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Abstract
Industrial practitioners require constant improvements in the software develop-

ment process and the quality of the resulting product in order to satisfactorily build larger

and more complex software systems.  Academia praises formal specification techniques as

a means to achieve these goals, yet formal specification has not been widely adopted by

industry.  The focus of this research is to study the disparity between industry and aca-

demia in their experience with formal specification methods.

During the specification of a significant software system, a control system for a

nuclear reactor, it became clear that the use of formal specification methods had potential

benefits, but there were practical requirements that were not being met.  Previous evalua-

tions of formal specification failed to identify many of these flaws and a new comprehen-

sive approach based on the requirements of the current software development process is

needed.

A comprehensive approach to evaluation was developed as part of this research.

The evaluation method presented here does not examine theoretical qualiti es of language

form and structure, rather it examines basic but vital practical issues involving the nota-

tion, tools, and methods for using them. 

There were two objectives for this research:

• to identify these practical requirements and create a list of criteria for formal
specification methods

• to evaluate several formal specification methods based on these criteria.

The criteria were systematically derived from current software development prac-

tice. This derivation links the criteria with specific activities in the software development



process and supports their inclusion in the evaluation. Using this set of criteria, an evalua-

tion of three formal specification methods, Z, PVS, and statecharts, was conducted by

developing and examining specifications for a preliminary version of the reactor control

system.
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1 Introduction

Industry is continuously building larger and more complex software systems.

Despite the fact that a vast amount of software is currently in use and much more is being

built, the processes used to build software and the quality of the results are generally poor.

The cost and time needed to build software are quite unpredictable and usually high. The

development of large systems often runs behind schedule, is over budget, and is either

never completed or is completed unsatisfactorily. In order to address these problems,

improvements in both the software process and the product quality are needed. These are

the practical goals of industrial software practitioners:

• Improve the process of software development
The software process needs to be well-defined, predictable, and faster. It should
be broken into carefully delimited steps that will take predictable amounts of
time. Rework of the specifications, design, and code should be minimized. As
much of the process as possible should be automated.

• Increase the quality of software produced
Software products need to be maintainable, dependable, testable, and verifiable.

1.1  Software Specification

Software specification is a critical element of the software development process.

According to Clarke and Wing:

“ The process of specification is the act of writing things down precisely. The
main benefit in doing so is intangible--gaining a deeper understanding of
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the system being specified. It is through this specification process that devel-
opers uncover design flaws, inconsistencies, ambiguities, and incomplete-
ness. A tangible by-product of this process, however, is an artifact, which
itself can be formally analyzed, e.g., checked to be internally consistent or
used to derive other properties of the specified system. The specification is
a useful communication device between customer and designer, between
designer and implementor, and between implementor and tester. It serves as
a companion document to the system’s source code, but at a high level of
description [CW96].”

A specification is where the requirements of the system are documented. This

vision of the system is abstract, like an outline of a paper. However, it must be complete

and specific enough that any system that satisfies these requirements is acceptable to the

client. Specifications serve as a vehicle by which the desires of the clients are conveyed to

the developers of the software system; they act as an informal contract. Therefore the

specification must be used and understood by every person involved in the development of

the system. Most errors in software are present already in the specification of the system.

These errors, if found later in the development, cause rework, which extends development

time and makes it unpredictable. If errors are not found, they may cause the system to fail

during operation. From these findings, it may be inferred that a specification containing

fewer errors would greatly improve both software process and software quality. In pursuit

of this goal, academics have studied the specification phase to determine where improve-

ments can be made.

Natural Language Specification

Currently, specifications are written largely in natural language. Natural language

is understandable by clients, specifiers, and implementors. Everyone is accustomed to

reading and writing natural language documents since that is taught at every level of edu-

cation. The organization is famili ar: a table of contents, chapters, sections, a glossary, and

an index. The editing tools are mature; they support modification, searching, spell -check-

ing, printing, and importing and export different formats. Natural language specification



Department of Computer Science University of Virginia

Introduction 3

fits well into current development methods. However, natural language is informal, so it

can have many interpretations. Natural language specifications are also prone to incom-

pleteness and inconsistency because of the inability to do automated checking.

Formal Specification

Formal specification methods use mathematics-based principles to reason about

computer hardware and software systems. The use of formal notations for specification

combats the problem of varying interpretation by having formally defined syntax and

semantics. They alleviate the ambiguity present in natural language specifications and cur-

tail errors due to misunderstandings. They are usually based on basic discrete mathematics

and, besides providing exact meanings for specifications written in the formal notation,

make the specification amenable to automated checking and theorem proving. One benefit

of using formal specification methods might be decreased work due to early identification

of problems in the system while they are still inexpensive to correct. This improvement

would result in a more predictable process that produces software with less defects.

However, formal notations are not useful if they cannot be understood. Different

formal notations have differing degrees of understandability, but at least one study [Ard96]

found them all relatively easy to learn. Since formal specification appears to be a promis-

ing route to obtaining better specifications, many specification notations and related tools

have been introduced. The notations take on many different forms, including tabular,

graphical, mathematical, and pseudo-code. Tools such as editors, animators, and verifiers

have been built to manipulate these notations.

1.2  Research Focus

For many years academics have claimed that the addition of formal specification

methods to the lifecycle will meet industrial goals of generating a better software process

and increasing software quality, yet formal specification methods are still not widely used
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by commercial software companies.  Industrial authors have expressed frustration in try-

ing to incorporate formal technologies into practical software development for reasons

such as the perception that they add lengthy stages to the process, require extensive per-

sonnel training, or are incompatible with other software packages.  

The focus of this research is the disparity between academia and industry in their

experience with formal specification. The goal is to determine what is needed to increase

the benefits realized by industry from formal specification. The initial hypothesis for the

lack of use of formal specification by industrial practitioners is that they were reluctant to

change their current methods and overlooked the benefits that formal specification could

provide. However, upon attempting to apply several formal specification methods to a sig-

nificant application, a nuclear reactor control system, shortcomings were discovered

quickly in the formal specification methods that impeded progress dramatically. Some

examples of the difficulties faced were: (1) that the notations are not suited to describe all

parts of the system; and (2) that tools are not available, too slow, or not compatible with

other hardware or software used in the development.

Based on this experience, the following new hypothesis was formulated: 

Formal specification techniques offer significant advantages over natural
language but there are practical hurdles limiting their routine application.
They must overcome these practical hurdles before their benefits can be
realized. 

While the hurdles to which we refer are mundane, they are nevertheless vital to the success

of formal specification in an industrial setting. Based on this new hypothesis, the primary

goal of this research is to enumerate these practical hurdles. 

Evaluations of formal specification have previously appeared in the literature; they

are largely written by researchers and tend to praise formal specification methods. How-

ever further investigation found these studies lacking. While the criteria used for evalua-

tion included important attributes, the terms were vague and ambiguous. They were often

derived from the author’s experience with a particular project, with littl e substantiation
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that the list of criteria was complete or applicable to a range of projects. In addition to

defects in the criteria themselves, evaluation was often entirely the opinion of the author.

Evaluations of formal specification methods are important because they are used by soft-

ware engineers in choosing an appropriate formal specification method for their project

and by inventors of formal specification methods in the design of new notations, new

tools, and in the improvement of existing ones. Previous evaluations of formal specifica-

tion methods failed to find significant flaws, yet industrial experience and even use in a

one sample application revealed shortcomings. This indicates the need for a new approach

to evaluation.

1.3  Approach

The approach that was followed in this research project was to evaluate the hypoth-

esis by experiment. The experiment consisted of applying formal methods to a single

safety-critical system, and observing the benefits realized and difficulties encountered. In

order to ensure that the observations captured the necessary information, a framework for

evaluation was developed. More specifically, the experiment was as follows:

• A comprehensive set of criteria for evaluation was developed based on the entire
software development lifecycle.

• A safety-critical application was studied and a set of requirements for part of a
digital control system was developed.

• Formal specifications were written in three separate notations for the require-
ments.

• Based on the three specifications, the criteria were applied and conclusions
drawn.

The safety-critical application that was studied in this research project was a sim-

ple control system for a research nuclear reactor. The research reactor is owned and oper-

ated by the University of Virginia and is a two megawatt pool reactor. The control system

requirements that were used included the reactor system emergency shutdown mecha-

nisms, the reactor alarm system, and the process whereby the reactor is started and brought
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up to operating power.

It is important to understand that the preparation of complete and accurate specifi-

cations from which high-quality implementations could be built was not a goal of this

research. The goal was to evaluate formal specification. Although accuracy and complete-

ness were of concern, no special effort was made to verify the specifications. Thus the

specifications contained in the appendices do not necessarily document functionally com-

plete or appropriate systems.

Many of the evaluation criteria that were used are subjective. This is inevitable

because so much of the use of a specification involves people reading it. To ensure that the

subjective assessments that were used were representative, the specifications were evalu-

ated by both computer experts and domain experts.

Evaluation Criteria

The shortcomings in previous evaluations inspired the current objective: to evalu-

ate formal specification in a systematic manner from industrial requirements. Although

evaluation is the ultimate goal, the derivation of the criteria is as important as the criteria

themselves. While a list of seemingly relevant criteria might appear useful, it is essential

that the reason for the inclusion of the criteria in the list be documented. Without this,

some important questions remain—question such as the following:

• Why are these criteria important?

• Where did these criteria come from?

• Is this li st complete?

A defendable list of criteria can only be obtained from a clearly defined basis for evalua-

tion.  The proposed approach is to substantiate the criteria by deriving them from current

practice.

The aim is to expose what is needed to put formal specification into industrial
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practice, so the criteria will not be concerned with theoretical issues like the orthogonality

of features of the notation. There are three aspects to formal specification: (1) the notation

itself; (2) the available tools; and (3) the method used to create a specification. Research

often evaluates only the notation, as exempli fied in the following quote by Hall , “At first,

the productivity was lower, but this was attributed to learning to use various non-user-

friendly tools and was not connected with the formal method itself” [Hal90]. However, a

toolset that lacks usabilit y can prohibit use of the notation. Similarly, a completed formal

specification may provide many benefits, but writing it requires a development method. In

this study, we have evaluated all three of these aspects of formal specification. 

In order to be incorporated into industrial practice, formal specification methods

must match current accomplishments.  They must be consistent with current methods and

compatible with current tools.  While the methods used in industry are not formally based,

they  are reasonably well developed and understood.  However, matching the accomplish-

ments is not enough.  The second aspect of the evaluation is to examine how formal speci-

fication will augment the current development practice of industry to build high quality

software in a cost-effective manner.

 Current practice breaks the development into lifecycle phases. Such a division

focuses the developers’ attention on the tasks that must be completed. The specification

should participate in every stage of the software li fecycle. Writing the specification is only

one activity that involves the specification. While the process of composing the specifica-

tion itself facilit ates a better understanding of the system, the usefulness of the specifica-

tion does not end there. 

The specification is the primary vehicle of communication about the system

between the many people involved in the software development and maintenance, such as

the software engineers, the client, safety engineers, system engineers, and implementors.

Many people will study it to understand the behavior of the system it is modeling, to check

that it meets regulations, to implement the system, or to assess the impact of a potential
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modification. Each activity in the lifecycle will place different demands on the specifica-

tion technology. In order to develop a complete set of criteria to evaluate specification

technologies, the requirements of each person and activity must be considered. But the

lifecycle alone is not sufficient to describe the current process of building software

because the development is guided by management activities, such as scheduling and

quality control. The lifecycle phases together with management activities characterizes

current practice, therefore these will provide the basis for evaluation. 

