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Abstract

Industrial praditioners require mnstant improvements in the software develop-
ment process and the quality of the resulting product in aorder to satisfadorily build larger
and more complex software systems. Academia praises formal specificaiontechniques as
a means to achieve these goals, yet formal spedfication has not been widely adopted by
induwstry. The focus of this research is to study the disparity between industry and aca-
demiain their experiencewith formal specification methodks.

During the specification of a significant software system, a control system for a
nuclear reactor, it became dear that the use of formal specificaion methods had paential
benefits, but there were practical requirements that were not being met. Previous evalua-
tions of formal spedfication failed to identify many of these flaws and a new comprehen-
sive gproach based onthe requirements of the current software development processis
needed.

A comprehensive gproach to evaluation was developed as part of this research.
The evaluation method presented here does not examine theoretical qualiti es of language
form and structure, rather it examines basic but vital pradical issuesinvolving the nota-
tion, tods, and methods for using them.

There were two oljedives for thisreseach:

* to identify these practical requirements and create alist of criteria for formal
spedfication methods

» toevaluate severa formal specification methods based onthese criteria.

The aiteria were systematicdly derived from current software development prac-

tice. This derivation links the criteria with specific activities in the software development



process and supports their inclusion in the evaluation. Using this set of criteria, an evalua-
tion of three formal specification methods, Z, PVS, and statecharts, was conducted by
developing and examining specifications for a preliminary version of the reactor control

system.
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1 | ntroduction

Industry is continuously building larger and more complex software systems.
Despite the fact that a vast amount of software is currently in use and much more is being
built, the processes used to build software and the quality of the results are generally poor.
The cost and time needed to build software are quite unpredictable and usualy high. The
development of large systems often runs behind schedule, is over budget, and is either
never completed or is completed unsatisfactorily. In order to address these problems,
improvements in both the software process and the product quality are needed. These are

the practical goals of industrial software practitioners:

* Improve the processof software development
The software process needs to be well-defined, predictable, and faster. It should
be broken into carefully delimited steps that will take predictable amounts of
time. Rework of the specifications, design, and code should be minimized. As
much of the process as possible should be automated.

* Increase the qudity of software produced
Software products need to be maintainabl e, dependable, testable, and verifiable.

1.1 Software Specification

Software specification is a critical element of the software development process.

According to Clarke and Wing:

“ The processof specificationisthe act of writingthingsdown precisely. The
main benefit in dang so is intangible--gaining a deeper understandng of

Department of Computer Science 1 University of Virginia



2 Introduction

the systembeing specified. It isthroughthis gecification processthat devel -

opers uncover design flaws, inconsistencies, ambiguities, andincomplete-

ness A tangble by-product of this process however, is an atifact, which

itself can ke formally andyzed, e.g., checked to be internally consistent or

used to derive other properties of the spedfied system. The spedficationis

a useful communication cevice between customer and designer, between

designer andimplementor, and between implementor andtester. It servesas

a companon dacument to the system’s ource ade, but at a high level of

description [CW96].”

A specification is where the requirements of the system are documented. This
vision of the system is abstrad, like an outline of a paper. However, it must be complete
and spedfic enough that any system that satisfies these requirements is acaptable to the
client. Spedfications serve as a vehicle by which the desires of the clients are conveyed to
the developers of the software system; they ad as an informal contract. Therefore the
spedfication must be used and unadrstood by every person involved in the devel opment of
the system. Most errors in software ae present already in the specification d the system.
These arors, if found later in the devel opment, cause rework, which extends devel opment
time and makes it unpredictable. If errors are not found,they may cause the system to fall
during operation. From these findings, it may be inferred that a spedfication containing
fewer errorswould greatly improve both software processand software quality. In pursuit
of this goal, academics have studied the specification phase to determine where improve-

ments can be made.

Natural Language Specification

Currently, specifications are written largely in natural language. Natural |anguage
is understandable by clients, specifiers, and implementors. Everyone is acaistomed to
reading and writing natural |anguage documents sncethat istaught at every level of edu-
caion. The organization is famili ar: atable of contents, chapters, sections, aglossary, and
an index. The dliting tod's are mature; they suppat modification, searching, spell -check-

ing, printing, and importing and export different formats. Natural language spedfication
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Introduction 3

fitswell into current development methods. However, natural language is informal, so it
can have many interpretations. Natural language specifications are also prone to incom-

pleteness and inconsistency because of the inability to do automated checking.

Formal Specification

Formal specification methods use mathematics-based principles to reason about
computer hardware and software systems. The use of formal notations for specification
combats the problem of varying interpretation by having formally defined syntax and
semantics. They alleviate the ambiguity present in natural language specifications and cur-
tail errors due to misunderstandings. They are usually based on basic discrete mathematics
and, besides providing exact meanings for specifications written in the formal notation,
make the specification amenabl e to automated checking and theorem proving. One benefit
of using formal specification methods might be decreased work due to early identification
of problems in the system while they are still inexpensive to correct. This improvement
would result in amore predictable process that produces software with less defects.

However, formal notations are not useful if they cannot be understood. Different
formal notations have differing degrees of understandability, but at least one study [Ardo6]
found them all relatively easy to learn. Since formal specification appears to be a promis-
ing route to obtaining better specifications, many specification notations and related tools
have been introduced. The notations take on many different forms, including tabular,
graphical, mathematical, and pseudo-code. Tools such as editors, animators, and verifiers

have been built to manipulate these notations.

1.2 Research Focus

For many years academics have claimed that the addition of formal specification
methods to the lifecycle will meet industrial goals of generating a better software process

and increasing software quality, yet formal specification methods are still not widely used
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4 Introduction

by commercial software companies. Industrial authors have expressed frustration in try-
ing to incorporate formal technologies into pradical software development for reasons
such as the perception that they add lengthy stages to the process, require extensive per-

sonnel training, a are incompatible with ather software packages.

The focus of this reseach is the disparity between acalemia and industry in their
experience with formal specificaion. The goal is to determine what is needed to increase
the benefits redized by industry from formal spedficaion. The initial hypothesis for the
lack of use of formal specification by industrial practitionersis that they were reluctant to
change their current methods and overlooked the benefits that formal specification could
provide. However, uponattempting to apply severa formal specification methodsto asig-
nificant application, a nuclea reador control system, shortcomings were discovered
quickly in the formal spedfication methods that impeded progress dramaticdly. Some
examples of the difficulties faced were: (1) that the notations are not suited to describe dl
parts of the system; and (2) that tools are not available, too slow, or not compatible with

other hardware or software used in the devel opment.

Based onthis experience, the following rew hypothesis was formulated:

Formal specification techniques offer significant advantages over natural
language but there are practical hurdles limiting their routine application.
They must overcome these practical hurdies before their benefits can be
realized.

Whil e the hurdlesto which we refer are mundane, they are neverthelessvital to the success
of formal specificationin an industria setting. Based onthis new hypahesis, the primary

goal of thisresearch isto enumerate these pradical hurdles.

Evaluations of formal specificaion have previously appeared in the literature; they
are largely written by researchers and tend to praise formal spedfication methods. How-
ever further investigation found these studies ladking. While the criteria used for evalua-
tionincluded important attributes, the terms were vague and ambiguous. They were often

derived from the author’s experience with a particular project, with littl e substantiation
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Introduction 5

that the list of criteria was complete or applicable to a range of projects. In addition to
defects in the criteria themselves, evaluation was often entirely the opinion of the author.
Evaluations of formal specification methods are important because they are used by soft-
ware engineers in choosing an appropriate formal specification method for their project
and by inventors of formal specification methods in the design of new notations, new
tools, and in the improvement of existing ones. Previous evaluations of formal specifica-
tion methods failed to find significant flaws, yet industrial experience and even usein a
one sample application revealed shortcomings. This indicates the need for a new approach

to evaluation.

1.3 Approach

The approach that was followed in this research project was to eval uate the hypoth-
esis by experiment. The experiment consisted of applying formal methods to a single
safety-critical system, and observing the benefits realized and difficulties encountered. In
order to ensure that the observations captured the necessary information, a framework for

evaluation was developed. More specifically, the experiment was as follows:

» A comprehensive set of criteriafor evaluation was devel oped based on the entire
software development lifecycle.

» A safety-critical application was studied and a set of requirements for part of a
digital control system was devel oped.

» Formal specifications were written in three separate notations for the require-
ments.

» Based on the three specifications, the criteria were applied and conclusions
drawn.

The safety-critical application that was studied in this research project was asim-
ple control system for aresearch nuclear reactor. The research reactor is owned and oper-
ated by the University of Virginiaand is atwo megawatt pool reactor. The control system
requirements that were used included the reactor system emergency shutdown mecha-

nisms, the reactor alarm system, and the process whereby the reactor is started and brought
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6 Introduction

upto operating power.

It isimportant to understand that the preparation d complete and accurate specifi-
cations from which high-quality implementations could be built was not a goal of this
research. The goal was to evaluate formal specification. Althoughaccuracy and complete-
ness were of concern, no spedal effort was made to verify the specifications. Thus the
spedfications contained in the gpendices do nd necessarily document functionally com-
plete or appropriate systems.

Many of the evaluation criteria that were used are subjedive. Thisis inevitable
becuse so much of the use of a specificaioninvolves people readingit. To ensure that the
subjective assesanents that were used were representative, the specifications were evalu-

ated by bath computer experts and damain experts.

Evaluation Criteria

The shortcomings in previous evaluations inspired the current objective: to evalu-
ate formal specification in a systematic manner from industrial requirements. Although
evaluation is the ultimate goal, the derivation d the aiteriais asimportant as the aiteria
themselves. While alist of seemingly relevant criteria might appea useful, it is essential
that the reason for the inclusion of the aiteriain the list be documented. Without this,

some important questions remai n—question such as the foll owing:

* Why are these criteria important?
*  Wheredidthese aiteria come from?

* Isthislist complete?

A defendable list of criteria an ony be obtained from a dearly defined basis for evalua-
tion. The propaosed approach is to substantiate the criteria by deriving them from current
practice.

The am is to expose what is needed to pu formal specification into industrial
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Introduction 7

practice, so the criteriawill not be concerned with theoretical isaues like the orthogordity
of features of the notation. There are three aspeds to formal specification: (1) the notation
itself; (2) the avail able tools; and (3) the method used to creae aspecification. Research
often evaluates only the notation, as exemplified in the following qude by Hall, “At first,
the productivity was lower, but this was attributed to learning to use various non-user-
friendy tods and was not connected with the formal method itself” [Hal90]. However, a
toolset that lacks usability can prohibit use of the notation. Similarly, a completed formal
spedfication may provide many benefits, but writing it requires a development method.In

this gudy, we have evaluated all three of these aspects of formal specification.

In order to be incorporated into industrial pradice, formal specificaion methods
must match current accomplishments. They must be consistent with current methods and
compatible with current tods. Whil e the methods used in industry are not formally based,
they arereasonably well developed and understood. However, matching the accompli sh-
ments is not enough. The secondaspect of the evaluationisto examine how formal speci-
ficaion will augment the aurrent development practice of industry to build high quality

software in a ast-effedive manner.

Current pradice bre&s the development into lifecycle phases. Such a division
focuses the developers' attention onthe tasks that must be cmpleted. The spedficaion
should participate in every stage of the software lifecycle. Writi ng the specificationis only
one ativity that involves the specification. Whil e the processof composing the specifica-
tion itself facilit ates a better understanding of the system, the usefulnessof the specifica-

tion daes nat end there.

The speafication is the primary vehicle of communication about the system
between the many people involved in the software development and maintenance, such as
the software enginees, the dient, safety engineers, system enginea's, and implementors.
Many people will studyit to understand the behavior of the system it is modeling, to check

that it meets regulations, to implement the system, or to assessthe impact of a potential

Department of Computer Science University of Virginia



8 Introduction

modification. Each activity in the lifecycle will place different demands on the specifica-
tion technology. In order to develop a complete set of criteria to evaluate specification
technologies, the requirements of each person and activity must be considered. But the
lifecycle alone is not sufficient to describe the current process of building software
because the development is guided by management activities, such as scheduling and
guality control. The lifecycle phases together with management activities characterizes
current practice, therefore these will provide the basis for evaluation.

Such an examination of the demands of the software lifecycle identifies specific
areas in which formal specification methods are lacking as well as areas in which formal
specification can provide improvements over the current method. The intention here is to
go beyond vague terms such as readability that have appeared in other studies to more pre-

cise criteria, such as;

Criterion: The ease with which a computer scientist can obtain answers to
questions about implementation from a specification written by someone
elsein a formal notation

Such a criterion is derived from a demonstrated need for such a person to perform such a
task during software development. The primary benefit to formulating criteriathisway is
that the criteria are associated with specific lifecycle activities. This demonstrates that the
criteriaare relevant and allows practitioners to choose the method that meets their needs.

It is aso important to consider the fact that projects have diverse goals. For some
speed to market is most important, while for others dependability is the utmost concern.
Development environments also vary. The criteria generated here were not particular to a
certain set of needs, rather they addressed all aspects of improving software. However,
when evaluating the usefulness of aformal specification method for a specific project, the
goals of that project affect the importance of the criteria. Therefore, although one formal
specification method might not meet certain criteria, those criteria may be unimportant to
the goals of the project, so the method would still be a good choice.

It isunlikely that one formal specification method is best for every project, so the
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Introduction 9

purpose of this research is not to name awinner. Rather it is to provide an approach for
generating a comprehensive set of criteria that can be refined to fit a particular project or

used to identify flawsin formal specification methods.

Evaluation Process

Once the criteria were formulated, three specification methods, Z, statecharts, and
PVS, were evaluated. Specifications for a preliminary version of the nuclear reactor con-
trol system were developed and examined. Due to resource constraints, this evaluation is
not ideal, however there are strong indications that formal specification can provide
improvements in the software development process and resulting product once practical

reguirements are met.

1.4 Contents Summary

In chapter two, the nuclear reactor control system is summarized. An overview of
each of the notations evaluated in this study is given in chapter three. Research and indus-
trial projectsinvolving formal specification methods are described in chapter four. Chapter
five describes in detail the basis from which the criteria that will be used for evaluating
formal specification methods will be derived. Since the basis for evaluation is current
practice, in chapter six, the demands placed on the specification notation, toolset, and
method for writing a specification in this notation during each activity in the software
development process are explored. Thelist of criteria derived from this in-depth examina-
tion of the software lifecycle are enumerated in chapter seven. The method used in this
study to evaluate three formal specification methods based on these criteriais described in
chapter eight and the results of this evaluation are recorded in chapter nine. In the final

chapter, conclusions are presented.
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2 Application Summary:
University of Virginia
Reactor

The safety-critical system that was the subject of the experiment performed in this
research is described in this sction. This descriptionisinformal, andit isintended to pro-

vide ageneral understanding d what the reactor systemislike.

2.1 System Overview

The Department of Mechanical, Aerospace and Nuclear Engineering of the Uni-
versity of Virginia operates a research nuclear reactor. The reactor is described in “The
Nuclear Reactor Facility Tour Information Booklet”, as foll ows with word changes for

brevity:

“The University of Virginia Reactor (UVAR) is a nwclear research reactor,
operated by the Department of Mechanical, Aerospace, and Nuclear Engi-
neging. It began orationin 1960at a powver levd of 1 MW using Highly
Enriched Uranium (HEU) fuel elements. In 1971, its power level was
upgaded to 2 MW and, in 1994,the reactor was converted to use Low
Enriched Uranium (LEU) fuel elements. The reactor is used for training o
nuclear engineering students, service work in the areas of neutron ectiva-
tion andysis and radioisotope generation, reutron radiography, radiation
damage studies, and dher research” [UVAR].

Department of Computer Science 11 University of Virginia



12 Applicaion Summary: University of Virginia Reacor
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Figure 1. The University of Virginiareactor system.

Despite being a small research reactor and not a commercial power reador, the

UVAR isacomplex system facing many of the same issues as afull-scale reador.

The UVAR isalight-water cooled, moderated, and shielded “pod” reador. A dia
gram of the primary comporents of the UVAR system is gown in Fig. 1.At the eenter of
the reactor is the reactor core, an assembly which contains fuel elements, control rod fuel
elements, graphite reflector elements, and possbly in-core experiments. The reador core
is suspended from the top d the reactor pool and rests on an 8x8 gid-plate under approx-
imately 22 feet of water. The reactor core loading contains a variable number of fuel ele-
ments and in-core experiments; it always includes 4 control rod elements. Threeof these
control rods, designated as shim rods (or safety rods), are designed for coarse cntrol and
safety. Shim rods are suspended magnetically by elearomagnets coupled to their drive
mechanisms. In case the reactor has to be turned off immediately either by the operator or
by the reactor protedion system, the electromagnets are powered down and the shim rods

dropinto the wre dueto gavity, thus fautting down the reactor. Thisusually occursin less
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Application Summary: University of Virginia Reactor 13

than one second. This shutdown process is referred to as a scram. The fourth rod, desig-
nated as regulating rod, is fixed to its drive mechanism, and thus does not participate on a
scram, but is used for fine-grain power control of the reactor to compensate for small

changes in reactivity associated with normal operations [UvarSC].

The power level reported for this class of reactor corresponds to thermal power
production. Power level is proportional to the neutron population. The heat capacity of the
pool is sufficient for steady-state operation at 200 kW with natural convection cooling.
When the reactor is operated above 200 kW, however, the water in the pool must be
pumped down across the core through a header located beneath the grid-plate to a heat
exchanger that transfers the heat generated in the water to a secondary cooling loop. The
header can be lowered or raised, to allow the reactor to dissipate heat in natural convection
mode (header lowered) or to direct water flow through the core (header raised to the grid
plate). An air line allows the operator to raise the header by injection of compressed air
into the header, thus displacing water and increasing the buoyancy of the header. This air
line also has valves that allow the operator to bring the air pressure on that air line to the
atmospheric pressure and to close the line to prevent air inside it to leave. When the pres-
sureintheair lineis equal to the atmospheric and the header is up, water flow through the
core keeps the header in place. If the flow of water through the core is reduced below a
certain threshold, the header will fall by gravity. If the valve on the air line is closed when
the header falls down an increase in air pressure occurs on the air line. In these circum-
stances, a pressure sensor in this air line signals the pressure increase and is used to deter-

mine that the header has fallen.

Since this reactor uses light-water (as opposed to heavy-water used on the primary
cooling loop of some power reactors), and this water is aways kept at a temperature far
from the boiling point, there is no need for a pressurized vessel to prevent radiation leak-
age. Water can be added to the pool as natural evaporation requires, and this water is

merely demineralized tap water. A cooling tower located on the roof of the facility
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14 Application Summary: University of Virginia Reactor

Figure 2: Partial view of the control pannel of the UVAR.

exhausts the heat and the cooled primary water is returned to the pool [UVAR].

Control System

The current control system is primarily analog instrumentation to monitor and reg-
ulate operating parameters over all ranges of operation, from start-up to full power. A dig-
ital computer control system with all electronic displaysis being designed for the UVAR
and is currently in the specification stage. Fig. 2 shows an overview of part of the current

control pannel.

This nuclear reactor control system can be subdivided into smaller subsystems, for
the sake of understanding. The main subsystems are: the scram logic, responsible for gen-
erating the signal that scrams the reactor, alarms that will call attention from the operator,

and interlocks that prevent the shim rods to be moved if certain start-up conditions are not
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Applicaion Summary: University of Virginia Reactor 15

met.
Anaog/ . .
Instrument uantit Units
Bodean Q y
Pool Water-Temperature Monitor analog pool water temperature °F
Pool Water-Level Monitor (two sensors) analog height of the water in the pool
boolean above/below or at 19'3”
Power-Level Sensor (two identical sen- analog power output MW
Sors)
Pool-Water Conductivity analog water conductivity in deminerali zer mhos/cm
room
Reador Period (two channels) analog reacor period s
Gamma-Radiation Monitor analog gammaradiation in core mR/h
Constant Air Monitor analog radiation level in the reador room mR/h
Airborne Effluents/Duct Monitor analog radiation from airborne dfluents mR/h
AreaRadiation Monitor analog radiation levels mR/h
Core Temperature Differentia (two sen- analog temperature differential between the °F
Sors) water leaving the cre and the water N
entering the wre C
Differential-Presaure Across Orifice analog indirect measure of water flow across am
the core
Air To Header boolean pressure on the drlineis above/below or at 2 psi above
the amospheric pressure

Table 1. Sensor signals provided to the control system

Core Sensor Signals

Several sensors are available to the control system. The main sensor signal's, corre-
sponding quantities that are measured and types are described in table 1. In this table,
bodean sensors are the ones that provide only two passble valuesfor a mndtion, with the
analog sensorsindicating values over arange of continuous values.

Units are described by their abbreviation: °F for degrees Fahrenheit,” for feet and
inches, MW for megawatts, mhos/cm for mhaos per centimeter (1mhos=1 Ampere/Volt, the
inverse of 1 Ohms, indicaing eledrical condctivity instead of electrical resistance), sfor

seands, mR/h for miliroetgens per hou (radiation unt used to measure gamma and X-ray

Department of Computer Science University of Virginia



16 Applicaion Summary: University of Virginia Reacor

Actuator Description
Shim Rods scrammable, magneticdly suspended by its driver, provide coarse-grain control
of the reacor power level
Regulating Rod unscramble, physically connected to its driver, provide fine-grain control of the
reador power level
Primary Pump Header responsible for direding water flow through the cre
Secondary Pump produces water flow in secondary loop. If this pump if off, hea exchange dfi-

ciency is sgnificantly decreased

Manual Scram Button emergency button to generate ascram signal and stop reactor
Water Cleanup System responsible for removing minerals from water to keep it adequate for operation
Start-up Interlock interlocking mechanism that prevents reador start-up if aminimum of two neu-

tron counts per seand is not avail able

Table 2: Actuatorspresent in the system

radiations), °C for degrees Celsius and atm for atmospheres (pressure unit).

A few of the measures deserve acloser look and further explanation. Power output
corresponds to the thermal power produced by the reactor, and the reactor periodis a
quantity that indicates the period of time that isrequired for the neutron popuiationto dow
ble. The differential pressure acossorificeis an indired way to provide aestimate for

water flow inside the core, based onfluid dynamics equations.

Actuators

Some of the aduators present on the system are described ontable 2 Although
these ae the most relevant actuators, they are not the only ones. Some of them are con-
nected to special sensors, used to determine their position. In particular, it isimportant to
have a precise description d the position d the shim rods, since they are the basic mecha-
nism preventing the core to reach too high apower level. They are also used to prevent the
reactor from being started and can orly be deployed if the start-up interlock condtions are
satisfied.
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Application Summary: University of Virginia Reactor 17

Shim Rods

There are three shim rods that are raised and lowered by using their drivers. Lower-
ing the rods decreases the speed of the reaction, while raising the rods will increase the
speed of the reaction. The drivers contain electromagnets that when in contact with the
rods and electrically powered can lift and lower the shim rods in and out of the core. When
a scram occurs, the power to the magnets is automatically shut off and the rods drop to
their lowest position in the core. A set of four lamps per rod indicate possible positions for
the rods and their driver mechanism. The following lampsindicate the state of arod and its

driver:

* Up-thedriver isat its highest position (with or without the rod)
* Down - thedriver isat its lowest position
» Seated - therod isat its lowest position (the driver need not be down)

* Magnetically engaged - thedriver isin physical contact with the rod (the magnet
does not have to be on for the driver to be magnetically engaged)

2.2 Protection System

Scram Signal Generation Logic

The UVAR has an automatic system to shut down neutron production if undesired
conditions occur. This mechanism isimplemented by solid state circuits and works by ver-
ifying 12 different conditions simultaneously. If any of the conditions does not hold, a
scram signal is generated and the safety rods are inserted into the core, not only stopping
neutron production but also reducing the neutron population to near zero in a short period
of time.

This scram signal generation logic is one of our targets in this specification effort.
Although it is not extremely complex, it does provide an interesting non-trivial example
from the real world. The term scram the reactor will represent the generation of the scram

signal responsible for turning off the reactor. Also, when the reactor is scrammed, it will
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not come back to operating state without the operator pressing the reset scram button and

the conditions that caused the scram disappearing.

If any of the following conditions is met, the reactor is scrammed:

Alarms

power level is above 250 kW and the reactor is operating in natural convection
mode.

power level is above 2.5 MW and the reactor is operating in forced convection
mode

during forced convection operation, the pressure in the air line that raises the
flow header goes 2 psi above the atmospheric pressure

flow acrossthe coreisbelow 960 gal/min and the reactor isin forced convection
mode

pressureintheair linethat raisesthe primary pump head is 2 psi abovethe atmo-
spheric and the range switch #2 is switched from 0.2 MW to 2MW position

start button for the primary pump is pressed
primary pump voltage goes from on to off

header is down and the primary pump isturned on
radiation level measured on bridge above the pool is higher than 30 mR/h
radiation level at ground level is higher than 2 mR/h
pool water level isat or below 19'3”

pool water temperature is above 108 °F

reactor period is shorter than 3.3 s

truck door is opened

escape hatch door is opened

key switch at the control panel isremoved

scram button by the back door is pressed

scram button by the room door is pressed

scram button on the control panel is pressed

any of the four evacuation alarmsis pressed

reactor was already in scram condition, keep it on scram condition until the
scram reset button is pressed.

The UVAR has also a set of dlarms that go off when attention is required from the
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o v 5 Alarm
Lights

=) |
Figure 3: Lateral panel with alarm lights.

operator to verify some condition. The states related to the alarms are not dangerous
enough to justify ascram, but they require the operator to perform some action.

All alarms but the scram alarm are sounded for 2 minutes, after which time their
sound goes off. The sound can also be silenced by the operator, by pressing a button. The
scram alarm can only be silenced by the operator.

Visual indication of the alarms is provided by two rows of lights. The first row,
composed of red lights, indicates the current status of each alarm, on or off. The second
row, composed of yellow lights, keeps one light on for each alarm that has gone off until
the operator resets the alarm. However, the yellow light does not go off when the operator
resets the alarm if the corresponding red light is still on. Fig. 3 shows the lateral panel
were the alarm lights are | ocated.

Theadarms are;

* Reactor isin scram condition.

» Automatic control of regulating rod is lost.

» Arearadiation or argon monitor indicates high level.
* Gammaradiation measure istoo high.

e Spare (not used)

» Constant air monitor indicates high level.

» Heat exchanger room door is open.

» Demineralizer room door is open.

» Coredifferential temperatureistoo high.

* Demineralizer room water conductivity measure is higher than 2 pmhos/cm.
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» Secondary pump is off while the reactor is operating in high power mode.
* Hot thimble temperature.

2.3 Minimal Start-Up Sequence

A very specific procedure, hereafter referred to as the start-up sequence, has to be
performed in order to bring the power level of the reactor from nearly zero to an operating
condition without entering a dangerous state. Before the reactor is started for the first time,
many tests, checks, and logging activities are performed. Most of these correspond to
bookkeeping (registering values for certain variablesin log books, verifying that avariable
is within acceptable range, registering in the log book that this check has been compl eted,
etc.). Extensive tests are performed to ensure that each scram condition, if satisfied, does
indeed generate a scram. These tests involve turning on and off each piece of equipment.
Such bookkeeping activities and equipment tests are tedious and will not be described in
full. Instead, a token test sequence will be used:

1. Reset reactor scram.
2. Admit air to header until it raises to the grid plate.

3. Veify that ascram was generated; if not, stop the procedure and call the senior
operator.

4. Bleed off air from the header mechanism, making pressurein the air line to the
header equal to the atmospheric.

Close the valve on the air line to the header.
Reset reactor scram.

Start the primary pump.

© N o o

Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

9. Reset the scram.
10. Turn off the pump.

11. Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

12. Reset the scram.

The start-up sequence described here details the steps needed bring the reactor into an
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operating condition after all the tests have been completed. There are two operating condi-

tions, high power and low power. The steps that are necessary for bringing the reactor to

high power, but not for low power, are indicated with an asterisk. These operations have to

be performed in sequence, asthey specify changes from one state to another. The sequence

of eventsthat is specified for start-up is:

1
2.
3.

Reset reactor scram.
* Admit air to header until it raises to the grid plate.

*Verify that ascram was generated; if not, stop the procedure and call the senior
operator.

4. *Start the primary and secondary pumps.

o

© o N o

11.

12.
13.
14.

15.

*Bleed off air from header mechanism, making pressure in the air line to the
header equal to the atmospheric.

*Close vave on the air line to the header.

*Reset reactor scram.

*Check that the header remains up.

Bring al the shim rod drivers to the lowest position.

. Verify that the seated lamps are on for each individua rod; if not, stop the pro-

cedure and call the senior operator.

Verify that the magnetically engage lamp corresponding to each of them ison;
if not, stop the procedure and call the senior operator.

Turn on the magnetic currents on the shim rod drivers.
Raise the shim rod drivers

Verify that the seated position indicator lamp and the rod down lamp indicator
go off; if not, stop the procedure and call the senior operator.

Request power level from operator and start control algorithm for reactor.
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3 Notation Summaries

3.1 The Statecharts Notation

Statechartsis a graphical specification language introduced by David Harel in Stat-
echarts. A Visual Formalism for Complex Systems [Har87]. The STATEMATE family of
tools implements this notation and provides capabilities such as static checking and ani-
mation. More information about STATEMATE can be found in [STM]. Statechartsis
based on the conventional state machine model in which systems are described naturally
in state-transition diagrams. States are indicated by boxes and transitions between the

states are indicated by arrows. The name of a state appearsin its box; names are optional.

