.  Instead, she panics and places a message
in the mailbox that says, “I don’t know what the color ‘red’ means.”    The hunchback retrieves the
message from the mailbox after he wakes up, and returns the answer back to the sender.  The
sender looks over the message and is also thoroughly confused.  He either expected an answer like
the number 1, or some kind of message like, “I’m sorry, but you can’t divide a number by zero.”
Instead, he gets this silly message about the color red.  The sender of the message panics along
with the dragon, and no further messages can be sent.

This example tries to point out (without referring to any language or syntax) that advice (i.e. the
dragon flying with the message) should not throw error messages back to the caller.  The caller is
generally not equipped to handle these messages.  Instead, it makes more sense if the aspect is
forced to catch its own exceptions.  This would be analogous to the dragon handling the error
message concerning the color red, and then being able to place the original message back in the
mailbox as expected.  Therefore, if a throw occurs in any advice that throw needs to be caught by a
catch advice.  If a throw is present in an advice without a catch, this should result in a compile
error.

This above suggestion solves the problem concerning exceptions mentioned in [FAJ99].  The
problem in the FAQ is introduced when an exception is thrown in a piece of advice.  Because the
exception is not required to be caught by the advice itself, it is thrown to the calling environment.
This requires that the advised method have a throws clause in its signature. While there are less
than elegant ways of handling this problem, there is no support in AspectJ to handle this.  We do
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not think support for this should be added, however, as it would violate our principles by changing
the signature of the affected method.  Instead, all throws that occur in advice should be caught by
an appropriate catch clause in that advice.

Some other problems occur when introduced methods throw exceptions.  If a method is introduced
into a class (or multiple classes), the signatures of these classes should remain the same.
Therefore, these methods should be allowed to throw exceptions as part of their interfaces.  This is
currently not supported in the current release of AspectJ.  A future release of the weaver will
provide support for declaring introduced methods with throws clauses.  [EMa99]  It intuitively
makes sense to allow this behavior, because the interface of the class does not change whether or
not an introduced method throws an exception.  Furthermore, the only places this exception could
be thrown (given the restrictions of our design philosophy) are: back into the aspect itself (a
member function or another introduced method) or into the advice section of a class’ method.  In
either of these cases, the calling instance has scope in both the affected class and the associated
aspect, providing it with as much information about the cause of the error as possible.

A slightly different case of the above occurs when the introduced method is replacing (via the
instead mechanism, perhaps) a stub for an abstract method implementation.  In this situation, the
introduced method should not throw an exception, as that would change the signature of the
subclass’ implementation to be different from the parent’s abstract method signature.  However, if
all instances of an abstract method are present in the aspect (i.e. no stubs, and the abstract method
is introduced into the superclass) then it makes sense to allow that method to throw an exception,
as every instance of that method’s signature will change accordingly.  This case is similar to the
one described in the above paragraph.

COMMENTS ON ASP ECTS AND ORTHOGONALITY

Orthogonality is stated as the principle that, “Independent functions should be controlled by
independent mechanisms.” [Mac87]  This means that multiple language constructs should not have
overlapping functionality.  Complete orthogonality is difficult to achieve in programming
languages without making the language overly complex and difficult to use (i.e. ALGOL68), but it
is still important to maintain some level of separation between language constructs.  Not everyone
agrees with this particular principle [Wal99], and we also question the degree to which a
programming language should strive to be orthogonal. However, we think some degree of
orthogonality is necessary.

The overlapping functionality provided by aspects and classes is a clear violation of this principle.
A programmer can create an aspect that behaves identically to a class.  This means that there are
two programming constructs with which to create classes.  A mechanism for preventing this abuse
of aspects was mentioned in an earlier section.  If aspect instantiation is restricted so that it only
can occur inside of aspect code, aspects cannot provide the same functionality as classes.  This
significantly reduces the amount of overlap between the two constructs.
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A related question is: should aspects be permitted to inherit from classes and should classes be
allowed to inherit from aspects?  Currently, this is permitted.  This does not make sense when the
definitions of aspect and class (i.e. component) are considered.  If a component is a result of the
system’s functional decomposition, it is itself a functioning unit.  It can inherit from other
functional units, but should not be allowed to inherit from aspects because they are not functional
units themselves.  A related issue is that there is a bug in the current implementation of AspectJ
that is caused by circular inheritance.  See [EMa99] for more details.
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3 – Aspects and Non-Object Oriented Languages

DO AP SECTS AP P LY TO P ROCEDURAL LANGUAGES?