Such an examination of the demands of the software lifecycle identifies specific

areas in which formal specification methods are lacking as well as areas in which formal

specification can provide improvements over the current method. The intention here is to

go beyond vague terms such as readability that have appeared in other studies to more pre-

cise criteria, such as:

Criterion: The ease with which a computer scientist can obtain answers to
questions about implementation from a specification written by someone
else in a formal notation

Such a criterion is derived from a demonstrated need for such a person to perform such a

task during software development.  The primary benefit to formulating criteria this way is

that the criteria are associated with specific lifecycle activities.  This demonstrates that the

criteria are relevant and allows practitioners to choose the method that meets their needs.

It is also important to consider the fact that projects have diverse goals. For some

speed to market is most important, while for others dependability is the utmost concern.

Development environments also vary. The criteria generated here were not particular to a

certain set of needs, rather they addressed all aspects of improving software. However,

when evaluating the usefulness of a formal specification method for a specific project, the

goals of that project affect the importance of the criteria. Therefore, although one formal

specification method might not meet certain criteria, those criteria may be unimportant to

the goals of the project, so the method would still be a good choice.

It is unlikely that one formal specification method is best for every project, so the
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purpose of this research is not to name a winner. Rather it is to provide an approach for

generating a comprehensive set of criteria that can be refined to fit a particular project or

used to identify flaws in formal specification methods.

Evaluation Process

Once the criteria were formulated, three specification methods, Z, statecharts, and

PVS, were evaluated. Specifications for a preliminary version of the nuclear reactor con-

trol system were developed and examined. Due to resource constraints, this evaluation is

not ideal, however there are strong indications that formal specification can provide

improvements in the software development process and resulting product once practical

requirements are met.

1.4  Contents Summary

In chapter two, the nuclear reactor control system is summarized. An overview of

each of the notations evaluated in this study is given in chapter three. Research and indus-

trial projects involving formal specification methods are described in chapter four. Chapter

five describes in detail the basis from which the criteria that will be used for evaluating

formal specification methods will be derived. Since the basis for evaluation is current

practice, in chapter six, the demands placed on the specification notation, toolset, and

method for writing a specification in this notation during each activity in the software

development process are explored. The list of criteria derived from this in-depth examina-

tion of the software lifecycle are enumerated in chapter seven. The method used in this

study to evaluate three formal specification methods based on these criteria is described in

chapter eight and the results of this evaluation are recorded in chapter nine. In the final

chapter, conclusions are presented.
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2 Application Summary:
University of Virginia

Reactor

The safety-critical system that was the subject of the experiment performed in this

research is described in this section. This description is informal, and it is intended to pro-

vide a general understanding of what the reactor system is li ke.

2.1  System Overview

The Department of Mechanical, Aerospace, and Nuclear Engineering of the Uni-

versity of Virginia operates a research nuclear reactor. The reactor is described in “The

Nuclear Reactor Facil ity Tour Information Booklet” , as follows with word changes for

brevity:

“ The University of Virginia Reactor (UVAR) is a nuclear research reactor,
operated by the Department of Mechanical, Aerospace, and Nuclear Engi-
neering. It began operation in 1960 at a power level of 1 MW using Highly
Enriched Uranium (HEU) fuel elements. In 1971, its power level was
upgraded to 2 MW and, in 1994, the reactor was converted to use Low
Enriched Uranium (LEU) fuel elements. The reactor is used for training of
nuclear engineering students, service work in the areas of neutron activa-
tion analysis and radioisotope generation, neutron radiography, radiation
damage studies, and other research” [UVAR].
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Despite being a small research reactor and not a commercial power reactor, the

UVAR is a complex system facing many of the same issues as a full -scale reactor.

The UVAR is a light-water cooled, moderated, and shielded “pool” reactor. A dia-

gram of the primary components of the UVAR system is shown in Fig. 1. At the center of

the reactor is the reactor core, an assembly which contains fuel elements, control rod fuel

elements, graphite reflector elements, and possibly in-core experiments. The reactor core

is suspended from the top of the reactor pool and rests on an 8x8 grid-plate under approx-

imately 22 feet of water. The reactor core loading contains a variable number of fuel ele-

ments and in-core experiments; it always includes 4 control rod elements. Three of these

control rods, designated as shim rods (or safety rods), are designed for coarse control and

safety. Shim rods are suspended magnetically by electromagnets coupled to their drive

mechanisms. In case the reactor has to be turned off immediately either by the operator or

by the reactor protection system, the electromagnets are powered down and the shim rods

drop into the core due to gravity, thus shutting down the reactor. This usually occurs in less

Figure 1: The University of Virginia reactor system.
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than one second. This shutdown process is referred to as a scram. The fourth rod, desig-

nated as regulating rod, is fixed to its drive mechanism, and thus does not participate on a

scram, but is used for fine-grain power control of the reactor to compensate for small

changes in reactivity associated with normal operations [UvarSC].

The power level reported for this class of reactor corresponds to thermal power

production. Power level is proportional to the neutron population. The heat capacity of the

pool is sufficient for steady-state operation at 200 kW with natural convection cooling.

When the reactor is operated above 200 kW, however, the water in the pool must be

pumped down across the core through a header located beneath the grid-plate to a heat

exchanger that transfers the heat generated in the water to a secondary cooling loop. The

header can be lowered or raised, to allow the reactor to dissipate heat in natural convection

mode (header lowered) or to direct water flow through the core (header raised to the grid

plate). An air line allows the operator to raise the header by injection of compressed air

into the header, thus displacing water and increasing the buoyancy of the header. This air

line also has valves that allow the operator to bring the air pressure on that air line to the

atmospheric pressure and to close the line to prevent air inside it to leave. When the pres-

sure in the air line is equal to the atmospheric and the header is up, water flow through the

core keeps the header in place. If the flow of water through the core is reduced below a

certain threshold, the header will fall by gravity. If the valve on the air line is closed when

the header falls down an increase in air pressure occurs on the air line. In these circum-

stances, a pressure sensor in this air line signals the pressure increase and is used to deter-

mine that the header has fallen.

Since this reactor uses light-water (as opposed to heavy-water used on the primary

cooling loop of some power reactors), and this water is always kept at a temperature far

from the boiling point, there is no need for a pressurized vessel to prevent radiation leak-

age. Water can be added to the pool as natural evaporation requires, and this water is

merely demineralized tap water. A cooling tower located on the roof of the facility
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exhausts the heat and the cooled primary water is returned to the pool [UVAR].

Control System

The current control system is primarily analog instrumentation to monitor and reg-

ulate operating parameters over all ranges of operation, from start-up to full power. A dig-

ital computer control system with all electronic displays is being designed for the UVAR

and is currently in the specification stage. Fig. 2 shows an overview of part of the current

control pannel.

This nuclear reactor control system can be subdivided into smaller subsystems, for

the sake of understanding. The main subsystems are: the scram logic, responsible for gen-

erating the signal that scrams the reactor, alarms that will call attention from the operator,

and interlocks that prevent the shim rods to be moved if certain start-up conditions are not

Figure 2: Partial view of the control pannel of the UVAR.
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met.

Core Sensor Signals

Several sensors are available to the control system. The main sensor signals, corre-

sponding quantities that are measured and types are described in table 1. In this table,

boolean sensors are the ones that provide only two possible values for a condition, with the

analog sensors indicating values over a range of continuous values.

Units are described by their abbreviation: °F for degrees Fahrenheit,’ ” for feet and

inches, MW for megawatts, mhos/cm for mhos per centimeter (1mhos=1 Ampere/Volt, the

inverse of 1 Ohms, indicating electrical conductivity instead of electrical resistance), s for

seconds, mR/h for miliroetgens per hour (radiation unit used to measure gamma and X-ray

Instrument
Analog/
Boolean

Quantity Units

Pool Water-Temperature Monitor analog pool water temperature °F

Pool Water-Level Monitor (two sensors) analog height of the water in the pool ’ ”

boolean above/below or at 19’3”

Power-Level Sensor (two identical sen-
sors)

analog power output MW

Pool-Water Conductivity analog water conductivity in demineralizer 
room

mhos/cm

Reactor Period (two channels) analog reactor period s

Gamma-Radiation Monitor analog gamma radiation in core mR/h

Constant Air Monitor analog radiation level in the reactor room mR/h

Airborne Effluents/Duct Monitor analog radiation from airborne effluents mR/h

Area-Radiation Monitor analog radiation levels mR/h

Core Temperature Differential (two sen-
sors)

analog temperature differential between the 
water leaving the core and the water 
entering the core

°F

°C

Differential-Pressure Across Orifice analog indirect measure of water flow across 
the core

atm

Air To Header boolean pressure on the airline is above/below or at 2 psi above 
the atmospheric pressure

Table 1: Sensor signals provided to the control system
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radiations), °C for degrees Celsius and atm for atmospheres (pressure unit).

A few of the measures deserve a closer look and further explanation. Power output

corresponds to the thermal power produced by the reactor, and the reactor period is a

quantity that indicates the period of time that is required for the neutron population to dou-

ble. The differential pressure across orifice is an indirect way to provide a estimate for

water flow inside the core, based on fluid dynamics equations.

Actuators

Some of the actuators present on the system are described on table 2 Although

these are the most relevant actuators, they are not the only ones. Some of them are con-

nected to special sensors, used to determine their position. In particular, it is important to

have a precise description of the position of the shim rods, since they are the basic mecha-

nism preventing the core to reach too high a power level. They are also used to prevent the

reactor from being started and can only be deployed if the start-up interlock conditions are

satisfied.

Actuator Description

Shim Rods scrammable, magnetically suspended by its driver, provide coarse-grain control 
of the reactor power level

Regulating Rod unscramble, physically connected to its driver, provide fine-grain control of the 
reactor power level

Primary Pump Header responsible for directing water flow through the core

Secondary Pump produces water flow in secondary loop. If this pump if off, heat exchange effi-
ciency is significantly decreased

Manual Scram Button emergency button to generate a scram signal and stop reactor

Water Cleanup System responsible for removing minerals from water to keep it adequate for operation

Start-up Interlock interlocking mechanism that prevents reactor start-up if a minimum of two neu-
tron counts per second is not available

Table 2: Actuators present in the system
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Shim Rods

There are three shim rods that are raised and lowered by using their drivers. Lower-

ing the rods decreases the speed of the reaction, while raising the rods will increase the

speed of the reaction. The drivers contain electromagnets that when in contact with the

rods and electrically powered can lift and lower the shim rods in and out of the core. When

a scram occurs, the power to the magnets is automatically shut off and the rods drop to

their lowest position in the core. A set of four lamps per rod indicate possible positions for

the rods and their driver mechanism. The following lamps indicate the state of a rod and its

driver:

• Up - the driver is at its highest position (with or without the rod)

• Down - the driver is at its lowest position

• Seated - the rod is at its lowest position (the driver need not be down)

• Magnetically engaged - the driver is in physical contact with the rod (the magnet
does not have to be on for the driver to be magnetically engaged)

2.2  Protection System

Scram Signal Generation Logic

The UVAR has an automatic system to shut down neutron production if undesired

conditions occur. This mechanism is implemented by solid state circuits and works by ver-

ifying 12 different conditions simultaneously. If any of the conditions does not hold, a

scram signal is generated and the safety rods are inserted into the core, not only stopping

neutron production but also reducing the neutron population to near zero in a short period

of time.