Conventional state machines do not scale well; the number of states grows uncontrollably
and the diagram becomes unstructured and incomprehensible. Statecharts is an extension
of state-transition diagrams that can deal with more complex systems. In particular it is
intended to address a class of problems that is very difficult to specify, reactive systems.
The complexity of reactive systems is handled by Statecharts through three principles:

communication, concurrency, and hierarchy.
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Communication: Transitions

Transition labels consist of atrigger and an adion, separated by a slash.

Both parts of the transition label are optional. A trigger is made up d events, which are
instantaneous, and condtions enclosed in brackets, which are continuous. If the event is

signaled and the condtionistrue, then the transition is taken and the action occurs.

The trigger can consist of events and condtions conneded with “and”, “or”, and “ not ”.
An adion might be signaling an event or assgning a new value to a variable. Multiple
adions are separated by semicolons. Events, condtions, and actions provide communica-
tionfor the system because they are broadcast throughou.

The foll owing example demonstrates the use of complex transition labels. Table 3

contains the aurrent state of the system. The diagram shows the system itself.

Events Signalled? | Condtions | True/False States Currently In
El Yes C1 T s1 Yes
E2 No Cc2 F 2 No
E3 Yes c3 T s3 No
E4 No c4 F

Table 3: Initial state description of the system

Department of Computer Science University of Virginia



Notation Summaries

25

Because of the values that the events and conditions take, the state entered next

will be s2 and the state description of the system will be that shown in Table 4.

Events Signalled? | Conditions | True/False States Currently In
El No c1 T s1 No
E2 No c2 F 2 Yes
E3 No C3 T S3 No
E4 Yes C4 F
Table 4: Next state description of the system

Concurrency: AND/OR States

States S1, S2, and S3 in the example above were OR states. The system must bein

exactly one of these states at atime: S1 or S2 or S3. In Statecharts, there are dso AND

states which can be identified by the dotted line that partitions them. These indicate paral-

lel or independent activities. For example, if there are two lightsin the system, they can be

described with an AND state.
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E=—nlln=—t

When the system is in the Li ght s state, it isin both Li ght 1 and Li ght 2. The two lights
can be turned on and of f independently of each other. Representing this same relationship
with OR states would require different states for Li ght 1 on with Li ght 2 of f, Li ght 1 on
with Li ght 2 on, etc. An AND state can contain two or more sections. AND and OR states

can be combined freely within the statechart specification for a system.

Hierarchy: Levels of States

Asthe previous figure demonstrates, states can be nested within another state. This
nesting creates a hierarchy of statesthat can be divided into levels. Li ght 1 and Li ght 2 are
at a higher level than the on and Of f states. It is not a problem that there are two states
named On because they can be referred to asLi ght 1. On and Li ght 2. On. The sameistrue
with the two Of f states. Nesting can be arbitrarily deep and transitions can go between
states of any level. When the system enters a state at one level, it also enters all the levels
in its branch of the hierarchy. For example, when the state Li ght s becomes active, Li ght 1
and Li ght 2 are also active because Li ght s isan AND state. Li ght 1 has two substates, on
and o f, and one of these must be active. Li ght 2 must also be either on or O f . If the state
Li ght s were part of alarger state, perhaps Syst em it would al so become active. Grouping
states in a hierarchical manner provides structure and modularity in the model and allows

it to be viewed at different levels of detail.
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Default Entrances

In the diagram below, S1 and S2 are at the same level and states A and B are nested
within s2. From S1, transitions can go to a state at the same level, as the one labelled E1

does, or to adifferent level, as the one labelled E2 does.

- .( .

When the transition triggered by the event E2 is taken, it is clear that B within S2 is
entered. However, when the transition triggered by the event E1 istaken, S2 is entered, but
the arrow does not indicate which one of its substates will be entered (one of them must
be). Which state will be entered is decided by the default transition, the arrow in the dia-
gram originating from a dot and pointing to A. Therefore, upon the transition triggered by
El, the state A within s2 will be entered. The transition labelled E4 will only be taken if
state s2. A is active when the event E4 is signalled because the arrow originates from A. It
will not be taken if S2. B is active when E4 is signalled. The transition labelled by E3 will
be taken when S2 is active and E3 is signalled, regardless of whether A or B is active. In the
case that either transition is taken, S2 and all of its substates will be exited (become inac-

tive).

Decluttering

The statechart describing a system can become quite large and deeply nested. The
notation allows the chart to be stored in multiple files through a method called declutter-

ing. In decluttering all the substates of a selected state are put in another file. To designate
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that its contents are in another file, the name of the state hasan “ @ in front of it. For exam-
ple, in the previous figure, S2 might be chosen for decluttering, so A and B would be put in
anew file named s2 and the name of the state would now be “@s2.” Here isthe new figure,

with the arrows omitted for the moment.

In file s2 are the contents of the state s2:

o ™,

Now the arrows must be added. The transitions labelled E1 and E3 are no problem since
they connect s2 and s2, however the transitions labelled E2 and E4 connect states which
are now in two different files. To deal with this diagram connectors are used. They are
shaded ovals containing a label. One or more arrows may point to a connector in one file

and away from one
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with the same name in another file. This is demonstrated by adding the transitions to the

previous figures:

Andinfiles2:

-
-

-
"

In this example, the connectors are labelled with numbers, but they can aso be labelled
with words.
Built-in Commands

Two built-in actions are make_t r ue( Condi ti on) and nake_f al se( Condi ti on)

which are abbreviated as:
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e trl(Con dition)
« fsl(Con dition)

The use of these built-in commands is illustrated in the following diagram. The action
taken when atransition is followed is to set the value of the condition Line_Press High to

true or false.

—s
| oo |

3.2 ThePVSNotation

PV'S (Prototype Verification System) is a general purpose verification system
developed by SRI and available by anonymous ftp. It has an expressive model-based spec-
ification language derived from classical higher order logic that resembles pseudocode. It
also provides a type checker and powerful interactive theorem prover. For information
beyond what is presented here, see [But93, But96, PV Sweb].

The structuring mechanism of the specification language is the theory. It servesto
modularize the system and one theory can be imported into another for use by that theory.
The syntax of the theory is as follows.

theory_ name : THEORY
BEGIN

% thet heory body goes here
END the ory_name

Comments start with %and continue to the end of the line. The body of atheory might con-
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sist of alist of imported theories, definitions, and functions.

theory name : THEORY
BEG N

| MPORTI NG sub_t heoryl
| MPORTI NG sub_t heory2

%glefinitions
% uncti ons

END theory_nane

Notation

Common mathematical notation is supported. Symbols not available on the key-
board are written as words, for instance FORALL, EXI STS, | FF, | MPLI ES, OR, AND, and NOT.
The if-then construct is provided, with the following syntax.

| F bool ean_expressi on

THEN st atenent 1

ELSE st atenent 2
ENDI F

Additionally, there is a case construct.

CASES vari abl e_name OF
actionil,
: action2
ENDCASES

Definitions

The specification language is strongly typed. Besides several built-in types, it
allows user-defined types and provides type constructors, such as records and enumerated
types. Built-in types include boolean, integer, natural, and positive natural. In an airplane,

the number of rows might be defined as a positive natural number:

nrows : posnat

Then a specific row would be of the following type:

row = {n:posnat | 1<n and n<=nrows}

In this definition, row is positive natural number with the constraint that the row must be

between 1 and nr ows. A variable of type r ow can then be defined and given avalue.
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r : r ow
r 1= 3

The possible values of aboolean variable are TRUE and FALSE. Thisisabuilt-in enumer-

ated type with two possible values. Other enumerated types can be defined with { }.

header _st at us : TYPE = {UP, DO}
punp_st at us : TYPE = {ON, OFF}
line_valve_status : TYPE = {CLCSED, TO AIR, TO COVPRESSED}

pressure_status : TYPE = {H GH, NORMAL}

A variable of one of these enumerated types can be defined and given a value the same

way as above.
punp : punp_st at us
punp D= ON

Records are defined with [ # #] and can be nested.

cool i ng_system st at us : TYPE =

[# %RECORD
header : header _st at us,
punp : punp_st at us,
sec_punp : punp_st at us,
line valve : i ne_val ve_st at us,
i ne_pressure: pressure_status

#]

Variables of record types can be defined as above.

cool : cool i ng_system st atus

Values can be assigned to all fields at once using (# #) or to a subset of the fields using

the keyword W TH.
cool := (# header := UP,
pump : = ON,
sec_punp : = CFF,
line_val ve : = CLOSED,
i ne_pressure : = NORVAL
#)
cool := cool WTH [punp := OFF, line_press := H GH

Thevalueof afield inarecord isaccessed asfi el d(record).

| F (header(cool) = DOAN AND punp(cool) = ON)
THEN scram
ENDI F
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Functions

In this specification notation all functions return values. The syntax of afunctionis

function_nane (paraneter list) : return_type nane = function_definition.

rai se_header (cool : cooling_systemstatus):
cool ing_system status =W TH [ header := UP,
line_val ve : = TO COWPRESSED,
line pressure := H GH ]

Rai se_header takes a variable of type cool i ng_system st atus and returns the new
cooling system status after raising the header. Cool i ng_syst em st at us isarecord. Since
the function r ai se_header only sets some of the fields and does not want to change the

others, the assignment is done using W TH.

3.3 TheZ Notation

Z (pronounced zed) was developed at Oxford University and is based on first order
logic and set theory. It specifies the functionality of the system by describing pre-condi-
tions, post-conditions, and invariants. Many tools support this notation, providing capabil -
itiesincluding editing, type checking, and theorem proving. More information on Z can be

found in [Dil94].

M athematical Notation

Z uses conventional mathematical notation from logic and set theory.
= Implies

N If and only if

A Logica And

v Logica Or

- Logica Not

Existential and universal quantifiers are also supported by Z. The general form for the use

of auniversal quantifier is:
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Y VariableList | Predicatel ® Predicate?.
YV a: N | (MinPosition <= a < MaxPosition) ® Reactivity(a) = 0
This can be read as, for dl natural numbers «, such that « is between MinPosition and MaxPo-

sition, 1t IS the case that Reactivity(a) = 0.

A partial injective function is designated in Z by the symbol >~. A functionisa
relation that maps elements of one set, the domain, to at most one element of another set,
therange. Calling afunction partial meansthat it does not have to be defined for every ele-
ment in the domain. For example, the square root function is a partial function if we want
the outcome to be an integer; 4, 9, and 16 have integer answers, but the numbers in
between do not, so they are not defined. Injective means that each of the elements in the
domain, for which the function is defined, map to different elements of the range.

The natural numbers are designated by the symbol N and the integers are desig-
nated by the symbol z. Other types can be defined as follows.

OperationStatus == {ldle, Operating)

Switch == {On, Off}

OperationStatus and Switch are new types. Variables of type OperationStatus can have a

value of Idle Or Operating. Variables of type switch can have avalue of on or of.

Variable Declarations

Variables are declared with the syntax VariableName : Type.
Step : N

This defines step as anatural number. Variable identifiers are decorated with symbols such
asaprime, aquestion mark, or an exclamation mark, to indicate different uses. If the value
of Step is going to be changed by an operation, then it must be defined without decoration
to indicate its initial value and decorated with a prime to indicate the state of the variable
after the operation.

Step® N

For example, the pre-condition of the operation might be that szep is greater than zero and
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the post condition be that step has been incremented by one. The pre-condition is stated
using Step Without decoration. The post-condition is stated using Step’ to indicate that it is
the state after the operation.
Step > 0
Step® = Step + 1
Input variables are designated with a question mark. Their typeis given after the colon.
NumberInput? : N
Output variables are designated with an exclamation mark. Their type also given after the
colon.

SquareRoot! : N

The square root function would then be written as

Numberlnput? = 0 A SquareRoot!2 = NumberInput? A SquareRoot! = 0

This says that the input must be greater than or equal to zero and the square of the square

root must equal the input and the square root must be greater than or equal to zero.

Schemas

The basic structuring mechanism in Z is the schema.

—— SchemaName
IncludedSchemas
VariableDeclarations

ScemaBody

It can be used to define types, initialize states, and describe functions that change states.
Schemas can be included in other schemas. The schema body is where the pre-conditions,

post-conditions, and invariants can be specified.

Type Definition Schemas

—— Pump
PumpSwitch : Switch
Voltage : N
Voltage > 0 = PumpSwitch = On
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This schema defines a type named Pump as consisting of a PumpSwitch and a Voltage.
The PumpSwitch 1S Of type Switch which has been defined previously. The Voltage is a natural
number. In the body of the schemaistheinvariant which statesthat, if the voitage iS greater

than zero, thisimplies that the PumpSwitch is On.

Using Schemas Inside a Schema

Once the pump type is defined, it can be used in other schemas just as a built-in

type would be.

—— Reactor
PrimaryPump : Pump
SecondaryPump : Pump
Scram = Scrammed = ReactorStatus = Idle

This schema defines atype called Reactor. Like Pump, it contains variable definitions and an

invariant in the body.

State Changing Schemas

The following schema is a state changing schema. This is evident by the appear-

ance of a variable decorated with a prime. This means the state of that variable will be

changed.

—— TurnOnPump
PrimaryPump : Pump
PrimaryPump’ : Pump
PrimaryPump.PumpSwitch’ = On

In this schema, PrimaryPump is the variable that was changed. PrimaryPump 1S Of type Pump.
In the Pump schema above it is defined to have two elements, PumpSwitch and Volrage. The

schema TurnOnPump changes the state of the PumpSwitch of the PrimaryPump.

The A Schema

It becomes tedious to write two declarations for every variable that will be
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changed, one without decoration and one with a prime, therefore a schema can be defined

that contains only those two statements. Such schemas are named with a delta symbol.

—— APump
PrimaryPump : Pump
PrimaryPump’ : Pump

Once a delta schemais defined, A Pump can be used in place of the two declarations.

Schemasthat Set Initial Conditions

An initializing schema can usually be identified by the name of the schema, asis
the case in the following example. However, it is also clear that it initializes the state
because it is a state changing schema (the delta has replaced the two declarations) and it

has no pre-conditions. Thus it unconditionally sets the state.

—— Reactorlnit

A Reactor
Yala €Pumps ® a.PumpSwitch’ = off
Yala €Pumps ® aVoltage’ = 0
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4 Related Work

The number of formal specification notations and related tool sets is blossoming.
Each of these provides a different set of capabilities, degree of formalism, and level of
abstraction. The role of the specification is not clearly defined, so specification methods
include varying amounts of support for general software development, requirements elici-
tation, design, and code generation. This makes it difficult to determine what should be
included in a discussion of formal specification methods. The three notations that will be
evaluated in this study, statecharts, PVS, and Z, are representative of three major types of
notation; it is by no means an exhaustive list. An overview is given of the work being done
involving these three notations. Following this are descriptions of selected industrial
projects and research projects that utilized formal specification. Finally there is discussion

of previous evaluations of formal specification methods.

4.1 Stateof the Art

Statecharts

Statecharts is a graphical specification language introduced by Harel [Har87,
Har88]. Harel is affiliated with iLogix which commercially markets the STATEMATE
[ILo87, iL090, STM, STMweb] family of tools which include an editor for statecharts,

version control, simulation, and support for structured analysis. Each tool can generate
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code from the statecharts in a language such as C, Ada, or VHDL. Other notations and
tools also based on statecharts are Modecharts, BetterMate, SpecCharts, and RSML.

The following is alist of Statecharts users and usages. Information found in pub-
lished papersis cited below. Information on the remaining industrial projects was obtained

from various Web pages. If not cited, then it was found on a Web page at iLogix [iLoweb].

iLogix, Inc., USA
- development of the STATEMATE family of tools [iL0o90, STMweb]

* University of British Columbia, CA

- development of tools for model checking [Day93, Day94]
e University of Texas, USA

- development of Modechart and tools [IM94, PM S95]
* Naval Research Laboratory, USA

- development of tools for Modechart [CTLR93]
* University of California, Irvine

- development of RSML and related tools [LHHR94, HL96]
* Boeing Commercia Airplane Group, USA

- development, verification, integration of electrical, mechanical, avionics
systemg|NW9G6]

* R-Active Concepts, Inc., USA
- development of BetterMate [BMweb]
» Cardiac Pacemakers, Inc. (Guidant Corporation), USA
- pacemaker design
» Computing Devices Ltd. (CDL)
- Video processing chip
» Industrial Science and Technology (IST)
- model of rail system
» Defense Research Agency (DRA) Malvern, UK

- code devel. and verification of a Network Layer Security Protocol imple-
mentation

* AOA Apparatebau, DE

- design new vacuum-flush toilet and waste systems for the Airbus A330
airplane
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» Ford Motor Company of Europe

- visually communicate complex car electronic system designs
e LS Logic Europe

- speed development of critical part of DSP project

Z (pronounced zed) was devel oped by the Programming Research Group at Oxford
University [Dil94, Zweb]. It is a model-based language based on first order logic and set
theory. It specifies the functionality of the system by describing pre-conditions, post-con-
ditions, and invariants. Many tools for Z exist, including editors, true type fonts,
typecheckers, and verifiers, most of which are available by ftp. Some standards require the
inclusion of natural language text to describe each schema. Other similar notations are
VDM, Z++, ZEST, and the AMN notation of the B-method. These differ from Z in their
view of preconditions and invariants as well asin their scope of applicability.

The following isalist of users and, if known, their usages of Z. Information from
published papersis cited below. Other users are members of the Z Users Group (ZUG)

which can be found on-line [Zweb)].

Oxford University, UK
- development of Z and many related tools

* B-Coreltd., UK

- development of the B-Method
* |IBM Hurdey UK Laboratories, UK

- re-engineering CICS (transaction processing system) [CGR93]
* Praxis, UK

- develop CASE toolset (SSADM) [CGR93]
* Inmos, UK

- design and verify microprocessors [CGR93]
* University of Washington, USA

- researching specification of discontinuous systems [Jac95]

George Mason University
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- Z and Category Partition Testing [AA92]
» Tektronix, USA
- reusable architecture for oscilloscopes [CGR93]
» TheUniversity of Reading, UK
* Imperial College, London, UK
 JPMorgan, UK
» Defense Research Agency (DRA) Malvern, UK
» City University, London, UK
* University of York, UK
* Anglia Polytechnic University, UK
e University of Bradford, UK
* University of Bologna, Italy
» France Telecom CNET, France
* University of Queensland, Australia
» DST Deutsche System-Technik GmbH, Germany
» Carnegie-Mellon University, USA
» Hiroshima City University, Japan
« NJT,USA
» University of Limerick, Ireland

PVS

PVS (Prototype Verification System) is a general purpose verification system
developed by SRI and available by anonymous ftp. It has an expressive model-based spec-
ification language derived from classical higher order logic that resembles pseudocode. It
also provides a type checker and powerful interactive theorem prover. For information
beyond what is presented here, see [But93, But96, PV Sweb]. PV Sis aculmination of over
15 years of work on tools that support formal methods including work on atheorem prover
named EHDM. PV Sisimplemented in Common Lisp and uses either GNU or X Emacs as
auser interface. The system also allows specifications, theorems, and proofs to be pretty
printed using LaTeX. Other tools that provide theorem proving capabilities are HOL,
Ngthm (ACL/2), and EVES.
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The following is alist of users and usages of PV S. Published results are cited,
while uncited users and usages were found on the PVS Web site at SRI International
[PV Sweb]. This page also contains an extensive bibliography of papers that have been
published on projects using PVS.

» Collins Commercia Avionics
- Microprocessor Verification [SM95]
» Technica University of Eindhoven

- Real Time Systems
- Protocol Verification [Hoo95]
- Software Systems [VH96]

« GEC Marconi Avionics
* IndianaUniversity

- Verification of an optimized fault-tolerant clock synchronization circuit
[MPJo4]
- Single Pulser Circuit [IMC94]

» Jet Propulsion Laboratory
- Requirements analysis of critical spacecraft software [LA94]
* University of Kiel

- Stepwise Refinement tool
- Compiler Verification

e London University
LSl Logic
- Protocol specification [NRP95]
* University of Manchester
- Verification for a Hardware Description Language
* Minnesotaand Michigan State University
* NASA Langley Research Center

- Verification of IEEE Compliant Subtractive Division Algorithms
- Formalizing New Navigation Requirements for NASA' s Space Shuttle

* USNaval Research Laboratory

- Verification of Timed Automata
* University of Paris VI

- Protocol specification [HS96]
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» Philips, Eindhoven

- Digital Synthesis
* Princeton University

- Security of Java-style Dynamic Linking
* University of Southampton

- Support for B Abstract Machine Notation
e SRI
o Stanford University

- Cache Coherence Protocols and Memory Models [PD96]
* Tampere University of Technology

- Mechanized Verification for DisCo
* University of Ulm

- Program Transformations and Compilation
e Utrecht University

- Distributed Systems
* Verimag(Grenoble, France)

- Automated Generation of Invariants
* University of Virginia
*  Weizmann Institute

- Introducing Temporal Propertiesto PVS
* University of York

- Compiler and O/S Verification [ SCweb]

4.2 Industrial Practice Using Formal Specification

iLogix provides summaries of some of the industrial applications in which their
STATEMATE family of tools has been used [iLoweb]. One of the most useful features of
STATEMATE isits ability to animate the models. Cardiac Pacemakers, Inc., a unit of
Guidant Corp., used STATEMATE to speed up development of defibrillators and pace-
makers. Animations of the Statecharts models allowed them to examine interactions
between features before building a prototype and to receive feedback on the design from

physicians. AOA Apparatebau used STATEMATE to design a new waste system for the
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Airbus A330 aircraft. Animation of the system allowed them to easily test single and mul-
tiple failures. Ford of Europe used STATEMATE to specify their on-board electronic
controllersin a precise manner. This modeling allowed them to examine the behavior of
the system, refine their designs, and gain confidence in the design much earlier than possi-
ble with textual descriptions. Industrial Science and Technology used STATEMATE to
validate the vehicles for a new rail system. Through modeling and animation, many prob-
lems were found that had not been identified in the text version of the specification. If
these errors had not been found until the vehicles had been built, the cost could be tremen-
dous. The models also helped communicate the requirements of the system to subcontrac-

tors.

Animation is not the only benefit of using statecharts. The Defense Research
Agency, UK, used STATEMATE during the implementation and verification phases of the
development of a network security protocol. The hierarchical structure of the statecharts
notation simplified the model and eased reasoning about and implementing the protocol.
Some of the code was automatically generated in C and linked with hand-coded C++ mod-

ules. Animation was used to verify the system.

Express, amember of the STATEMATE family of tools, has been used in hardware
design because it generates VHDL code. Computing Devices Ltd. used Express in the
design and verification of avideo processing chip. The capabilities of animation and code
generation enabled the chip to go into from design to production in avery short time. L SI
L ogic Europe used Express in conjunction with its Coreware in the design of an ASIC
chip. They noticed an improvement in productivity due to improved communication
because of the graphical nature of statecharts. The statecharts notation provided a much
more succinct representation of the chip than the corresponding VHDL code and simula-
tions in Express were much easier to instantiate and took less time to run than VHDL

code.

Boeing used statecharts in the development and validation of electrical, mechani-
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cal, and avionics systems as well as in their integration [NW96]. They wanted a tool that
did not require the user to understand computer programming, did not require the devotion
of lab space for its use, facilitated analysis of the requirements, was standardized, main-
tained the current level of abstraction in their requirements, and allowed for the integration
of independently developed pieces. Of these, statecharts failed only in the category of
standardization, since there are many variants of state machines. They found that state-
charts were easily understood by non-programmers, compact, and facilitated communica-
tion and simplification of the requirements. They were especially pleased with the
simulation capabilities of the tool they used (either STATEMATE or BetterMate) as it
allowed for a great deal more validation than had previously occurred. The difficulties
they faced in using statecharts were not in the notation or use of the tool, but rather from

the lack of experience at modeling.

Most of the industrial work using PV S involves hardware design and verification.
CollinsCommercial Avionics, adivision of Rockwell International, aided by NASA Lan-
gley, undertook an effort to introduce PV S into the production of their commercial micro-
processor, the AAMP5 [SM95]. This was an experimental study of the applicability of
formal methods in industry. The goal of the project was to increase performance over the
AAMP2 and this was successful. However, an unexpected outcome was the verification of

arepresentative set of the microcode instructions.

For software, PVS is being used for requirements analysis. NEC Space Systems,
Jet Propulsion Laboratory, and lowa State University applied PV S to critical spacecraft
software [LA94]. This project was also intended to evaluate forma methods. They speci-
fied and analyzed the requirements for critical software for the Cassini spacecraft, a Saturn

orbiter. This software was responsible for system-level fault protection.

Another area to which PVS has been applied is protocol verification. Vijay
Nagasamy of L SI L ogic, Sreeranga Rajan (then of SRI), and Preeti R. Panda of UC Irvine

used PV S to specify and verify part of the implementation for the Fiber channel protocol
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[NRP95]. They wrote aformal specification to assist with verification that the protocol
standards were met. This was also an industrial effort that was undertaken as a research
project.

SCR (Software Cost Reduction) is aformal specification method developed at the
Naval Research Laboratory during an effort to re-engineering the flight control software
for the Navy’s A-7 aircraft [Hen80]. It began as a more disciplined approach to natural
language specification. They organized the information about the A-7, used symbols
around names to indicate type, made templates for sentences so that no information was
omitted, and created tables for complete, precise descriptions of the behavior. It isthe
tables that have become the defining feature of SCR; they decompose the system in

smaller, more manageabl e pieces [HIL96].

Since its introduction, the SCR methodology has been expanded, more formally
defined, and used in several industrial projects including a submarine communications
system [HM83] and the certification of the shutdown system for a nuclear generating sta-
tion [CGR93]. The Darlington Nuclear Generating Station operated by Ontario Hydro
had a software implementation of all of the shutdown logic and was having difficulty with
licensing. With assistance from Parnas, SCR was used to verify that the code correctly
implemented the shutdown logic in accordance with regulations. The requirements and the
code were formalized in SCR as two separate efforts and then compared. Much of the

work was done manually. The project was successful; the station received its license.

Gerhart, Craigen, and Ralston performed a study of the use of formal methods in
safety-critical systems [CGR93]. The details of their study are discussed in the section of
this chapter on evaluations of formal specification methods, but their work is also an
excellent source of information on large commercial projects involving formal methods.
More information on many of the projects described here can be obtained from their

report.

Z was used at Tektronix in two projects, the specification of the real-time kernel
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for an X-ray machine [Spi90] and for a reusable architecture for afamily of oscilloscopes
[CGR93]. The X-ray project was are-engineering effort from existing documentation and
source code. The goal was to re-implement the system on new hardware, however, the
mathematical model identified a deadlock condition. Previous documentation used dia-
grams to describe the system, but they showed the system in its usual state rather than
describing all possible configurations, therefore it lead the programmer to make assump-
tions that detracted from the robustness of the software. Preconditions of each operation

were computed to validate the specification.

Oxford University and IBM Hursley Laboratories used Z in two major projects
involving IBM’s Customer Information Control System (CICS) [CGR93, CW96]. This
software is a large transaction processing system that was installed in thousands of sites
worldwide. The first project was a re-engineering effort. Measurements found that the use
of Z caused improvements in quality, reduction in errors, earlier discovery of errors, and
reduction in cost of development. The second project was the formal specification of the
application programming interface.

A group at INMOS Ltd. used formal methods, including Z, in designing their
microprocessors, most notably the Transputer family of 32-bit VLSI circuits for concur-
rent, multiprocessor applications [CGR93]. Z was used in the specification of the IEEE
Floating Point Standard and in the design of the scheduler.

Praxis has employed forma methods in several projects. Z was used in the devel-
opment of a CASE toolset [CGR93]. Thistoolset supports the Structured Systems Analy-
sis and Design standard. Praxis also developed part of a new air traffic management
system for the UK Civil Aviation Authority [CW96]. The specification for this system was
written in VDM, a notation similar to Z. Statistics were taken during the devel opment,
which involved several formal notations and processes, and compared to comparable
projects in which formal methods were not used. There was no loss in productivity and

there was a substantial gain in software quality.
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Praxis worked with L ockheed on the avionics software for their C130J [CW96].
The core method was used for specification; it is a tabular notation very similar to SCR.
The code was also developed rigorously, resulting in improved quality at lower costs
because little rework was needed.

Although a considerable number of projects have been described here, this repre-
sents afairly thorough summary of the mgor industrial software projects involving formal
gpecification. The fact that an attempt can even be made to enumerate them reflects the

limited usage of formal specification in industry.

4.3 Research Using Formal Specification

Current research involving statechartsis generally focused on exploring the useful -
ness of the notation and devel oping toolsto support it. At the University of British Colum-
bia, the formal semantics for statecharts were written in Higher Order Logic so that a
simulator could be automatically generated from this definition, rather than developed asa
separate effort, thus ensuring that the ssmulator behaves in accordance with the semantics
of the notation. Additionally their toolset, recently given the name Fusion, extracts the
Statecharts from the STATEMATE system and allows model checking techniques to be
applied to the specification [Day93, Day94].

Modechart, a notation based on the statecharts concept, was developed as part of
the SARTOR project at the University of Texas. Modechart is based on the principle of
statecharts, but redefined in Real Time Logic to allow reasoning about the timing of
events. Thus it provides an environment for specifying real-time systems and reasoning
about their safety [IM94]. A toolset for Modechart called MT was developed at the Naval
Research Laboratory which includes an editor, simulator, and model-checker [CTLR93].
A compiler that generates ESTEREL code from the Modechart specifications was later
added to this toolset. The ESTEREL code can be compiled into very efficient C or Ada
[PMS95].
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RSML is a notation based on statecharts developed by the Irvine Safety Research
Group [LHHR94]. It arose from the effort to specify the requirements for the TCASII sys-
tem. The notation was later adopted by the FAA for work on this system. This project
demonstrated that formal specification can be used for a complex, process-control system
and that this specification can be read and reviewed by application experts [CW96,
CGR93]. Work has also been done on static analysis of RSML, including completeness

and consistency checking [HL96].