In object-oriented programming, a program is partitioned into objects representing real world
entities.  Within this program, various aspects may be spread over several objects.  Aspect oriented
design was developed to deal with these crosscutting concerns in object-oriented programming
languages.  However, one is forced to question whether these crosscutting concerns are a direct
result of object orientation, or whether crosscutting concerns exist in other programming language
paradigms.  This question was briefly addressed in the AOP workshop at ECOOP97.  Their
conclusion can be succinctly stated as follows:

Further we can state that aspect-orientation is not bound to object-orientation only.
All existing programming paradigms like procedural, functional, logical and
object-oriented paradigm provide models to express real world entities. [AEC97]

Given that crosscutting concerns exist independently of the programming paradigm used, how does
one identify these concerns in different paradigms?  More specifically, what types of crosscutting
concerns exist in procedural languages?

Not surprisingly, crosscutting concerns in procedural languages are quite similar to those in object
oriented languages.  Different procedures may need to share data and/or other procedures, and it
may be desirable to insert additional code into certain procedures. At first glance, it appears that
the first two of these crosscutting concerns could be solved using object orientation.  Objects are an
encapsulation of data and procedures that utilize this data.  However, as in object oriented
programming, there are crosscutting concerns that do not encapsulate nicely into a single object.
Examples include debugging aspects, synchronization aspects, and display aspects as have been
previously discussed.

Currently, within procedural languages, procedures can share data and other procedures either
through parameter passing mechanisms or through a common name space.  When procedures need
to share a large number of items, parameter passing can become awkward.  Thus, programmers
will often resort to utilizing shared name spaces.  In block structured languages, the name space is
partitioned into a hierarchical block structure in which the name space of an outer block is visible
to that block’s inner blocks.  Therefore, if procedures P1 and P2 wish to have access to procedure
P and variable V, then P and V need to be declared either in the same block as P1 and P2, or in a
block outside of it, as can be seen in the following code example:
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procedure foo;
begin

var V: real;
procedure P;

begin
{ procedure body }

end
procedure P1;

begin
{ invoke P }
{ access V }

end
procedure P2;

begin
{ access V }
{ invoke P }

end
end

In the C language, name spaces are either local and visible only to a specific procedure, or global
and visible to all procedures.  The global name space in C can be partitioned by encapsulating
components of a program into a single file and making certain variables and procedures static to
that file.  Thus, to continue our example, in the C language, P1, P2, P, and V can be placed in the
same file where P and V are declared static:

static float V;
static void P();

void P1()
{

/* access V */
/* call P */

}

void P2()
{

/* access V */
/* call P */

}

Thus, it should be clear how block structured languages and C can use a shared name space to
allow procedures P1 and P2 to access the procedure P and the variable V.

However, there are clear limitations to the scoping mechanisms in both block-structured languages
and in C.  In [Wul73], Wulf and Shaw identify four distinct problems with block structured
languages: side effects, indiscriminate access, vulnerability, and no overlapping definitions.  In
block structured languages, side effects can arise from the fact that a variable defined in an outer
block can be modified by a procedure defined in an inner block.  Thus, it may not be apparent
when that inner function is used that the variable defined in the outer block will be modified.  Side
effects occur in almost all programming languages and do not provide limitations in expressing
crosscutting concerns.  Indiscriminate access and vulnerability are problems specific to block
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structured languages and the existence of these problems suggests that block structure is not an
effective mechanism for expressing crosscutting concerns.  The lack of overlapping definitions
captures an inherent problem with block structure for expressing certain types of crosscutting
concerns.  The C language does not allow a nested block hierarchy, and thus does not suffer from
the problems of indiscriminate access and vulnerability.  However, it too fails to provide support
for overlapping definitions.  It is our contention that by providing an aspect construct within a
block structured language or a language such as C, these problems can be solved and the
limitations can be overcome.