This scram signal generation logic is one of our targets in this specification effort.

Although it is not extremely complex, it does provide an interesting non-trivial example

from the real world. The term scram the reactor will represent the generation of the scram

signal responsible for turning off the reactor. Also, when the reactor is scrammed, it will
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not come back to operating state without the operator pressing the reset scram button and

the conditions that caused the scram disappearing.

If any of the following conditions is met, the reactor is scrammed:

• power level is above 250 kW and the reactor is operating in natural convection
mode.

• power level is above 2.5 MW and the reactor is operating in forced convection
mode

• during forced convection operation, the pressure in the air line that raises the
flow header goes 2 psi above the atmospheric pressure

• flow across the core is below 960 gal/min and the reactor is in forced convection
mode

• pressure in the air line that raises the primary pump head is 2 psi above the atmo-
spheric and the range switch #2 is switched from 0.2 MW to 2MW position

• start button for the primary pump is pressed

• primary pump voltage goes from on to off

• header is down and the primary pump is turned on

• radiation level measured on bridge above the pool is higher than 30 mR/h

• radiation level at ground level is higher than 2 mR/h

• pool water level is at or below 19’3”

• pool water temperature is above 108 oF

• reactor period is shorter than 3.3 s

• truck door is opened

• escape hatch door is opened

• key switch at the control panel is removed

• scram button by the back door is pressed

• scram button by the room door is pressed

• scram button on the control panel is pressed

• any of the four evacuation alarms is pressed

• reactor was already in scram condition, keep it on scram condition until the
scram reset button is pressed.

Alarms

The UVAR has also a set of alarms that go off when attention is required from the
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operator to verify some condition. The states related to the alarms are not dangerous

enough to justify a scram, but they require the operator to perform some action.

All alarms but the scram alarm are sounded for 2 minutes, after which time their

sound goes off. The sound can also be silenced by the operator, by pressing a button. The

scram alarm can only be silenced by the operator.

Visual indication of the alarms is provided by two rows of lights. The first row,

composed of red lights, indicates the current status of each alarm, on or off. The second

row, composed of yellow lights, keeps one light on for each alarm that has gone off until

the operator resets the alarm. However, the yellow light does not go off when the operator

resets the alarm if the corresponding red light is still on. Fig. 3 shows the lateral panel

were the alarm lights are located.

The alarms are:

• Reactor is in scram condition.

• Automatic control of regulating rod is lost.

• Area radiation or argon monitor indicates high level.

• Gamma radiation measure is too high.

• Spare (not used)

• Constant air monitor indicates high level.

• Heat exchanger room door is open.

• Demineralizer room door is open.

• Core differential temperature is too high.

• Demineralizer room water conductivity measure is higher than 2 µmhos/cm.

Figure 3: Lateral panel with alarm lights.

Alarm
Lights
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• Secondary pump is off while the reactor is operating in high power mode.

• Hot thimble temperature.

2.3  Minimal Start-Up Sequence

A very specific procedure, hereafter referred to as the start-up sequence, has to be

performed in order to bring the power level of the reactor from nearly zero to an operating

condition without entering a dangerous state. Before the reactor is started for the first time,

many tests, checks, and logging activities are performed. Most of these correspond to

bookkeeping (registering values for certain variables in log books, verifying that a variable

is within acceptable range, registering in the log book that this check has been completed,

etc.). Extensive tests are performed to ensure that each scram condition, if satisfied, does

indeed generate a scram. These tests involve turning on and off each piece of equipment.

Such bookkeeping activities and equipment tests are tedious and will not be described in

full. Instead, a token test sequence will be used:

1. Reset reactor scram.

2. Admit air to header until it raises to the grid plate.

3. Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

4. Bleed off air from the header mechanism, making pressure in the air line to the
header equal to the atmospheric.

5. Close the valve on the air line to the header.

6. Reset reactor scram.

7. Start the primary pump.

8. Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

9. Reset the scram.

10. Turn off the pump.

11. Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

12. Reset the scram.

The start-up sequence described here details the steps needed bring the reactor into an
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operating condition after all the tests have been completed. There are two operating condi-

tions, high power and low power. The steps that are necessary for bringing the reactor to

high power, but not for low power, are indicated with an asterisk. These operations have to

be performed in sequence, as they specify changes from one state to another. The sequence

of events that is specified for start-up is:

1. Reset reactor scram.

2. *Admit air to header until it raises to the grid plate.

3. *Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

4. *Start the primary and secondary pumps.

5. *Bleed off air from header mechanism, making pressure in the air line to the
header equal to the atmospheric.

6. *Close valve on the air line to the header.

7. *Reset reactor scram.

8. *Check that the header remains up.

9. Bring all the shim rod drivers to the lowest position.

10. Verify that the seated lamps are on for each individual rod; if not, stop the pro-
cedure and call the senior operator.

11. Verify that the magnetically engage lamp corresponding to each of them is on;
if not, stop the procedure and call the senior operator.

12. Turn on the magnetic currents on the shim rod drivers.

13. Raise the shim rod drivers

14. Verify that the seated position indicator lamp and the rod down lamp indicator
go off; if not, stop the procedure and call the senior operator.

15. Request power level from operator and start control algorithm for reactor.
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3 Notation Summaries

3.1  The Statecharts Notation

Statecharts is a graphical specification language introduced by David Harel in Stat-

echarts: A Visual Formalism for Complex Systems [Har87]. The STATEMATE family of

tools implements this notation and provides capabilities such as static checking and ani-

mation. More information about STATEMATE can be found in [STM]. Statecharts is

based on the conventional state machine model in which systems are described naturally

in state-transition diagrams. States are indicated by boxes and transitions between the

states are indicated by arrows. The name of a state appears in its box; names are optional.

Conventional state machines do not scale well; the number of states grows uncontrollably

and the diagram becomes unstructured and incomprehensible. Statecharts is an extension

of state-transition diagrams that can deal with more complex systems. In particular it is

intended to address a class of problems that is very difficult to specify, reactive systems.

The complexity of reactive systems is handled by Statecharts through three principles:

communication, concurrency, and hierarchy.
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Communication: Transitions

Transition labels consist of a trigger and an action, separated by a slash.

Both parts of the transition label are optional. A trigger is made up of events, which are

instantaneous, and conditions enclosed in brackets, which are continuous. If the event is

signaled and the condition is true, then the transition is taken and the action occurs.

The trigger can consist of events and conditions connected with “and”, “ or”, and “ not”.

An action might be signaling an event or assigning a new value to a variable. Multiple

actions are separated by semicolons. Events, conditions, and actions provide communica-

tion for the system because they are broadcast throughout.

The following example demonstrates the use of complex transition labels. Table 3

contains the current state of the system. The diagram shows the system itself.

Events Signalled? Conditions True/False States Currently In

E1 Yes C1 T S1 Yes

E2 No C2 F S2 No

E3 Yes C3 T S3 No

E4 No C4 F -- --

Table 3: Initial state description of the system
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Because of the values that the events and conditions take, the state entered next

will be S2 and the state description of the system will be that shown in Table 4.

Concurrency: AND/OR States

States S1, S2, and S3 in the example above were OR states. The system must be in

exactly one of these states at a time: S1 or S2 or S3. In Statecharts, there are also AND

states which can be identified by the dotted line that partitions them. These indicate paral-

lel or independent activities. For example, if there are two lights in the system, they can be

described with an AND state.

Events Signalled? Conditions True/False States Currently In

E1 No C1 T S1 No

E2 No C2 F S2 Yes

E3 No C3 T S3 No

E4 Yes C4 F -- --

Table 4: Next state description of the system
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When the system is in the Lights state, it is in both Light1 and Light2. The two lights

can be turned on and off independently of each other. Representing this same relationship

with OR states would require different states for Light1 on with Light2 off, Light1 on

with Light2 on, etc. An AND state can contain two or more sections. AND and OR states

can be combined freely within the statechart specification for a system.

Hierarchy: Levels of States

As the previous figure demonstrates, states can be nested within another state. This

nesting creates a hierarchy of states that can be divided into levels. Light1 and Light2 are

at a higher level than the On and Off states. It is not a problem that there are two states

named On because they can be referred to as Light1.On and Light2.On. The same is true

with the two Off states. Nesting can be arbitrarily deep and transitions can go between

states of any level. When the system enters a state at one level, it also enters all the levels

in its branch of the hierarchy. For example, when the state Lights becomes active, Light1

and Light2 are also active because Lights is an AND state. Light1 has two substates, On

and Off, and one of these must be active. Light2 must also be either On or Off. If the state

Lights were part of a larger state, perhaps System, it would also become active. Grouping

states in a hierarchical manner provides structure and modularity in the model and allows

it to be viewed at different levels of detail.
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Default Entrances

In the diagram below, S1 and S2 are at the same level and states A and B are nested

within S2. From S1, transitions can go to a state at the same level, as the one labelled E1

does, or to a different level, as the one labelled E2 does. 

 When the transition triggered by the event E2 is taken, it is clear that B within S2 is

entered. However, when the transition triggered by the event E1 is taken, S2 is entered, but

the arrow does not indicate which one of its substates will be entered (one of them must

be). Which state will be entered is decided by the default transition, the arrow in the dia-

gram originating from a dot and pointing to A. Therefore, upon the transition triggered by

E1, the state A within S2 will be entered. The transition labelled E4 will only be taken if

state S2.A is active when the event E4 is signalled because the arrow originates from A. It

will not be taken if S2.B is active when E4 is signalled. The transition labelled by E3 will

be taken when S2 is active and E3 is signalled, regardless of whether A or B is active. In the

case that either transition is taken, S2 and all of its substates will be exited (become inac-

tive).

Decluttering

The statechart describing a system can become quite large and deeply nested. The

notation allows the chart to be stored in multiple files through a method called declutter-

ing. In decluttering all the substates of a selected state are put in another file. To designate
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that its contents are in another file, the name of the state has an “@” in front of it. For exam-

ple, in the previous figure, S2 might be chosen for decluttering, so A and B would be put in

a new file named S2 and the name of the state would now be “@S2.” Here is the new figure,

with the arrows omitted for the moment.

In file S2 are the contents of the state S2:

Now the arrows must be added. The transitions labelled E1 and E3 are no problem since

they connect S2 and S2, however the transitions labelled E2 and E4 connect states which

are now in two different files. To deal with this diagram connectors are used. They are

shaded ovals containing a label. One or more arrows may point to a connector in one file

and away from one 
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with the same name in another file. This is demonstrated by adding the transitions to the

previous figures:

And in file S2:

In this example, the connectors are labelled with numbers, but they can also be labelled

with words.

Built-in Commands

Two built-in actions are make_true(Condition) and make_false(Condition)

which are abbreviated as:



30 Notation Summaries

Department of Computer Science University of Virginia

• tr!(Con dition)

• fs!(Con dition)

The use of these built-in commands is illustrated in the following diagram. The action

taken when a transition is followed is to set the value of the condition Line_Press_High to

true or false.