Since Z isfairly widely used in industry, research in Z isfocused on demonstrating
itsusein practical settings. Jacky specified a safety-critical control systemin Z in order to
demonstrate the usefulness of Z in reasoning about discontinuous features of systems
[Jac95]. The example is presented in a manner that allows it to be used as atemplate for
similar control systems. The structure of the specification is object-oriented, thus demon-

strating the ability to use Z in this paradigm.

Amla and Ammann showed that Z facilitated the Category Partition Testing
method [AA92]. This test case generation method requires considerable effort when
applied to natural language specifications. However, most of the effort that is needed to
analyze the system has already been done when creating a Z specification, so henceforth
applying the Category Partition Testing method isamost trivial. They point out which ele-

ments of the two methods correspond.

Sherrell and Carver demonstrate the translation of a Z specification of a class roll
system into an implementation in Haskell [SC94]. They identify the correspondence
between Z schemas and Haskell data types by showing that two different Z designs indi-

cate different Haskell implementations.

SCR was intended for use on safety-critical systems. Therefore a prominent goal
was to support verification of the system. Heitmeyer, Jeffords, and Labaw describe a con-
sistency checker for SCR specifications which automates some analysis of the model

[HJIL96]. In order to build this consistency checker, aformal model of the SCR notation
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was developed. Additionally, the utility and scalability of the tool is demonstrated in two
examples. An integrated toolset for SCR has now been developed [HBGL95].

Research involving PV S fdls into three mgjor categories, the verification of hard-
ware, protocols, and software. Hardware verification is being done at Indiana University.
They developed a circuit for clock synchronization using several tools, including PVS
[MPJO4]. They also joined forces with HP to do a comparative study of several reasoning
tools, including PV S [PV Sweb]. For this study, the “Single Pulser” circuit was modeled in

severa notations.

Protocol verification projects have been done at several universities. Jozef Hooman
at the Technical University of Eindhoven in the Netherlands used PV S to verify part of the
ACCESS.bus Protocol [Ho095]. He also participated in a project involving the specifica-
tion and verification of the Steam Boiler Control System using PVS [VH96]. Klaus Have-
lund of LITP, Institut Blaise Pascal, University of Paris VI experimented with the use of
various verification tools on the Philips bounded retransmission protocol [HS96]. A sys-
tem with infinite state space is a difficulty even for theorem provers. Thisis demonstrated
through the verification of the general version of the protocol using PVS. A method for
bounding the state space is presented. At Stanford University a method for use in the veri-
fication of concurrent systemsin PV S was developed [Par96, PD96]. To demonstrate this

method the FLASH cache coherence protocol was specified and verified.

Software verification is restricted ailmost completely to the research arena. Dave
Stringer-Calvert of the University of York isusing PVS to verify acompiler for asimple
imperative language. His work is based on an existing specification and proof in Z by
Susan Stepney [PV Sweb, SCweb]. PVS was also used to prove theorems about timingin a
case study by Archer and Heitmeyer [AH96]. The model was of the Generalized Railroad
Crossing problem. Simon Fowler isusing PVS in research on the formal verification of

real-time operating system kernels [PV Sweb].

The amount of research in formal specification is far more substantia than indus-

Department of Computer Science University of Virginia



52 Related Work

trial usage. This summary focused on the three notations that were evaluated in thisthesis
and the notations closely related to them. It is by no means an exhaustive list of research

inthisarea

4.4 Research in the Evaluation of Formal Specification

Ardis et al. presented an evaluation of six specification methods, Modechart,
VFSM, ESTEREL, LOTOS, Z, and SDL, plus the C programming language [Ard96]. The
criteria used to evaluate the methods were derived from their experience in specifying a
telephone switching system in each of the seven notations. They considered their criteria
relevant to any reactive system.

The criteria were divided into two categories, fundamental and important, and a
table was given that associated the criteria with phases of the lifecycle. Each criteria was
described by a paragraph. The novelty of their approach was the inclusion of “not only
academic concerns, but also the maturity of the method, its compatibility with the existing
software development process and system execution environment, and its suitability for
the chosen application domain” [Ard96]. The specification and toolset of each notation
was examined and given arating of +, O, or - for each criteria.

The work of Ardis et al. inspired the approach for this thesis. Their criteria
included practical issues and a chart was provided that associated the criteria with lifecy-
cle phases. The division of criteriainto categories of fundamental and important reflects
the fact that some criteria are more important than others. However, there were shortcom-
ings in their approach. No support was given for the choice of criteria and there was no
explanation of the association of criteria with particular lifecycle phases. The evaluation
method was not described, so it can only be assumed that the evaluation was performed
solely by the authors. The authors can provide information on the feasibility of formal
specification when used for writing a specification, but little else.

Gerhart, Craigen, and Ralston performed an extensive study of the current use of
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formal methods in industry [CGR93]. They were particularly concerned with software
systems in regulated industries such as nuclear power. Their goal was not to derive a detall
list of criteria, but rather to document current experience with formal methods and suggest
where more research is needed. They studied the overall impact of forma methods on the
project, such as the effects on client satisfaction or product cost. Their method of evalua-
tion was similar to the one used in this thesis. They used questionnaires and interviews to
obtain information from practitioners currently using formal methods. The participants of
their study were superior to those used in this one because they already had extensive
experience with formal methods. Their study determined that formal methods are steady
gaining acceptance in industry and they expressed the need for additional studies of the

use of formal methods to provide feedback to the research community.

Pfleeger and Hatton investigated the influence of formal methods in CDIS, an air-
traffic-control system built by Praxis [PH97]. The development of CDIS provided a con-
text for comparing formal and informal methods because different parts of the system had
been specified using different methods. Praxis had recorded statistics on the number of
faults, errors, and changes in the system during its devel opment. Pleeger and Hatton exam-
ined these statistics for trends. Formal specification appeared to have produced simpler
designs, easy testing, and high-quality code. However, they did not have all the informa-
tion needed to conclude with confidence that formal specification alone caused these

results.

Faulk presents short list of qualities of a “good” requirements specification
[Fau95]. They are divided into two categories, semantic properties and packaging proper-
ties. A requirements specification that meets the semantic properties is complete, imple-
mentation independent, unambiguous and consistent, precise, and verifiable. A
requirements specification that satisfies the packaging properties is modifiable, readable,
and organized for reference and review. Rushby also provides an excellent list of criteriato

consider when choosing a formal specification method in his report for NASA [Rus93].
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The list is divided into criteria for the notation and criteria for the utilities. The criteria
suggested by these two authors are not systematically derived from a clearly defined basis

for evaluation, but from their vast experience using formal methods.
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The basis on which the criteria to evaluate formal specification were derived was
current software development practice. It can be described by the software lifecycle and
the management activities that guide the development process. The basis must be clearly
defined because it provides the defense for the list of criteria. In this chapter, the lifecycle
phases and management activities are defined, followed by a discussion of the approach to

deriving the criteriathat will be used to evaluate formal specification methods.

5.1 Lifecycle Phases

Software engineering characterizes the lifecycle of software as consisting of
phases. These phases are alist of tasks that must be completed in order to create a software
product. While the activities that must be performed are generally agreed upon, the num-
ber, names, and divisions of the phases are not universal. Because of these differences, the
phases and terms that will be discussed in the remainder of this paper are defined here.
Another point of disagreement is the order in which these phases are performed. There are
several models, most notably the Waterfall and Spiral models. The Waterfall model pre-
scribes the compl etion of one phase before the beginning of the next with no backtracking.
This was named the rational design process, but is not the way most software is built. In
the Spiral model, the order of development of different pieces of the system is dictated by

the level risk associated with them. The work presented here is not specific to a particular
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model. Although it may seem that the Waterfall is the model because no backtracking or
iterations are explicitly discussed, there is also nothing to contradict the revisiting of

phases several times during devel opment.

Requirements Specification

The requirements specification phase is made up of two activities, eliciting the
software system requirements from the customer and recording the requirementsin a spec-
ification document. It is often separated into two phases, requirements and specification.
There is merit to this division since the elicitation of the requirements occurs in meetings
with the client, then the computer scientist uses that information to create a system specifi-
cation document. However, the two activities have one objective: to clarify, define them,
and record ideas about the system. The specification is an abstract description of the sys-
tem and independent of the implementation machine or language except in that it must be
implementable. Thisisarguably the most vital stage of the lifecycle since the specification
document is the foundation on which the software will be designed, implemented, and ver-
ified. Every requirement of the system, functional or non-functional, must be recorded in
the specification. The specification must be approved by the client as describing the
desired system. It must be checked for completeness and correctness. Mechanical analysis
of the specification document can be helpful. The specification document will serve as the
authority on the system requirements throughout the rest of the lifecycle. Mistakes or mis-
understandings in the specification document will manifest themselves in every other

phase.

Design

During the design phase, a system design document is produced that meets the
requirements recorded in the specification. The design document provides the details that

are needed to create the concrete implementation. Whereas the specification is indepen-
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dent of the machine and language of implementation, the design is not. The design might
be written in the specification notation, in the implementation language, or in some other
notation. If the specification notation is used, the design might not be a separate document,

but rather an addition to the specification. Pressman [Pre92] describes design as follows:

Software design is actually a multistep process that focuses on four distinct
attributes of the program: data structure, software architecture, procedural
detail, and interface characterization. The design process translates
requirements into a representation of the software that can be assessed for
quality before coding begins.

During the design, the structure of the software system must be determined. It will be
divided into modules that will be implemented by different people. The interfaces between
these modules must be documented. At a more detailed level, the data structures, func-
tions, and algorithms must be determined. There are many published design methods that
are currently in use; all of them prescribe a process of detailing an implementation plan

that meets the system requirements.

I mplementation

The implementation phase is when running computer code is produced based on
the system requirements documented in the specification and the system structure and
details documented in the design. Very few decisions should be made in this late phase of
the lifecycle and it is possible that implementation could be automated. The implementa-
tion isusualy performed by a group of programmers. It isimportant that the specification
and design documents be complete, precise, and unambiguous so that the pieces of the
system that are implemented by different people are compatible when they are put
together and will meet the requirements of the client. Verification of the pieces of the sys-

tem as separate unitsis also the responsibility of the implementers.

Verification

The purpose of the verification phase is to ensure that the implementation meets
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the requirements documented in the specification. In current practice, the most common
way to do thisis by testing, but other methods include code reviews and theorem proving.
In theory, if the refinement from specification to implementation has been checked rigor-
oudly at every step, the implementation should meet the specification. However, in prac-
tice, it is common for verification to identify alarge number of changes that need to be
made. This necessitates a return to the implementation phase, perhaps to the design phase,

and often to the specification phase, which lengthens the development time.

M aintenance

The maintenance phases encompasses al further development of the system after
it has been released to the customer. Changes might be made to correct errors that are
found, to enhance the system, or as a result of changes in the requirements. Thus, the
mai ntenance phase entails repeated cycles through all the phases. New people are intro-
duced to the system. A common problem is that changes introduce new errors. In long-
lived systems, most of the time and money is spent in the maintenance phase, so it is
important to consider maintenance issues when building the software. The software sys-
tem, including the specification, design, and implementation, must stand the test of time

by being easy to understand and change.

5.2 Management Activities

The lifecycle alone is not sufficient to describe current software development. The
development must be planned and paid for. The resources must be allocated. The lifecycle
phases prescribe documents that must be produced, but they don’'t describe how to pro-
duce them; they describe tasks that must be completed, but don't describe what order to do
them in. Current practice has methods for managing a software project that have evolved
over years of experience. These process considerations, such as scheduling, resource esti-

mation, risk analysis, and quality control, are not often included in academic discussions
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of software development, but the are vital to the success of the project. These management

activities guide the development and affect the quality of the process and the product.

Scheduling

Scheduling is a very important aspect of a software development effort. Practically
every project has adeadline. It is necessary to set intermediate deadlines in order to track
progress and determine if the entire effort is on schedule. There are some parts of the
development can occur in paralel while others have dependencies that dictate their order.
A scheduleis essential for getting every task done on time and in the right order. Making a
schedule requires accurate estimations of how long different activities will take. Success-
ful estimation comes from previous experience as well as avoidance of unexpected prob-

lems.

Resour ce Estimation

There are many resources needed during software development, such as software,
hardware, and people. The cost of these resources must be estimated to determine the cost
of developing the system. New software and hardware or additional licenses for currently
owned software might be needed. People must be hired or fired. Besides the cost of sala
ries and new equipment, there is also the issue of allocating these resources to a project.
Thisis especialy difficult if several products are being developed simultaneously. People
with particular specialties must be moved from one project to another at appropriate times.
Other people need to stay with a project from beginning to end to maintain continuity.
Equipment must be available for everyone on the project. The allocation of resourcesis

vital to the success of the devel opment process.

Risk Analysis

Risk analysisis an essential part of every type of project and no less so for soft-
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ware development. It isimportant to identify the parts of the system that pose the greatest
risk of failure. Additionally, there might be phases of the development that tend to cause
projects to miss their deadlines or during which resources will be limited. Consideration
must be given to the parts of the system that are most likely to change during the original
development or during maintenance. To help ensure successful development, risks must be

correctly anticipated and steps must be taken to minimize them.

Quality Control

It isthe goal of software development to produce a high-quality product. However
the level and characteristics of the quality desired varies between projects. Dependability
may be the goal in one project, while fast execution or maintainability may be the goal in
another. Whatever the quality goals are, checks must be made to ensure that the software
will meet these goals. There are many ways to monitor quality, including design and code
reviews and statistics on the number of defects per lines of code. The measures for quality
control should be planned and enforced. The statistics should be used to make future

improvements in the process.

5.3 Deriving Criteria for Evaluation

The lifecycle and management activities together describe current software devel-
opment practice, so they will be the basis for the evaluation. Criteria that are generated in
this way from current practice affect one or more specific phases or activities. Ideally, a
study of the costs and benefits of incorporating formal specification can be performed to
determine whether the introduction of formal specification would be advantageous. Such
an analysiswould include aweight for each criterion that reflected the goals of the project.
For example, if dependability is imperative, then improvements in verification might be
deemed very important; therefore the weight associated with criteriarelated to verification

would be high. These weights would be multiplied by the costs and benefits so that the
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Benefit
gainedin
activity C
Benefit if Benefit
Criterialis Benefit Benefit if gainedin
met gainedin Criteria2is Activity D
activity B met
Benefit Benefit
gained in gainedin
activity A Activity C
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Figure 4. Example of Cost-Benefit Analysis

important criteria affect the assessment of the specification method more than unimportant
criteria. Such a cost-benefit analysis might result in data similar to that shown in Figure 1.
This figure shows that the benefit of incorporating a formal specification method that
meets Criteria 1 is the sum of the benefits in each of the activities that are affected by Cri-
terial. The sameistruefor Criteria 2. Thetotal benefit gained by incorporating the formal
specification method can be calculated by summing the benefits of each criteria that the
method fulfills. The total cost of using the formal specification method can be cal cul ated
in the same way, by examining each activity for costs incurred by incorporating formal
specification. Such a cost-benefit analysisis highly dependent upon the goals and charac-
teristics of the particular project and development environment. Estimations of the cost

and benefits must be obtained from other similar projects.

The work described here was not aimed at a particular project, so no weights were
assigned to the criteria; each was equally important. It was assumed that current practice
employed a well-established informal method for development and used natural language
for specification. Each of the lifecycle phases was examined and the common activities

performed during that phase were enumerated. Then for each of these activities, there
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were two considerations, the demands placed on formal specification to meet the stan-
dards set by current practice and the new benefits that formal specification could provide.
The effects on both the quality of the lifecycle artifacts and the effectiveness of the man-
agement activities from incorporation of formal specification were discussed. Demands
from current practice include compatibility with current design methods and matching the
quality of tools. New benefits are essential in order to amortize the cost of introducing for-
mal specification into current practice. Such benefits might include an increase in the qual-
ity of the artifacts of the lifecycle, such as design documents or implementations, or an
improvement in the development process, for example a more predictable development
process is easier to schedule, estimate resources for, and there are fewer risks of missing
the deadline.

This careful examination of current practice identified many demands placed on
formal specification methods and many benefits that they could provide. In order for for-
mal specification to gain acceptance in industry, these demands must be met and benefits
provided. A list of criteriawas compiled from the findings that resulted from the examina-
tion of current practice. These criteria were then used for evaluation of three specification

methods.



6 Demands of the Lifecycle

In this chapter, each phase of the lifecycle was examined systematically and alist
of demands that each places upon the specification notation or tools was compiled. Every
phase has been included because the specification participates in every stage of the lifecy-
cle of the software. In examining the phases, two types of requirements were considered.
The ability of formal specification to take the place of natural language with as little dis-
ruption to current practice as possible. This includes compatibility with current methods
and tools, aswell as competition with the strengths of natural language. Secondly, the abil-
ity of formal specification to produce improvements over current practice in the develop-
ment process and quality of the software produced. The phases examined here,
requirements specification, design, implementation, verification, and maintenance, were

defined in the previous chapter.

6.1 Requirements Specification

Requirements specification consists of two activities, writing the specification and
validating the specification. The issues discussed in this phase are divided between those
two categories. Writing the specification is performed by specifiers, while validation is

done by both the specifiers and the client or domain expert.
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Writing the Specification

»  Specification devel opment speed
The length of time that it takes to develop a formal specification is a very important
consideration. The formal specification method must support rapid prototyping of the
specification and facilitate later elaboration of the details. One of the goals of industry
is to decrease system development time. Formal specification may lengthen the early
phases of the lifecycle such as writing and validating the specification, but shorten
later ones like coding, testing, or maintenance because less rework is required and the

system is well-documented.

» Training, documentation, and technical support for the specification method
In order to assist in learning to use the formal notation and toolset, training and docu-
mentation are vital. Once formal specification isin use, documentation and technical
support continue to be valuable. These types of assistance are especialy important
when the method is unfamiliar to the specifier and when it isnot in wide use, asis cur-

rently the case.

* Development method
Theindustrial community has years of experience developing natural language specifi-
cations. A cultural approach is used since writing has been taught in many classes
throughout everyone's education. Additionally, many authors have published descrip-
tions of successful natural language specification methods, including document lay-
outs. None of thisis true for forma specification. There are very few people with
experience developing specifications using forma notations and, despite the word
method in formal methods, little methodology is described in the literature. In order to
replace natural language, formal specification must have an associated development
method that can be introduced into the work environment with as little disruption as

possible.

* Coverage

Natural language isinfinitely large and flexible and can be used to express amost any
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requirement of a system, whether functional or non-functional. Common shortcom-
ings of formal specification notations are an inability to describe user interfaces or
non-functional requirements. In order to be generally applicable, the formal notation
must have the ability to express every concept or be designed to operate with another

tool that can expressit.

* Integration with other components

The specification is not developed in isolation, but rather as part of the larger software
development process. The specification tools must integrate with the other compo-
nents of this process, such as documentation, boilerplates, management information,
and executive summaries. Often a system database and version control system are
used. A part or al of the specification might be inserted into another document, so the
specification must have a common file format. There will likely be the desire for a
hard copy of the specification. It should be easy to print the entire specification,
including comments and non-functional requirements, in a straightforward manner
and acquire alegible document. The formal specification method must be suited to the

larger working environment.

»  Group development
Every software project involves more than one person. During the development of the
specification, version control must be exercised, whether internal or external. It must
also be possible for several people to work in parallel and combine their efforts later.
Therefore, the specification method must support the idea of separate compilation. It

must also alow many people to view the specification simultaneously.

»  Support for evolution
A specification is not built in one effort and then set in concrete; it is developed and
changed over time. The specification method must support the logical evolution of
specification and ease its change. Incompleteness must be tolerated. Functionality
such as searching, replacing, cutting, copying, and file insertion must be provided.

Modularity and information hiding must be facilitated, so that, for example, a change
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in adefinition is automatically propagated to every usage of it. Large scale manipula-

tions must a so be supported, like moving entire sections or making them subsections.

Support for usability

The ability to locate relevant information is avital part of the usefulness of a specifica-
tion. The ability to search for regular expressions is valuable, but not sufficient. The
specification isintended to serve as a means of communication. Annotating the speci-
fication with explanations, rationale, or assumptions is important for both the use of
the specification in later phases and for modifications of the specification. This anno-
tation must be easy to create and access, and it must be linked to a part of the specifica-
tion, so changes effect the corresponding annotation. The specification notation
should also provide structuring mechanisms to aid in navigation since the specification
document is likely to be large. In a natural language document, the table of contents
and index assist in the location of information; many tools allow them to be generated
automatically from the text. Another useful capability seen in text editing is the use of
hypertext links to a related section or glossary entry. Formal specification methods
must provide similar aids to enhance the usability of the resulting specification docu-

ments.

Checking and Validation of the Specification

Human validation

During the early part of the lifecycle of the software, emphasisis on validation. The
customer must check that the system described in the specification is complete and
correct. The developer must also check for completeness and consistency throughout
the system. Reading and understanding the specification is a minimal requirement.
Another helpful capability is animation of the model. Animation demonstrates the
behavior of the system. The developer might also want to develop a prototype of the
software system. The specification method should facilitate validation.

Satic analysis

Static analyzers can aid in identification of notational errors, incompleteness, or incon-
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sistencies. Natural language systems provide few mechanical checks besides spelling.
More extensive analysis of formal specification notations, such as type checking and
completeness and consistency checks, can be performed automatically because of their
formal semantics. These types of analysis can identify trivial errors and also larger
problems, such as misunderstandings of the notation, omissionsin the specification, or
design mistakes, that would be difficult and expensive to fix if not found until later in

the lifecycle. It isimportant that these checkers emit informative messages.

Extended validation
Tools exist that provide further capabilities that aid in validation of formal specifica-

tions. The generation of preconditions of functions can be very valuable. Properties
of the specified system can be proven using theorem proving or model checking. The
proof of properties such as freedom from deadlock or avoidance of dangerous states
provides quality, dependability, and safety assurance. These types of checks are not
mechanical; the theorems must be formulated by hand. The development of theorems
requires sometraining. A theorem prover can then help automate the proof process by
providing alanguage of commands that execute the steps of the proof mechanically. A
model checker requires the system to have afinite state space, but can then prove the

theorem automatically using an exhaustive search.

6.2 Design

Compatibility with design tools

A very strong relationship exists between the specification of a system and its design,
therefore the tools should also be closely related. It should not be necessary for the
designer to re-enter parts of the specification that are also part of the design. Either the
specification tool must also fully support the design phase or it must be compatible

with common design tools.

Compatibility with design methodol ogy

Just as the specification tools must be the same as or compatible with popular design
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tools, the method for using them must also be compatible with popular design method-
ologies. A method for the use of a specification written in aformal notation during the

design process should be described in the literature, complete with examples.

Communication of desired system characteristics to designers

In order to design the system, the designer must be able to read and understand the
specification. The specification should describe the normal operating procedure, any
error conditions and the response that is appropriate, and non-functional requirements
such as the size or efficiency requirements. The specification should contain the
answer to every question about the system, i.e. be complete. These questions could
involve abstract concepts or details, so the specification must be precise, expressive,
and accurate. Inaccuracy isworse than omission! The specification must use familiar

notations, have rational structure, and be easy to navigate and search.

Facilitation of design process

The more easily a design can be developed from the specification, the better. The use
of aformal specification could speed up the design process by describing the system
clearly and precisely. The designer must take the abstract description in the specifica-
tion and describe how area system is going to implement the specification. Informa-
tion hiding must be maintained and the ability to view the system at varying levels of
abstraction must be provided. The specification of the system must be structured
appropriately since there will likely be astrong correlation between the structure of the
specification and of the design. In order to facilitate good design decisions, the speci-
fication should identify key parts of the system and make dependencies between parts
of the system explicit. It should ease the understanding of the function of a section of
the system or the flow of an individual data-item. The designer may want to create a
system prototype, so the specification method should allow this through easy or auto-

matic trandlation of the design to code.
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6.3 Implementation

Communication of desired system characteristics to implementors

The implementors will need to reference the specification and design during imple-
mentation, so the two documents must complement each other. Implementors will
need to read, understand, navigate, and query the specification. There should be
examples of how to express features of the formal notation in an implementation lan-
guage. While the specification should be implementation independent, it may be that
certain features are more easily expressed in certain implementation languages. It is
important that it be possible to implement every concept in the specification. The
structure of the specification isvital to the implementors’ understanding of which fea-
tures to implement and what their relations are to other parts of the system. The ability
to view the system at different levels of abstraction would enable them to focus on the
relevant parts of the system. It isimportant that all information about a function can be
found easily and the exact semantics of the specification notation should provide a
clear description of the functionality. This description needs to contain the appropriate
level of detall.

Efficient coding

Coding is hindered by lack of clarity in the specification and design and misunder-
standings that cause rework. The more complete, precise, and detailed the specifica-
tion and design are, the more smoothly coding should go. This makes the phase faster
and more predictable. It could be greatly enhanced by automatic generation of code or

acode framework.

Unit testing

A precise, complete, and accurate specification can greatly aid in the formulation of a
unit test suit, perhaps through automatic generation. It should also minimize rework,

since the requirements are well defined and unambiguously stated in the specification.
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6.4 Verification

Effective verification

Formal specification can shorten the amount of time spent in verification. A high
quality specification will makeit clear what the requirements of the system are, so they
are easy to verify and more likely to have been implemented correctly the first time.
Besides providing a precise specification, formal semantics may also support easy or
automatic generation of test cases. Theorem proving may eliminate the need for test-
ing. It would be a great contribution if the specification provided an indication of

when verification was complete.

Communication of desired systemto verifiers

The specification defines the desired system; verification is the process of checking
that the implementation meets the specification. Therefore the verifiers must be able
to read and understand the specification. This is enhanced by the ability to view the
specification at different levels of abstraction. They will need to navigate the specifi-

cation to find information. The tools should support several viewers.

Integration with development environment

The formal specification method should be compatible with current verification meth-
ods, such as testing, inspection, and theorem proving. There should be examples avail-
able that demonstrate the use of a specification written in the notation during
verification. Whatever the method of verification, the information gained during veri-
fication should be connected with the information about the rest of the system. For
example, test cases might be associated with a particular section of the specification,
design, and code to which they correspond. Thistype of linkage will speed up rework
of the code and then re-verification. If a database of faultsis kept, then the specifica-

tion tool must be compatible with this system.

Systemtesting
In order to test the resulting system, the specification must precisely describe the sys-

tem behavior. It must state the properties of the system and its response to every situa-
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tion. Without such a detailed description of the expectations for the system, it is
impossible to test for compliance. The derivation of a set of test cases from a natural
language specification is a lengthy process requiring extensive human analysis of the
system and its operational environment and is often considered an art form. This does
not lead to afast repeatable process. Formal specification may facilitate the generation
of test cases because much of this analysis has already been done and is precisely
expressed in the specification. This was the hypothesis of Nina Amla and Paul
Ammann and they found this to be true for at least one combination of formal specifi-
cation method and testing method [AA92]. A rigorous method for generating test

cases would also indicate when testing is finished.

* Inspection
In an inspection, the code is subjected to human scrutiny. It must be shown that the
code meets the specification and that it is written well, i.e. well-organized, structured,
and in the accepted format. Using a natura language specification, it is difficult to
determine whether or not the requirements have been met. Often the inspection
focuses more on the form of the code than on its semantics. If aformal specification
were used, the inspection could check rigorously that the transition from specification
to implementation was a accurate refinement. In order to facilitate inspection, the
specification must be readable by the inspectors and state the requirements precisely

so that the code can be checked for compliance.

* Formal verification

If the specification has been rigoroudly validated and, at each refinement, the design
and implementation are proven to be equivalent to the specification, then the properties
of the specification hold on the implementation. This requires that the specification
has formal semantics based in mathematics, a verification tool exists for the notation,
and that each refinement can be verified. Alternatively, the code and specification can
be proven to be equivalent using theorem proving one the implementation nis com-
plete. The application of such rigor during the development of the system practically
eliminates the need for testing.
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6.5 Maintenance

Understanding the system

A new person on the project should be able to study the specification and gain a broad
or detailed understanding of the system. The documentation of non-functional
requirements and design decisions is vital to a complete understanding of the system.
It should be easy to navigate, accurate, complete, and easy to reference to find answers
to questions. The structure, information hiding, and the ability to view the specifica-
tion at different levels of abstraction will enhance understanding. It should also be

possible to print a hardcopy of the specification document.

Changing the system

When a change is made to the system, both the code and specification must be
changed. This is clearly facilitated if the two are carefully linked together so the
changes needed in the code are very similar to those in the specification. Currently the
specification is changed as an afterthought or not at all. Ideally the specification
should be changed first to examine the effects of the change on the system. This
requires that the specification be easily changed and that the document remains well-
structured. Once changed, formal notations could allow static analysis, animation, or
even proof of propertiesto be done on the new specification before the change is prop-

agated to the code. Validation and verification of a change isimportant.