Indiscriminate access is a fundamental problem with block structured languages.  It involves the
inability to prevent access to variables or procedures when that prevention is desired.  The classic
example of indiscriminate access involves a stack implementation, in which the stack data structure
must be at least within the same block as the push and pop procedures, if not in an outer block.  As
a result, any procedure that wishes to access the push and pop routines will by default have access
to the data structure as well.  Vulnerability is the complement of indiscriminate access in that it
may be impossible to preserve access to a variable when such preservation is desired.
Vulnerability can occur when a procedure in an inner scope modifies a variable defined in an outer
scope.  Then if the program is modified and a new block containing a variable of the same name is
inserted between the other two, then the inner procedure will no longer be accessing the correct
variable.  The final problem with block structured languages is the lack of provision for
overlapping definitions:

Suppose that we have three procedures P1, P2, and P3 that wish to share two variables V1 and V2
in the following manner: P1 and P2 share V1, P2 and P3 share V2, P3 should not be able to access
V1, and P1 should not be able to access V2.  It is impossible to implement this type of relationship
in a block-structured language, as can be seen in the following code segment:
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procedure overlap
  begin

var V1: real;
var V2: real;
procedure P1

begin
{ can access V1 }
{ but can also access V2! }
end

procedure P2
begin
{ can access V1 }
{ can access V2 }
end

procedure P3
begin
{ can access V2 }
{ but can also access V1! }
end

...
  end

As can be seen, P1, P2 and P3 must all be placed in the same block, and V1 and V2 must be
placed either in the same block as the procedures or in an outer block.  In this manner, the last two
restrictions of the relationship will be violated as P1 can access V2 and P3 can access V1.  In this
case, a crosscutting instance exists which block structure cannot express.  Thus, it is clear that
block structure is not an effective mechanism for capturing crosscutting concerns due to the
potential programming problems it can cause (indiscriminate access and vulnerability), and its
inability to capture certain types of crosscutting (overlapping definitions).

The C programming language does not manage its name space in a nested block hierarchy, and
subsequently does not suffer from the problems of indiscriminate access and vulnerability.
However, name space management in C does not solve the problem of the lack of overlapping
definitions, as can be seen in the following example:

static float V1, V2;

void P1()
{

/* can access V1 */
/* but can also access V2! */

}
void P2()
{

/* can access V1 */
/* can access V2 */

}
void P3()
{

/* can access V2 */
/* but can also access V1! */

}
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As can be seen, the only way to implement the relationship would be to have P1, P2, P3, V1, and
V2 all in one file with V1 and V2 static to that file.  However, in this case P3 can access V1 and
P1 can access P2 which violates the relationship.  Thus, whereas the C programming language
appears to be somewhat better than a block structured language in capturing crosscutting concerns,
it still cannot properly express an instance of overlapping definitions.

It is our contention that aspects can be used as a mechanism to extend the scoping rules of
procedural languages to capture crosscutting concerns without raising the problems of
indiscriminate access and vulnerability, as well as providing a means of expressing overlapping
definitions.  An aspect can be used as a container to store specific variables and procedures.  Then,
access to this aspect could be specified on a procedural level, meaning that only certain procedures
can access a particular aspect, regardless of their nesting in a block structured language or location
in a particular file in a C program.  The details of instantiating an aspect and providing access to it
will be discussed in a later section, as there are several complicated issues that arise.  However,
assuming that this can be done, it is clear how aspects can solve the three problems of
indiscriminate access, vulnerability, and no overlapping definitions by providing a new name space
that is only accessible by certain procedures.

By using an aspect, multiple procedures can share a variable without having to rely on nested block
structure, as is indicated by the following code segment:

aspect A
accessed by P1, P2;
begin

var V: real;
end

procedure P1;
begin

{ access V }
end

procedure P2;
begin

{ access V }
end

Furthermore, access to this variable can be prevented by limiting access to the aspect to only those
procedures that need to share the variable.  To preserve access to the variable, the procedure would
know that it is accessing a variable in the aspect and not one in an outer scope.  Thus, it should be
possible to prevent a procedure from accessing an incorrect variable due to name clashes, as is the
case in the vulnerability problem.