3.2  The PVS Notation

PVS (Prototype Verification System) is a general purpose verification system

developed by SRI and available by anonymous ftp. It has an expressive model-based spec-

ification language derived from classical higher order logic that resembles pseudocode. It

also provides a type checker and powerful interactive theorem prover. For information

beyond what is presented here, see [But93, But96, PVSweb]. 

The structuring mechanism of the specification language is the theory. It serves to

modularize the system and one theory can be imported into another for use by that theory.

The syntax of the theory is as follows.

theory_ name : THEORY

BEGIN

% the t heory body goes here

END the ory_name

Comments start with % and continue to the end of the line. The body of a theory might con-
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sist of a list of imported theories, definitions, and functions. 

theory_name  :  THEORY
BEGIN

IMPORTING sub_theory1
IMPORTING sub_theory2

%definitions
%functions

END  theory_name

Notation

Common mathematical notation is supported. Symbols not available on the key-

board are written as words, for instance FORALL, EXISTS, IFF, IMPLIES, OR, AND, and NOT.

The if-then construct is provided, with the following syntax.

IF boolean_expression
THEN statement1
ELSE statement2
ENDIF

Additionally, there is a case construct.

CASES variable_name OF
: action1,
: action2

ENDCASES

Definitions

The specification language is strongly typed. Besides several built-in types, it

allows user-defined types and provides type constructors, such as records and enumerated

types. Built-in types include boolean, integer, natural, and positive natural. In an airplane,

the number of rows might be defined as a positive natural number:

nrows : posnat

Then a specific row would be of the following type:

row : = {n:posnat | 1<n and n<=nrows}

In this definition, row is positive natural number with the constraint that the row must be

between 1 and nrows. A variable of type row can then be defined and given a value.
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r : row

r := 3

The possible values of a boolean variable are TRUE and FALSE. This is a built-in enumer-

ated type with two possible values. Other enumerated types can be defined with { }.

header_status : TYPE = {UP, DOWN}

pump_status : TYPE = {ON, OFF}

line_valve_status : TYPE = {CLOSED, TO_AIR, TO_COMPRESSED}

pressure_status : TYPE = {HIGH, NORMAL}

A variable of one of these enumerated types can be defined and given a value the same

way as above. 

pump : pump_status

pump := ON

Records are defined with [# #] and can be nested.

cooling_system_status : TYPE =

[# %RECORD

header :  header_status,

pump :  pump_status,

sec_pump :  pump_status,

line_valve :  line_valve_status,

line_pressure:  pressure_status

#]

Variables of record types can be defined as above. 

cool  : cooling_system_status

Values can be assigned to all fields at once using (# #) or to a subset of the fields using

the keyword WITH.

cool := (# header := UP, 

pump := ON, 

sec_pump := OFF, 

line_valve := CLOSED, 

line_pressure := NORMAL

#)

cool := cool WITH [pump := OFF, line_press := HIGH]

The value of a field in a record is accessed as field(record).

IF (header(cool) = DOWN AND pump(cool) = ON)

THEN scram

ENDIF
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Functions

In this specification notation all functions return values. The syntax of a function is

function_name (parameter_list) : return_type_name = function_definition.

raise_header(cool : cooling_system_status):
 cooling_system_status =WITH [header := UP, 

 line_valve := TO_COMPRESSED, 
 line_pressure := HIGH ]

Raise_header takes a variable of type cooling_system_status and returns the new

cooling system status after raising the header. Cooling_system_status is a record. Since

the function raise_header only sets some of the fields and does not want to change the

others, the assignment is done using WITH.

3.3  The Z Notation

Z (pronounced zed) was developed at Oxford University and is based on first order

logic and set theory. It specifies the functionality of the system by describing pre-condi-

tions, post-conditions, and invariants. Many tools support this notation, providing capabil-

ities including editing, type checking, and theorem proving. More information on Z can be

found in [Dil94].

Mathematical Notation

Z uses conventional mathematical notation from logic and set theory.

Æ Implies

¨ If and only if

÷ Logical And

ˆ Logical Or

· Logical Not

Existential and universal quantifiers are also supported by Z. The general form for the use

of a universal quantifier is:
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¡ VariableList | Predicate1 @ Predicate2. 

¡ a : Œ | (MinPosition º a º MaxPosition) @ Reactivity(a) æ 0

This can be read as, for all natural numbers a, such that a is between MinPosition and MaxPo-

sition, it is the case that Reactivity(a) æ 0.

A partial injective function is designated in Z by the symbol â. A function is a

relation that maps elements of one set, the domain, to at most one element of another set,

the range. Calling a function partial means that it does not have to be defined for every ele-

ment in the domain. For example, the square root function is a partial function if we want

the outcome to be an integer; 4, 9, and 16 have integer answers, but the numbers in

between do not, so they are not defined. Injective means that each of the elements in the

domain, for which the function is defined, map to different elements of the range.

The natural numbers are designated by the symbol Œ and the integers are desig-

nated by the symbol …. Other types can be defined as follows.

OperationStatus == {Idle, Operating}

Switch == {On, Off}

OperationStatus and Switch are new types. Variables of type OperationStatus can have a

value of Idle or Operating. Variables of type Switch can have a value of On or Off.

Variable Declarations

Variables are declared with the syntax VariableName : Type.

Step : Œ

This defines Step as a natural number. Variable identifiers are decorated with symbols such

as a prime, a question mark, or an exclamation mark, to indicate different uses. If the value

of Step is going to be changed by an operation, then it must be defined without decoration

to indicate its initial value and decorated with a prime to indicate the state of the variable

after the operation. 

Step’ : Œ

For example, the pre-condition of the operation might be that Step is greater than zero and
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the post condition be that Step has been incremented by one. The pre-condition is stated

using Step without decoration. The post-condition is stated using Step’ to indicate that it is

the state after the operation.

Step > 0

Step’ = Step + 1

Input variables are designated with a question mark. Their type is given after the colon. 

NumberInput? : Œ

Output variables are designated with an exclamation mark. Their type also given after the

colon.

SquareRoot! : Œ

The square root function would then be written as

NumberInput? æ 0 ÷ SquareRoot!2 = NumberInput? ÷ SquareRoot! æ 0

This says that the input must be greater than or equal to zero and the square of the square

root must equal the input and the square root must be greater than or equal to zero.

Schemas

The basic structuring mechanism in Z is the schema. 

It can be used to define types, initialize states, and describe functions that change states.

Schemas can be included in other schemas. The schema body is where the pre-conditions,

post-conditions, and invariants can be specified.

Type Definition Schemas

IncludedSchemas
VariableDeclarations

SchemaName

ScemaBody

PumpSwitch : Switch
Voltage : Œ

Pump

Voltage > 0 Æ PumpSwitch = On
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This schema defines a type named Pump as consisting of a PumpSwitch and a Voltage.

The PumpSwitch is of type Switch which has been defined previously. The Voltage is a natural

number. In the body of the schema is the invariant which states that, if the Voltage is greater

than zero, this implies that the PumpSwitch is On.

Using Schemas Inside a Schema

Once the Pump type is defined, it can be used in other schemas just as a built-in

type would be.

This schema defines a type called Reactor. Like Pump, it contains variable definitions and an

invariant in the body.

State Changing Schemas

The following schema is a state changing schema. This is evident by the appear-

ance of a variable decorated with a prime. This means the state of that variable will be

changed.

In this schema, PrimaryPump is the variable that was changed. PrimaryPump is of type Pump.

In the Pump schema above it is defined to have two elements, PumpSwitch and Voltage. The

schema TurnOnPump changes the state of the PumpSwitch of the PrimaryPump.

The ƒ Schema

It becomes tedious to write two declarations for every variable that will be

PrimaryPump : Pump
SecondaryPump : Pump

Reactor

Scram = Scrammed Æ ReactorStatus = Idle

PrimaryPump  : Pump
PrimaryPump’ : Pump

TurnOnPump

PrimaryPump.PumpSwitch’ = On
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changed, one without decoration and one with a prime, therefore a schema can be defined

that contains only those two statements. Such schemas are named with a delta symbol. 

Once a delta schema is defined, ƒPump can be used in place of the two declarations.

Schemas that Set Initial Conditions

An initializing schema can usually be identified by the name of the schema, as is

the case in the following example. However, it is also clear that it initializes the state

because it is a state changing schema (the delta has replaced the two declarations) and it

has no pre-conditions. Thus it unconditionally sets the state.

PrimaryPump  : Pump
PrimaryPump’ : Pump

ƒPump

ƒReactor
ReactorInit

¡a | a %Pumps @ a.PumpSwitch’ = Off
¡a | a %Pumps @ a.Voltage’ = 0
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4 Related Work

The number of formal specification notations and related toolsets is blossoming.

Each of these provides a different set of capabilities, degree of formalism, and level of

abstraction. The role of the specification is not clearly defined, so specification methods

include varying amounts of support for general software development, requirements elici-

tation, design, and code generation. This makes it difficult to determine what should be

included in a discussion of formal specification methods. The three notations that will be

evaluated in this study, statecharts, PVS, and Z, are representative of three major types of

notation; it is by no means an exhaustive list. An overview is given of the work being done

involving these three notations. Following this are descriptions of selected industrial

projects and research projects that utilized formal specification. Finally there is discussion

of previous evaluations of formal specification methods.

4.1  State of the Art

Statecharts

Statecharts is a graphical specification language introduced by Harel [Har87,

Har88]. Harel is affiliated with iLogix which commercially markets the STATEMATE

[iLo87, iLo90, STM, STMweb] family of tools which include an editor for statecharts,

version control, simulation, and support for structured analysis. Each tool can generate
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code from the statecharts in a language such as C, Ada, or VHDL. Other notations and

tools also based on statecharts are Modecharts, BetterMate, SpecCharts, and RSML.

The following is a list of Statecharts users and usages. Information found in pub-

lished papers is cited below. Information on the remaining industrial projects was obtained

from various Web pages. If not cited, then it was found on a Web page at iLogix [iLoweb].

• iLogix, Inc., USA

- development of the STATEMATE family of tools [iLo90, STMweb]

• University of British Columbia, CA

- development of tools for model checking [Day93, Day94]

• University of Texas, USA

- development of Modechart and tools [JM94, PMS95]

• Naval Research Laboratory, USA

- development of tools for Modechart [CTLR93]

• University of California, Irvine

- development of RSML and related tools [LHHR94, HL96]

• Boeing Commercial Airplane Group, USA

- development, verification, integration of electrical, mechanical, avionics
systems[NW96]

• R-Active Concepts, Inc., USA

- development of BetterMate [BMweb]

• Cardiac Pacemakers, Inc. (Guidant Corporation), USA

- pacemaker design

• Computing Devices Ltd. (CDL) 

- video processing chip

• Industrial Science and Technology (IST) 

- model of rail system

• Defense Research Agency (DRA) Malvern, UK

- code devel. and verification of a Network Layer Security Protocol imple-
mentation

• AOA Apparatebau, DE

- design new vacuum-flush toilet and waste systems for the Airbus A330
airplane
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• Ford Motor Company of Europe

- visually communicate complex car electronic system designs

• LSI Logic Europe

- speed development of critical part of DSP project

Z

Z (pronounced zed) was developed by the Programming Research Group at Oxford

University [Dil94, Zweb]. It is a model-based language based on first order logic and set

theory. It specifies the functionality of the system by describing pre-conditions, post-con-

ditions, and invariants. Many tools for Z exist, including editors, true type fonts,

typecheckers, and verifiers, most of which are available by ftp. Some standards require the

inclusion of natural language text to describe each schema. Other similar notations are

VDM, Z++, ZEST, and the AMN notation of the B-method. These differ from Z in their

view of preconditions and invariants as well as in their scope of applicability.