6.6 Generating Criteria

The specification serves as the vehicle of communication about the system

throughout the lifecycle. Therefore, the specification method must accommodate the

needs of every person involved in the development. The specification plays an important,

but difficult role. From this careful scrutiny of current practice, alist can be generated of

criteria that aformal specification method should satisfy in order to be routinely used in

industry.
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In the previous chapter, each lifecycle phase was examined. The activities from
each phase that involve the specification were listed in order to identify the demands they
place on the specification notation and toolset. These demands are now translated in to a
concise list of criteriathat can be used to evaluate formal specification methods. Because
these criteria are derived directly from the software development process rather than in an
ad hoc manner based on experience with a particular project, the inclusion of each is
defendable. Criteria applicable to all lifecycle phases are collected into one group; the

other criteriaare listed by lifecycle phase.

7.1 Common to All Lifecycle Phases

» Training in the notation and toolset is available and of appropriate length and
extent

* Quality technical support for the notation and toolset is available
* Thenotation and toolset are reasonably easy to learn

» Thesize and complexity of the notation is appropriate

» The space requirements and run-time of the toolset are reasonable
» Thetoolset provides an easy way to print a hard copy

* Thenotation and tool set facilitate navigation and searching

* Thetoolset provides support for multiple users

* The notation and tool set provide support for differing levels of abstraction
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The resulting specification is of high quality (complete, accurate, precise)
The notation has formal semantics

The notation provides support for understandability (e.g. infinite-length vari-
able names, meaningful keywords, common mathematical notation)

The specification facilitates communication about the system

7.2 Requirements Specification Phase

Writing the Specification

The notation and toolset decrease the time needed to write the specification
A useful method exists for creating a specification in the notation

Useful examples of system specifications in the notation are available

All aspects of a system and its environment can be expressed in the notation

The notation and tool set provide the ability to document non-functional require-
ments

The toolset and notation integrate with other hardware and software in the
development environment

The toolset provides the ability to represent the specification in a common file
format

The toolset provides easy creation, manipulation, and organization of files
The toolset alows the use of version control

The toolset is compatible with the documentation system

The notation and toolset support the notion of separate compilation

The tool set tolerates incompl eteness in the specification during development

The toolset facilitates modification of the specification (small textual changes
aswell as large-scale changes such as moving sections)

The notation and toolset facilitate structuring and information hiding in the
specification

Checking and Validation of the Specification

The notation and tool set decrease the time needed to validate the specification
The specification is easily understood by a devel oper

The notation and toolset facilitate completeness and consistency checking by a
devel oper
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The notation and toolset describe static properties of the system, such as pre-
conditions, post-conditions, invariants, and flow of data and control

The toolset provides the ability to animate the specification in order to view its
behavior

The toolset provides useful static analyzers for mechanical checking
The specification is easily understood by a client or domain expert

The specification can be checked by aclient or domain expert for completeness
and correctness

7.3 Design Phase

The specification decreases the time needed to create a design

Useful examples of creating designs from the notation are available
Non-functional requirements are documented in a manner useful to design
The specification method is compatible with current design methods

The tool set integrates with software and hardware used in design

The specification is easily understood by a designer

The structuring and information hiding of the specification are useful in design
The specification facilitates design

The specification facilitates the identification of key parts of the system

The specification facilitates the identification of interactions or dependencies
between parts of the system

The toolset facilitates the creation of a system prototype

7.4 Implementation Phase

The specification decreases the time needed to implement the system

The toolset provides support for automatic code generation from the specifica-
tion

Every feature of the notation is implementable
Useful examples of how derive code from the notation are available

The notation does not have an affinity to certain implementation hardware or
software

The specification integrates with the design document
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The toolset is compatible with the hardware and software used in implementa-
tion

The specification is easily understood by an implementor

Non-functional requirements are documented in amanner useful for implemen-
tation

The structuring and information hiding in the specification are useful to imple-
mentation

The specification facilitates implementation
The specification provides an appropriate level of detail about the functionality
The specification facilitates unit testing

7.5 Verification Phase

The specification decreases the time needed to verify the system

Useful examples of verification based on a specification in the notation are
available

The specification methods is compatible with current verification methods
The tool set integrates with the software and hardware used in verification

Non-functional requirements are documented in a manner useful for verifica-
tion

The specification is easily understood by a verifier

The specification provides the ability to determine the outcome in every situa-
tion

The specification facilitates verification
The toolset provides automatic test generation
The specification facilitates code inspections

The toolset provides the ability to perform theorem proving or model checking

7.6 Maintenance Phase

The specification decreases the time and effort needed to maintain the system
The specification isuseful as an introduction to the system for anew maintainer

The specification is useful as an introduction to the system for a new client or
domain expert

Non-functional requirements are documented in a manner useful for mainte-
nance
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The specification integrates with other artifacts of the system (design, imple-
mentation, test suite)

The specification is easily understood by a maintainer

The specification is easy to modify (small textual changes aswell aslarge-scale
changes such as moving sections)

The structuring and information hiding of the specification facilitates under-
standing of the specification

The structuring and information hiding in the specification facilitates modifica-
tion of the specification

The specification facilitates changes to the system

The specification can be used to validate a proposed change before changing the
implementation

The specification facilitates verification of the system after change is made

7.7 Evaluation

With this list of criteria, that were derived systematically from current practice,

formal specification methods can be evaluated. This evaluation can be conducted using all

of the criteriaor only a portion that are deemed most relevant to a particular project. Ide-

ally, the criteriawould be given weights in accordance with the relative importance of sat-

isfying that criteria in order to meet the goals of a particular project. The results of this

evaluation can be used to assess the applicability of aformal specification method to a

project or to identify features that require improvement.

Department of Computer Science University of Virginia






8 Evaluation Method

Using the defendable list of criteria presented in the previous chapter, an evalua-
tion of three formal specification methods, Z, PVS, and statecharts was conducted. The
criteria aim to expose deficiencies in the specification methods that have kept them from
receiving widespread use in industry, as well as benefits that these methods provide over
the current practice of using natural language for specification. The evaluation that was
conducted was not ideal due to restrictions in resources. An ideal evaluation method is

briefly described, followed by the actual evaluation method used in this study.

8.1 Ideal Evaluation M ethod

The only way to determine for certain whether a formal specification method is
beneficial to a particular project and working environment is to actually use it in that set-
ting. To evaluate its usefulnessin industrial practice in general, a formal specification
method must be tested in alarge number and variety of projects. The projects chosen for
study should be numerous and encompass a wide range of application areas. The goals of
the projects should also be as varied, including safety critical systems and embedded sys-
tems, as well as text editors and database systems. Systems with varying characteristics,
such as reactive or computational -intensive, should be included. The population surveyed
should consist of experienced industrial software practitioners, including clients, manag-

ers, designers, implanters, documenters, and maintainers. Data should be gathered while
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the formal specification method is used by these practitioners on an actual project. The
project should be followed from conception through a period of maintenance. Measure-
ments of productivity and product quality should be taken before and after the addition of
formal specification to the development process, so that a comparison can be made. A
study with these characteristics would require many years and the cooperation of thou-

sands of people.

8.2 Actual Evaluation M ethod

The resources needed to conduct a statistically significant evaluation of even one
formal specification method are too extensive for this endeavor. Instead three formal spec-
ification methods were evaluated based on one project, a nuclear reactor control system,
using alimited number of criteria. For summaries of the notations and the application, see
item 3 - Notation Summaries. The project was not followed through all phases of the life-
cycle, only specification. A specification of the preliminary version of the control system
using each of the three formal specification methods was developed by members of the
research group. Then assessments of the formal specification methods were performed by
three groups of participants, nuclear engineers, computer scientists, and the authors of the
specifications. Below, the evaluation criteria and technique used are described for each of

these groups.

* Nuclear Engineers
The nuclear engineers were domain experts for the project and their role was to vali-
date the specifications. They were familiar with the system that was being specified,
but not with the formal specification methods. Their evaluation of the notations was
performed during an interview in which the printout of one of the specifications was
explained to them and they were asked to assess their ability to understand the specifi-
cation and check it for completeness and correctness. This format was intended to

approximate meetings between the specifier and the domain expert during the require-
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ments specification phase of the lifecycle. The parts of the specifications for which
they displayed ease or difficulty in understanding were noted. Their comments on the
notations were recorded as anecdotal evidence. The criteria evaluated by the nuclear

engineers were:

» The notation and tool set are reasonably easy to learn
» The notation facilitates navigation and searching

* The notation provides support for understandability (e.g. infinite-length vari-
able names, meaningful keywords, common mathematical notation)

» The specification facilitates communication about the system
» The specification is easily understood by a client or domain expert

» The specification can be checked by a client or domain expert for completeness
and correctness

» The specification is useful as an introduction to the system for a new client or
domain expert

» The structuring and information hiding of the specification facilitates under-
standing of the specification

» Thespecification can be used to validate a proposed change before changing the
implementation

Computer Sientists

The computer scientists received a brief introduction to the notations and the applica-
tion, studied printouts of the specifications, and completed a questionnaire (see
Appendix B) for each of the three notations that was intended to evaluate their ability
to perform tasks necessary in the software development process such as learning the
notation, understanding a specification written in the notation, and locating informa-
tion in the specification. The questionnaires were written in a multiple choice format
in order to standardize the answers, however comments were welcome and, in fact,
provided some of the most useful information. The volunteers were also asked to mea-
sure the time it took them to complete certain tasks. Clearly the range of criteria that
they could evaluate is limited by their lack of experience with the formal notation,
however this data is nevertheless valuable because initial impressions can determine
whether aformal specification method is adopted for usein aproject. The criteriathat

were evaluated by the computer scientists were:
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* Thenotation and toolset are reasonably easy to learn
* Thesize and complexity of the notation is appropriate
* Thenotation facilitates navigation and searching

» The notation provides support for understandability (e.g. infinite-length vari-
able names, meaningful keywords, common mathematical notation)

* The specification facilitates communication about the system
* The specification is easily understood by a computer scientist
* The specification facilitates the identification of key parts of the system

» The specification facilitates the identification of interactions or dependencies
between parts of the system

» Every feature of the notation is implementable
» The specification provides an appropriate level of detail about the functionality
* Thespecification isuseful as an introduction to the system for anew maintainer

» The structuring and information hiding of the specification facilitates under-
standing of the specification

» The specification is complete

Authors
The authors of the specifications provide a perspective of the formal specification
notations and tool sets that is very different from the other two groups of participantsin
this study. Only the authors spent a considerable amount of time writing and studying
the specifications. Only the authors had experience with the toolsets. Because they
contribute this vastly different perspective, it was necessary to include their assess-
ments of the notations and toolsets. Their input could be objectionable because they
were members of the research group, however these results are anecdotal, based on
their experience with one project. The author of each specification was asked to com-
plete a questionnaire (see Appendix A). In order to minimize the bias from these par-
ticipants, an effort has been made to limit the subjectivity of the evidence. Anecdotal
evidence from the development of the specifications was also included. The criteria
that were evaluated by the authors were:

» Training in the notation and toolset is available and of appropriate length and

extent

* Quality technical support for the notation and toolset is available
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» The space requirements and run-time of the toolset are reasonable

» Thetoolset provides an easy way to print a hard copy

» The notation and tool set facilitate navigation and searching

» Thetoolset provides support for multiple users

» The notation and tool set provide support for differing levels of abstraction

* The notation provides support for understandability (e.g. infinite-length vari-
able names, meaningful keywords, common mathematical notation)

* A useful method exists for creating a specification in the notation
» Useful examples of system specifications in the notation are available
» All aspects of asystem and its environment can be expressed in the notation

* Thenotation and tool set provide the ability to document non-functional require-
ments

* The toolset and notation integrate with other hardware and software in the
devel opment environment

* Thetoolset provides the ability to represent the specification in a common file
format

» Thetoolset provides easy creation, manipulation, and organization of files

* Thetoolset alows the use of version control

* Thetoolset is compatible with the documentation system

* Thenotation and tool set support the notion of separate compilation

» Thetoolset tolerates incompleteness in the specification during devel opment

» The toolset facilitates modification of the specification (small textual changes
aswell as large-scale changes such as moving sections)

* The notation and toolset facilitate structuring and information hiding in the
specification

* The notation and toolset facilitate completeness and consistency checking by a
devel oper

» The notation and toolset describe static properties of the system, such as pre-
conditions, post-conditions, invariants, and flow of data and control

» Thetoolset provides the ability to animate the specification in order to view its
behavior

» Thetoolset provides useful static analyzers for mechanical checking

» Thetoolset provides support for automatic code generation from the specifica-
tion

Many of the criteria that were derived from current practice could not be evaluated
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in this study. For example, criteriathat required statistics to be kept during the entire life-
cycle could not be evaluated since only one phase had been completed. Because of the
limits of this study, the goal was to collect anecdota evidence on a subset of the criteria.
This evidence provided an early indication as to the validity of the hypothesis that formal
specification methods must overcome practical hurdles before they can be accepted by

industry.
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9 Results

This chapter contains the results of the evaluation of three formal specification
methods, Z, PVS, and statecharts, based on a subset of the criteria derived from the soft-
ware development process. The formal specification methods were evaluated from three
points of view, the expert in the domain of nuclear engineering, the computer scientist, and
the specifier, thus there are three groups of results corresponding to these three perspec-
tives. The nuclear engineers and computer scientists evaluated only the notation, not the
toolset, while the specifiers evaluated both. The methods of evaluation were different for
each set of participants and were described in the previous chapter. The evidence recorded
here is anecdotal, but relevant because the participants of the study are representative of
the type of people who would work with formal specification in industry. An effort has
been made to document problems with the evaluation methods so that they can be taken

into consideration when drawing conclusions from these results.

9.1 Nuclear Engineers

General Results

» Therole of the specification has to be understood

Communicating with people from a different field of expertise is always difficult

because the terminology used is different and each group makes assumptions about the

Department of Computer Science 85 University of Virginia



86

Results

knowledge of the other that often prove to be incorrect. In this experiment, a particu-
larly troublesome issue was the role of the specification in software development. One
of the participants considered it computer code and wanted to see the execution to
check correctness. Another considered it a summary that should be easy to read and
not contain many details. Since the role of the specification is debated within the soft-
ware community, it was difficult to provide the nuclear engineers with an exact defini-
tion, but the lesson learned was that it was vital to convey an understanding of the role

of the specification before any further discussion.

Direct and indirect influence on the system are difficult to distinguish

A common difficulty for the nuclear engineersin understanding the specifications was
with the difference between direct and indirect influence on the state of the system.
The nuclear control system is reactive, meaning that it is constantly making alterations
in response to input received from sensors. A change in the height of a rod causes
changes in the sensor values. The height of the rod can be altered directly by the sys-
tem, but the sensor values change indirectly as a result of the movement of the rod.
The formal specification notations designate parts of the system that can be influenced
directly differently than those that cannot, for example Z uses primes and delta sche-
mas to indicate itemsthat can be changed directly. These designations were a constant
source of questions because, along with the changes in the system from direct influ-
ence, there are expected indirect changes in the state of the system. By no means is
this an argument to abolish the separate designations for items that can be directly
influenced, rather to point out a difficulty in understanding these notations that is for-

gotten once the notation is familiar.

The use of constant identifiersis problematic

An interesting anecdote involves the use of constants. It is customary, in fact
preached, in computer science that constants should be defined in one place and given
identifiers so that no “magic” numbers are used throughout the rest of the system. The
reasons are that the numbers are unexplained and, if changed, require the location of

every use. To most of the nuclear engineers, this organization was preferable since

Department of Computer Science University of Virginia



Results 87

they did not have the set point values memorized and the values would have to be
checked against other documentation in an effort separate from the general perusal of
the specification. However, one participant was confused by the use of constant iden-
tifiers rather than numbers. This suggests that the ability to dynamically replace the
constant identifiers with their values would be useful when the specification is viewed

by certain audiences.

o Ziseffective for communication

The Z specification was described as meaningful and useful for communication. One
participant felt comfortable with the notation after a short period of time, no longer
needed full translations of the schemas, and began to find errors in the specification.
This participant felt that, after afew iterations of discussion and correction of the spec-

ification, he would feel that there was a mutual understanding of the system.

 Mathematical notation is not familiar

A surprising discovery was that the mathematical notation used in Z was not familiar
to the nuclear engineers. One participant expressed the desire for a glossary of sym-
bols, including for all, there exists, and implies. Another asked why words, which are

universally understood, were not used in place of the symbols.

» Errorsin the specification were found by the presenter

An additiona benefit of the presentation of the formal specification to the nuclear
engineers was the discovery of errorsin the specification by the presenter. In this case,
the presenter of the Z specification was not the author, but another computer scientist
familiar with the project, and the process of explaining the specification to the nuclear
engineers uncovered errors. In this sense, the presentation of the specification served
as akind of inspection of the specification. This confirmsthe generally accepted view

of the community.
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PVS

PVSlooks like mmputer code
Thefirst impressions of the PV S specification were that it looked like computer code,
it was too long, and there was too much text. One participant said he did not even want

to try to read it. Another criticism was that there were too many variables.

Errors in the specification were evident, despite an inahlity to read the specification
notation

Although the participant was not comfortable reading the PVS notation, a detailed
explanation of the specification facilitated useful discussions that identified errors in
the specification and in the specifiers understanding of the system. One way that this
occurred was that the participant would ask questions to check the model. He identi-
fied a misunderstanding of the power levels of the reactor that necessitated the rede-
sign of a section of the specification. If this error had not been found until the system
had been implemented, it would have been impossible to increase the power level of
the reactor above about half of the value at which it is licensed to operate. The use of

meaningful variable names was key to the understanding of the specification.

Errorsin specification were found ly the presenter
In addition to errors found by the nuclear engineers, presenting the specification

caused the specifier to discover an error in his own specification.

Statecharts

Satecharts's graphical notation is appealing

After less than an hour of introduction to the statecharts notation and specification, one
participant was no longer intimidated by the notation and was able to understand the
specification without assistance. The graphical notation was appealing, as well as the
obvious flow of the system following the arrows. The cliche “a picture is worth a
thousand words” was used repeatedly. The structure of the specification was much

more evident in statecharts than the other two notations because of its hierarchica
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nature.

Satechartsis difficult to search and navigate

In avery detailed examination of the specification, participants complained of the dif-
ficulties of knowing the state of the whole system at once and of identifying the results
of actions since the actions could affect any page of the specification. Whenever the
details of a state were included in the diagram of that state rather than being saved in

another file, the lack of abstraction seemed to be confusing.

Satechartsis easy to learn!

Within two hours of discussion of the specification, the participants displayed the
desire to learn the syntax of the notation in order to understand the subtleties of the
gpecification. A large number of errors were identified during the discussion of the
specification and the need for additional robustness was evident. The participants
found the specification easy to understand with the explanation from the specifier and
felt that they could then continue to study it alone. They also felt comfortable enough
with the notation that, if there were changes to be made to the system, they felt they

could write statecharts of the proposed changes!

The statecharts specification is superior to existing documentation

The participants from the nuclear reactor staff felt that the specifiers understood the
system better than most of the operators. They felt that they could eventually come to
an agreement that the statechart specification correctly described the system and did
not feel that they would have the same confidence with an English document. They
said that this specification had the potential to be used in the training of their operators
and perhaps even to replace their SAR which describes the control of the nuclear reac-

tor.
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9.2 Computer Scientists

Background of Participants

The participants in this portion of the study were seven computer science students.
There was one undergraduate, four students working toward or finished with a master’s
degree, and two Ph.D. candidates. Two participants had a year or less work experience
developing software, three had one to five years experience, and two had more than five
years of work experience. All had knowledge of the C programming language. Regarding
their experience with formal specification methods, four had no experience prior to this
study, two had a segment of a course, and one had an entire course. All had some, but not
extensive, knowledge of basic science and engineering and little to no knowledge of

nuclear reactors.

Z

» Zisfairly easy to understand and navigate
The Z specification was generally well-structured and this aided the participants in
understanding and searching the specification. However, one participant expressed
difficulty locating the definitions of types since they are not defined near their use and
another suggested that the specification would be easier to search, navigate, and use
for reference if there were a table of contents. The participants felt strongly that Z
would aid communication about the system, however they considered it only average
for use in the maintenance phase as an introduction to the system and as a reference
document about the system. Familiarity with logic symbols, the smallness and sim-
plicity of the notation, and the natural language descriptions aided the participants in

understanding the specification.

» Zisreasonably easy to learn
None of the participants felt very confident in their ability to use Z after this short

introduction. A few of the participants felt that Z was harder to learn than a program-
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ming language, but most felt that it was as easy or easier to learn. Difficultiesin learn-
ing Z were attributed to the mathematical notation, the unusual delimiters of inputs
and outputs, and the unfamiliarity of the notation in general. No one thought that Z
was too large of anotation and almost everyone thought the complexity of the notation

was appropriate for specification.

Z isimplementable

After a thorough inspection of the description of the scram logic in the specification,
everyone saw ways that it could be implemented. No one was sure that the description
was complete, however. Some participants found errors in the specification. Upon
quick perusal of the rest of the specification, almost everyone felt that all the features
of the notation were implementable. It was practically unanimous that Z provided the

appropriate level of detail about the system for a specification.

PVS

PVSreceived low marks in structure, understandability, searching, and navigation

Although PV Sis structured like code in the C programming language which all partic-
ipants claimed a lot or extensive knowledge of, it received low ratings in the areas of
structure, understandability, and searching. One participant cited the formatting as
hindering understanding. It was deemed average to bad for use during the mainte-
nance phase as an introduction to the system or as areference document. The answers
were widely varied as to whether PVS would aid communication between people

involved in the software devel opment process.

Responses about the ease of learning PVSwere mixed

None of the participants felt confident using PV S after this short introduction. Most
felt that PVS was as easy or easier to learn than a programming language, but a few
felt that it was harder to learn. No one thought that the PV'S notation had too few fea-
tures and most people thought that it had the appropriate amount of complexity, while
afew felt that it was too complex. Difficultiesin learning the notation were attributed

to the size and complexity of the notation and the difficulty in understanding the key-
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words and constructs. However, some participants felt that the keywords and con-
structs were easy to learn and PVS was similar to other notations they were familiar
with.

PVS seems implementable

After examining the scram logic in the PV S specification, everyone saw ways that it
could be implemented, but afew saw some problems. No one was certain whether the
description of the scrams was complete. After a quick inspection of the rest of the
specification, the participants felt that everything was implementable. There was a
wide range of responses when asked whether PV'S provided the appropriate level of
detail for a specification.

Statecharts

Satechartsis easy to understand

Statecharts was described as well-structured and this aided the participants in under-
standing the specification. Difficulties in understanding the specification were attrib-
uted to the global nature of events and the division of the specification over many
pages. The responses indicated strongly that statecharts would aid communication

between people in the development of a software product.

Satechartsis difficult to navigate and search

The structure of statecharts aided in searching, but one participant noted that the spec-
ification would be easier to navigate, search, and use as reference, if it had a table of
contents. It was deemed average for use in the maintenance phase as an introduction

to the system and as a reference document.

Satecharts wasrated fairly easy to learn

The participants did not feel confident in their ability to specify a system using state-
charts at this point. Difficulties in learning statecharts were attributed to the notation
being unlike any notation they had seen before and the constructs being difficult to

understand. However some people felt that statecharts was easy to learn because the
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Statecharts PVS Z
total for 3 | average | total for2 | average timefor 1 | total for 3 | average
successful | successful | successful | successful | unsuccessful | successful | successful
searches search searches search search searches search

11:00 3:40 7:00 3:30 15:00 4.00 1:20

4:33 1:31 2:27 1:14 4:33 3:31 1:10

10:55 3:38 5:30 2:45 15:00 6:39 2:13

6:15 2:05 3:52 1:56 140 4:14 1:25

8:30 2:50 3:50 1:55 4.00 3:45 1:15

2:10 43 3:15 1:38 3:50 2:37 52

2:45 :55 1:45 .53 5:30 1:50 37

Table5: Timeto Locate Specific I nfor mation (min: sec)

notation was familiar, graphical, small and smple, and the constructs were easily
understood. Most of the participants thought that statecharts was as easy or easier to

learn than a programming language.

e Satecharts can be implemented

After studying the scram logic described in the statecharts specification, everyone saw
ways to implement it, however no one was certain the description was complete. After
a quick survey of the specification, amost every participant thought that all the fea-
tures of the notation were implementable. It was amost unanimous that statecharts
provided the appropriate level of detail about the system. Most of the participants
thought that statecharts notation contained the appropriate level of complexity.

Sear ching the Specification

The computer scientists were asked to measure the amount of time required to
locate three particular pieces of information in each of the specifications. In the statecharts
and Z specifications, the answers to all three questions were present in the specification,
however the answer to one of the questions was not present in the PV S specification. This

was not an intended feature of the experiment, but in retrospect it would have been inter-
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esting to collect this data on all the specifications since it indicates the amount of time

needed for the participant to be sure the answer is not present. table 5 contains the data

from the seven participants.

Z was easiest to search, then PVS

Although most people had the impression that statecharts was the easiest to search
because of the limited amount of text, in fact the time needed to search the statecharts
specification was consistently higher. Z had the lowest times overall. The results for

PVS may have been affected by having only two successful searches.

9.3 Authors

Training, documentation, and tools are available

The Z specification was written in Framemaker for Windows using a Z font. Training
is becoming more widely available for learning to both read and write Z. In addition,
there are books, papers, newsgroups, and conferences about Z. Complete specifica-
tions for real systems have been published. Toolsets are also becoming more widely
available. There are typecheckers, static anayzers, and theorem provers for Z. How-

ever, thereislittle to no training in the use of these tools.

The expressivity of Z has limits

The Z notation supports integers, but not real numbers or the declaration of constant
identifiers. Semantics for timing principles are not built-in to the notation, but they
can be expressed in Z and extensions are avail able that provide this capability. Z isnot
suited for describing the behavior of a user-interface, so it needs to be able to integrate
with atool that can. Non-functional requirements can not be described in the Z nota-
tion, but Z is conventionally accompanied by natural language text in which these

requirements can be documented.
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The Z notation is built for readability

Infinite-length identifiers are permitted, common mathematical notation used, tabs can
be used to format the text, and lower and upper case letters can be used in identifier
names. The one convention that is not supported is the use of underscoresin identifier
names. Different levels of abstraction, structuring, and information hiding can be used

in Z, but thisis not enforced.

The use of a text editor has many benefits

The editor used in this project was atext editor, so it tolerates incompleteness during
composition and supports printing and regular expression matching. It also provides a
selection of common file formats and is clearly compatible with a documentation sys-
tem. Because it istext editor, rather than an editor specific to Z, it does not alow the

user to view the specification at different levels of abstraction.

Group devel opment issues were not encountered

The editor does not provide internal version control, but can be used with externa ver-
sion control systems. It supports multiple users and separate compilation since it is
easy to manipulate text. These issues are more critical in other tools, such as a

typechecker or theorem prover, which were not evaluated in this study.

Symbols in the notation make Z difficult to compose and modify

It is very time consuming to compose a Z specification because the symbols of the
notation are not found on a traditional keyboard. A symbol pad or elaborate key
sequences must be used. Additionally, in Framemaker, the schemas are represented as

figures and the Z text is contained in text frames. Modification of theseis tedious.

PVS

Documentation and tutorials are available
PV S 2.0 requires about 40 megabytes of memory and was used on Solaris. Training to
learn to write the notation exists, but is not readily available. Documentation and tuto-

rials for the toolset have been published and were very useful. Technical support for
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the toolset is available via email. There is documentation of the notation and tool set
available, as well as specifications of example systems. Real systems have been speci-
fied using PV'S, but the complete specifications are not available. The toolset provides

type-checking and theorem proving capabilities.

* The PVSnotation isfairly expressive
The notation can represent integers and real numbers. Constants can be defined,
although not in a straightforward manner. Timing is not built-in, but can be specified.
It is possible to document non-functional requirements as comments. The notation
provides infinite-length identifiers, meaningful keywords, and upper and lower case
letters and underscores are allowed in identifiers. Common mathematical notations
that require symbols not on the keyboard are expressed with the English words, such
asfor all, exists, and implies. Tabsto format the text, however, are not well-supported.
User-interfaces cannot be represented in PV'S, so it needs to be compatible with a tool

that can. The notation supports, but does not enforce, different levels of abstraction.

» The editor is capable, but not user-friendly
Emacs isthe user-interface for PV S and saves the files as text which is clearly compat-
ible with any documentation system. The files can aso be pretty-printed in LaTex.
The specification is easy to navigate, search, and modify. The user-interface is not

very user-friendly.

» Group development is not well supported
Multiple users can compose files, but typechecking and other capabilities that use
more than one file require the files to be in one PV S context, which usually means they
must be in the same directory. PVS does not have built-in version control and it is

unclear whether externa version control can be used.

* Thereisno published method for building a PVS specification

It took several months for the specifier to develop a successful approach to structuring

theories.
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Statecharts

The documentation is useful, but training and tutorials are scarce

The statecharts specification was written using Express 3.1.3 of the STATEMATE
family of tools running on SunOS 4.1.3. It required 30 megabytes of memory. The tool
supports three notations; of these, only statecharts was used. The graphical notation is
supplemented by a set of forms that provide a means to express properties that are dif-
ficult to represent graphically. These formswere aso not used in this study. Training in
writing the notation exists, but is not locally available. The documentation on the nota-
tion is useful and readily available, however the manual on the toolset, which included

atutoria, could use improvement.

The expressiveness of statecharts has limits

The notation can represent integer and real numbers, but not constants. Sometimingis
built in, but other notations based on statecharts have extended this capability. Non-
functional requirements can be documented in the notation, but it is not easy or natural
to do so. User-interfaces cannot be represented. The notation does provide strong

support for representing the environment effecting the system.