Additionally, the extended scope that an aspect could provide will allow for overlapping
definitions.  Consider the above example of overlapping definitions in which P1 and P2 want to
share V1; P2 and P3 want to share V2; but we do not want P1 to access V2 or P3 to access V1.
This could be accomplished with two aspects A1 and A2, as demonstrated in the following code
sample:
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aspect A1
accessed by P1, P2;
begin

var V1: real;
end

aspect A2
accessed by P2, P3;
begin

var V2: real;
end

procedure P1;
begin
{ can access V1 }
{ cannot access V2 }
end

procedure P2;
begin
{ can access V1 }
{ can access V2 }
end

procedure P3;
begin
{ can access V2 }
{ cannot access V1 }
end

Note that aspect A1 contains V1 and is accessible by both P1 and P2, and A2 contains V2 and is
accessible by both P2 and P3.  In this manner, P1 cannot access V2 because it is contained in
aspect A2, which is not accessible to P1.  Access to V1 is similarly prevented.

At the conclusion of their paper, Wulf and Shaw identify several properties that a “suitable
alternative” to block structure will possess.  These include:

• The default should not be to extend the scope of a name to inner blocks

• The right to access a name should be by mutual agreement between creator and
accessor

• Access rights to a structure and to its sub-structures should be decoupled  [Wul73]

It is worth noting that aspects satisfy these three specific criteria.  Because access is on a
procedural level, if a certain procedure has access to an aspect, a procedure in an inner block will
not have access to that aspect unless it is specifically given.  A variable or procedure in an aspect
will only be accessible to those procedures specified in the aspect, thus satisfying the second
property.  Finally, because sub-structures can be stored in aspects rather than at a particular
scoping level, access to the structure will not imply access to its substructures.
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Thus it should be clear that aspects are a valid alternative for capturing crosscutting concerns in
procedural languages.  By providing a new name space with limited access, aspects can provide
more crosscutting capabilities than block structure and C scoping mechanisms, without the
associated problems and limitations.  However, whether aspects are a viable alternative is an
entirely different question.  The next section will discuss many of the semantic and syntactic issues
associated with implementing aspects in a procedural language.

SEMANTIC AND SYNTACTIC ISSUES F OR ASP ECTS IN P ROCEDURAL LANGUAGES

Upon approaching Kiczales with our ideas for applying aspects to procedural languages, he replied
with the following:

I definitely agree with what you are saying!  Definitely aspects can and should be
applied to procedural languages.  And one kind of cross-cutting structure they
should be able to capture in a procedural language is the issue of sharing data
across a set of the procedures.  …  I think its a winning idea, there are some subtle
issues that will have to be worked out that should prove fun to take on. [EMa99]

We had some ideas as to what types of “subtle issues” were involved, but, we felt it was important
to determine what types of issues he was referring to.  In his reply, he stated:

Well I think the scoping and state issues are going to be the trickiest. The issues
will be what are the analog of aspect instances? [EMa99]

Thus, we have endeavored to determine how aspects will exist in a procedural language.  Important
questions we have attempted to answer are:

• Given that aspects contain variables to be shared across procedures, will the variable bindings
be shared across procedures in general, or across specific procedure invocations?

• If they are to be shared across invocations, what exactly does that mean?
• How are components of aspects referred to within procedures?
• How will protection of an aspect’s components be accomplished?
• How can static advising be accomplished?

Our analysis of these questions will follow and then we will discuss a possible implementation.  As
in the case of AspectJ, it is our belief that some of the answers to these questions will have to be
determined through user feedback.  Thus, we will discuss several options for some of these
questions.  We also include our analysis of which choices may prove to be correct.
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Given that aspects contain variables to be shared across procedures, will the variable bindings
be shared across procedures in general, or across specific procedure invocations?

There does not appear to be a simple answer to this question.  Variables within aspects can be
viewed as global to those procedures that have access to the aspect.  In this case, the aspect would
be instantiated once during elaboration, and the variables would be bound to the specific
procedures once.  Thus, the variables would remain static to the procedures throughout the
execution of the program.  It is not entirely clear whether this would be beneficial or not.  This
solution will in effect, create limited access global variables.  The other option involves creating an
instance of the aspect each time the procedures are invoked, resulting in a more localized binding.
If this option is chosen, the behavior of these aspects will have to be carefully specified.  Which
option would be preferable to programmers is not clear, however, it seems that a dynamic
instantiation of aspects with regards to procedure invocation is the more general case.  For
example, a global static instantiation of an aspect could be accomplished by having it instantiated
by the main procedure in the program.  Thus, since dynamic instantiation subsumes a global static
instantiation, we feel that it is the correct design decision.