The following is a list of users and, if known, their usages of Z. Information from

published papers is cited below. Other users are members of the Z Users Group (ZUG)

which can be found on-line [Zweb].

• Oxford University, UK 

- development of Z and many related tools

• B-Core Ltd., UK

- development of the B-Method

• IBM Hursley UK Laboratories, UK 

- re-engineering CICS (transaction processing system) [CGR93]

• Praxis, UK 

- develop CASE toolset (SSADM) [CGR93]

• Inmos, UK

- design and verify microprocessors [CGR93]

• University of Washington, USA 

- researching specification of discontinuous systems [Jac95]

• George Mason University
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- Z and Category Partition Testing [AA92]

• Tektronix, USA

- reusable architecture for oscilloscopes [CGR93]

• The University of Reading, UK 

• Imperial College, London, UK 

• JP Morgan, UK 

• Defense Research Agency (DRA) Malvern, UK 

• City University, London, UK 

• University of York, UK 

• Anglia Polytechnic University, UK 

• University of Bradford, UK  

• University of Bologna, Italy 

• France Telecom CNET, France 

• University of Queensland, Australia 

• DST Deutsche System-Technik GmbH, Germany 

• Carnegie-Mellon University, USA 

• Hiroshima City University, Japan 

• NJIT, USA

• University of Limerick, Ireland 

PVS

PVS (Prototype Verification System) is a general purpose verification system

developed by SRI and available by anonymous ftp. It has an expressive model-based spec-

ification language derived from classical higher order logic that resembles pseudocode. It

also provides a type checker and powerful interactive theorem prover. For information

beyond what is presented here, see [But93, But96, PVSweb]. PVS is a culmination of over

15 years of work on tools that support formal methods including work on a theorem prover

named EHDM. PVS is implemented in Common Lisp and uses either GNU or X Emacs as

a user interface. The system also allows specifications, theorems, and proofs to be pretty

printed using LaTeX. Other tools that provide theorem proving capabilities are HOL,

Nqthm (ACL/2), and EVES.
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The following is a list of users and usages of PVS. Published results are cited,

while uncited users and usages were found on the PVS Web site at SRI International

[PVSweb]. This page also contains an extensive bibliography of papers that have been

published on projects using PVS. 

• Collins Commercial Avionics

- Microprocessor Verification [SM95]

• Technical University of Eindhoven

- Real Time Systems 
- Protocol Verification [Hoo95]
- Software Systems [VH96]

• GEC Marconi Avionics

• Indiana University

- Verification of an optimized fault-tolerant clock synchronization circuit
[MPJ94]

- Single Pulser Circuit [JMC94]

• Jet Propulsion Laboratory

- Requirements analysis of critical spacecraft software [LA94]

• University of Kiel

- Stepwise Refinement tool
- Compiler Verification

• London University

• LSI Logic

- Protocol specification [NRP95]

• University of Manchester

- Verification for a Hardware Description Language

• Minnesota and Michigan State University

• NASA Langley Research Center

- Verification of IEEE Compliant Subtractive Division Algorithms
- Formalizing New Navigation Requirements for NASA' s Space Shuttle

• US Naval Research Laboratory

- Verification of Timed Automata

• University of Paris VI

- Protocol specification [HS96]



44 Related Work

Department of Computer Science University of Virginia

• Philips, Eindhoven

- Digital Synthesis 

• Princeton University

- Security of Java-style Dynamic Linking

• University of Southampton

- Support for B Abstract Machine Notation

• SRI

• Stanford University

- Cache Coherence Protocols and Memory Models [PD96]

• Tampere University of Technology

- Mechanized Verification for DisCo

• University of Ulm

- Program Transformations and Compilation

• Utrecht University

- Distributed Systems

• Verimag(Grenoble, France)

- Automated Generation of Invariants

• University of Virginia

• Weizmann Institute

- Introducing Temporal Properties to PVS

• University of York

- Compiler and O/S Verification [SCweb]

4.2  Industrial Practice Using Formal Specification

iLogix provides summaries of some of the industrial applications in which their

STATEMATE family of tools has been used [iLoweb]. One of the most useful features of

STATEMATE is its ability to animate the models. Cardiac Pacemakers, Inc., a unit of

Guidant Corp., used STATEMATE to speed up development of defibrillators and pace-

makers. Animations of the Statecharts models allowed them to examine interactions

between features before building a prototype and to receive feedback on the design from

physicians. AOA Apparatebau used STATEMATE to design a new waste system for the
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Airbus A330 aircraft. Animation of the system allowed them to easily test single and mul-

tiple failures. Ford of Europe used STATEMATE to specify their on-board electronic

controllers in a precise manner. This modeling allowed them to examine the behavior of

the system, refine their designs, and gain confidence in the design much earlier than possi-

ble with textual descriptions. Industrial Science and Technology used STATEMATE to

validate the vehicles for a new rail system. Through modeling and animation, many prob-

lems were found that had not been identified in the text version of the specification. If

these errors had not been found until the vehicles had been built, the cost could be tremen-

dous. The models also helped communicate the requirements of the system to subcontrac-

tors.

Animation is not the only benefit of using statecharts.  The Defense Research

Agency, UK, used STATEMATE during the implementation and verification phases of the

development of a network security protocol.  The hierarchical structure of the statecharts

notation simplified the model and eased reasoning about and implementing the protocol.

Some of the code was automatically generated in C and linked with hand-coded C++ mod-

ules.  Animation was used to verify the system.  

Express, a member of the STATEMATE family of tools, has been used in hardware

design because it generates VHDL code. Computing Devices Ltd. used Express in the

design and verification of a video processing chip. The capabilities of animation and code

generation enabled the chip to go into from design to production in a very short time. LSI

Logic Europe used Express in conjunction with its Coreware in the design of an ASIC

chip. They noticed an improvement in productivity due to improved communication

because of the graphical nature of statecharts. The statecharts notation provided a much

more succinct representation of the chip than the corresponding VHDL code and simula-

tions in Express were much easier to instantiate and took less time to run than VHDL

code. 

Boeing used statecharts in the development and validation of electrical, mechani-
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cal, and avionics systems as well as in their integration [NW96]. They wanted a tool that

did not require the user to understand computer programming, did not require the devotion

of lab space for its use, facilitated analysis of the requirements, was standardized, main-

tained the current level of abstraction in their requirements, and allowed for the integration

of independently developed pieces. Of these, statecharts failed only in the category of

standardization, since there are many variants of state machines. They found that state-

charts were easily understood by non-programmers, compact, and facilitated communica-

tion and simplification of the requirements. They were especially pleased with the

simulation capabilities of the tool they used (either STATEMATE or BetterMate) as it

allowed for a great deal more validation than had previously occurred. The difficulties

they faced in using statecharts were not in the notation or use of the tool, but rather from

the lack of experience at modeling.

Most of the industrial work using PVS involves hardware design and verification.

Collins Commercial Avionics, a division of Rockwell International, aided by NASA Lan-

gley, undertook an effort to introduce PVS into the production of their commercial micro-

processor, the AAMP5 [SM95]. This was an experimental study of the applicability of

formal methods in industry. The goal of the project was to increase performance over the

AAMP2 and this was successful. However, an unexpected outcome was the verification of

a representative set of the microcode instructions.

For software, PVS is being used for requirements analysis. NEC Space Systems,

Jet Propulsion Laboratory, and Iowa State University applied PVS to critical spacecraft

software [LA94]. This project was also intended to evaluate formal methods. They speci-

fied and analyzed the requirements for critical software for the Cassini spacecraft, a Saturn

orbiter. This software was responsible for system-level fault protection.

Another area to which PVS has been applied is protocol verification. Vijay

Nagasamy of LSI Logic, Sreeranga Rajan (then of SRI), and Preeti R. Panda of UC Irvine

used PVS to specify and verify part of the implementation for the Fiber channel protocol
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[NRP95]. They wrote a formal specification to assist with verification that the protocol

standards were met. This was also an industrial effort that was undertaken as a research

project.

SCR (Software Cost Reduction) is a formal specification method developed at the

Naval Research Laboratory during an effort to re-engineering the flight control software

for the Navy’s A-7 aircraft [Hen80]. It began as a more disciplined approach to natural

language specification. They organized the information about the A-7, used symbols

around names to indicate type, made templates for sentences so that no information was

omitted, and created tables for complete, precise descriptions of the behavior.   It is the

tables that have become the defining feature of SCR; they decompose the system in

smaller, more manageable pieces [HJL96]. 

Since its introduction, the SCR methodology has been expanded, more formally

defined, and used in several industrial projects including a submarine communications

system [HM83] and the certification of the shutdown system for a nuclear generating sta-

tion [CGR93]. The Darlington Nuclear Generating Station operated by Ontario Hydro

had a software implementation of all of the shutdown logic and was having difficulty with

licensing. With assistance from Parnas, SCR was used to verify that the code correctly

implemented the shutdown logic in accordance with regulations. The requirements and the

code were formalized in SCR as two separate efforts and then compared. Much of the

work was done manually. The project was successful; the station received its license.

Gerhart, Craigen, and Ralston performed a study of the use of formal methods in

safety-critical systems [CGR93]. The details of their study are discussed in the section of

this chapter on evaluations of formal specification methods, but their work is also an

excellent source of information on large commercial projects involving formal methods.

More information on many of the projects described here can be obtained from their

report.

Z was used at Tektronix in two projects, the specification of the real-time kernel
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for an X-ray machine [Spi90] and for a reusable architecture for a family of oscilloscopes

[CGR93]. The X-ray project was a re-engineering effort from existing documentation and

source code. The goal was to re-implement the system on new hardware, however, the

mathematical model identified a deadlock condition. Previous documentation used dia-

grams to describe the system, but they showed the system in its usual state rather than

describing all possible configurations, therefore it lead the programmer to make assump-

tions that detracted from the robustness of the software. Preconditions of each operation

were computed to validate the specification.

Oxford University and IBM Hursley Laboratories used Z in two major projects

involving IBM’s Customer Information Control System (CICS) [CGR93, CW96].   This

software is a large transaction processing system that was installed in thousands of sites

worldwide. The first project was a re-engineering effort. Measurements found that the use

of Z caused improvements in quality, reduction in errors, earlier discovery of errors, and

reduction in cost of development. The second project was the formal specification of the

application programming interface.

A group at INMOS Ltd. used formal methods, including Z, in designing their

microprocessors, most notably the Transputer family of 32-bit VLSI circuits for concur-

rent, multiprocessor applications [CGR93]. Z was used in the specification of the IEEE

Floating Point Standard and in the design of the scheduler.

Praxis has employed formal methods in several projects. Z was used in the devel-

opment of a CASE toolset [CGR93]. This toolset supports the Structured Systems Analy-

sis and Design standard. Praxis also developed part of a new air traffic management

system for the UK Civil Aviation Authority [CW96]. The specification for this system was

written in VDM, a notation similar to Z. Statistics were taken during the development,

which involved several formal notations and processes, and compared to comparable

projects in which formal methods were not used. There was no loss in productivity and

there was a substantial gain in software quality.
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Praxis worked with Lockheed on the avionics software for their C130J [CW96].