Support for readability of the text is lacking

While the graphical nature of the notation is very readable, support for readability of
the text is limited to infinite-length identifiers and alowance of underscores. Mean-
ingful keywords are abbreviated automatically by the editor to strings lacking readabil-
ity. Tabs and extra spaces are automatically removed and all identifiers are written in

capital letters.

Group development is over-constrained

External version control can not be used because the tool saves the information in a
complex database of directories in the workspace of the user. The toolset does support
multiple users and has built-in version control. It requires the categorization of the
users into groups, such as project managers, and provides varying permission to make

modifications based on these categorizations. The internal database of files and tight
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control of permissions makes it difficult or impossible to move files between projects,

deletefiles, delete projects, or to group files, for example into different directories.

It isdifficult to extract a statechart from the STATEMATE tool

It isdifficult to print the statecharts or import them into another documentation system
because they are not saved in acommon file format. They can be printed using a plot-
ter or saved as postscript, but the author of this specification found it easiest to use the

XV tool to grab theimage and save it in aformat that can be more easily manipul ated.

The toolset provides many capabilities

Code can be generated automatically from thistool. Several static checking capabili-
ties are provided, including completeness, consistency, and non-determinism. Anima-
tion is provided which helped identify problemsin the specification. Thereis support
for structured design in the STATEMATE tool and various reports can be generated.

The user-interface is inconsistent and not user-friendly

The menuing system that drives the toolset is not intuitive. It was difficult to make
changes to the specification in this notation. Because it is graphical, the spacing had to
be constantly modified. Identifiers are associated with graphical objects, so if the
object was moved, deleted, or anaming conflict arose, often identifiers would be auto-
matically deleted. These identifiers could be conditions on a transition consisting of

severa lines of text. There is no support for regular expression matching.

Satecharts enforces structure, but not information hiding

The notation enforces a hierarchical structure that creates levels of abstraction and the
editor supports the ability to view the specification at different levels of abstraction.
While structuring was well-supported, information hiding was not. Most elements are
global.

Shortcomingsin the Evaluation M ethod

A shortcoming of this evaluation was that the nuclear engineers, while familiar
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with the reactor, had not been in discussions about the proposed computer system before.
This had several repercussions. Terminology used by the participants was not consistent
with each other or with the specifications. They did not know which parts of the system
were being modeled. It would have been more realistic if the nuclear engineers had been
part of the project from the start of the development of the specifications and if the evalua-
tion consisted of multiple interviews spread over a period of time.

The Z specification contained a mixture of Z and natural language, whereas the
other two specifications contained only the formalisms. This natural language may have
aided the understandability of the specification. The natural language also grouped
together the schemas pertaining to a particular part of the system, such as the schemas
dealing with darms. Thisstructure is not imposed by the formalism, but helped in naviga-
tion and understanding.

Only a subset of the notations being evaluated were used in the specification, so
difficulties with other features may occur. This also may have affected the ratings of the
size, complexity, and difficulty of learning the notations.

The evaluations by the nuclear engineers and computer scientists were done with
paper versions of the specifications, so no benefits or problems associated with the tool sets
were studied by them. Also, no experimentation was done with anatural language specifi-
cation, so no conclusions can be drawn about the usefulness of these notations in compar-
ison to natural language. Additionally, the role the specification in the software
development process was not explained to the computer scientists, so their judgements

about the appropriateness of the level of detail may be unsubstantiated.

9.4 Implications

* Moddingishard
An issue that is not often mentioned is that modeling is hard. Even if the syntax of the

notation is simple, the modeling concepts are difficult. Thisistrue for computer scien-
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tists learning a formal specification notation and it is true for nuclear engineers study-
ing a completed specification for the first time. Nobe and Warner discuss their

difficulty with modeling when using statecharts in [NW96].

» Formal notations are easy to learn to read

Although none of the participants could read the formal specifications before receiving
an introduction to the notation, they were able to learn the notations well enough to
understand the specifications in a short amount of time. Interviews with the nuclear
engineers lasted no longer than two hours and they could learn to read one formal
notation fairly well in that time. The computer scientists were asked to spend approx-
imately an hour to an hour and a half with each notation. Thistime included reading a
brief introduction to the notation. Like the nuclear engineers, they also felt fairly com-

fortable reading the notations in this short time frame.

»  Specification isa group effort
Creating a specification takes a lot of time and effort on the part of the specifiers. It
may be written by one person or asmall group. The goal of the specification, however,
is communication between the specifiers and the clients or domain experts, so input
from all parties should be heeded. In this study, the nuclear engineers requested a lot
of changes in identifier names and organization of the specification. Since they must
accept the specification as a description of the desired system, every effort must be
made on the part of the specifiers to accommodate the suggestions of the client or
domain expert in order to make the model intuitive and the terminology familiar. If
there is existing documentation on the system, the specification should have a one-to-

one correspondence with this documentation to facilitate checking for consistency.

* Meaningful variable names are key to understanding
Degspite effort by the specifiers to choose meaningful variable names, the identifiers
were still confusing to the nuclear engineers. Appropriate variable names made the
notation almost immediately understandable, while poor choices led to lengthy discus-

sions. All of the nuclear engineers wanted to change the variable names.
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Thereis no road back to natural language specification.

Once the nuclear engineers had experience with one or more of the formal specifica-
tion notations, they said they would never trust a natural language specification again.
They were impressed by the level of understanding of the system that was required to
write the specifications and felt that with natural language they could never be sure
that the words were not just copied down with little understanding of the system.
While they would have liked some natural language to accompany the formal specifi-

cations, they wanted to retain the formalisms.

Inspections of the specification are priceless

Many errors, poor structure, and confusing identifiers can be eliminated from the spec-
ification through inspection and discussion with other specifiers. During the develop-
ment of the three specifications used in this study, several informal inspections
occurred and resulted in major revisions. The presentation of the specification to other
specifiersor to aclient or domain expert often caused the specifier to discover errorsin

his own specification.

Compl eteness should be checked by a computer

When asked about the completeness of the specifications, the participantsin this study
balked at the idea. In protest, one calculated the space of cases that would have to be
checked. Regardless of the enormity of the state space, completeness of the specifica-
tion is vital to its success as a reference document about the system. Completeness
checks are not an activity for humans, rather for a computer. Research is ongoing in
tools that check completeness. These would be excellent additions to the tool sets that

support these formal notations.

Formal specifications appear to be implementable, but more study is needed

The computer scientistsin this evaluation felt that they could implement the specifica-
tions, but they were not required to demonstrate this ability. Clearly the ease of imple-
mentation is an important criteria for formal notations and further study should be

done on thisissue.
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» Support for navigation and searching is lacking
Practically every participant complained of the difficulty of navigating and searching
the specifications. They expressed the desire for a table of contents or some similar
overview of the structure. Tool support for searching was also deficient. If the specifi-

cation isto be used for reference, it must be easy to navigate and search.

e User-interfaces are not friendly
Little emphasis seems to have been spent on making the user-interfaces for these
toolsets friendly, yet thisis the first impression that a new user receives of the capabil-
ity of the toolset. In order for formal specification to gain popularity in industry, the

user-interface must not be more difficult to learn than the formal notation!

*  Compatibly with other software packagesis vital

The specification toolset must integrate into the larger development environment. All
three of the notations evaluated were lacking the ability to specify user-interface
behavior, so they need to be compatible with atool that has that capability. Printing,
exporting, and importing portions or al of the specifications are necessary functional-
ities of the toolset. The use of existing text editors by PVS and Z was more successful
than the indigenous editor used for statecharts, but none fully satisfied the needs of a
specification editor.

9.5 Questions Raised

» Should aclient or domain expert be able to read a formal specification without assis-
tance?

Since a natural language specification can be read by a client or domain expert with-
out aid, it can be mailed to them for extensive examination. If the specification written
in aformal notation can not be read by the client or domain expert without help, then
all of the examination, discussion, and checking of the specification must be done in
meetings with the specifier. This would take a lot of time and the subtleties of the
model might be missed if the client or domain expert can not read the notation. If the

formal specification could be read by the client or domain expert after some introduc-
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tion, then they could study it at their own leisure. The question then focuses on how

much introduction is reasonable to require of the client or domain expert.

» Should the specification always be referenced on-line?
In this study, the formal specifications were presented to the nuclear engineers on
paper, however there might be benefits to letting them view it on-line. For example,
statecharts provides the ability to animate the model and this could aid the client or
domain expert in checking the behavior of the system. If the formal specification isto
be viewed on-line, then questions again arise about the client or domain expert’s abil-
ity to view the specification without the assistance of the specifier and, if they can view

it alone, the availability of the toolset and the ease of learning to useit.

» Should natural language be included in Z specifications?
It is customary to write Z interspersed with natural language descriptions of each
schema. When one participant was presented with the Z specification without any
introduction to the notation, he read only the natural language and ignored the Z alto-
gether. After an explanation of afew schemas, however, he felt that he could under-
stand the specification without aid.  Another participant was presented the
specification without the natural language and each schema was explained. He felt
that, with a short natural language description of each schema, he could read the Z
specification easily. When interspersed with natural language, the Z specification
seemed to work much better as a stand-alone document than any of the three formal-

isms alone.
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10 Conclusions

During this evaluation of Z, Statecharts, and PV'S, the well-known benefits of for-
mal specification were seen. The precision of the notation and automated analysis tools
have the potential to provide industrial practitioners with much needed improvementsin
the development process and product quality. However, significant refinements are essen-
tial before cost-effective usage in industry is possible. These shortcomings pose substan-
tial barriers to the acceptance of formal specification in industry.

Considerable further research is needed before formal specification methods will
be ready for routine industrial use. Currently, formal specification methods generally con-
sist of a notation supported by immature tools. A method for creating and using formal
specifications is needed. Improvements must be made in the notations and tools. They
need to support the development of large, multi-authored systems. The resources required
to learn to use the formal specification methods must be widely available before they will
be adopted by industry.

Conclusions such as these resulted from this study and indicated the following

research agenda:

» Formal specification method as well as notation
In order to become routinely used in industry, there must be a method for using formal
specifications. This method should prescribe the steps needed to specify the require-

ments of a system using the formal notation. It must be evident that formal specifica-
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tion can be incorporated into current industrial practice. The method for using formal
specification must be compatible with other methods currently in use. Inspections of
the specification should be included in its development. Investigation into the use of

formal specification during interaction with clients is needed.

» Attention to vital scale-up issues

Current formal specification notations and tools are not sufficient for use in large,
multi-authored systems. They must facilitate group development. Many different pro-
grammers in different locations and on different platforms often work together on a
project.
Some of the specific requirements that are dictated by the need to specify large sys-
tems are:

- Group devel opment

- Specification navigation

- Specification evolution

* Preparation for wide-spread use
The requirements that need to be met to permit the wide-spread use of formal specifi-

cations are the following:
- Availability of training
- Quality of documentation for the notation, tools, and method
- Availability of specifications of real systems

- Availability of support from other users

»  Application of lessons from programming language research
The requirements suggested by prior research in the theory of programming languages

and design that could be adopted in formal specifications are the following:
- Structuring mechanisms
- Information hiding

- Useof symbolic constants
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* Maturity of toolset
The requirements for high-quality tool support in the use of formal specifications are
the following:
- Compatibility with other software and hardware
- Improvementsin usability
- Association with tools that provide expressibility that is lacking in the notation
- Provide unified working environment

- Provide analysis tools

» Social and cultural acceptance of science in software devel opment
The approach to evaluation employed here was successful in identifying flawsin three
prominent formal specification methods. Although the flaws that were identified were
not previously unknown, the use of current software development practice as the basis
for this evaluation provided rationale for the choice of criteriathat led to the identifica-
tion of these flaws. These criteria, together with their systematic derivation, form a
detailed agenda for the improvement of formal specification methods. Although there
may be other barriers, unless these criteria are satisfied, there is little hope of formal

specification obtaining widespread use in industry.
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Appendix A
PV S Specification

cool i ng : THEORY
BEG N
header _st at us : TYPE = { UP, DOWN }
punp_stat us : TYPE = { ON, OFF }
line_val ve_status : TYPE = { CLOSED, TO AR, TO COVPRESSED }
pressure_status : TYPE = { H GH, NORMAL }
cool i ng_st atus : TYPE =
[# 9%RECORD
header : header _st at us,
punp : punp_st at us,
sec_punp : punp_st at us,
line_valve : i ne_val ve_st at us,
line_pressure : pressure_status
#]
| ower _header (cool : cooling_status)
cool i ng_status = cool WTH [header := DOMW]
rai se_header(cool : cooling_status)
cool i ng_status = cool WTH [ header := UP,
line_valve := TO_COVPRESSED,
line_pressure := HGH]
bl eed_l i ne(cool : cooling_status)
cool i ng_status = cool WTH [line_valve := TO AR

line_pressure := NORMAL ]

cl ose_val ve(cool : cooling_status)
cool i ng_st atus = IF line_valve(cool) = TOAR
THEN cool WTH [line_val ve : = TO COVMPRESSED]
ELSE cool
ENDI F
punp_of f (cool : cooling_status)
cool i ng_status = cool WTH [punp := OFF]
punp_on( cool . cooling_status)
cool i ng_status = cool WTH [punmp := ON|
sec_punp_off(cool : cooling_status)
cool i ng_status = cool WTH [sec_punp := OFF]
sec_punp_on(cool : cooling_status)
cool i ng_status = cool WTH [sec_punp := ON
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PV S Specification

punps_of f (cool
cool i ng_st atus

punps_on( cool

cool i ng_st atus = cool WTH [punp :=
END cool i ng
sensors THEORY
BEG N
sensors_status TYPE =
[# YRECORD
pool _tenp nat,
pool _I evel : nat,
pool _l evel _I ow : bool
power _i ndi cl nat,
power _i ndi c2 nat,
wat er _cond nat,
react _period nat,
gama_r ad nat,
ai r _nont nat,
%luct _nont nat,
area_rad nat,
core_tenp nat ,
core_flow : nat,
% i ne_pressure : bool
R T

auto_ctrl _I ost : bool
her _door _open bool
dr _door _open bool
sec_punp_of f : bool
t hi mbl e_t oo_hot : bool
key_renpved : bool
bri dge_rad nat,
face_rad nat,
t _door _open bool
ehat ch_open bool
ri_up bool
ri_down bool
rl_seated bool
rl_mag_eng bool
r2_up bool
r2_down bool
r2_seated bool
r2_mag_eng bool
r3_up bool
r3_down bool
r3_seat ed bool
r3_mag_eng boo
#]

cool i ng_stat us)
= cool

cool i ng_stat us)

rai se_shimrods_10(sensors

sensors_st at us

W TH [ punp : = OFF,

sensors_stat us)

= sensors WTH [r1_up

rl_down
rl_seated
rl_mag_eng

r2_up

r2_down
r2_seated
r2_mag_eng

r3_up

N,

sec_punp :

sec_punp :

fal se
fal se,
fal se,

true,

fal se,
fal se,
fal se

true,

fal se,

OFF]
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A-ll1

| owest _shi mrod_position(sensors :

sensors_st at us =

END sensors
al arm di spl ay

BEG N

al arm st atus

al arns_st at us

[ # YRECORD

#]

Yspare_al arm
core_tenp_al arm
control _rod_alarm:
air_nont_alarm

wat er _cond_al arm
area_rad_al arm

her _door _al arm
sec_punp_al arm
ganma_r ad_al arm

dr _door_alarm
thinmble_tenmp_alarm
scram al arm :

scran(al arns
al arns_st at us =

reset _scram(al arms
al arns_st at us =

clear_alarns(al arns

al arns_st at us

[ core_tenp_alarm

control _rod_alarm

r3_down
r3_seat ed

r3_mag_eng :

sensors_stat us)
sensors WTH [r1_up

THEORY

TYPE = { BOTH_ON, YELLOWON, BOTH OFF }

TYPE =

al ar m st at us,
al ar m st at us,
al ar m st at us,
al ar m st at us,
al ar m st at us,
al ar m st at us,
al ar m st at us,
al ar m st at us,
al ar m st at us,
al ar m st at us,
al ar m st at us,
al arm st at us

alarms WTH [scramal arm:

alarms WTH

rl1_down
rl_seated

rl_mag_eng :

r2_up
r2_down
r2_seated

r2_mag_eng :

r3_up
r3_down
r3_seat ed

r3_mag_eng :

al ar ns_st at us)

al ar ns_st at us)
alarns WTH [scram alarm:=|F scram al arnm(al arns) /= BOTH_OFF
THEN YELLOW ON

ELSE BOTH_OFF

al ar ns_st at us)

fal se,
fal se,
true]

fal se,
true,
true,
true,
fal se,
true,
true,
true,
fal se,
true,
true,
true]

BOTH_ON|

ENDI F]

IF (core_tenp_alarm(alarns) /= BOTH_QON)
THEN BOTH_OFF
ELSE BOTH_ON

ENDI F,

IF (control _rod_al arn(al arms) /= BOTH_QON)
THEN BOTH_OFF
ELSE BOTH_ON

ENDI F,
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PV S Specification

air_nont_alarm

wat er _cond_al arm

area_rad_al arm

her _door _al arm

sec_punp_al arm

gamma_r ad_al arm

dr _door_alarm

thinmble_tenmp_alarm

scram al arm

= |F (air_nmont_alarn(alarns) /= BOTH_ON)

THEN BOTH_OFF
ELSE BOTH_ON
ENDI F,

:= |F (water_cond_al arnm(al arns) /= BOTH_ON)

THEN BOTH_OFF
ELSE BOTH ON
ENDI F,

:= |F (area_rad_al arn(al arns) /= BOTH_ON)

THEN BOTH_OFF
ELSE BOTH_ON
ENDI F,

:= | F (her_door_alarn({alarns) /= BOTH_ON)

THEN BOTH_OFF
ELSE BOTH_ON
ENDI F,

:= |F (sec_punp_alarn(al arns) /= BOTH_ON)

THEN BOTH_OFF
ELSE BOTH ON
ENDI F,

= |F (gamma_rad_al arnm(al arns) /= BOTH_ON)

THEN BOTH_OFF
ELSE BOTH_ON
ENDI F,

= |F (dr_door_alarn(al arms) /= BOTH_QON)

THEN BOTH_OFF
ELSE BOTH_ON
ENDI F,

THEN BOTH_OFF
ELSE BOTH_ON
ENDI F,
= |F (scram.alarm(al arms) /= BOTH_ON)
THEN BOTH_OFF
ELSE BOTH_ON
ENDI F

core_tenp_al armsignal _on(al arns . alarns_status)

al arm st atus =

core_tenp_al armsignal _off(alar
al arm st atus =

BOTH_ON

ns . alarns_status)

IF core_tenp_alarm(al arnms) /= BOTH_OFF
THEN YELLOW ON

ELSE BOTH_OFF

ENDI F
control _rod_al arm signal _on(al arns . alarns_status)
al arm st atus = BOTH_ON
control _rod_alarmsignal _off(alarms : alarns_status)

al arm st atus =

IF (thinble_tenp_alarn(al arns) /= BOTH_ON)

IF control _rod_al arm(al arnms) /= BOTH_OFF

THEN YELLOW ON
ELSE BOTH OFF

ENDI F
ai r_nont _al arm si gnal _on(al arns al ar ns_st at us)
al arm st atus = BOTH_ON
air_nont_al arm si gnal _of f (al arns . alarns_status)

al arm st atus =

IF air_nont_alarm(al arms) /= BOTH_OFF
THEN YELLOW ON

ELSE BOTH_OFF

ENDI F
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wat er _cond_al arm si gnal _on(al ar s . alarns_status)
al arm st at us = BOTH_ON
wat er _cond_al arm si gnal _of f (al ar s . alarns_status)
al arm st at us = | F wat er _cond_al arm(al arms) /= BOTH_OFF

THEN YELLOW ON
ELSE BOTH_OFF

ENDI F
area_rad_al arm si gnal _on(al arnms : alarns_status)
al arm st at us = BOTH_ON
area_rad_al arm si gnal _of f (al arns : alarns_status)
al arm st atus = |F area_rad_al arm(al arnms) /= BOTH_OFF

THEN YELLOW ON
ELSE BOTH_OFF

ENDI F
her _door _al arm si gnal _on(al arns : alarns_status)
al arm st atus = BOTH_ON
her _door _al arm si gnal _of f (al arns : alarns_status)
al arm st atus = I F her _door_al arm(al arnms) /= BOTH_OFF

THEN YELLOW ON
ELSE BOTH_OFF

ENDI F
sec_punp_al arm si gnal _on(al arns . alarns_status)
al arm st at us = BOTH_ON
sec_punp_al arm si gnal _off (al arns . alarns_status)
al arm st atus = | F sec_punp_al arm(al arnms) /= BOTH_OFF

THEN YELLOW ON
ELSE BOTH OFF

ENDI F
game_r ad_al arm si gnal _on(al arns . alarns_status)
al arm st at us = BOTH_ON
game_rad_al arm si gnal _of f (al arns . alarns_status)
al arm st atus = | F gamme_rad_al arm(al arns) /= BOTH_OFF

THEN YELLOW ON
ELSE BOTH OFF

ENDI F
dr _door _al arm si gnal _on(al arns . alarns_status)
al arm st at us = BOTH_ON
dr _door _al arm si gnal _of f (al arns . alarns_status)
al arm st atus = | F dr_door_al arnm(al arns) /= BOTH_COFF

THEN YELLOW ON
ELSE BOTH OFF

ENDI F
thinble_tenp_alarmsignal _on(alarnms : alarns_status)
al arm st at us = BOTH_ON
thinbl e_tenp_al arm signal _off(alarms : al arns_status)
al arm st at us = I F thinble_tenp_alarn{alarns) /= BOTH_COFF

THEN YELLOW ON
ELSE BOTH OFF
ENDI F
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PV S Specification

END al ar m di spl ay
shim rods

BEG N
| amp_st at us

shi m | anp_st at us

[# 9RECORD
up
down
seat ed
mag_eng
#]

magnet _st at us
scram st at us
shi m rods_st at us

[# 9YRECORD
scram state
rl_driver
ril_| anps
r1_magnet
r2_driver
r2_| anps
r2_magnet
r3_driver
r3_| anps
r 3_magnet

#]

scram(saf ety_rods
shi m rods_status =

reset _scran{safety_rods
shi m rods_status =

rl_magnet _on(safety_rods
shi m rods_status =

r2_magnet _on(safety_rods
shi m rods_status =

r3_nmagnet _on(safety_rods
shi m rods_status

al | _magnets_on(safety_rods
shi m rods_status =

| ower _shi mrods(safety_rods
shi m rods_status =

rai se_shimrods(safety_rods
hei ght
shi m rods_status

THEORY

TYPE = { ON, OFF }

TYPE =

| anp_st at us,
| anp_st at us,
| anp_st at us,
| anp_st at us

TYPE = { MAG ON, MAG OFF }
TYPE = { NOT_SCRAMVED, SCRAMVED }
TYPE =

scram st at us,
nat,

shi m | anp_st at us,
magnet _st at us,
nat,

shim | anp_st at us,
magnet _st at us,
nat,

shim | anp_st at us,
magnet _st at us

shi m rods_status)
safety_rods WTH [scram state : = SCRAMVED,
rl_magnet := MAG_COFF, r2_magnet := MAG_OFF,
r3_magnet := MAG _OFF]

shi m rods_st at us)
safety_rods WTH [scram state : = NOT_SCRAMVED]

shi m rods_st at us)

safety_rods WTH [ r1_nagnet := MAG ON ]
shi m rods_st at us)

safety_rods WTH [ r2_nagnet := MAG ON ]
shi m rods_st at us)

safety_rods WTH [ r3_nagnet := MAG ON ]

shi m rods_st at us)
safety_rods WTH [r1_magnet := MAG ON,
r2_magnet := MAG ON, r3_magnet := MAG ON|

shi m rods_status)
safety_rods WTH [ r1_driver := 0,
r2_driver := 0, r3_driver := 0]

shi m rods_stat us,
posnat )
safety_rods WTH [ r1_driver

r2_driver := height, r_3_dri ver

;= hei ght,
;= height]
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END shi m rods
control _rod

BEG N
control _status

control _rod_status

[# 9RECORD
contro
position

#]

start_auto_control (control _rod

control _rod_status

start_manual _control (control _rod

control _rod_status

nmove_control _rod(control _rod

hei ght
control _rod_status

END control _rod
rods

BEG N

| MPORTI NG shi m r ods
| MPORTI NG control _rod

rod_status

[# 9%RECORD
shim rods
control _rod
#]
Rods
position

start_auto_control (Rods

rod_status =

start_manual _control (Rods
rod_status =

scran( Rods

rod_status =

reset _scram Rods

rod_status =

r1_magnet _on( Rods

rod_status =

r 2_magnet _on( Rods

THEORY

TYPE = { AUTOVATI C_CONTROL, MANUAL_CONTROL }
TYPE =
control _status
posnat
control _rod_status)

control _rod WTH [control := AUTOVATI C_CONTROL]

control _rod_status)
control _rod WTH [contro

MANUAL_CONTROL]

control _rod_status

posnat )
IF control (control _rod) = MANUAL_CONTROL
THEN control _rod WTH [ position := height]
ELSE control _rod
ENDI F

THEORY

TYPE =

shi m rods_st at us
control _rod_status

VAR rod_status
VAR nat

rod_status)
Rods WTH [ control _rod : =
start_auto_control (control _rod(Rods))]

rod_status)
Rods WTH [ control _rod : =
start_manual _control (control _rod(Rods))]

rod_status)
Rods WTH [ shimrods := scram shi mrods(Rods))]

rod_status)
Rods WTH [ shimrods : =
reset _scram(shi mrods(Rods))]

rod_status)
Rods WTH [ shimrods : =
r1_magnet _on(shi mrods(Rods))]

rod_status)
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Rods WTH [ shimrods : =
r2_magnet _on(shi m rods(Rods))]

rod_status

r 3_magnet _on( Rods : rod_status)
rod_status = Rods WTH [ shimrods : =
r3_magnet _on(shi m rods(Rods))]

| ower _shi m r ods( Rods :  rod_status)
rod_status = Rods WTH [ shimrods : =
| ower _shi m rods(shi mrods(Rods))]

al | _magnet s_on( Rods : rod_status)
rod_status = Rods WTH [shimrods : =
al | _magnet s_on(shi m rods(Rods))]

nmove_shi m r ods( Rods : rod_status,
hei ght :  posnat )
Rods WTH [ shimrods : =
nove_shi m rods(shi m rods(Rods), height)]

rod_status

END r ods
power _| evel : THEORY
BEG N
range_swi tch_2_status : TYPE = { LOW MODE, H GH _MODE }
oper ati ng_power _st at us : TYPE = { LOW PONER, H GH POAER }
operating_status : TYPE = { | DLE_CHECKED, | DLE_UNCHECKED,
PONER_TO_LOW
POVWER _TO HI GH, OPERATI NG }
power _| evel _status : TYPE =
[# YRECORD
sp_limt : nat,
set _poi nt : nat,
operating : operating_status,
power _| evel : oper ati ng_power _st at us,
range_switch_2 : range_swi tch_2_status
#]
scran( power : power _| evel _status)
power _| evel _status = power WTH [ operating :=
| F operating(power) = | DLE_UNCHECKED
THEN | DLE_UNCHECKED
ELSE | DLE_CHECKED
ENDI F ]
range_sw to_|l owm power : power_|evel _status)
power _| evel _status = power WTH [ range_switch_2 := LOW MODE,

sp_limt := 250, set_point := 230 ]

range_sw_to_hi gh(power : power_| evel _status)
power _| evel _status = power WTH [ range_switch_2 := H GH_MODE,
sp_limt := 2500, set_point := 2230 ]
power _to_| ow( power . power _| evel _status)
power _| evel _status = power WTH [ operating := POANER TO LOW]
power _t o_hi gh( power . power _| evel _status)
power _| evel _status = power WTH [ operating := PONER TO H GH ]
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checked( power
power _| evel _status

pr obl en{ power
power _| evel _status

| ow_power _on( power

power _| evel _status

hi gh_power _on( power
power _| evel _status
END power _| evel
react or
BEG N

| MPORTI NG cool i ng

| MPORTI NG al ar m di spl ay

| MPORTI NG r ods
| MPORTI NG power _| evel
| MPORTI NG sensors

states
[# Y%RECORD
rods
cool i ng_system
al ar s
power _| evel
sensors
#]
events
{
scram
punp_on

open_truck_door,
sb_rdoor_pressed,
evacuat i on3,
r1l_magnet _on,
range_sw_ to_| ow,
check_al ar ns,

END r eact or

power _| evel _status)

= power WTH [ operating :=

power _| evel _status)

= power WTH [ operating :=

power _| evel _stat us)

= power W TH [operating :=
power | evel :=

power _| evel _stat us)

= power W TH [operati ng
= H GH_POVER]

power _| evel

THEORY

TYPE =

rod_status,

LOW POER]

cool i ng_st at us,

al ar ns_st at us,
power _| evel _st

sensors_status

TYPE =

rai se_header,

bl eed_I i ne,
open_escape_hat ch,
sb_bdoor _pressed,
evacuati on4,
r2_magnet _on,
start_auto_control,
test,

at us,

| ower _header,

cl ose_val ve,
renove_key,
evacuationl,

cl ear _al ar ns,
r3_magnet _on,
start_man_control,
startup

check_sensors THEORY
BEG N
| MPORTI NG r eact or
check_sensors(st states) :
states = st WTH
[ rods := rods(st) WTH