If bindings are to be shared across invocations, what exactly does that mean?

It may be the case that programmers will want the variables contained in an aspect to be bound and
initialized on each procedure invocation.  However, what exactly does this mean?  Does this mean
that the variables are bound when any procedure associated with the aspect is invoked?  Clearly,
this will not be very effective in sharing variables across procedures.  Consider the following
example:

aspect foobar accessed by foo, bar
{

float V;
}

void foo()
{

/*calls bar a bunch of times */
}

void bar()
{

/*modifies V */
}

int main()
{

/* call foo a bunch of times */
/* what will be the value of V after each call to foo? */

}
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Suppose that functions foo() and bar() wish to share a variable V, and that foo() calls bar().  To
accomplish this, we will define an aspect foobar, that contains the variable V and is accessible by
both foo() and bar().  If V is bound on each procedure invocation, then V will be re-initialized upon
the call to bar(), thus preventing the procedures from sharing the variable.  It seems that re-
instantiating foobar each time any accessing procedure is called is not very useful.

Thus, we have decided that it will be necessary to associate an aspect with a “parent” function.  In
this case, a new instance of the aspect will be created upon each invocation of the “parent”
function.  It is assumed that the parent function will invoke any procedures that will access the
aspect.  In the previous example, foo() would be the parent function of foobar, so that upon each
call to foo(), a new instance of foobar will be created, causing the variable V to be bound to that
particular invocation of foo().  As a result, V will also be bound at this time to any procedures that
foo() may call that can also access V, namely bar().  This will effectively allow the functions foo()
and bar() to share the variable V while still allowing V to be bound on each invocation of foo().

How are components of aspects referred to within procedures?

This is an entirely syntactic question.  To continue our example, how will the functions foo() and
bar() refer to the variable V.  We believe that there are two possible solutions to this problem as
indicated in the following code sample:

aspect foobar accessed by foo, bar
{

float V;
}

void foo()
{

/* access V by name */
V++;

}

--------------OR--------------

void bar()
{

/* access V using dot notation */
foobar.V++;

}

One solution is to allow them to simply use the name V.  Another possibility is to refer to
components of an aspect using the name of the aspect.  The familiar dot notation could be used to
accomplish this.  In this manner, foo() and bar() would access V as foobar.V, rather than simply
by the name V.  We believe that referring to a component of an aspect by name alone is not the
correct choice.  Because procedures access aspects, rather than having aspects introduce
components to procedures, it should be clear to the programmer that the variable or procedure
being accessed is contained in the aspect, rather than in the current name space.  Finally, by
coupling the name of the component with the name of the aspect, we can greatly reduce potential
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name clashes.  This may seem to violate our design philosophy, but as will be discussed later, our
design philosophy applies only to aspect-oriented programming over objects.

How will protection of an aspect’s components be accomplished?

The core reason for adding aspects to a procedural language is to be able to express the
crosscutting that can occur among procedures.  To accomplish this, we need to be able to protect
the components of an aspect from being accessed by other procedures that are not allowed to.  In
our above example, how can we prevent an evil_foo() procedure from accessing V, if it is not
allowed to access the foobar aspect.  Our solution is to “borrow” a familiar concept from operating
systems: access control lists.  The reader may have noticed the accessed by keywords associated
with each previously defined aspect.  These keywords are used to specify which procedures are
able to access the aspect.  Thus, within the aspect foobar, it can clearly be specified that the
variable V can only be accessed by the procedures foo() and bar(), and that any other procedure
(such as evil_foo()) should not be allowed to access V.  One interesting design decision is whether
individual components of an aspect should have their own access control lists or there should be
one access control list for the entire aspect.  Whereas AspectJ introduces variables and methods
“one at a time,” we feel that a single access control list for the entire aspect will suffice.  Since the
aspect is attempting to capture crosscutting concerns across a set of procedures, these procedures
should be able to access everything contained in the aspect.  It may prove true that programmers
will wish to limit access at a component level, rather than an aspect level, however, it is our
contention that the majority of the time, programmers will wish to grant access to the entire aspect.