The core method was used for specification; it is a tabular notation very similar to SCR.

The code was also developed rigorously, resulting in improved quality at lower costs

because little rework was needed.

Although a considerable number of projects have been described here, this repre-

sents a fairly thorough summary of the major industrial software projects involving formal

specification.  The fact that an attempt can even be made to enumerate them reflects the

limited usage of formal specification in industry.

4.3  Research Using Formal Specification

Current research involving statecharts is generally focused on exploring the useful-

ness of the notation and developing tools to support it. At the University of British Colum-

bia, the formal semantics for statecharts were written in Higher Order Logic so that a

simulator could be automatically generated from this definition, rather than developed as a

separate effort, thus ensuring that the simulator behaves in accordance with the semantics

of the notation. Additionally their toolset, recently given the name Fusion, extracts the

Statecharts from the STATEMATE system and allows model checking techniques to be

applied to the specification [Day93, Day94].

Modechart, a notation based on the statecharts concept, was developed as part of

the SARTOR project at the University of Texas. Modechart is based on the principle of

statecharts, but redefined in Real Time Logic to allow reasoning about the timing of

events. Thus it provides an environment for specifying real-time systems and reasoning

about their safety [JM94]. A toolset for Modechart called MT was developed at the Naval

Research Laboratory which includes an editor, simulator, and model-checker [CTLR93].

A compiler that generates ESTEREL code from the Modechart specifications was later

added to this toolset. The ESTEREL code can be compiled into very efficient C or Ada

[PMS95]. 
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RSML is a notation based on statecharts developed by the Irvine Safety Research

Group [LHHR94]. It arose from the effort to specify the requirements for the TCAS II sys-

tem. The notation was later adopted by the FAA for work on this system. This project

demonstrated that formal specification can be used for a complex, process-control system

and that this specification can be read and reviewed by application experts [CW96,

CGR93]. Work has also been done on static analysis of RSML, including completeness

and consistency checking [HL96]. 

Since Z is fairly widely used in industry, research in Z is focused on demonstrating

its use in practical settings. Jacky specified a safety-critical control system in Z in order to

demonstrate the usefulness of Z in reasoning about discontinuous features of systems

[Jac95]. The example is presented in a manner that allows it to be used as a template for

similar control systems. The structure of the specification is object-oriented, thus demon-

strating the ability to use Z in this paradigm. 

Amla and Ammann showed that Z facilitated the Category Partition Testing

method [AA92]. This test case generation method requires considerable effort when

applied to natural language specifications. However, most of the effort that is needed to

analyze the system has already been done when creating a Z specification, so henceforth

applying the Category Partition Testing method is almost trivial. They point out which ele-

ments of the two methods correspond. 

Sherrell and Carver demonstrate the translation of a Z specification of a class roll

system into an implementation in Haskell [SC94]. They identify the correspondence

between Z schemas and Haskell data types by showing that two different Z designs indi-

cate different Haskell implementations.

SCR was intended for use on safety-critical systems. Therefore a prominent goal

was to support verification of the system. Heitmeyer, Jeffords, and Labaw describe a con-

sistency checker for SCR specifications which automates some analysis of the model

[HJL96]. In order to build this consistency checker, a formal model of the SCR notation
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was developed. Additionally, the utility and scalability of the tool is demonstrated in two

examples. An integrated toolset for SCR has now been developed [HBGL95].

Research involving PVS falls into three major categories, the verification of hard-

ware, protocols, and software. Hardware verification is being done at Indiana University.

They developed a circuit for clock synchronization using several tools, including PVS

[MPJ94]. They also joined forces with HP to do a comparative study of several reasoning

tools, including PVS [PVSweb]. For this study, the “Single Pulser” circuit was modeled in

several notations.

Protocol verification projects have been done at several universities. Jozef Hooman

at the Technical University of Eindhoven in the Netherlands used PVS to verify part of the

ACCESS.bus Protocol [Hoo95]. He also participated in a project involving the specifica-

tion and verification of the Steam Boiler Control System using PVS [VH96]. Klaus Have-

lund of LITP, Institut Blaise Pascal, University of Paris VI experimented with the use of

various verification tools on the Philips bounded retransmission protocol [HS96]. A sys-

tem with infinite state space is a difficulty even for theorem provers. This is demonstrated

through the verification of the general version of the protocol using PVS. A method for

bounding the state space is presented. At Stanford University a method for use in the veri-

fication of concurrent systems in PVS was developed [Par96, PD96]. To demonstrate this

method the FLASH cache coherence protocol was specified and verified.

Software verification is restricted almost completely to the research arena. Dave

Stringer-Calvert of the University of York is using PVS to verify a compiler for a simple

imperative language. His work is based on an existing specification and proof in Z by

Susan Stepney [PVSweb, SCweb]. PVS was also used to prove theorems about timing in a

case study by Archer and Heitmeyer [AH96]. The model was of the Generalized Railroad

Crossing problem. Simon Fowler is using PVS in research on the formal verification of

real-time operating system kernels [PVSweb]. 

The amount of research in formal specification is far more substantial than indus-
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trial usage.  This summary focused on the three notations that were evaluated in this thesis

and the notations closely related to them.  It is by no means an exhaustive list of research

in this area.

4.4  Research in the Evaluation of Formal Specification

Ardis et al. presented an evaluation of six specification methods, Modechart,

VFSM, ESTEREL, LOTOS, Z, and SDL, plus the C programming language [Ard96]. The

criteria used to evaluate the methods were derived from their experience in specifying a

telephone switching system in each of the seven notations. They considered their criteria

relevant to any reactive system. 

The criteria were divided into two categories, fundamental and important, and a

table was given that associated the criteria with phases of the lifecycle. Each criteria was

described by a paragraph. The novelty of their approach was the inclusion of “not only

academic concerns, but also the maturity of the method, its compatibility with the existing

software development process and system execution environment, and its suitability for

the chosen application domain” [Ard96]. The specification and toolset of each notation

was examined and given a rating of +, 0, or - for each criteria.

The work of Ardis et al. inspired the approach for this thesis. Their criteria

included practical issues and a chart was provided that associated the criteria with lifecy-

cle phases. The division of criteria into categories of fundamental and important reflects

the fact that some criteria are more important than others. However, there were shortcom-

ings in their approach. No support was given for the choice of criteria and there was no

explanation of the association of criteria with particular lifecycle phases. The evaluation

method was not described, so it can only be assumed that the evaluation was performed

solely by the authors. The authors can provide information on the feasibility of formal

specification when used for writing a specification, but little else. 

Gerhart, Craigen, and Ralston performed an extensive study of the current use of
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formal methods in industry [CGR93]. They were particularly concerned with software

systems in regulated industries such as nuclear power. Their goal was not to derive a detail

list of criteria, but rather to document current experience with formal methods and suggest

where more research is needed. They studied the overall impact of formal methods on the

project, such as the effects on client satisfaction or product cost. Their method of evalua-

tion was similar to the one used in this thesis. They used questionnaires and interviews to

obtain information from practitioners currently using formal methods. The participants of

their study were superior to those used in this one because they already had extensive

experience with formal methods. Their study determined that formal methods are steady

gaining acceptance in industry and they expressed the need for additional studies of the

use of formal methods to provide feedback to the research community.

Pfleeger and Hatton investigated the influence of formal methods in CDIS, an air-

traffic-control system built by Praxis [PH97]. The development of CDIS provided a con-

text for comparing formal and informal methods because different parts of the system had

been specified using different methods. Praxis had recorded statistics on the number of

faults, errors, and changes in the system during its development. Pleeger and Hatton exam-

ined these statistics for trends. Formal specification appeared to have produced simpler

designs, easy testing, and high-quality code. However, they did not have all the informa-

tion needed to conclude with confidence that formal specification alone caused these

results.

Faulk presents short list of qualities of a “good” requirements specification

[Fau95]. They are divided into two categories, semantic properties and packaging proper-

ties. A requirements specification that meets the semantic properties is complete, imple-

mentation independent, unambiguous and consistent, precise, and verifiable. A

requirements specification that satisfies the packaging properties is modifiable, readable,

and organized for reference and review. Rushby also provides an excellent list of criteria to

consider when choosing a formal specification method in his report for NASA [Rus93].
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The list is divided into criteria for the notation and criteria for the utilities. The criteria

suggested by these two authors are not systematically derived from a clearly defined basis

for evaluation, but from their vast experience using formal methods.
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5 Basis for Evaluation

The basis on which the criteria to evaluate formal specification were derived was

current software development practice. It can be described by the software lifecycle and

the management activities that guide the development process. The basis must be clearly

defined because it provides the defense for the list of criteria. In this chapter, the lifecycle

phases and management activities are defined, followed by a discussion of the approach to

deriving the criteria that will be used to evaluate formal specification methods. 

5.1  Lifecycle Phases

Software engineering characterizes the lifecycle of software as consisting of

phases. These phases are a list of tasks that must be completed in order to create a software

product. While the activities that must be performed are generally agreed upon, the num-

ber, names, and divisions of the phases are not universal. Because of these differences, the

phases and terms that will be discussed in the remainder of this paper are defined here.

Another point of disagreement is the order in which these phases are performed. There are

several models, most notably the Waterfall and Spiral models. The Waterfall model pre-

scribes the completion of one phase before the beginning of the next with no backtracking.

This was named the rational design process, but is not the way most software is built. In

the Spiral model, the order of development of different pieces of the system is dictated by

the level risk associated with them. The work presented here is not specific to a particular
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model. Although it may seem that the Waterfall is the model because no backtracking or

iterations are explicitly discussed, there is also nothing to contradict the revisiting of

phases several times during development.

Requirements Specification

The requirements specification phase is made up of two activities, eliciting the

software system requirements from the customer and recording the requirements in a spec-

ification document. It is often separated into two phases, requirements and specification.

There is merit to this division since the elicitation of the requirements occurs in meetings

with the client, then the computer scientist uses that information to create a system specifi-

cation document. However, the two activities have one objective: to clarify, define them,

and record ideas about the system. The specification is an abstract description of the sys-

tem and independent of the implementation machine or language except in that it must be

implementable. This is arguably the most vital stage of the lifecycle since the specification

document is the foundation on which the software will be designed, implemented, and ver-

ified. Every requirement of the system, functional or non-functional, must be recorded in

the specification. The specification must be approved by the client as describing the

desired system. It must be checked for completeness and correctness. Mechanical analysis

of the specification document can be helpful. The specification document will serve as the

authority on the system requirements throughout the rest of the lifecycle. Mistakes or mis-

understandings in the specification document will manifest themselves in every other

phase.

Design

During the design phase, a system design document is produced that meets the

requirements recorded in the specification. The design document provides the details that

are needed to create the concrete implementation. Whereas the specification is indepen-
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dent of the machine and language of implementation, the design is not. The design might

be written in the specification notation, in the implementation language, or in some other

notation. If the specification notation is used, the design might not be a separate document,

but rather an addition to the specification. Pressman [Pre92] describes design as follows:

Software design is actually a multistep process that focuses on four distinct
attributes of the program: data structure, software architecture, procedural
detail, and interface characterization. The design process translates
requirements into a representation of the software that can be assessed for
quality before coding begins.