[ shimrods
[ r1_lanps
[ up

shimrods(rods(st)) WTH
r1_lanps(shimrods(rods(st))) WTH
IF rl1_up(sensors(st))

| DLE_CHECKED ]

| DLE_UNCHECKED ]

OPERATI NG,

1 = COPERATI NG,

punp_off,
reset_scram
sb_consol e_pressed,
evacuati on2,
clear_scramlight,
range_sw_t o_hi gh,
check_power _i nd,
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THEN ON
ELSE OFF
ENDI F,
down = |F rl_down(sensors(st))
THEN ON
ELSE OFF
ENDI F,
seat ed = |F rl_seated(sensors(st))
THEN ON
ELSE OFF
ENDI F,
mag_eng := |F rl_mag_eng(sensors(st))
THEN ON
ELSE OFF
ENDI F

r2_l anps = r2_lamps(shimrods(rods(st))) WTH

[ up = | F r2_up(sensors(st))
THEN ON
ELSE OFF
ENDI F,

down = |F r2_down(sensors(st))
THEN ON
ELSE OFF
ENDI F,

seat ed = |F r2_seated(sensors(st))
THEN ON
ELSE OFF
ENDI F,

mag_eng = | F r2_mag_eng(sensors(st))
THEN ON
ELSE OFF
ENDI F

r3_| anps = r3_lamps(shimrods(rods(st))) WTH

[ up = | F r3_up(sensors(st))
THEN ON
ELSE OFF
ENDI F,

down := | F r3_down(sensors(st))
THEN ON
ELSE OFF
ENDI F,

seat ed = | F r3_seated(sensors(st))
THEN ON
ELSE OFF
ENDI F,

mag_eng = | F r3_mag_eng(sensors(st))
THEN ON
ELSE OFF
ENDI F

END check_sensors

check_scrams : THEORY
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BEG N

I MPORTI NG r eact or

scram rods( st . states)
states = st WTH [rods := scran(rods(st)),
alarnms := scran(al arms(st)),
power _| evel := scran{power_|evel (st))]
not _scranmed_r ods( st . states)
bool = IF scram state(shimrods(rods(st))) = NOT_SCRAMVED
THEN true
ELSE fal se
ENDI F
check_scrans( st . states)
states = I F scram state(shimrods(rods(st))) /= SCRAMVED
THEN

I F (power_l evel (power_level (st)) = H GH_POAER
AND (line_pressure(cooling_systen(st)) = H GH
OR core_fl owsensors(st))<960))
OR (punp(cooling_systen(st)) = ON
AND header (cool i ng_systen(st)) = DOW)
OR (punp(cooling_system(st)) = OFF
AND header (cool i ng_systen(st)) = UP)
OR power _i ndicl(sensors(st)) > sp_limt(power_Ilevel (st))
OR power _i ndi c2(sensors(st)) > sp_limt(power_|evel (st))
OR bridge_rad(sensors(st)) > 30
OR face_rad(sensors(st)) > 2
OR pool _| evel _| ow(sensors(st)) = true
OR pool _| evel (sensors(st)) < 231
OR pool _tenp(sensors(st)) > 108
OR
OR
OoR
OR

react _period(sensors(st)) < 33

t _door _open(sensors(st)) = true

ehat ch_open(sensors(st))

key_renpved(sensors(st))
THEN scram rods(st)

true
true

ELSE st
ENDI F
ELSE st
ENDI F
tran_reset _scran{st . states)
states = I F not _scranmed_r ods(check_scrans(st))
THEN st WTH [rods := reset_scram(rods(st)),
alarns : = reset_scranm(al arms(st))]
ELSE st
ENDI F
tran_truck_door _open(st . states)
states = st WTH [sensors : = sensors(st)

WTH [ t_door_open := true]]

tran_escape_hatch_open(st : states)
states = st WTH [sensors : = sensors(st)
W TH [ ehatch_open := true]]

tran_key_renpved(st . states)
states st WTH [sensors : = sensors(st)
W TH [ key_renmpoved : = true]]

END check_scrans
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check_al arnms
BEG N

| MPORTI NG r eact or

tran_cl ear _al arns( st
states =

check_al ar ms( st
states =
[ alarnms
[core_tenp_al arm

THEORY

st at es)
st WTH [alarnms := clear_alarns(al arns(st))]

st at es)
st WTH
= alarns(st) WTH
:= |F (core_temp(sensors(st)) > 0)
THEN core_t enp_al arm si gnal _on(al arns(st))
ELSE core_tenp_al arm si gnal _off(al arns(st))
ENDI F,

control _rod_alarm := |F (auto_ctrl_lost(sensors(st)) = true)

air_nont_alarm

wat er _cond_al arm

area_rad_al arm

her _door _al ar m

sec_punp_al arm

gamma_rad_al arm

dr _door_alarm

THEN control _rod_al arm si gnal _on(al arns(st))
ELSE control _rod_al arm si gnal _of f (al arns(st))
ENDI F,

:= |F (air_nont(sensors(st)) > 0)

THEN ai r _nont _al arm si gnal _on(al arns(st))
ELSE ai r_nont _al arm si gnal _off (al arns(st))
ENDI F,

:= |F (water_cond(sensors(st)) > 2)

THEN wat er _cond_al arm si gnal _on(al arns(st))
ELSE wat er _cond_al arm si gnal _of f (al arns(st))
ENDI F,

:= |F (area_rad(sensors(st)) > 0)

THEN area_rad_al arm si gnal _on(al arns(st))
ELSE area_rad_al arm si gnal _off(al arns(st))
ENDI F,

:= | F (her_door_open(sensors(st)) = true)
THEN her _door _al arm si gnal _on(al arns(st))
ELSE her_door _al arm si gnal _off (al arns(st))
ENDI F,

= |F (sec_punp_off(sensors(st)) = true)

THEN sec_punp_al arm si gnal _on(al arns(st))
ELSE sec_punp_al arm si gnal _off(al arns(st))
ENDI F,

:= |F (ganma_rad(sensors(st)) > 0)

THEN ganma_r ad_al arm si gnal _on(al arns(st))
ELSE gamma_rad_al arm si gnal _of f (al arns(st))
ENDI F,

:= | F (dr_door _open(sensors(st)) = true)

THEN dr _door _al arm si gnal _on(al arns(st))
ELSE dr _door _al arm signal _off(al arns(st))
ENDI F,

thimble_tenmp_alarm:= |F (thinble_too_hot(sensors(st)) = true)

]

tran_cl ear _scram.| i ght (st
states =

END check_al arns
check_condi tions

THEN t hi nbl e_t enp_al arm si gnal _on(al arns(st))
ELSE thinbl e_tenp_al arm signal _off(al arns(st))
ENDI F

st at es)
st WTH [al arns : = reset_scran(al arns(st))]

THEORY
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BEG N

| MPORTI NG check_sensors
| MPORTI NG check_scrans
| MPORTI NG check_al arns

END check_conditions
transition

BEG N
| MPORTI NG r eact or

| MPORTI NG check_condi tions

tran_rai se_header (st
states =

tran_| ower _header (st
states =

tran_punp_of f (st
states =

tran_punp_on(st
states =

tran_bl eed_l i ne(st
states =

tran_cl ose_val ve(st
states =

tran_scrany( st
states =

tran_r1_magnet _on(st
states =

tran_r2_magnet _on(st
states =

tran_r 3_magnet _on( st
states =

tran_punps_on(st

states =

tran_all _drivers_to_| owest_posi
states =

tran_al | _magnets_on(st
states =

tran_all _drivers_up_10(st
states =

THEORY

states) :
st WTH [cooling_system: =
rai se_header (cool i ng_systen(st))]

st at es)
st WTH [cooling_system: =
| ower _header (cool i ng_systen(st))]

st at es)
scramrods(st WTH [cooling_system:

punp_of f (cool i ng_systen(st))])

st at es)
scramrods(st WTH [cool i ng_system : =

punp_on(cooling_system(st))])

st at es)
st WTH [cooling_system: =
bl eed_| i ne(cooling_systen(st))]

st at es)
st WTH [cooling_system: =
cl ose_val ve(cool i ng_systen(st))]

st at es)
scram rods(st)

st at es)
st WTH [ rods := r1_magnet_on(rods(st))]

st at es)
st WTH [ rods := r2_magnet_on(rods(st))]

st at es)
st WTH [ rods := r3_magnet_on(rods(st))]

st at es)
scramrods(st WTH [ cooling_system:=

punps_on(cool i ng_systen(st))])

tion(st : states)

st WTH [ rods := |l ower_shimrods(rods(st)),

sensors := | owest_shimrod_position(sensors(st))]
st at es)

st WTH [rods := all_magnets_on(rods(st))]

st at es)
st WTH [ rods : =
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tran_range_sw_t o_hi gh(st
states =

tran_range_sw to_| ow st
states =

tran_start_auto_control (st
states =

tran_start_manual _control (st
states =

tran_check_power _i nd( st
states =

nove_shi mrods(rods(st), 10),
sensors : = raise_shimrods_10(sensors(st))]

st at es)
st WTH [ power_level :=
range_sw_t o_hi gh(power_l evel (st))]

st at es)
st WTH [ power_level :=
range_sw_ to_| owm power _| evel (st))]

st at es)
st WTH [ rods := start_auto_control (rods(st))]

st at es)
st WTH [ rods := start_manual _control (rods(st))]

st at es)

I F control (control _rod(rods(st))) = AUTOVATI C_CONTROL
AND (power _i ndicl(sensors(st)) > (6/5 * set_point(power_|evel (st)))
OR power _i ndi c2(sensors(st)) > (6/5 * set_point (power_|evel (st)))
OR power _i ndi cl(sensors(st)) < (4/5 * set_point (power_|evel (st)))
OR power _i ndi c2(sensors(st)) < (4/5 * set_point(power_level (st))))
THEN tran_start_manual _control (st)

ELSE st
ENDI F

tran_check_al ar ns( st
states =

scranmed( st
bool =

not _scranmmed( st
bool =

not _header _up(st
bool =

not _seat ed( st
bool =

not _mag_eng( st
bool =

st at es)
check_al arns(st)

st at es)
I F scram state(shimrods(rods(st)))
THEN true
ELSE fal se
ENDI F

SCRAMVED

st at es)
I F scram state(shimrods(rods(st))) = NOT_SCRAMVED
THEN true

ELSE fal se
ENDI F
st at es)
I F header (cooling_systen(st)) = DOMN
THEN true
ELSE fal se
ENDI F
st at es)
| F seated(r1_l amps(shi mrods(rods(st)))) /= ON
OR seated(r2_l anps(shimrods(rods(st)))) /= ON
OR seated(r3_l anps(shimrods(rods(st)))) /= ON
THEN true
ELSE fal se
ENDI F
st at es)
IF mag_eng(r1_l amps(shi mrods(rods(st)))) /= ON
OR mag_eng(r2_l anps(shimrods(rods(st)))) /= ON
OR mag_eng(r3_l anps(shi mrods(rods(st)))) /= ON
THEN true
ELSE fal se
ENDI F
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not _seat ed_of f _and_down_of f (st . states)
bool = I F seated(r1_l anps(shi mrods(rods(st)))) = ON
OR seated(r2_l anps(shimrods(rods(st)))) = ON
OR seated(r3_l anps(shimrods(rods(st)))) = ON
OR down(r1_|l anps(shimrods(rods(st)))) = ON
OR down(r2_l anps(shimrods(rods(st)))) = ON
OR down(r3_l anps(shimrods(rods(st)))) = ON
THEN true
ELSE fal se
ENDI F
check(st . states)
states = check_sensors(check_al arms(check_scrans(st)))
reset _and_rai se(st . states)

states =
check(tran_rai se_header (check_sensors(check_al arms(check_scrans(tran_reset_scram(st))))))

bl eed_cl ose_and_r eset (st . states)
states =
check(tran_reset_scram check(tran_cl ose_val ve(check(tran_bleed_line(st))))))

turn_punp_on( st . states)

states = check(tran_punp_on(check(bl eed_cl ose_and_reset(st))))
test _stepl(st . states)

states = reset _and_rai se(st)
test _step2(st . states)

states = check(turn_punp_on(test_stepl(st)))
test _step3(st . states)

states = check(tran_punp_off(check(tran_reset_scran(test_step2(st)))))
t est _step4(st . states)

states = check(tran_reset _scram(test_step3(st)))
performtests(st . states)

states = | F operating(power_Ilevel (st)) = | DLE_UNCHECKED

OR operating(power_level (st)) = | DLE_CHECKED

THEN | F not_scrammed(test_stepl(st))
THEN check(tran_scran(test_stepl(st)))
W TH [ power_l evel := probl en{power_|evel (st))]
ELSIF not_scrammed(test_step2(st))
THEN check(tran_scran(test_step2(st)))
W TH [ power_l evel := probl en{power_|evel (st))]
ELSIF not_scrammed(test_step3(st))
THEN check(tran_scran(test_step3(st)))

W TH [ power_l evel := probl en{power_|evel (st))]
ELSE check(test_step4(st))
W TH [ power_l| evel := checked(power_|evel (st))]
ENDI F
ELSE st
ENDI F
| ow_st epl(st . states)

states =
check(tran_all _drivers_to_|l owest _position(check(tran_reset_scram(st))))

| ow_st ep2(st . states)
states =
check(tran_all _drivers_up_10(check(tran_all _magnets_on(l ow stepl(st)))))
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startup_| ow st
states =

hi gh_stepl(st
states =

hi gh_step2(st
states

hi gh_step3(st
states =

hi gh_st ep4(st
states

st at es)

I F not _seated(l ow stepl(st))
THEN check(tran_scran{l ow stepl(st)))

W TH [ power_| evel := probl en(power_|evel (st))]
ELSI F not _mag_eng(l ow_stepl(st))
THEN check(tran_scran{l ow stepl(st)))

W TH [ power_| evel := probl en(power_|evel (st))]
ELSI F not _seat ed_of f _and_down_of f (1 ow_st ep2(st))
THEN check(tran_scran{| ow_step2(st)))

W TH [ power_| evel := probl en(power_|evel (st))]
ELSE check(tran_start_auto_control (|1 ow_step2(st)))
W TH [ power_l evel := |ow _power_on(power_|evel (st))]
ENDI F
st at es)

reset _and_rai se(st)

st at es)
bl eed_cl ose_and_reset (tran_punps_on(hi gh_stepl(st)))

st at es)
check(tran_all _drivers_to_| owest_position(high_step2(st)))

st at es)

check(tran_all _drivers_up_10(check(tran_all _nmagnets_on(high_step3(st)))))

startup_hi gh(st
states =

startup(st
states =

check_new_ st at e( st
states =

next st at e( st
event
states =

st at es)
I F not _scranmmed( hi gh_stepl(st))
THEN check(tran_scran{ hi gh_stepl(st)))

W TH [ power_| evel := probl en(power_|evel (st))]
ELSI F not _header _up(hi gh_stepl(st))

THEN check(tran_scran{ hi gh_step2(st)))

W TH [ power_| evel := probl en(power_|evel (st))]
ELSI F not _seat ed( hi gh_step3(st))

THEN check(tran_scran{ hi gh_step3(st)))

W TH [ power_| evel := probl en(power_|evel (st))]
ELSIF not _mag_eng( hi gh_step3(st))

THEN check(tran_scran{ hi gh_step3(st)))

W TH [ power_| evel := probl en(power_|evel (st))]
ELSIF not_seat ed_of f _and_down_of f (hi gh_step4(st))
THEN check(tran_scran{ hi gh_step4(st)))

W TH [ power_| evel := probl en(power_|evel (st))]
ELSE check(tran_start_auto_control (high_step4(st)))

W TH [ power_Il evel := high_power_on(power_|evel (st))]
ENDI F

st at es)

| F operating(power_I|evel (st)) = | DLE_CHECKED

AND range_sw tch_2(power _| evel (st)) = LOW MODE
THEN startup_|l ow( st

W TH [ power _| evel := power_to_| owm power_level (st))])
ELSI F operating(power_|level (st)) = | DLE_CHECKED

AND range_sw tch_2(power_l evel (st)) = H GH_MODE
THEN st art up_hi gh(st

W TH [ power _| evel := power_to_hi gh(power _I|evel (st))])
ELSE st
ENDI F
st at es)
check(st)
st at es,
event s)

check_new st at e(
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CASES event OF

rai se_header

| ower _header
punp_of f

punp_on

bl eed_Il i ne

cl ose_val ve
open_t ruck_door
open_escape_hat ch
renove_key

scram
reset_scram :
sb_consol e_pressed
sb_rdoor _pressed
sb_bdoor _pressed
evacuati onl
evacuati on2
evacuati on3
evacuati on4d

cl ear_al arns
clear_scram.|ight
rl_magnet _on
r2_magnet _on
r3_magnet _on
range_sw_to_hi gh
range_sw to_low :
start_auto_control
start_man_contro
check_power _i nd
check_al arns

test

startup

ENDCASES

)

END transition
verified_theorens

BEG N

| MPORTING transition

| anps1
(# up = OFF,
down = ON,
seat ed = ON,
mag_eng := ON #);
| anps2
(# up := OFF,
down = ON,
seated := ON,
mag_eng := ON #);
| anps3
(# up := OFF,
down = ON,
seat ed = ON,
mag_eng := ON #);

initial_cooling

(# punp

shi m | anp_status

shi m | anp_status

shi m | anp_status

9

tran_rai se_header (st),
tran_| ower _header (st),
tran_punp_of f(st),
tran_punp_on(st),

tran_bl eed_line(st),
tran_cl ose_val ve(st),
tran_truck_door_open(st),
tran_escape_hat ch_open(st)
tran_key_renpved(st),
tran_scran{st),
tran_reset_scran{st),
tran_scran{st),
tran_scran{st),
tran_scran{st),
tran_scran{st),
tran_scran{st),
tran_scran{st),
tran_scran{st),

tran_cl ear_al arms(st),
tran_cl ear_scram.|ight(st)
tran_r1_nagnet _on(st),
tran_r2_nagnet _on(st),
tran_r3_nmagnet _on(st),
tran_range_sw_ to_hi gh(st),
tran_range_sw_to_hi gh(st),
tran_start_auto_control (st)
tran_start_nanual _control (st)
tran_check_power _ind(st),
tran_check_al arms(st),
performtests(st),
startup(performtests(st))

THEORY

cooling_status =
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header : = DOWN,
sec_punp 1= OFF,
line_val ve : = CLOSED,
line_pressure : = NORMAL
#)

initial_sensors : sensors_status =
(# pool _temp := 75,
pool _Il evel .= 240,
pool _l evel _I ow ;= fal se,
power _i ndicl =0,
power _i ndi c2 =0,
wat er _cond =0,
react _period := 50,
gamre_r ad =0,
ai r_nont =0,
area_rad =0,
core_tenp .= 0,
core_flow =0,
auto_ctrl _|l ost ;= fal se,
her _door _open .= fal se,
dr _door _open ;= fal se,
sec_punp_of f := true,
t hi nbl e_t oo_hot .= fal se,
key_renoved ;= fal se,
bri dge_rad 1= 25,
face_rad =1,
t _door _open .= fal se,
ehat ch_open ;= fal se,
rl_up .= fal se,
rl_down := true,
rl_seated := true,
rl_mag_eng 1= true,
r2_up .= fal se,
r2_down := true,
r2_seated := true,
r2_mag_eng ©= true,
r3_up ;= fal se,
r3_down := true,
r3_seat ed := true,
r3_mag_eng 1= true
#);

initial _alarns : al arms_status =

(# core_tenp_al arm: = BOTH_OFF,

control _rod_alarm := BOTH_OFF,
air_nont_alarm . = BOTH_OFF,
water_cond_al arm := BOTH_OFF,
area_rad_al arm : = BOTH_OFF,
her _door _al arm . = BOTH_OFF,
sec_punp_al arm . = BOTH_OFF,
gamra_rad_al arm : = BOTH_OFF,
dr_door _alarm . = BOTH_OFF,
t hi nbl e_tenp_al arm : = BOTH_COFF,
scram al arm : = BOTH_OFF
#),
initial_shimrods : shimrods_status =

(# scram state : = NOT_SCRAMVED,

rl_driver =0,
rl_| anps = | anpsl,
rl_magnet = MAG_OFF,
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r2_driver
r2_l anps
r2_magnet
r3_driver
r3_l anps
r 3_magnet 1=
#);

initial _control _rod

=0

| anps2,
MAG_OFF,
0,

| anps3,
MAG_OFF

control _rod_status

(# control = MANUAL_CONTROL,
position =0
#)
initial_high_power_Ievel power _| evel _status =
(# sp_limt .= 2500,
set _poi nt 1= 2230,
operating : = | DLE_UNCHECKED,
power _| evel ;= H GH_POVER,
range_switch_2 ;= H GH_MODE
#);
initial _power_|evel power _| evel _status =
(# sp_limt .= 250,
set _poi nt 1= 230,
operating : = | DLE_UNCHECKED,
power _| evel ;= LOW POVER,
range_swi tch_2 : = LOW MODE
#);
stO0 states =
(#cool i ng_system ;= initial_cooling,
sensors ;= initial_sensors,
al arns = initial_alarns,
rods := (# shimrods = initial_shimrods,
control _rod = initial_control _rod
#),
power _| evel ;= initial_power_|evel
#),
stOprinme states =
(#cool i ng_system := initial_cooling,
sensors ;= initial_sensors,
al arns ;= initial_alarns,
rods = (# shimrods = initial _shimrods,
control _rod = initial_control _rod
#),
power _| evel := initial_high_power_Ilevel
#);
is_initial (st states): bool = st = performtests(st)
reachable_in(n : posnat, st states): RECURSIVE bool =
IFn=0 THEN st = stO
ELSE
EXI STS (pst states, event events) st = nextstate(pst, event)
AND reachabl e_in(n-1, pst)
ENDI F MEASURE n
i s_reachabl e( st states): bool = EXISTS (n : posnat) reachabl e_i n(n, st)
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startup_on_n(n : posnat, st states):
IFn=1
THEN EXI STS ( pst
AND st =

next st at e( pst,

RECURSI VE bool =

st at es) i s_reachabl e(pst)

startup)

AND oper ating(power_Il evel (st)) /= OPERATI NG

ELSE EXI STS (pst

st at es,
AND startup_on_n(n-1,

event
pst)

event s) st = nextstate(pst, event)

AND event /= startup

ENDI F MEASURE n

startup_encount er ed( st states): bool

i s_reachabl e(st)

AND EXI STS (n : posnat) startup_on_n(n, st)
AND FORALL (p : posnat) p < n AND NOT(startup_on_n(p, st))
no_startup_on_n(n : posnat, st states): RECURSI VE bool =
IFn=1
THEN EXI STS (event events) st = nextstate(stO, event)
AND event /= startup
ELSE EXI STS ( pst states, event event s) st = nextstate(pst, event)

AND no_startup_on_n(n-1,

pst)

AND event /= startup

ENDI F MEASURE n
startup_not _encount er ed( st states):

i s_reachabl e(st)
AND FORALL (n :

posnat)

bool =

no_startup_on_n(n, st)

case_anal ysis: LEMVA FORALL (event event s)
event = scram
OR event = raise_header
OR event = | ower_header
OR event = punp_off
OR event = punp_on
OR event = bleed_line
OR event = close_val ve
OR event = reset_scram
OR event = open_truck_door
OR event = open_escape_hatch
OR event = renove_key
OR event = sb_consol e_pressed
OR event = sb_rdoor_pressed
OR event = sb_bdoor _pressed
OR event = evacuationl
OR event = evacuation2
OR event = evacuation3
OR event = evacuation4
OR event = clear_al arns
OR event = clear_scram.light
OR event = r1l_nmgnet_on
OR event = r2_nmgnhet_on
OR event = r3_nmgnet_on
OR event = range_sw to_high
OR event = range_sw_ to_| ow
OR event = start_auto_control
OR event = start_nman_control
OR event = check_power _ind
OR event = check_al arms
OR event = test
OR event = startup

checki ng_scranmed: LEMVA FORALL (st: states) scranmed(st) | MPLI ES scrammed(check(st))
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basi c_| emmal: LEMVA not _scrammed(test_stepl(st0)) = false
basi c_| emma2: LEMVA not _scranmed(test_step2(st0)) = false
basi c_| emma3: LEMVA not _scranmed(test_step3(st0)) = false

basi c_| ast_| enma: LEMVA FORALL (st: states) : st = nextstate(stO, test)
| MPLI ES operating(power_l evel (st)) = | DLE_CHECKED

check_al arms_| emma: LEMVA FORALL (st: states, pst: states) : is_reachabl e(pst)
AND oper ating(power _I| evel (pst)) /= OPERATI NG
AND st = nextstate(pst, check_al arns)
| MPLI ES oper ating(power_| evel (st)) /= OPERATI NG

testing_|l enma: LEMVA FORALL (st : states, pst : states) : is_reachabl e(pst)
AND oper ating(power _I| evel (pst)) /= OPERATI NG
AND st = nextstate(pst, test)
| MPLI ES operating(power _| evel (st)) /= OPERATI NG

startupl_l enma: LEMVA FORALL (st : states, pst : states) : is_reachabl e(pst)
AND oper ati ng(power _| evel (pst)) /= OPERATI NG
AND st = nextstate(pst, startup)
| MPLI ES operating(power_l evel (st)) = OPERATI NG

i nduction_step:
LEMVA FORALL (st : states, pst : states, event : events) : is_reachabl e(pst)
AND operating(power_| evel (pst)) /= OPERATI NG
AND st = nextstate(pst, event)
AND event /= startup
| MPLI ES operating(power_l evel (st)) /= OPERATI NG

i nduction_stepl:
LEMVA FORALL (st : states) : is_reachabl e(st)
AND oper ati ng(power _| evel (st)) = OPERATI NG
| MPLI ES startup_encountered(st)

i f_high_testing_high:
LEMVA FORALL (pst : states) : is_reachable(pst)
AND range_sw tch_2(power_l evel (pst)) = H GH_MODE
| MPLI ES range_swi tch_2(power _| evel (performtests(pst))) = H GH_MODE

i f_next _hi gh:
LEMVA FORALL (st : states, pst : states) : is_reachabl e(pst)
AND st = nextstate(pst, startup)
AND power _I evel (power _| evel (st)) = H GH_PONER
| MPLI ES range_swi tch_2(power_|l evel (pst)) = H GH_MXDE

i f_startup_header _up_punp_on:
LEMVA FORALL (st : states, pst : states) : is_reachabl e(pst)
AND oper ati ng(power _| evel (pst)) /= OPERATI NG
AND st = nextstate(pst, startup)
AND oper ati ng(power _| evel (st)) = OPERATI NG
AND power _| evel (power _| evel (st)) = H GH_PONER
| MPLI ES punp(cooling_systen(st)) = ON
AND header (cool i ng_systenm(st)) = UP

i f_header_falls_scram
LEMVA FORALL (st : states, pst : states, event : events) : is_reachabl e(pst)
AND oper ati ng(power _| evel (pst)) = OPERATI NG
AND power _I evel (power _| evel (pst)) = H GH_PONER
AND st = nextstate(pst, event)
AND header (cool i ng_systenm(st)) = DOWN
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| MPLI ES oper ati ng(power _| evel (st)) /= OPERATI NG

if_punp_of f_scram

LEMVA FORALL (st : states, pst : states, event : events) : is_reachabl e(pst)

AND punp(cool i ng_systen(pst)) = ON

AND oper ati ng(power _I evel (pst)) = OPERATI NG
AND power _| evel (power _| evel (pst)) = H GH_PONER
AND st = nextstate(pst, event)

AND punp(cool i ng_systen(st)) = OFF

| MPLI ES operati ng(power _| evel (st)) /= OPERATI NG

startup_| enma:
LEMVA FORALL (st : states) : st = nextstate(stO, startup)
| MPLI ES operating(power_l evel (st)) = OPERATI NG

i f _hi gh_was_hi gh:

LEMVA FORALL (st : states, pst : states, event : events) : st = nextstate(pst,

AND oper ating(power _| evel (st)) = OPERATI NG

AND power _| evel (power _| evel (st)) = H GH_PONER

AND event /= startup

| MPLI ES power _| evel (power _I evel (pst)) = H GH_PO/ER

i f _hi gh_was_hi ghl:
LEMVA FORALL (st : states, pst : states) : st = nextstate(pst, startup)
AND oper ati ng(power _| evel (st)) = OPERATI NG
AND power _I evel (power _| evel (st)) = H GH_PO/ER
AND oper ati ng(power _I evel (pst)) = OPERATI NG
| MPLI ES power _| evel (power _| evel (pst)) = H GH_POVNER

header _up_punp_on_i n_hi gh_power

event)

LEMVA FORALL (n : posnat, st : states, pst : states, event : events) : startup_on_n(n,

st)
AND i s_reachabl e(pst)
AND st = nextstate(pst, event)
AND oper ati ng(power _| evel (st)) = OPERATI NG
AND power _I evel (power _| evel (st)) = H GH_PO/ER
| MPLI ES header (cool i ng_systen(st)) = UP
AND punp(cooling_systen(st)) = ON

O X *kk kA XKk k kKKK KKK AKX KKK Kk kX ***k THEQREMBF ¥ ¥ ¥ * hkk kkkk ok ke ok kkhkk kA Xk ok ok ok kA Xk ok ok ok k k%

runni ng: LEMMA | F operating(power_|evel (startup(performtests(st0)))) /= | DLE_UNCHECKED

THEN oper ati ng(power _| evel (startup(performtests(st0)))) = OPERATI NG

ELSE scram state(shi mrods(rods(startup(performtests(st0))))) = SCRAMVED

ENDI F

power _up: LEMMVA | F operati ng(power_| evel (startup(performtests(st0)))) /= 1DLE_UNCHECKED

THEN (operati ng(power _| evel (startup(performtests(st0)))) = OPERATI NG
AND power _I evel (power _| evel (startup(performtests(st0)))) = LON POAER)

ELSE scram state(shi mrods(rods(startup(performtests(st0))))) = SCRAMVED

ENDI F

% hi gh_power: LEMVA reachabl e(st)

test_prime: LEMVA FORALL (st : states) : is_reachabl e(st)
AND oper ati ng(power _| evel (st)) = OPERATI NG
| MPLI ES NOT(startup_not_encountered(st))

basi c_| enmma: LEMVA not _scrammed(test_stepl(st0)) |IFF FALSE
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basicl_| emma: LEMVA not _scrammed(test_step2(st0)) |IFF FALSE

test2: LEMVA FORALL (st : states, event : events) : st = nextstate(stO, event)
AND oper ati ng(power _| evel (st)) = OPERATI NG
AND power _I evel (power _| evel (st)) = H GH_PO/ER
| MPLI ES event = startup

END veri fi ed_t heorem
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Appendix B
Statechart Specification

INITIALIZE_MODEL,
INITIALl FACE_R&D:=1:
POOL_LEVEL:=240;
POOL_TEMP:=75;
BRIDGE_RAD:=25;
REACT_PERICD:=50;
AREA_RAD:=0; AREA_RAD_LIMIT:=5;
GAMMA_RAD:=0; GAMMA_RAD_LIMIT:=5;
AIR_MOWT :=0; ATR_MONT_LIMIT:=5;
CORE_TEMP:=0; CORE_TEMP_LIMIT:=5:
WATER_COND:=0;
THIMBLE_TEMP:=0:THIMELE_TEMP_LIMIT:=5:
MIN_POSTTION:=0; MAX_POSITION:=14;
R _M&CGHET_HOLDING:=0; RZ_MACNET_HOLDIMG:=0; R3_MAGNET_HOLDING:=0;
R _MAGHET :=0; R2_MAGNET :=0; R3_MACHET:=0;
D1 _POSITION:=0;D2_POSITION:=0;D3_POSITION:=0;
SP_LIMIT:=250;
SET_POINT:=230;
POMER_IWDICT :=0; POWER_INDICZ:=0;
CORE_FLCW:=0;
feVCPOOL_LEVEL_LOWY;
f2 VCTOOOR_OPEND ;
fe VCEHATCH_OPEMD;
feV(LINE_PRESS_HIGHD;
feVCKEY_REMOVEDY;
f=V(SE_RDOOR_PRESSEDY;
f=V(SE_BDOOR_PRESSEDY;
f= VN (SE_CONSOLE_PRESSEDD:
e CEVACUATIONT 7 fo VEEVACUATIONZ ; f= ! (EVACUATIONS) ; £ (EVACUATIONS ) ;
f=VCHER_DOOR_OPEND ;

fe(DR_DOOR_OPENY;
BREACTOR
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1 Reactor

REACTOR

-

-

ALARMS

BPCWER_LEVEL

@CHECH_P-LHHM_CONDITIONS‘

‘ @DISPLAY_ALARMS ‘ !