How can static advising be accomplished?

To express crosscutting concerns in procedural languages, we have described how aspects can be
used to extend the name space in these types of languages.  However, further crosscutting concerns
can be expressed by allowing aspects to statically advise different procedures.  We feel that this
can be accomplished in a similar manner to the way it is implemented in AspectJ.  A pre-processor
can be utilized to weave the additional code into the appropriate procedures.  This will allow
aspects of the program that are implemented in different procedures to potentially be encapsulated
in one central mechanism.
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A P ROP OSED IMP LEMENTATION F OR C

We have given considerable thought to how aspects may be implemented in the C programming
language.  Many of the techniques utilized should generalize to other procedural languages.  We
have designed an implementation based entirely on pre-processing, with minimal run-time support
necessary to implement aspects in the C language.

The simplest issue to implement for aspects within a procedural language is static advising.  As
previously stated, any advised code can be woven into the appropriate procedures by a pre-
processor.  To provide protection, access control can be implemented through the pre-processor as
well.  As it parses the code, it can determine whether a particular procedure is allowed to access a
particular component of an aspect based on the control list, and generate an error whenever an
illegal access is attempted.  In this manner, the variables and functions contained within an aspect
can be protected.  Once it has been determined that all accesses to components of aspects are legal,
we need some mechanism to make the components of the aspects visible to the procedures.  Since
aspects can contain both variables and functions, we should examine each one separately.

Since the pre-processor has already enforced protection, it will be safe to make the component
functions of the aspect globally visible.  Thus, all functions inside an aspect can be made globally
visible to the entire program.  To prevent name clashes and improve readability of the processed
code, it may prove useful to modify the names of the functions to indicate their membership in an
aspect.  Consider the following example:

aspect foobar accessed by foo, bar
{

int X = 13;
   int Y = 10;
   int Z;

void fooey();
}  parent main;

void foo()
{

foobar.fooey();
}

void bar()
{

foobar.Y--;
foobar.Z = foobar.X + 42;

}

Here the aspect foobar contains a function fooey(), which is called by the function foo().  One
possible choice for fooey()’s new signature could be _foobar_fooey().  Now all references to
fooey() within the program can be replaced with _foobar_fooey(), as shown here:
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void foo()
{

_foobar_fooey();
}

The final issue to be examined involves how the variables within an aspect will be handled.  Since
aspects are associated with a parent function, we have developed two different strategies to support
this feature.  Both strategies involve encapsulating the variables of an aspect into a single C
structure.  One way to support dynamic instantiation is to make this structure a local variable of
the parent function.  This will allow all of the variables to be instantiated on each invocation of the
function.  Then, a pointer to this structure can be passed as an extra parameter to any function that
is called by the parent.  The pointer will keep being passed down as those functions make
additional function calls.  In this manner, the structure will now be visible to all functions that are
directly or indirectly called by the parent.  It may be the case that certain functions that are called
should not be able to access the aspect, however, since protection was already enforced by the pre-
processor, it will not be a problem to pass the pointer to them.  Then, all references to variables
contained within the aspect can be replaced with a reference to the structure, as seen in the
following example:

/* inserted by pre-processor */
struct _foobar
{

int X;
int Y;
int Z;

}
/* end inserted by pre-processor */

int main()
{

/* inserted by pre-processor */
struct foobar _foobar_aspect;
_foobar_aspect.X = 13;
_foobar_aspect.Y = 10;
/* end inserted by pre-processor */

/* additional code in main*/

foo(&_foobar_aspect);

/* additional code in main*/

return 0;
}

void bar(struct foobar *_foobar_aspect)
{

/*pointer to structure containing variables passed in */
_foobar_aspect->Y--;
_foobar_aspect->Z = _foobar_aspect->X + 42;

}
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This scheme will allow for dynamic instantiation of an aspect upon invocation of its parent
function, and still allow the necessary procedures to access the aspect.