During the design, the structure of the software system must be determined. It will be

divided into modules that will be implemented by different people. The interfaces between

these modules must be documented. At a more detailed level, the data structures, func-

tions, and algorithms must be determined. There are many published design methods that

are currently in use; all of them prescribe a process of detailing an implementation plan

that meets the system requirements.

Implementation

The implementation phase is when running computer code is produced based on

the system requirements documented in the specification and the system structure and

details documented in the design. Very few decisions should be made in this late phase of

the lifecycle and it is possible that implementation could be automated. The implementa-

tion is usually performed by a group of programmers. It is important that the specification

and design documents be complete, precise, and unambiguous so that the pieces of the

system that are implemented by different people are compatible when they are put

together and will meet the requirements of the client. Verification of the pieces of the sys-

tem as separate units is also the responsibility of the implementers.

Verification

The purpose of the verification phase is to ensure that the implementation meets
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the requirements documented in the specification. In current practice, the most common

way to do this is by testing, but other methods include code reviews and theorem proving.

In theory, if the refinement from specification to implementation has been checked rigor-

ously at every step, the implementation should meet the specification. However, in prac-

tice, it is common for verification to identify a large number of changes that need to be

made. This necessitates a return to the implementation phase, perhaps to the design phase,

and often to the specification phase, which lengthens the development time.

Maintenance

The maintenance phases encompasses all further development of the system after

it has been released to the customer. Changes might be made to correct errors that are

found, to enhance the system, or as a result of changes in the requirements. Thus, the

maintenance phase entails repeated cycles through all the phases. New people are intro-

duced to the system. A common problem is that changes introduce new errors. In long-

lived systems, most of the time and money is spent in the maintenance phase, so it is

important to consider maintenance issues when building the software. The software sys-

tem, including the specification, design, and implementation, must stand the test of time

by being easy to understand and change. 

5.2  Management Activities

The lifecycle alone is not sufficient to describe current software development. The

development must be planned and paid for. The resources must be allocated. The lifecycle

phases prescribe documents that must be produced, but they don’t describe how to pro-

duce them; they describe tasks that must be completed, but don’t describe what order to do

them in. Current practice has methods for managing a software project that have evolved

over years of experience. These process considerations, such as scheduling, resource esti-

mation, risk analysis, and quality control, are not often included in academic discussions



Department of Computer Science University of Virginia

Basis for Evaluation 59

of software development, but the are vital to the success of the project. These management

activities guide the development and affect the quality of the process and the product.

Scheduling

Scheduling is a very important aspect of a software development effort. Practically

every project has a deadline. It is necessary to set intermediate deadlines in order to track

progress and determine if the entire effort is on schedule. There are some parts of the

development can occur in parallel while others have dependencies that dictate their order.

A schedule is essential for getting every task done on time and in the right order. Making a

schedule requires accurate estimations of how long different activities will take. Success-

ful estimation comes from previous experience as well as avoidance of unexpected prob-

lems.

Resource Estimation

There are many resources needed during software development, such as software,

hardware, and people. The cost of these resources must be estimated to determine the cost

of developing the system. New software and hardware or additional licenses for currently

owned software might be needed. People must be hired or fired. Besides the cost of sala-

ries and new equipment, there is also the issue of allocating these resources to a project.

This is especially difficult if several products are being developed simultaneously. People

with particular specialties must be moved from one project to another at appropriate times.

Other people need to stay with a project from beginning to end to maintain continuity.

Equipment must be available for everyone on the project. The allocation of resources is

vital to the success of the development process.

Risk Analysis

Risk analysis is an essential part of every type of project and no less so for soft-



60 Basis for Evaluation

Department of Computer Science University of Virginia

ware development. It is important to identify the parts of the system that pose the greatest

risk of failure. Additionally, there might be phases of the development that tend to cause

projects to miss their deadlines or during which resources will be limited. Consideration

must be given to the parts of the system that are most likely to change during the original

development or during maintenance. To help ensure successful development, risks must be

correctly anticipated and steps must be taken to minimize them.

Quality Control

It is the goal of software development to produce a high-quality product. However

the level and characteristics of the quality desired varies between projects. Dependability

may be the goal in one project, while fast execution or maintainability may be the goal in

another. Whatever the quality goals are, checks must be made to ensure that the software

will meet these goals. There are many ways to monitor quality, including design and code

reviews and statistics on the number of defects per lines of code. The measures for quality

control should be planned and enforced. The statistics should be used to make future

improvements in the process.

5.3  Deriving Criteria for Evaluation

The lifecycle and management activities together describe current software devel-

opment practice, so they will be the basis for the evaluation. Criteria that are generated in

this way from current practice affect one or more specific phases or activities. Ideally, a

study of the costs and benefits of incorporating formal specification can be performed to

determine whether the introduction of formal specification would be advantageous. Such

an analysis would include a weight for each criterion that reflected the goals of the project.

For example, if dependability is imperative, then improvements in verification might be

deemed very important; therefore the weight associated with criteria related to verification

would be high. These weights would be multiplied by the costs and benefits so that the
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important criteria affect the assessment of the specification method more than unimportant

criteria. Such a cost-benefit analysis might result in data similar to that shown in Figure 1.

This figure shows that the benefit of incorporating a formal specification method that

meets Criteria 1 is the sum of the benefits in each of the activities that are affected by Cri-

teria 1. The same is true for Criteria 2. The total benefit gained by incorporating the formal

specification method can be calculated by summing the benefits of each criteria that the

method fulfills. The total cost of using the formal specification method can be calculated

in the same way, by examining each activity for costs incurred by incorporating formal

specification. Such a cost-benefit analysis is highly dependent upon the goals and charac-

teristics of the particular project and development environment. Estimations of the cost

and benefits must be obtained from other similar projects. 

The work described here was not aimed at a particular project, so no weights were

assigned to the criteria; each was equally important. It was assumed that current practice

employed a well-established informal method for development and used natural language

for specification. Each of the lifecycle phases was examined and the common activities

performed during that phase were enumerated. Then for each of these activities, there

Criteria 1

Benefit if 
Criteria 1 is 

met

Benefit
gained in 
Activity C

Benefit
gained in 

Activity D

Criteria 2

Figure 4: Example of Cost-Benefit Analysis
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were two considerations, the demands placed on formal specification to meet the stan-

dards set by current practice and the new benefits that formal specification could provide.

The effects on both the quality of the lifecycle artifacts and the effectiveness of the man-

agement activities from incorporation of formal specification were discussed. Demands

from current practice include compatibility with current design methods and matching the

quality of tools. New benefits are essential in order to amortize the cost of introducing for-

mal specification into current practice. Such benefits might include an increase in the qual-

ity of the artifacts of the lifecycle, such as design documents or implementations, or an

improvement in the development process, for example a more predictable development

process is easier to schedule, estimate resources for, and there are fewer risks of missing

the deadline. 

This careful examination of current practice identified many demands placed on

formal specification methods and many benefits that they could provide. In order for for-

mal specification to gain acceptance in industry, these demands must be met and benefits

provided. A list of criteria was compiled from the findings that resulted from the examina-

tion of current practice. These criteria were then used for evaluation of three specification

methods.
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6 Demands of the Lifecycle

In this chapter, each phase of the lifecycle was examined systematically and a list

of demands that each places upon the specification notation or tools was compiled. Every

phase has been included because the specification participates in every stage of the lifecy-

cle of the software. In examining the phases, two types of requirements were considered.

The ability of formal specification to take the place of natural language with as little dis-

ruption to current practice as possible. This includes compatibility with current methods

and tools, as well as competition with the strengths of natural language. Secondly, the abil-

ity of formal specification to produce improvements over current practice in the develop-

ment process and quality of the software produced. The phases examined here,

requirements specification, design, implementation, verification, and maintenance, were

defined in the previous chapter.

6.1  Requirements Specification

Requirements specification consists of two activities, writing the specification and

validating the specification.  The issues discussed in this phase are divided between those

two categories.  Writing the specification is performed by specifiers, while validation is

done by both the specifiers and the client or domain expert.
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Writing the Specification

• Specification development speed

The length of time that it takes to develop a formal specification is a very important

consideration.  The formal specification method must support rapid prototyping of the

specification and facilitate later elaboration of the details.  One of the goals of industry

is to decrease system development time.  Formal specification may lengthen the early

phases of the lifecycle such as writing and validating the specification, but shorten

later ones like coding, testing, or maintenance because less rework is required and the

system is well-documented.

• Training, documentation, and technical support for the specification method

In order to assist in learning to use the formal notation and toolset, training and docu-

mentation are vital.  Once formal specification is in use, documentation and technical

support continue to be valuable.  These types of assistance are especially important

when the method is unfamiliar to the specifier and when it is not in wide use, as is cur-

rently the case.

• Development method

The industrial community has years of experience developing natural language specifi-

cations.  A cultural approach is used since writing has been taught in many classes

throughout everyone’s education.  Additionally, many authors have published descrip-

tions of successful natural language specification methods, including document lay-

outs.  None of this is true for formal specification.  There are very few people with

experience developing specifications using formal notations and, despite the word

method in formal methods, little methodology is described in the literature.  In order to

replace natural language, formal specification must have an associated development

method that can be introduced into the work environment with as little disruption as

possible.

• Coverage

Natural language is infinitely large and flexible and can be used to express almost any
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requirement of a system, whether functional or non-functional.  Common shortcom-

ings of formal specification notations are an inability to describe user interfaces or

non-functional requirements.  In order to be generally applicable, the formal notation

must have the ability to express every concept or be designed to operate with another

tool that can express it.

• Integration with other components

The specification is not developed in isolation, but rather as part of the larger software

development process.  The specification tools must integrate with the other compo-

nents of this process, such as documentation, boilerplates, management information,

and executive summaries.  Often a system database and version control system are

used.  A part or all of the specification might be inserted into another document, so the

specification must have a common file format.  There will likely be the desire for a

hard copy of the specification.  It should be easy to print the entire specification,

including comments and non-functional requirements, in a straightforward manner

and acquire a legible document.  The formal specification method must be suited to the

larger working environment.

• Group development

Every software project involves more than one person.  During the development of the

specification, version control must be exercised, whether internal or external.  It must

also be possible for several people to work in parallel and combine their efforts later.

Therefore, the specification method must support the idea of separate compilation.  It

must also allow many people to view the specification simultaneously.

• Support for evolution

A specification is not built in one effort and then set in concrete; it is developed and

changed over time.  The specification method must support the logical evolution of

specification and ease its change.  Incompleteness must be tolerated.  Functionality

such as searching, replacing, cutting, copying, and file insertion must be provided.

Modularity and information hiding must be facilitated, so that, for example, a change
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in a definition is automatically propagated to every usage of it.  Large scale manipula-

tions must also be supported, like moving entire sections or making them subsections.  

• Support for usability

The ability to locate relevant information is a vital part of the usefulness of a specifica-

tion.  The ability to search for regular expressions is valuable, but not sufficient.  The

specification is intended to serve as a means of communication.  Annotating the speci-

fication with explanations, rationale, or assumptions is important for both the use of

the specification in later phases and for modifications of the specification.  This anno-

tation must be easy to create and access, and it must be linked to a part of the specifica-

tion, so changes effect the corresponding annotation.  The specification notation

should also provide structuring mechanisms to aid in navigation since the specification

document is likely to be large.  In a natural language document, the table of contents

and index assist in the location of information; many tools allow them to be generated

automatically from the text.  Another useful capability seen in text editing is the use of

hypertext links to a related section or glossary entry.  Formal specification methods

must provide similar aids to enhance the usability of the resulting specification docu-

ments.