RoDs

BCONTROL_ROD

BCOOL_SYS @BSHIM_RODS

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

__________________ I e
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

h.

1.1 Power Leve
POWER_LEVEL

/ " START_UP_SEQ ) \

@POWER_TO_LOW —_—
] OPERATING

IDLE T
LOW_POWER

|NOT_CHECKED| |CHECKED|-.‘.

\ HIGH_POWER

i
™~ @POWER_TO_HIGH |——""" L ————

34
—

‘ BTESTIMNG

-
i

POWER_SELECTION

LW _MODE 4 '[ HIGH_MODE ‘

\- —
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1.1.1 Testing

TESTING
# TEST_HEADER !

STEPZ STEP3
STEP o | —
STEP4

/f___—— STEFE |4 STEPS
y

[ N - J

TEST_PRIMARY_PUMP_OH

h 4

w

STEPS
STERY STEPS

TEST_PRIMARY_PUMP_0OFF )

b 4

-

STEP11
\STEM” HSTEME

N
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1.1.2 Power to Low

POWER_TO_LCW
SO1_POSITION:=0;
D2_POSITION:=0;

~

03 POSITION:=D4 _—

[inCR1_LAMPS, SEATED. ONY [and

iniR e MG, OHY and
TnCRZ_LAMPS, MAG_ENG, OMY and
TRCRI_LAMPS. MAG_ENG. 0N ]
FR1_MAGHET:=10;

Rz2_MAGHET:=10;

R3_MACSHET:=10

P&, MAC_ENG. OND
< MAG_ENG, ON)
WAG_EMG. 0N ]

not [inf{R1_LA
and Tn{R2_LAMPE
and 1n{R3_LAMPS.

SOT_POSITION: =01 _POSTITION+0;
D2_POSITION:=02_POSITION+10;
D3_POSITION:=D3_POSITION+10

r

inCRZ_LAMPS, SEATED. ONY and not [in{R1_LAMPS. SEH

in{R3_LAMPS. SEATED. ON)] and n{R2_LAMPS.SEA]
and 1n(R3_LAMPS.SEA]

not [in(R1_LAMPS.SEATED. OFF) and in(RZ_LAMPS, SEATED. OFF)
STEPT and in{R3_LAMPS, SEATED. OFF) and in(R1_LAMPS, DOWN. OFF)
and in{R2Z_LAMPS.DOWN. OFF) and in(R3I_LAMPS. DOWH. OFF)]

I
»

[inCR1_LAMPS, SEATED. OFF) and in{R2_LAMPS,SEATED. OFF) and
inCRI_LAMPS, SEATED. OFF) and inCR1_LAMPS. DOWN. OFF) and

inCR2Z_LAMPS. DOWN. OFF) and inCRI_LAMPS, DOWH, OFF)] .

KTED . N2
[ED. 0N
[ED. OND ]
/,——/
xx&x\i!r
1
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1.1.3 Power to High

POWER_TO_HIGH

/RATSE_HEADER

SPRIM_PUMP_CN;

not (SCRAM)

FBLEED_LIME
SCLOSE_VALVE

not [in{HEADER.UP3]
_ [in{HEADER.UUP}]

STEPS | /RESET SCRAM

FOU_POSITION:=0; !:'ire':m_LHMF'S.MHG_ENG.G?:' Elgd
D2_POSITION:=0; [in(R1_LAMPS.SEATED.ON] and 1nCR2_LAMPS . MAG_ENG. ON) _an
| S

in(R3_LAMPS. SEATED.ON)] | STEP11 R1_MAGNET-=10;
R2_MAGNET:=10;

STEP1O not [in{R1_LAMPS . MAG_ENG. ON) R3_MAGNET:=10

: and 1nCRZ_LAMPS. MAG_ENG. ON)
not) HnCE1LaneS SEATED-ON) and in(R3_YAMPS. MAG_ENG. ON)] STEP13

and| in{R3_LAMPS. SEATED. ONJ] /D1_POSITION:=D1_POSITIONH0;
D2_POSITION:=D2_POSTTIONH(;

b

— D3_POSITION:=D3_POSITION+10
, , 4
R not [in(R1_LAMPS.SEATED. OFF) and in(RZ_LAMPS, SEATED. OFF)
o . and in{R3_LAMPS. SEATED. OFF) and in(R1_LAMPS. DOWN. OFF)
" and Tn{RZ_LAMPS. DOWN. OFF) and inC{RI_LAMPS. DOWH. OFFJ] STEP14
[inCR1_LAMPS, SEATED. OFF) and in{R2_LAMPS,SEATED. OFF) and
inCRI_LAMPS, SEATED. OFF) and inCR1_LAMPS, DOWN. OFF) any

. inCRZ_LAMPS. DOWN. OFF) and inCRI_LAMPS, DMK, OFF)]
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2.2a Alarms: Display Alarms

|ozspLav_aLarms |
//KJF | SPARE_ALARM | i ‘@COHE_TEMP_HLHHM‘EHH\\
_______________________ i Emmmmm———— .
‘@CONTHOL_HOD_HLHHM ‘ 5 ‘ @ATR_MONT_ALARM ‘ 5 ‘@WHTEH_COND_HLHHM ‘
‘ @AREA_RAD_ALARM ‘ i ‘ @HEH_DOOH_HLHHM‘ | | @SEC_PUMP_ALARM
‘ BGAMMA_RAD_ALARM ‘ i ‘ @DR_DOOR_ALARM ‘ : ‘@THIMBLE_TEMP_HLHHM‘
¢ SCRAM_ALARM ™,
" RED_LIGHT ™
OFF o
YELLOW_LIGHT
OFF o
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2.2a.1 Core Temperature Alarm

/;COH E_TEMP_ALARM \
/_ RED_LIGHT \

OFF

YELLOW_LIGHT

OFF 0

\> "

F 3

2.2a.2 Control Rod Alarm

/_CONTHOL_HOD_F\LHHM \
4 RED_LIGHT ™

OFF IS

YELLOW_LIGHT

OFF 0
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2.2a.3 Air Monitor Alarm

f/f’ FAIR_MONT_ALARM HH\E
KHF RED_LIGHT ﬁ“\

OFF IS
YELLOW_LIGHT
OFF 0

\> "

2.2a.4 Water Conductivity Alarm

WATER_COND_ALARM

XHF RED_LIGHT ﬁ“\

OFF IS
YELLOW_LIGHT
OFF 0

\> "
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2.2a.5 Area Radiation Alarm

/;HEA_HAD_ALAHM ™,
" RED_LIGHT ™

QFF 0N

YELLOW_LIGHT

2.2a.6 Heat Exchange Room Door Alarm

/-— HER_DOOR_ALARM \
/_ RED_LIGHT \

OFF IS

YELLOW_LIGHT

OFF 0

\> "

F 3
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2.2a.7 Secondary Pump Alarm

/-— SEC_PUMP_ALARM \
/_ RED_LIGHT \

OFF IS
YELLOW_LIGHT
OFF 0

\> "

2.2a.8 Gamma Radiation Alarm

/_—GF'.MMF\_H A0_ALARM \
/_ RED_LIGHT \

OFF IS
YELLOW_LIGHT
OFF 0

\> "
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2.2a.9 Demineralizer Room Door Alarm

/-— DR_DOOR_ALARM \
/_ RED_LIGHT \

OFF IS
YELLOW_LIGHT
OFF 0

\> "

2.2a.10 Thimble Temperature Alarm

/-— THIMEBLE_TEMP_ALARM \
/_ RED_LIGHT \\

OFF IS
YELLOW_LIGHT
OFF 0

\> "
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3.2b Alarms. Check Alarm Conditions

|CHECK_ALAF::M_CGNDIT10N5|
/~ N
‘ BAREA_RAD_ALARM_STGNAL ‘ ‘ BCAMMA_RAD_ALARM_STGMAL ‘
‘ @BHER_DOOR_ALARM_SIGMAL ‘ k ‘ BDR_DOOR_ALARM_STIGHAL
[ B p—
= et

‘ BREC_PUMP_ALARM_STGHAL ‘

3.2b.1 Area Radiation Alarm Signal

AREA_RAD_ALARM_STGMAL

0

OFF ‘
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3.2b.2 Gamma Radiation Alarm Signal

CAMMA_RAD_ALARM_STGHAL

OFF N

3.2b.3 Heat Exchanger Room Door Alarm Signal

. ™

HER_DOOR_ALARM_STGNAL
Y
W
OFF o
S | S
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3.2b.4 Demineralizer Room Door Alarm Signal

DR_DOOR_ALARM_STGHAL

OFF N
. S
3.2b.5 Air Monitor Alarm Signal
, B
ATR_MOWT_ALARM_STCHAL
OFF ‘ o
h /
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3.2b.6 Core Temperature Alarm Signal
;. ™
CORE_TEMP_ALARM_STCGHAL
OFF ‘ o
N S
3.2b.7 Water Conductivity Alarm Signal
- ™
WATER_COMD_ALARM_STOMAL
OFF ‘ o
N S
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Statechart Specification

3.2b.8 Thimble Temperature Alarm Signal

THIMBLE_TEMP_ALARM_SIGHAL

OFF

0

3.2b.9 Secondary Pump Alarm Signal

SEC_PUMP_ALARM_STIGMAL

OFF

m
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3.3 Cooling System

CO0L_SYS

/ LINE_VALVE \
TO_COMPRESSED "x

To_ATR CLOSED

HEADER

Do up

SECOMDARY_PUMP

F 9

=
!
-
rF3
r
U
=
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4.4a Rods: Control Rod

~

COMTROL_ROD

AUTOMATIC_COMTROL
MAHUAL_CONTROL

- /
5.4b Rods: Shim Rods

SHIM_RODS

@CHECK_SCRAM_CONDITIONS
e RECEEEEEEEE SRS S S P -
: R1_MAGNET
‘ @R1_LAMPS ‘ ; OFF [ oM
RN /
L Ro_MAGNET \
‘ @R2_LAMPS ‘ 5 OFF oN
P ¥,
___________________ b oL - ___._-..
. ™
: R3I_MAGNET
‘ @RI_LAMPS ‘ | oFF | -:ION

L
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5.4b.1 Check Scram Conditions
/: ‘: CHECK_SCRAM_CONDITIONS \

HOT_SCRAMMED

[POOL_LEVEL_LCW] ar

[POOL_LEVEL<231] ar

[BRIDGE_RAD>30] ar

[FACE_RAD:2] or

[TDOOR_CPEN] or

[EHATCH_OPEN] ar

[FOOL_TEMP=108] or

[REACT_PERIOD<33] ar

[KEY_REMOVED] ar

[POMWER_INDICT »SP_LIMIT] or
[POWER_INDICZ2>SP_LIMIT] or
[In{HIGH_POWER) and LIME_PRESS_HIGH] or
[In{HICH_POWERY and CORE_FLOW<SEOD] or
PRIM_PUMP_ON or

[IniPRIMARY_PUMP.ONY and in{HEADER.DCOWH)] ar
[in(PRIMARY_PUMP.OFF) and in{HEADER.UPIT ar
[SE_RDOOR_PRESSED] or

[SE_BDOOR_PRESSED] or

[SE_COMSOLE_PRESSED] or

[EVACUATIONT] ar

[EVACUATIONZ] ar

[EVACUATIONI] ar

[EVACUATION]

SSCRAM; SCRAM_STCHAL_ON

SCRAM/SCRAM STONAL O

RESET_SCRAM/SCRAM_STCNAL_OFF

N

F 3

SCRAMMED
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5.4b.2 Rod1l Lamps

R1_LAMPS

(] 0

DOWN
OFF |, o
-

SEATED
OFF |4 o

MAG_EMNG

| A 3
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5.4b.3 Rod2 Lamps

RZ_LAMPS

ﬂpi —
OFF | ON

DOWN —
r OFF O
SEATED
#T 1 N
OFF

F 3

MAG_EMNG

1 E/
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5.4b.4 Rod3 Lamps

R3_LAMPS

o —

F 3

SEATED N
OFF g

M&G_ENG
oFF | ﬂ ON
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Appendix C
Z Specification

1 Introduction

This document describes the University of Virginia Nuclear Reactor in terms of
reactor system, scram conditions, alarms and start-up procedures. For each informal

description, there is a corresponding Z formal specification.

The informal specification is taken from a pre-specification document that was
elaborated previously. In the original documentation, there are three different limits for
monitored variables describing reactor operation. In this document, only the actual limits

used in the scram conditions and alarms are used.

2 Reactor System Specification

The reactor system specification will consist of only of information that is neces-
sary to describe the reactor operation, without any regard to scram conditions or alarms.
The following signals are necessary for the description of several parts of the system:

OperationStatus Idle, Operating}

==

ScramStatus == {Scrammed, NotScrammed}

PowerSelector == {LowPower, HighPower}

Switch == {On, Off}

VerticalPosition == {Up, Down}

OpenClose == {Open, Close}

Button == {Pressed, NotPressed}

Signal == {High, Low}

Valve == { CompressedAirToLine, LineClosed, LineToAtmosphere}

Using these signals, the schema describing the shim rodsiis:
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C-ll
—— ShimRod
Position N
MagCurrent N
MinHoldingCurrent N
Engaged Switch
MinPosition N
MaxPosition N
Reactivity Position>> N
MinPosition < Position
Position < MaxPosition
Y a: N | (MinPosition < a < MaxPosition) J Reactivity(a) =z 0
The schema describing the control rod is:
—— ControlRod
Position N
AutoControl Switch
MinPosition N
MaxPosition N
Reactivity Position »> N
MinPosition < Position
Position < MaxPosition
Y a: N | (MinPosition < a < MaxPosition) . Reactivity(a)=0

The schemawill describing pumpsin the system is:

—— Pump
PumpSwitch : Switch
Voltage : N
Voltage > 0 = PumpSwitch = On

The schema describing the signals provided by the different sensorsin the system is:
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C-11

—— Inputs
Powerlndic1?
Powerlndic2?
SPLimitLow?
SPLHigh?
PoolLevelHigher19ft3in?
PoolLevelMonitor?
BridgeRad?
FaceRadiation?
AirLinePressureAbove2psi?
TruckDoor?

EscapeHatch?
SwitchAtRoomDoor?
SwitchAtBackDoor?
EvacuationAlarm1?
EvacuationAlarm2?
EvacuationAlarm3?
EvacuationAlarm4?
PoolTemperature?
ReactorPeriod?

Flow?

KeySwitch?
ManualScram?
ResetButton?
ArgonRadiationlndicator?
CoreGammaAlarm?
SpareSignal?
AirMonitorSignal?
HeatExchangerDoor?
DemireralizerRoomDoor?
CoreDiffTemplndic?
DiffTempAlarmLevel?
WaterCondlIndic?
WaterCondAlarmLevel?
ThimbleTemperature?
ThimbleTempAlarmLimit?
HeaderDown?
ShimRod1Seated?
ShimRod2Seated?
ShimRod3Seated?
TouchingDriverl?
TouchingDriver2?
TouchingDriver3?

2222

HighLow
N

N

N

HiLow
OpenClose
OpenClose
Button
Button
Switch
Switch
Switch
Switch

N

N

N

Switch
Button
Button
Signal
Signal
Signal
Signal

Signal
Signal
Signal
Signal
Signal
Signal
Signal

With the previous schemas, the schema describing the reactor systemis:
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—— Reactor
ReactorStatus : OperationStatus
Scram : ScramStatus
PowerSelection : PowerSelector
HeaderPosition : VerticalPosition
ShimRod1 : ShimRod
ShimRod?2 : ShimRod
ShimRod3 : ShimRod
ShimRods = {ShimRod1, ShimRod2, ShimRod3}
RegulatingRod : ControlRod
PrimaryPump : Pump
SecondaryPump : Pump
Pumps = { PrimaryPump, SecondaryPump}
CoolingTower : Switch
HeaderValve : Valve
Scram = Scrammed = ReactorStatus = Idle

The schemathat sets the initial conditions on the reactor is:

—— Reactorlnit

A Reactor

ReactorStatus’ = Idle

Scram’ = NotScrammed
PowerSelection’ = LowPower
HeaderPosition’ = Down
CoolingTower’ = off
HeaderValve’ = LineToAtmosphere
Yala € Rods e a.Position’ = a.MinPosition
Yala € ShimRod ® a.TouchingDrive’ = False

Vala € ShimRod & a.MagCurrent’ = 0

Yala €Pumps ® a.PumpSwitch’ = off

Yala €Pumps ® aVoltage’ = 0

3 Scram Condition Description

Power Range #1 or Power Range #2 Exceeded
Informal Description:

» There are two different channels for measuring power level.

» The reactor is scrammed if the power level goes above 250 kW in natural convection
mode or 2.5 MW in forced convection mode, in either of the channels.

Z Formal Specification:

It is necessary to represent the two different measures given by the two different
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channels. In this specification, the values from the different channels will be represented
by the natural numbers Powerindic1? and Powerindic2?. The same will hold true for the scram
limits SPLimitLow and SPLimitHigh? of the power level. All sensor information is present in

the schema Inputs.

Given these representations, the schema for the scram caused by exceeding the

power range limit is:

—— CheckPowerRange
A Reactor
Inputs

NotScrammed
Scram’ =Scrammed

Scram

(PowerlIndicl1? > SPLimitLow? A PowerSelection = LowPower)
(PowerlIndic2? > SPLimitLow? n PowerSelection = LowPower)
(Powerlndicl? > SPLimitHigh? n PowerSelection = HighPower)
(Powerlndic2? > SPLimitHigh?? n PowerSelection = HighPower)

Scram’ =Scrammed
Scram’ =Scrammed

.

Scram’ =Scrammed

Pool Water Level Low
Informal Description

» There are two different sensors: electrical conductivity and mechanical switch.
» The pool level electrical conductivity sensor is able to measure intermediate values.

» The pool level mechanical switch sensor gives aboolean result: the water level iseither
above 19'3 " or below 19'3".

» Thereactor is scrammed if any of the sensors report that the water level above the core
has dropped below 19'3".

Z Formal Specification

To represent this scram condition, it is necessary to represent the different sensors.
The electrical conductivity sensor can be represented by a natural number PoolLevelMoni-
tor?, representing the number of inches of water above the core. The mechanical switch
provides only a Hi or Low Boolean value PoolLevelHigher19f:3in?. All this sensor information

isin the mputs schema.Given this representations, the schema for this scram condition is:
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—— CheckPoolWaterLevel
A Reactor
Inputs
Scram = NotScrammed
PoolLevelHigher19ft3in? = Low = Status’ = Scrammed
PoolLevelMonitor? < 231 = Status’ = Scrammed

Bridge Radiation Level High

Informal Description
» The sensor is an ion chamber placed above the pool.
» Thereactor is scrammed if the radiation level on the ground floor goes above 2 mR/h.
Z Formal Specification

The bridge radiation level can be represented by BridgeRad?, a natural number
describing the radiation level at the bridge when measured in mR/h. This sensor informa-

tion is described by the mpurs schema. The schema corresponding to this scram condition

IS
—— CheckBridgeRadiationLevel
AReactor
Inputs
Scram = NotScrammed
BridgeRad? > 30 = Scram’ = Scrammed

Face Radiation Level High

Informal Description
* The sensor is anion chamber placed at ground level.
* Thereactor is scrammed if the radiation level on the ground floor goes above 2 mR/h.
Z Formal Specification

The face radiation level can be described by FaceRadiation?, a natural number
describing the radiation level at the core face when measured in mR/h. This sensor infor-

mation is described by the mputs schema. The schema corresponding to this scram condi-
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tionis:
—— CheckFaceRadiation
AReactor
Inputs
Scram = NotScrammed
FaceRadiation? > 2 = Scram’ = Scrammed

Primary Pump Switch Turned from Off to On

Informal Description

» Thereisacontact sensor ison the switch.

* When the switch goes from off to on, the reactor is scrammed.
» Thereactor is scrammed by the action of turning the pump on.
Z Formal Specification

The schema representing this scram condition is:

—— CheckSwitchPrimaryPumpTurnsOn

AReactor

Scram = NotScrammed
PrimaryPump.PumpSwitch = off
PrimaryPump.PumpSwitch’ = On = Scram’ = Scrammed

Primary Pump Power Turned from On to Off

Informal Description

» The sensor measures the voltage to the motor.
» Thereactor is scrammed when the power goes from on to off.
» Thispump should only be turned off with the reactor completely stopped.

Z Formal Specification

The schema representing this scram condition is:
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—  CheckPrimaryPumpPowerTurnsOff

AReactor

Scram = NotScrammed
PrimaryPump.Voltage > 0
PrimaryPump.Voltage’ = 0 = Scram’ = Scrammed

Pump On with Header Down

Informal Description

The reactor is scrammed if the flow header is down and the primary pump is turned on.

Formal Z Specification

The schema representing this scram condition is:

—— CheckPumpAndHeader
A Reactor
Scram = NotScrammed
PrimaryPump.PumpSwitch = On
=

HeaderPosition = Down Scram’ = Scrammed

Pressurein the Air Linetothe Header

Informal Description

The reactor is scrammed if, during forced convection mode operation, the pressure in
theair linethat is used to raise the flow header goes above 2 psi.

The sensor breaks a circuit if the pressure goes above 2 psi.

This scram is used to make sure that the head is held in position only by the water flow
caused by the primary pump.

If the primary pump stops and the reactor has not been scrammed by the primary pump
off scram, the water flow will reduce and the header will fall due to gravity, causing
this sensor to scram the reactor.

Z Formal Specification

The pressure in the air line to the header is sensed by a device that is only able to

inform if the pressure is above 2 psi or below 2 psi. Therefore, the sensor can be modeled

by a signal that can either be Hi or Low. The signal corresponding to this sensor,

AirLinePressureAbove2psi?, IS described in the mpurs schema. Using this modeling, the schema
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representing this scram condition is:

—— CheckPressurelnAirLineToHeader

A Reactor

Inputs

Scram = NotScrammed
AirLinePressureAbove2psi? = Hi = Scram’ = Scrammed

Truck Door Open
Informal Description

* The sensor isamechanical switch.
» Thereactor is scrammed if this door is opened.
» Thedoor gives access to the reactor room.

» Thedoor isused to remove old fuel from the reactor pool.
Z Formal Specification

The schema representing this scram condition is:

—— CheckTruckDoor
AReactor
Inputs
Scram = NotScrammed
TruckDoor? = Open = Scram’ = Scrammed

Escape Hatch Open
Informal Description

¢ The sensor is amechanical switch.

 |f the escape hatch is open, the reactor is scrammed.

Z Formal Specification

The Door type defined previously will be used to describe the EscapeHatch?, defined

in the mputs schema. The schema describing this scram condition is:
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—— CheckEscapeHatch
AReactor
Inputs
Scram = NotScrammed
EscapeHatch? = Open = Scram’ = Scrammed

M anual Switch at Room Door Pressed

Informal Description

* The sensor isamechanical switch.

» Thereactor is scrammed if this switch is pressed.
Z Formal Specification

The schema describing this scram condition is:

—— CheckManualSwitchAtRoomDoor

AReactor

Inputs

Scram = NotScrammed
SwitchatRoomDoor? = Pressed = Scram’ = Scrammed

Manual Switch at Back Door Pressed

Informal Description

* The sensor isamechanical switch.

* Thereactor is scrammed if thisswitch is pressed.

Z Formal Specification

Using the Burton construction defined previously, the schema describing this scram

conditionis:

—— CheckManualSwitchAtBackDoor

AReactor

Inputs

Scram = NotScrammed
SwitchatBackDoor = Pressed = Scram’ = Scrammed
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Evacuation Alarm On
Informal Description

e There are four mechanical switches and alarms.

» Thereactor is £rammed if any of this switchesis pressed.
Z Formal Specification

To represent this scram condition, all the darms and mechanical switches will be
treaed as being a single type of entity, a EvacuationAlarm that can be ather On or Off.

Using this abstraction, the schema describing this £ram condtionis:

——— CheckEvacuationAlarm

AReactor
Inputs

NotScrammed
Scram’= Scrammed
Scram’= Scrammed

b

Scram’= Scrammed

b

Scram’= Scrammed

Scram

EvacuationAlarm1? = On
EvacuationAlarm2? = On
EvacuationAlarm3? = On
EvacuationAlarm4? = On

biy et

Pool Water Temperature Too High

Informal Description

» Thereactor is rammed if temperature goes above 108 F.
» Thegod isto kegp the water at 75 °F.

» Pod temperature rarely exceeds 95 F.
Z Formal Specification

To represent this sram condtion, the temperature wil | be represented by a natural
number PoolTemperature?, corresponding to the pool water temperature in degrees Faren-
heits. This sensor signal is described in the imputs sSchema. Using this representation, the

schema describing this scram condtionis:
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—— CheckPoollemperature
AReactor
Inputs
Scram = NotScrammed
PoolTemperature?> 108 = Scram’ = Scrammed

Reactor Period Too Short

Informal Description

* Thereactor is scrammed if the reactor period drops below 3.3 seconds.
Z Formal Specification

The period is represented in tenth of seconds by the natural value Reactor Period?.

Thissignal is described in the mputs schema. The schema describing his scram condition

IS
—— CheckReactorPeriod
AReactor
Inputs
Scram = NotScrammed
ReactorPeriod? < 33 = Scram’ = Scrammed

Water Flow Through the Coretoo L ow

Informal Description

» The sensor is composed of one orifice and associated pressure lines that measure the
differential pressure.

» Thereactor is scrammed if the flow across the core drops bellow 960 gal/min, with the
reactor in the forced convection mode.

Z Formal Specification

The water flow through the core can be represented by the real number Fiow? that
reflects the number of gallons per minute that is passing through the core. This sensor sig-
nal is described in the mputs schema. Using this representation for the water flow, the

schema describing this scram condition is:
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—— CheckWaterFlowThroughTheCore

AReactor

Inputs

Scram = NotScrammed

Flow? < 960 = Scram’ = Scrammed
Key Switch Off

Informal Description

* Thereisalock in the pandl.
* Thelock isamechanical switch,
» Thereactor is scrammed if thiskey is moved to the Off position.

» Thereactor can' t be started without this key on the On position.
Z Formal Specification

The schema describing this scram condition is:

—— CheckKeySwitch

A Reactor

Inputs

Scram = NotScrammed
KeySwitch? = Off = Scram’ = Scrammed

M anual Scram Button Pressed

Informal Description

» The sensor for this scram is ahard contact mechanical switch.