A second solution to this issue involves associating a stack with each aspect.  Thus, upon
invocation of the parent function, a pointer to a new instance of the structure will be created and
pushed on the appropriate stack.  This stack will be globally visible to the entire program;
however, since access control has already been enforced, this is not a violation of the protection
scheme.  Then, when a procedure references a variable contained in an aspect, it will simply access
the instance of the structure that is on top of the stack.  This is shown in the following code
segment:

/* inserted by pre-processor */
struct _foobar
{

int X;
int Y;
int Z;

}
/* end inserted by pre-processor */

int main()
{

/* inserted by pre-processor */
struct _foobar _foobar_aspect;
_foobar_aspect.X = 13;
_foobar_aspect.Y = 10;
_aspect_push(&_foobar_aspect,_foobar_stack);
/* end inserted by pre-processor */

/* additional code in main */

foo();

/* additional code in main */

/* inserted by pre-processor */
_aspect_pop();
/* end inserted by pre-processor */

return 0;
}

void bar()
{

struct foobar *_foobar_aspect;
/* accessing top of aspect stack to retrieve instance */
_foobar_aspect = (struct foobar *)_aspect_top(_foobar_stack);
_foobar_aspect->Y++;
_foobar_aspect->Z = aspect->X + 42;

}
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In this manner, any procedure that needs to access the aspin may do so by accessing the globally
visible stack.  The aspin is popped off of the stack upon termination of the parent function.

It is unclear which implementation will provide better run time performance, however they both
appear to provide the necessary functionality.

The above-described pre-processor should enable aspects to be implemented for the C
programming language.  It provides capability for static weaving, access control for components of
the aspect, and dynamic instantiation of aspects with respect to a parent function, by implementing
each of these features in standard C code.  The processed code can then be sent through a standard
C compiler to produce the program.  The only additional run time overhead will result from
accessing the variables in an aspect, either by passing the pointer or by accessing the top of the
aspect stack.

DISCUSSION OF ASP ECTS IN P ROCEDURAL LANGUAGES

It is clear that aspects play a different role in procedural languages than they do in object-oriented
languages.  We feel this is a result of the fundamental differences between the paradigms.  As
previously stated, a component of a program is a modular unit of functional decomposition, which
addresses a specific concern or function of the program.  Within an object-oriented language, a
component is implemented as an object whereas in a procedural language, a component is
expressed as a procedure.

The fundamental basis for our aspect design philosophy for object-oriented languages is that an
object is a "something" (Philosophical point 1).  Starting from there, we have attempted to separate
objects and aspects.  However, if an object is a "something," then a procedure can be viewed as
"part of something," and as such, should not be completely orthogonal to aspects.  Thus, it is
apparent that our design philosophy for co-composing aspects and objects does not have a direct
corollary in procedural languages.  For example, procedures are both aware of and dependent on
aspects.  Not only do procedural hunchbacks see the dragons, but they occasionally need their
explicit help to get where they are going.
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4 – Summary of Suggestions

1. The term aspin should be introduced as an accepted abbreviation for “aspect instance.”

2. Apect instantiation and control of the aspin’s domain should be limited to code originating in
the aspect.

3. Aspects should be permitted to view class private elements, but not permitted to change them
without going through the same interfaces available to other classes (preserving encapsulation).

4. Abstract methods that are part of the signature of a superclass must remain part of the
signature of a subclass.

5. Abstract methods that are introduced to a superclass by an aspect should also be implemented
by an aspect for all subclasses that implement the abstract method.  This introduction does not
affect the signatures of the classes.

6. To support an aspect that implements a subset of the abstract implementations, we propose
instead weaves to be implemented either with the addition of an instead keyword or the
addition of an overwriting property of the introduce weave.  In both cases, the abstract
method’s signature must be present in the subclass, while the implementation is contained in
the aspect.

7. Throwing an exception in a piece of advice changes the interface of the advised method.
Therefore, we suggest that any exceptions thrown in advice should also be caught in advice.

8. Classes and aspects should be orthogonal concepts as much as possible.  They should not be
able to inherit from each other.