» Thisisan emergency button to scram the reactor located on the operator console.
* Themanual scram button does not comes back after pressed.

» The operator has areset button to restore this button to the previous position.

» Thereactor is scrammed if thisbutton is pressed.
Z Formal Specification

The schema describing this scram condition is:
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—— CheckManualScram
AReactor
Inputs
Scram = NotScrammed
ManualScram? = Pressed = Scram’ = Scrammed

Reactor Already Scrammed

Informal Description

 |f thereactor has been scrammed, it stays scrammed.

Z Formal Specification

All of the previous schemas have as a pre-condition that the status of the reactor is

NotScrammed. The schema defining what should happen if the reactor is on the Scrammed

conditionis:

—— CheckReactorAlreadyScrammed

A Reactor

AInputs

((Scram = Scrammed) A(ResetButton? = NotPressed)) = Scram’ = Scrammed
((Scram = NotScrammed) v (ResetButton? = Pressed)) < Scram’ = NotScrammed

Global Scram Condition
The global scram condition is simply composed by stating that the reactor is

scrammed if any of the individual scram conditionsis met. The schema describing the glo-

bal scram conditionis:
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—— GlobalScramCondition
CheckPowerRange
CheckPoolWaterLevel
CheckBridgeRadiationLevel
CheckFaceRadiation
CheckSwitchPrimaryPumpTurnsOn
CheckPrimaryPumpPowerTurnsOff
CheckPumpAndHeader
CheckPressurelnAirLineToHeader
CheckTruckDoor
CheckEscapeHatch
CheckManualSwitchAtRoomDoor
CheckManualSwitchAtBackDoor
CheckEvacuationAlarm
CheckPoolTemperature
CheckReactorPeriod
CheckWaterFlowThroughTheCore
CheckKeySwitch
CheckManualScram
CheckReactorAlreadyScrammed

4 Alarms

Informal Description

* There are several alarm types.
» Eachaarmisindicated individualy.
» Sensor signals used by the alarm system are described in the imputs schema.

Z Formal Specification

The schema describing the different alarm typesis:

—— AlarmSystem
Alarms == {Scram, ServoLost, ArgonHi, CoreGamma,
Spare, AirMonitor, HeatXDoor, DeminDoor,
CoreDiffTemp, ConductHigh, SecondaryPump,
ThimbleTemperature }
AlarmStates: {Raised, Lowered}
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Scram Alarm

Informal Description

* A scramaarm is generated if the reactor isin a scram condition.
Z Formal Specification

The schema describing thisalarmis:

—— ScramAlarm
AAlarmSystem
AReactor

Scram = Scrammed < AlarmConditions’(Scram)=Raised

Servo Control Lost

Informal Description

* Anaarmisgenerated if automatic control over the control rod is lost.
Z Formal Specification

The schemadescribing thisalarm is:

—— ServoLostAlarm
AAlarmSystem
AReactor

if Reactor.RegulatingRod.AutoControl = Hi A Reactor.RegulatingRod.AutoControl’ = Low
then AlarmConditions’(ServoLost) = Raised
else AlarmConditions’ (ServoLost) = Lowered

Argon Radiation High

Informal Description

* Anadamisgenerated if argon radiation levels are high.
Z Formal Specification

The following schema describes this alarm:
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—— ArgonRadiationHighAlarm
AAlarmSystem
Inputs

if ArgonRadiationIndicator? = Hi
then AlarmConditions’(ArgonHi) = Raised
else AlarmConditions’(ArgonHi) = Lowered

Core Gamma Radiation High

Informal Description

* Anaarmisgenerated if core gammaradiation is high.
Z Formal Specification

The schema describing thisalarm is:

—— CoreGammaAlarm
AAlarmSystem
Inputs

if CoreGammaAlarm? = Hi
then AlarmConditions’(CoreGamma)=Raised
else AlarmConditions’(CoreGamma)=Lowered

Spare Alarm (Not used)

Informal Description

* Anadarmisgenerated if thereisahigh signa on a spare indicator.

Z Formal Specification

The schema describing thisalarm is:

—— SpareAlarm
AAlarmSystem
Inputs

if SpareSignal? = High
then AlarmConditions’(Spare)=Raised
else AlarmConditions’ (Spare)=Lowered
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Air Monitor Indicates High Level

Informal Description

* Anaarmisgenerated if the air monitor indicates a high level of radiation.

Z Formal Specification

The schema describing thisalarmis:

—— AirMonitorAlarm
AAlarmSystem

A Reactor

Inputs

if AirMonitorSignal? = High
then AlarmConditions’ (AirMonitor)=Raised
else AlarmConditions’ (AirMonitor)=Lowered

Heat Exchanger Door Open

Informal Description

* Anadamisgenerated if the heat exchanger door is open.
Z Formal Specification

The schema describing thisalarm is:

—— HeatExchangerAlarm
AAlarmSystem
Inputs

if HeatExchangerDoor? = Open
then AlarmConditions’(HeatXDoor)=Raised
else AlarmConditions’(HeatXDoor)=Lowered

Demineralizer Room Door Open

Informal Description

* Anaarmisgenerated if the demineralizer room door is open.

Z Formal Specification

The schemadescribing thisalarm is:
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—— DemineralizerRoomAlarm
AAlarmSystem
Inputs

if DemireralizerRoomDoor? = Open
then AlarmConditions’(DeminDoor)=Raised
else AlarmConditions’(DeminDoor)=Lowered

Core Differential Temperature Too High

Informal Description

* Anaarmisgenerated if the core differential temperatureistoo high.

Z Formal Specification

The schema describing thisalarmis:

—— CoreDiffTempAlarm
AAlarmSystem
Inputs

if CoreDiffTemplndic? =z DiffTempAlarmLevel?
then AlarmConditions’(CoreDiffTemp)=Raised
else AlarmConditions’(CoreDiffTemp)=Lowered

High Water Conductivity

Informal Description

* Anaarmisgenerated if the water conductivity istoo high.
Z Formal Specification

The schema describing thisalarmis:

—— ConductHighAlarm
AAlarmSystem
Inputs

if WaterCondIndic?< WaterCondAlarmLevel?
then AlarmConditions’(ConductHigh)=Raised
else AlarmConditions’(ConductHigh)=Lowered
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Secondary Pump Off With Reactor In High Power Mode

Informal Description

* An adarm is generated if the secondary pump is off and the reactor is in high power
mode.

Z Formal Specification

The schema describing thisalarmis:

—— SecondaryPumpAlarm
AAlarmSystem
Reactor

if (SecondaryPump.PumpSwitch = Off A PowerSelection = HighPower)
then AlarmConditions’(SecondaryPump)=Raised
else AlarmConditions’(SecondaryPump)=Lowered

Hot Thimble Temperature

Informal Description

* Anadamisgenerated if the thimble temperature is too high.
Informal Description

The schemadescribing thisalarm is:

—— ThimbleTemperatureAlarm
AAlarmSystem
Inputs

if ThimbleTemperature? = ThimbleTempAlarmLimit?
then AlarmConditions’(ThimbleTemperature)=Raised
else AlarmConditions’(ThimbleTemperature)=Lowered

Global Alarm Conditions

Informal Description

» All alarm checks are performed concurrently.
Z Formal Specification

The schema describing the global alarm conditionsis:
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—— Alarms
AlarmSystem
ScramAlarm
ServoLostAlarm
ArgonRadiationHighAlarm
CoreGammaAlarm
SpareAlarm
AirMonitorAlarm
HeatExchangerAlarm
DemineralizerRoomAlarm
CoreDifflempAlarm
ConductHighAlarm
SecondaryPumpAlarm

ThimbleTemperatureAlarm

The schema used to set initial conditions for the dlarmsiis:

—— [InitAlarmSystem’
AlarmSystem’

Y a : Alarms | AlarmConditions’(a) = Lowered

5 Startup

Informal Description

» There are two different processes for start-up.

» |f thereactor isto operate in high-power mode, the header has to be up and the primary
pump is to be on.

 |f the reactor isto operate in low-power mode, there is no need for the header to be up
and the primary pump can be off.

Z Formal Specification
Progress through the start-up process will be indicated by step numbers. A step

number of -1 will indicate that the start-up procedure is to be stopped. The schema that

represents the step number is:

Step
StepNum : Zz

The schemathat sets the initial value for the step number is:
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—— Steplnit
A Step
StepNum’ = 0

The schema that indicates the output signals used to call the operator and to start

the control algorithm is:

—— QOutputs
CallOperator! : Signal
StartControlAlgorithm! Signal

The schemathat sets theinitial value for the outputsis:

—— Outputslnit
A Outputs
CallOperator!’ = Low
StartControlAlgorithm!” = Low
Step 1

Informal Description
* Reset reactor scram.
Z Formal Specification

The schema describing this step is:

— StartUpStep1
A Reactor

AScram

AStep

StepNum = 0
Scram’ = NotScrammed

StepNum’ = 1

Step 2
Informal Description

 |f the reactor is to operate in high-power mode, admit air to header until it raises to the
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grid plate.

 |f the reactor isto operate in low-power mode, go to step 9.

Z Formal Specification

The schema describing this step is:

—— StartUpStep2

A Reactor

AScram

A Step

StepNum = 1

if PowerSelection= HighPower
then HeaderValve’= CompressedAirToLine A StepNum’ = 2
else StepNum’ = 8

Step 3
Informal Description

» Veify that a scram was generated; if not, stop the procedure and call the senior opera-
tor.

Z Formal Specification

An output signal CallOperator! is used to call the operator. Using this signal, the

schema describing this step is:

—— StartUpStep3

A Reactor

AScram

A Step

A Outputs

StepNum = 2

If Scram = NotScrammed
then CallOperator!” = High A StepNum’ = -1
else Scram’ = NotScrammed A StepNum’ = 3

Step 4
Informal Description

o Start the primary and secondary pumps.
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Z Formal Specification

The schema describing this stepis:

—— StartUpStep4
A Reactor

AScram

A Step

StepNum = 3
Reactor. PrimaryPump. PumpSwitch’

Reactor.SecondaryPump. PumpSwitch’
StepNum’ = 4

non
SR
I 3

Step 5
Informal Description

* Turn theline to the header valve so that the line is conected to the atmosphere.

Z Formal Specification

The schema describing this step is:

—— StartUpStep5
A Reactor

AScram

A Step

StepNum 4
Reactor.HeaderValve’ LineToAtmosphere
StepNum’ = 5

Step 6
Informal Description
¢ Closevaveontheair lineto the header.

Z Formal Specification

The schema describing this stepis:
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—— StartUpStep6
A Reactor

AScram

A Step

StepNum 5
Reactor.HeaderValve’ LineClosed

StepNum’ = 6

Step 7
Informal Description
* Reset reactor scram.

Z Formal Specification

The schema describing this stepis:

— StartUpStep7
A Reactor

AScram

AStep

StepNum = 6
Scram’ = NotScrammed

StepNum’ = 7

Step 8
Informal Description

* Check that the header remains up.
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Z Formal Specification

—— StartUpStep8
AReactor
AScram
A Step
A Outputs
Inputs
StepNum = 7
if HeaderDown? = Hi
then CallOperator!” = High A StepNum’ = -1
else StepNum’ = 8
Step 9

Informal Description
» Bring al the shim rod drivers to the lowest position.
Z Formal Specification

The schema describing this step is:

—— StartUpStep9
A Reactor

AScram

A Step

StepNum 8
Ya:a € ShimRods ® a.Position’ a.MinPosition
StepNum’ = 9

Step 10
Informal Description

» Verify that the seated lamps are on for each individual rod; if not, stop the procedure
and call the senior operator.

Z Formal Specification

The schema describing this stepis:
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—— StartUpStep10
A Reactor

AScram

A Step

A Outputs

Inputs

StepNum

if (ShimRod1Seated? = Hi
ShimRod2Seated? = Hi
ShimRod3Seated? = Hi)
then StepNum’ = 10
else CallOperator!” = High A Step>=-1

> > |l

Step 11

Informal Description

» Verify that the magnetically engage lamp corresponding to each of them is on; if not,

stop the procedure and call the senior operator.
Z Formal Specification

The schema describing this step is:

— StartUpStep11
AReactor
AScram
A Step
A Outputs
Inputs
StepNum = 10
if (TouchingDriver1? = Hi A
TouchingDriver2? = Hi A
TouchingDriver3? = Hi)
then StepNum’ = 11
else CallOperator!” = Hi A StepNum’=-1
Step 12

Informal Description

* Turn on the magnetic currents on the shim rod drivers.

Z Formal Specification

The schema describing this step is:
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—— StartUpStep12
A Reactor

AScram
A Step

StepNum = 11
Y a:ae ShimRods ® a.MagCurrent’ a.MinHoldingCurret+1

StepNum’ = 12

Step 13
Informal Description
e Raisethe shimrod drivers.

Z Formal Specification

The schema describing this step is:

—— StartUpStep13
A Reactor

AScram
A Step

StepNum = 12
Y a:a€ ShimRods ® a. Position’ 10
StepNum’ = 13

Step 14
Informal Description

» Verify that the seated position indicator |lamp and the rod down lamp indicator go off; if
not, stop the procedure and call the senior operator.

Z Formal Specification

The schema describing this step is:
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—— StartUpStep14
A Reactor
AScram
A Step
A Outputs
Inputs
StepNum = 13
if (ShimRod1Seated? = Low
ShimRod2Seated? = Low
ShimRod3Seated? = Low )
then StepNum’ 14
else CallOperator\’ = High A StepNum’ = -1

Step 15
Informal Description

* Request power level from operator and start control algorithm for reactor.

Z Formal Specification

The schema describing this step is:

—— StartUpStep15
AReactor

AScram

A Step

A Outputs

StepNum 14
StartControlAlgorithm!” = High

StepNum’ = 15

Start-Up Procedure

Informal Description

The start-up procedure can be described as being the execution of one of the steps

of the start-up.

Z Formal Specification
The description of the start-up procedure is:

StartUpProcedure = StartUpStep1 v
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StartUpStep?2
StartUpStep3
StartUpStep4
StartUpStepS
StartUpStep6
StartUpStep7
StartUpStep8
StartUpStep9
StartUpStep10
StartUpStep11
StartUpStep12
StartUpStep13
StartUpStep14
StartUpStep15

< K K K K K KK KKK KK

6 Reactor Specification

The complete reactor specification can be described by:

ReactorSystem = (Reactor A GlobalScramCondition A Alarms) A
(StartUp v Operate)
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Appendix D
Questionnairefor Authors

1 Non-subjective
What language/tool/platform did you use for the specification?

1.1 Language | ssues

Istraining for the language available?

How much of the language doesit cover?

Does the language structuring support different levels of abstraction?
Does the language have formal syntax and semantics?

I's there documentation for thislanguage?

Are there published examples of specifications for real systems written in this
language?

Are there published examples of designs derived from a specification in this
language?

Are there published examples of implementations from specifications in this
language?

Are there published examples of verification based on a specification in this
notation?

Can the following be represented in the language:
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* Integers?

* Rea numbers?
» Constants?

e Timing?

Isit possible to document nonfunctional requirements or design decisionsin
the specification notation?

Isit possible in this notation to specify features that are not implementable in
alanguagesuchasC or C++?

Does your specification contain any features which are not implementable in
Cor C++7?

I's the notation built for readability?

* Infinite-length identifier names?

*  Meaningful keywords?

*  Common mathematical notation?

* Accomodation of tabsfor readability?

* Allowance of upper and lower casein identifiers?

* Allowance of underscoresin identifiers?
1.2 Toolset Issues
Istraining for the toolset available?
How much of the toolset doesit cover?
Istechnical support available to answer questions about the toolset?
How large is the toolset (in computer memory)?
Isit possible to print a hard copy from the toolset?
Does the tool set support multiple users?

Does the editor allow the document be viewed at different levels of abstrac-
tion?
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What common file format(s) is supported by the toolset?

Was the file format compatible with a natural language text editor?

Did the toolset support the notion of separate compilation?

Does the toolset have its own version control system?

Isit possible to use external version control with this tool set?

|'s there documentation for the toolset?

Are there tutorials for thistoolset?

Can code be automatically generated from a specification in this notation?

Can test cases be automatically generated from a specification in this nota-
tion?

Did the toolset tolerate incompleteness during development of the specifica-
tion?

Does the tool set support regular expression matching?

Does the tool set provide static analysis of the specification?

* Pre-conditions?
* Post-conditions?
* Invarients?

o Dataflow?

* Completeness?

» Consistency?

Is further validation/verification provided, such as:

* Mode annimation?
» Theorem proving?
* Maode checking?
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2 Subjective

How easy was it for you to understand the specification that you'd written?

O Very difficult
O Fairly difficult
O Fairly easy
[0 Very easy
How well doesthe formal method facilitate communication about the system?

[J Hinders communication
0 Allows communication
O Improves communication
Evaluate the size and complexity of the language.

(0 Too small and smple
(0 Appropriately small and ssmple
[0 Appropriately big and complex
[0 Too big and complex
How difficult isit to learn this notation?

0 Very difficult
O Fairly difficult
O Fairly easy
0 Very easy
How difficult isit to learn the modeling skills needed to use this notation?

Very difficult

Fairly difficult

Fairly easy

Very easy

Were the documentation and examples of the language useful and sufficient?

[

They did not exist/Were not useful or sufficient

Not very useful and sufficient

Fairly useful and sufficient

Very useful and sufficient

Is it convenient and natural to document nonfunctional requirements or

design decisions in the specification notation?

OoOoOO

Not possible

Very inconvenient and unnatural
Fairly inconvenient and unnatural
Fairly convenient and natural

[
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[J Very convenient and natural
Does the notation facilitate the identification of key parts of the system, thus
aiding in the design phase?

(0 Noaid
0 Littleaid
0 Someaid
O Alotof aid
Does the notation facilitate the identification of interactions or dependencies

between parts of the system, thus aiding in the design phase?

0 Noad

O Littlead

0 Someaid

0 Alotof aid

Can a specification in this notation provide sufficient, but not too much,

detail for implementation?

0 Too little detail
O A little detail
O A lot of detail
[J Too much detail
How well was structuring and information hiding supported by the language

and toolset?

Poorly supported

Fairly well supported

WEell supported

Excellently supported

Were the documentation and tutorials of the toolset useful and sufficient?

I I A R

[0 They did not exist/\Were not useful or sufficient
[0 Not very useful and sufficient

O Fairly useful and sufficient

0 Very useful and sufficient

If technical support for the toolset exists, how high is the quality?

Does not exist/Was not used
Poor

Fair

Good

Excellent

Are the time and space requirements of the toolset reasonabl e?

OoOooOood
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[0 Unreasonably large or slow
0 Tollerably large or slow

0 Of reasonable size and speed
0 Small and fast

How easy isit to print a hard copy from the tool set?

Could not print

Very difficult

Fairly difficult

Fairly easy

Very easy

Was the fil e format(s) easy to manipulate?

I I o

O Very difficult
O Fairly difficult
0 Fairly easy
O Very easy
Was it easy to create, manipulate, and organize files?

O Very difficult
O Fairly difficult
O Fairly easy
[0 Very easy
How user-friendly was the interface of the tool set?

Very unfriendly

Fairly unfriendly

Fairly friendly

Very friendly

How easy was it to make modifications (small and large) to the system?

OOogOod

Very difficult

Fairly difficult

Fairly easy

Very easy

How easy was it for you to navigate the spedfication (on-line) that you'd
written?

I |

Very difficult

Fairly difficult

Fairly easy

Very easy

How easy was it for you to search the spedfication(online) that you'd writ-

I |

Department of Computer Science University of Virginia



Questionnaire for Authors D-VII

ten?

O Very difficult
O Fairly difficult
0 Fairly easy
[0 Very easy
How useful is the static analysis provided by the tool set?

[0 Doesnot exist/Not useful
0 Not very useful

O Fairly useful

0 Very useful
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Appendix E
Questionnaire for Computer Scientists

1 Directions

Thisis part of an evaluation of four formal specification languages. Please take
your time learning the languages, but do not expect to become an expert. We are interested
in your thoughts about the languages even though you will not have much experience with
them. You should spend about an hour to an hour and a half with each of the four lan-
guages. If at any point you have a question about one of the languages or about part of this
survey, do not hesitate to ask. The multiple choice format is to make answering easier for
you as well as to standardize the answers for us, but if thereis an ideathat is not captured
in the choices, you are encouraged to comment in the margins. Remember that thisis atest
of the language, not you. Do the sections of the packet in the following order:

1. Complete “Background Questions’
2. Read "Application Summary”
3. For each language:

- Read the summary of the language

- Complete “Structure and Navigation”
- Complete “Implementation”

- Complete “Maintenance”

- Complete “Genera Questions’

2 Background Questions

1. How much coursework have you received in computer science? Pleaseindicate all that
apply. Include any degree in progress.
J None
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Bachelors degree in computer science

Masters degree in computer science

Ph.D. in computer science

Course(s) outside of a university

Course(s) at auniversity that did not go toward a degree in computer science
How much work experience do you have in devel oping software?

I I B

None

A year or less

1-5years

more than 5 years

Indicate your knowledge of the C programming language.

Iy

[0 Littleto none
J Some
0 Quitealot
0 Very extensive
How much instruction have you received in formal methods? Include courses

In progress.

0 None

0 A segment of one course
0 Oneentire course

[0 Two or more courses

How much experience do you have using formal methods?

OJ Littletonone
0 Some
0 Alot
Indicate your knowledge of science and engineering fields such as electron-

ics, mechanics, physics, and chemistry.

None

Only the basics

Some knowledge

Extensive knowledge

Indicate your knowledge of the equipment and functionality of a nuclear

reactor.

[ I W

None

Only the basics
Familiarity

Intimate knowledge

I I B
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3 Structure and Navigation

3.1 First language

Take some time to examine the first specification. You do not need to memorize,
rather to get afed for the notation and the structure of the document. When you have fin-
ished studying it, complete the following exercise. Perform the following steps:

1. Read the question.

2. Start atimer.

3. Find the answer to the question.

4. Stop the timer.

5. Record your answer, the page on which it was found, and the time needed to find

Remember that this is intended to measure the ease with which the specification can be
navigated, not your abilities, so time each gquestion separately and as accurately as possi-
ble.

1. Thereactor is scrammed if the pool water level istoo low. At what valueisthis scram

signal generated?
answer: page:

time:

What is the effect of the gamma radiation level becoming too high?

answer: page:

time;

What istheinitial state of the primary pump?

answer: page:

time;

3.2 Second language
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Take some time to examine the second specification. You do not need to memo-
rize, rather to get afeel for the notation and the structure of the document. When you have
finished studying it, complete the following exercise. Perform the following steps:

1. Read the question.

2. Start atimer.

3. Find the answer to the question.

4. Stop the timer.

5. Record your answer, the page on which it was found, and the time needed to find

Remember that this is intended to measure the ease with which the specification can be
navigated, not your abilities, so time each question separately and as accurately as possi-
ble.

1. What isthe effect of the air monitor measuring a high radiation level?
answer: page:

time;

What istheinitial state of the air line valve?

answer: page:

time;

Thereactor is scrammed if the reactor period istoo low. At what valueisthis
scramsignal generated?

answer: page:

time;

3.3 Third language

Take some time to examine the third specification. You do not need to memorize,
rather to get afed for the notation and the structure of the document. When you have fin-

ished studying it, complete the following exercise. Perform the following steps:
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1. Read the question.

2. Start atimer.

3. Find the answer to the question.
4. Stop the timer.

5. Record your answer, the page on which it was found, and the time needed to find

Remember that this is intended to measure the ease with which the specification can be
navigated, not your abilities, so time each gquestion separately and as accurately as possi-
ble.

1. What istheinitia state of the secondary pump?
answer: page:

time;

The reactor is scrammed if the pool water temperature is too high. At what
value isthis scram signal generated?

answer: page:

time;

What is the effect of the area radiation level becoming too high?

answer: page:

time:

3.4 Fourth language

Take some time to examine the first specification. You do not need to memorize,
rather to get afeel for the notation and the structure of the document. When you have fin-
ished studying it, complete the following exercise. Perform the following steps:

1. Read the question.

2. Start atimer.

3. Find the answer to the question.
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4. Stop the timer.

5. Record your answer, the page on which it was found, and the time needed to find

Remember that this is intended to measure the ease with which the specification can be
navigated, not your abilities, so time each question separately and as accurately as possi-
ble.

1. What isthe effect of the core temperature becoming too high?
answer: page:

time;

Thereactor is scrammed if the flow through the core istoo low At what value
Isthis scram signal generated?

answer: page:

time:

What istheinitial state of the header?

answer: page:

time;

3.5 All languages
How well structured was the specification?

[0 There was no structure.

[0 There was some structure, but it was hard to identify or illogical.
O It wasfairly well structured.

O It wasclearly and logically structured.

How much did the structure of the document assist you in finding the infor-
mation requested in the exercises above?

[J None, | had to do alinear search.

[0 Some, | could eliminate sections after a quick glance.

O Alot, | was abletoidentify likely locations for the information.

[0 The structure allowed me to find the information immediately.
How did the quantity of text affect your search?
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[0 Therewas very little text, so it was easy to scan.

[0 Theamount of text did not adversely affect my search.

0 The quantity of text sslowed me down somewhat.

[0 Therewas so much text | felt that | was looking for aneedle in a haystack.

How effective was the structuring of the specification in aiding understanding

0 Thestructurewasillogical, so it didn't aid understanding.
[0 The structure helped group things and made it easier to understand.
[0 Because of the structure, it was easy to understand.

Evaluate the aid from the specification in identifying key parts of the system.

0 It provided no help. There was no identification of major components.
[0 After extensive study of the specification, the key components could be identi-
fied.
O It helped identify key components.
[0 Thekey components were easily identified.
Evaluate the aid from the specification in identifying the interactions or

dependencies between parts of the system.

(0 It provided no help. There was no identification of the relationships between
components.

[J After extensive study of the specification, the interactions could be identified.

O It helped identify the interactions between components.

[0 Theinteractionswere easily identified.

4 Implementation

Envision that you are an implementer assigned to write the code for the module
containing the scram conditions. Look carefully at the section(s) of the specification
related to the scrams. Develop an implementation scheme. Study the properties of the

system as described by the specification.

1. After some thought, can you think of away to implement this section?
[0 From the specification | can conceive of more than one possible implementa
tion.
[0 | see one possible implementation.
0 1 have some thoughts about the implementation, but see some problems.
0 1 don't see any way to implement this.
Evaluate the level of detail in the specification.

0 There are too many implementation details included and it over constrains the
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implementer.

[0 The concepts expressed are not described precisely enough; the implementer is
left with questions about functionality.

[0 The functionality is complete and the description is abstract enough that the
implementer given the implementation decisions.

Is every possible behavior for this section of the system described by the
specification (i.e. is the specification complete)?

It isimpossible to tell.

It's hard to tell, but it's doubtful.

It's hard to tell, but it looks likeit.

Missing cases are evident.
0 A missing case would be easily identified and there aren't any.

I's every feature of the specification notation implementable? Take some time
to look through more of the specification than just the section on the
scram conditions.

OoO0ooOod

Everything is definitely implementable.

Everything seems implementable.

There are some features which are dubious.

There are one or more features which are not implementable.

I

5 Maintenance

Envision now that this system as already been built and you are assigned to main-
tain the code, fixing bugs and adding new features. Previously you had no involvement

with the project.

1. How useful would this specification be as an introduction to the system?
O Itisavery good introduction; it is complete, concise, and easy to understand.
0 Itisan average summary document, useful for introduction.
[J It too hard to understand to be an introduction.

How useful would this specification be as a reference document?

O Itisvery useful for reference since it iswell organized, complete, and concise.
O Itisaverage as areference because some things are hard to find or unclear.

O Itispoor asareference becauseit is hard to find things and the information is
incomplete and/or unclear.
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6 General Questions

1. How well would the specification facilitate communication between peopleinvolved in
the development of the system?
O It would confuse more than help.
0 It would slow down communication because it is hard to understand.
0 It would aid communication because it is precise and unambiguous.
O It would aid communication becauseit is easy to understand and unambiguous.

Rate the size of the language (number of features/keywords/constructs).

(0 LargerthanC
0 About thesameasC
O SmalerthanC

How appropriate is the size of the language?

0 Too big
0 About right
[0 Too small

Rate the complexity of the language (number of ways to combine constructs).

[0 Morecomplex than C
(0 About the same complexity asC
[0 Lesscomplex than C
How appropriate is the level of complexity of the language?

[0 Too complex
0 About right
[0 Not complex enough
How confident are you in your current ability to write a specification in this

language?

O | could specify alarge, complex system with minimal assistance

O | could specify asimple system with minimal assistance

(0 1 would need alot of help to use this language for any system
Rate the difficulty of learning this language.

0 Impossible
0 More difficult than a programming language
[0 The same as a programming language
[0 Lessthan aprogramming language
| dentify the source(s) of difficulty in learning the language. If there are more
than one, please number them starting with (1) the largest cause of dif-

ficulty. If a source of difficulty is not in the list, please add it in the
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margin.

[0 The notation is unlike anything I've seen before

[0 Thelanguageisvery large and complex

[0 Keywords or other built-in language elements do not convey their meaning
|dentify the feature of the language that makes it easy to learn. If there are

more than one, please number them starting with (1) the most helpful

feature. If somethingisnotinthelist, please add it in the margin.

O | have worked with similar notations before
(0 Thelanguageissmall and smple
[0 Keywords or other built-in language elements effectively convey their meaning
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