9. Access control lists should be available in aspects as a language construct.

10. Aspects should be applied to programming paradigms other than OO.

11. The dragon and hunchback illustration used throughout this paper should be accepted as the
canonical analogy to describe Aspect Oriented Programming.  Furthermore, O’Reilly
Publishers should create a book entitled Aspects in a Nutshell that has a dragon and a
hunchback on the cover.
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5 – Concluding Remarks

We believe that Aspect Oriented Programming is a significant step forward in the evolution of
programming languages.  Specifically, we recognize that the modularization of crosscutting
concerns is of utmost importance in constructing readable, complete and maintainable code.
Object orientation provides a solid foundation upon which to model the functional decomposition
of many problem domains into components, which can be arbitrarily composed with each other.
AOP provides a mechanism for encapsulating crosscutting concerns into modules that can be co-
composed with the components that OO provides.  We have also discussed how AOP can be
applied to other programming paradigms as well, where the components are not necessarily
objects.

Our philosophy of design grew out of an attempt to balance a number of generally accepted design
principles that tend to work against each other.  In particular we want to enable aspects to do their
job of providing abstraction and automation, while still maintaining the principles of information
hiding and manifest interface.  We feel that the decision to grant a large degree of freedom to
AspectJ’s user base is a good idea.  We understand that many of the decisions concerning language
features have often been left up to user feedback and actual use cases.  We present these guidelines
in the hopes that the AOP community will move towards this more restricted view of how aspects
should be used.  This is to prevent users from maliciously using language features to violate
traditional programming principles.  Aspects are principally useful for improving maintainability
and should not be abused solely to improve writability.

Our suggested changes are based primarily upon the principles stated in our Philosophy of Aspect-
Oriented Programming.  The changes are not terribly complicated, but they do represent significant
design changes from the current implementation.  These are summarized in section 4.

It is May of 1999.  The dragons are running wild.  They tear giant holes in walls.  They call them
doors.  They shatter the glass ceilings.  They fly in at will. The hunchbacks are running scared.
The sanctity of the home must be restored.  The wizards must cast a spell.  The dragons will be
tamed.

Special thanks to Megan Pealer of Lehigh University for her assistance in constructing and
proofreading this document.

Special thanks to Gregor Kiczales and Jim Hugunin of Xerox PARC for their invaluable
assistance.
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Appendix – Correspondences with Xerox PARC

From To Date Time Subject
Group Kiczales, G. 4/15/99 11:11AM AOP and mixin
Kiczales, G. Group 4/15/99 11:42AM RE: AOP and mixin
Group Kiczales, G. 4/22/99 2:42PM Question regarding AOP and Procedural

Languages
Kiczales, G. Group 4/22/99 9:08PM RE: Question regarding AOP and Procedural

Languages
Group Kiczales, G. 4/22/99 9:57PM AOP and “reaching in”
Kiczales, G. Group 4/22/99 10:17PM RE: AOP and “reaching in”
Group Kiczales, G. 4/23/99 9:44AM RE: AOP and “reaching in”
Group Kiczales, G. 4/28/99 1:33PM RE: Question regarding AOP and Procedural

Languages
Kiczales, G. Group 4/28/99 2:09PM RE: Question regarding AOP and Procedural

Languages
Group Kiczales, G. 4/29/99 4:33AM RE: AOP and Aspect Instances
Group Kiczales, G. 4/29/99 4:28PM RE: Question regarding AOP and Procedural

Languages
Kiczales, G. Group 4/29/99 5:33PM RE: Question regarding AOP and Procedural

Languages
Group Kiczales, G. 4/29/99 7:15PM AspectJ and Exception Handling
Kiczales, G. Group 4/29/99 8:23PM spec
Group Kiczales, G. 4/30/99 12:19PM RE: Question regarding AOP and Procedural

Languages
Group AspectJ

Support
5/2/99 11:42AM Introducing Abstracts

Hugunin, J. Group 5/3/99 1:03PM RE: Introducing Abstracts
Group AspectJ

Support
5/4/99 6:53PM Introducing a method that Throws an exception

(Bug report)
Group Kiczales, G. 5/4/99 7:27PM RE: spec
Kiczales, G. Group 5/4/99 8:26PM RE: spec
Hugunin, J. Group 5/4/99 8:26PM RE: Introducing a method that Throws an

exception (Bug report)
Group AspectJ

Support
5/6/99 3:07PM Bug with cyclic inheritance