Checking and Validation of the Specification

• Human validation

During the early part of the lifecycle of the software, emphasis is on validation.  The

customer must check that the system described in the specification is complete and

correct.  The developer must also check for completeness and consistency throughout

the system.  Reading and understanding the specification is a minimal requirement.

Another helpful capability is animation of the model.  Animation demonstrates the

behavior of the system.  The developer might also want to develop a prototype of the

software system.  The specification method should facilitate validation.  

• Static analysis

Static analyzers can aid in identification of notational errors, incompleteness, or incon-
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sistencies.  Natural language systems provide few mechanical checks besides spelling.

More extensive analysis of formal specification notations, such as type checking and

completeness and consistency checks, can be performed automatically because of their

formal semantics.  These types of analysis can identify trivial errors and also larger

problems, such as misunderstandings of the notation, omissions in the specification, or

design mistakes, that would be difficult and expensive to fix if not found until later in

the lifecycle.  It is important that these checkers emit informative messages.

• Extended validation

Tools exist that provide further capabilities that aid in validation of formal specifica-

tions.  The generation of  preconditions of functions can be very valuable.  Properties

of the specified system can be proven using theorem proving or model checking.  The

proof of properties such as freedom from deadlock or avoidance of dangerous states

provides quality, dependability, and safety assurance.  These types of checks are not

mechanical; the theorems must be formulated by hand.  The development of theorems

requires some training.  A theorem prover can then help automate the proof process by

providing a language of commands that execute the steps of the proof mechanically.  A

model checker requires the system to have a finite state space, but can then prove the

theorem automatically using an exhaustive search.

6.2  Design

• Compatibility with design tools

A very strong relationship exists between the specification of a system and its design,

therefore the tools should also be closely related.  It should not be necessary for the

designer to re-enter parts of the specification that are also part of the design.  Either the

specification tool must also fully support the design phase or it must be compatible

with common design tools.

• Compatibility with design methodology

Just as the specification tools must be the same as or compatible with popular design
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tools, the method for using them must also be compatible with popular design method-

ologies.  A method for the use of a specification written in a formal notation during the

design process should be described in the literature, complete with examples.

• Communication of desired system characteristics to designers

In order to design the system, the designer must be able to read and understand the

specification.  The specification should describe the normal operating procedure, any

error conditions and the response that is appropriate, and non-functional requirements

such as the size or efficiency requirements.  The specification should contain the

answer to every question about the system, i.e. be complete.  These questions could

involve abstract concepts or details, so the specification must be precise, expressive,

and accurate.  Inaccuracy is worse than omission!  The specification must use familiar

notations, have rational structure, and be easy to navigate and search.

• Facilitation of design process

The more easily a design can be developed from the specification, the better.  The use

of a formal specification could speed up the design process by describing the system

clearly and precisely.  The designer must take the abstract description in the specifica-

tion and describe how a real system is going to implement the specification.  Informa-

tion hiding must be maintained and the ability to view the system at varying levels of

abstraction must be provided.  The specification of the system must be structured

appropriately since there will likely be a strong correlation between the structure of the

specification and of the design.  In order to facilitate good design decisions, the speci-

fication should identify key parts of the system and make dependencies between parts

of the system explicit.  It should ease the understanding of the function of a section of

the system or the flow of an individual data-item.  The designer may want to create a

system prototype, so the specification method should allow this through easy or auto-

matic translation of the design to code.



Department of Computer Science University of Virginia

Demands of the Lifecycle 69

6.3  Implementation

• Communication of desired system characteristics to implementors

The implementors will need to reference the specification and design during imple-

mentation, so the two documents must complement each other.  Implementors will

need to read, understand, navigate, and query the specification.  There should be

examples of how to express features of the formal notation in an implementation lan-

guage.  While the specification should be implementation independent, it may be that

certain features are more easily expressed in certain implementation languages.  It is

important that it be possible to implement every concept in the specification.  The

structure of the specification is vital to the implementors’ understanding of which fea-

tures to implement and what their relations are to other parts of the system.  The ability

to view the system at different levels of abstraction would enable them to focus on the

relevant parts of the system.  It is important that all information about a function can be

found easily and the exact semantics of the specification notation should provide a

clear description of the functionality.  This description needs to contain the appropriate

level of detail.

• Efficient coding

Coding is hindered by lack of clarity in the specification and design and misunder-

standings that cause rework.  The more complete, precise, and detailed the specifica-

tion and design are, the more smoothly coding should go.  This makes the phase faster

and more predictable.  It could be greatly enhanced by automatic generation of code or

a code framework.

• Unit testing

A precise, complete, and accurate specification can greatly aid in the formulation of a

unit test suit, perhaps through automatic generation.  It should also minimize rework,

since the requirements are well defined and unambiguously stated in the specification.
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6.4  Verification

•  Effective verification

Formal specification can shorten the amount of time spent in verification.  A high

quality specification will make it clear what the requirements of the system are, so they

are easy to verify and more likely to have been implemented correctly the first time.

Besides providing a precise specification, formal semantics may also support easy or

automatic generation of test cases.  Theorem proving may eliminate the need for test-

ing.  It would be a great contribution if the specification provided an indication of

when verification was complete.

• Communication of desired system to verifiers

The specification defines the desired system; verification is the process of checking

that the implementation meets the specification.  Therefore the verifiers must be able

to read and understand the specification.  This is enhanced by the ability to view the

specification at different levels of abstraction.  They will need to navigate the specifi-

cation to find information. The tools should support several viewers.

• Integration with development environment

The formal specification method should be compatible with current verification meth-

ods, such as testing, inspection, and theorem proving.  There should be examples avail-

able that demonstrate the use of a specification written in the notation during

verification.  Whatever the method of verification, the information gained during veri-

fication should be connected with the information about the rest of the system.  For

example, test cases might be associated with a particular section of the specification,

design, and code to which they correspond.  This type of linkage will speed up rework

of the code and then re-verification.  If a database of faults is kept, then the specifica-

tion tool must be compatible with this system.

• System testing

In order to test the resulting system, the specification must precisely describe the sys-

tem behavior. It must state the properties of the system and its response to every situa-
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tion. Without such a detailed description of the expectations for the system, it is

impossible to test for compliance. The derivation of a set of test cases from a natural

language specification is a lengthy process requiring extensive human analysis of the

system and its operational environment and is often considered an art form. This does

not lead to a fast repeatable process. Formal specification may facilitate the generation

of test cases because much of this analysis has already been done and is precisely

expressed in the specification. This was the hypothesis of Nina Amla and Paul

Ammann and they found this to be true for at least one combination of formal specifi-

cation method and testing method [AA92]. A rigorous method for generating test

cases would also indicate when testing is finished.

• Inspection

In an inspection, the code is subjected to human scrutiny.  It must be shown that the

code meets the specification and that it is written well, i.e. well-organized, structured,

and in the accepted format.  Using a natural language specification, it is difficult to

determine whether or not the requirements have been met.  Often the inspection

focuses more on the form of the code than on its semantics.  If a formal specification

were used, the inspection could check rigorously that the transition from specification

to implementation was a accurate refinement.  In order to facilitate inspection, the

specification must be readable by the inspectors and state the requirements precisely

so that the code can be checked for compliance.

• Formal verification

If the specification has been rigorously validated and, at each refinement, the design

and implementation are proven to be equivalent to the specification, then the properties

of the specification hold on the implementation.  This requires that the specification

has formal semantics based in mathematics, a verification tool exists for the notation,

and that each refinement can be verified.  Alternatively, the code and specification can

be proven to be equivalent using theorem proving one the implementation nis com-

plete.  The application of such rigor during the development of the system practically

eliminates the need for testing.
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6.5  Maintenance

• Understanding the system

A new person on the project should be able to study the specification and gain a broad

or detailed understanding of the system.  The documentation of non-functional

requirements and design decisions is vital to a complete understanding of the system.

It should be easy to navigate, accurate, complete, and easy to reference to find answers

to questions.  The structure, information hiding, and the ability to view the specifica-

tion at different levels of abstraction will enhance understanding.  It should also be

possible to print a hardcopy of the specification document.

• Changing the system

When a change is made to the system, both the code and specification must be

changed.  This is clearly facilitated if the two are carefully linked together so the

changes needed in the code are very similar to those in the specification.  Currently the

specification is changed as an afterthought or not at all.  Ideally the specification

should be changed first to examine the effects of the change on the system.  This

requires that the specification be easily changed and that the document remains well-

structured.  Once changed, formal notations could allow static analysis, animation, or

even proof of properties to be done on the new specification before the change is prop-

agated to the code.  Validation and verification of a change is important.

6.6  Generating Criteria

The specification serves as the vehicle of communication about the system

throughout the lifecycle. Therefore, the specification method must accommodate the

needs of every person involved in the development. The specification plays an important,

but difficult role. From this careful scrutiny of current practice, a list can be generated of

criteria that a formal specification method should satisfy in order to be routinely used in

industry.
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7 Criteria

In the previous chapter, each lifecycle phase was examined. The activities from

each phase that involve the specification were listed in order to identify the demands they

place on the specification notation and toolset. These demands are now translated in to a

concise list of criteria that can be used to evaluate formal specification methods. Because

these criteria are derived directly from the software development process rather than in an

ad hoc manner based on experience with a particular project, the inclusion of each is

defendable. Criteria applicable to all lifecycle phases are collected into one group; the

other criteria are listed by lifecycle phase.

7.1  Common to All Lifecycle Phases

• Training in the notation and toolset is available and of appropriate length and
extent

• Quality technical support for the notation and toolset is available

• The notation and toolset are reasonably easy to learn

• The size and complexity of the notation is appropriate

• The space requirements and run-time of the toolset are reasonable

• The toolset provides an easy way to print a hard copy

• The notation and toolset facilitate navigation and searching

• The toolset provides support for multiple users

• The notation and toolset provide support for differing levels of abstraction
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• The resulting specification is of high quality (complete, accurate, precise)

• The notation has formal semantics

• The notation provides support for understandability (e.g. infinite-length vari-
able names, meaningful keywords, common mathematical notation)

• The specification facilitates communication about the system

7.2  Requirements Specification Phase

Writing the Specification

• The notation and toolset decrease the time needed to write the specification

• A useful method exists for creating a specification in the notation

• Useful examples of system specifications in the notation are available

• All aspects of a system and its environment can be expressed in the notation

• The notation and toolset provide the ability to document non-functional require-
ments

• The toolset and notation integrate with other hardware and software in the
development environment

• The toolset provides the ability to represent the specification in a common file
format

• The toolset provides easy creation, manipulation, and organization of files

• The toolset allows the use of version control

• The toolset is compatible with the documentation system

• The notation and toolset support the notion of separate compilation

• The toolset tolerates incompleteness in the specification during development

• The toolset facilitates modification of the specification (small textual changes
as well as large-scale changes such as moving sections)

• The notation and toolset facilitate structuring and information hiding in the
specification

Checking and Validation of the Specification

• The notation and toolset decrease the time needed to validate the specification

• The specification is easily understood by a developer

• The notation and toolset facilitate completeness and consistency checking by a
developer
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• The notation and toolset describe static properties of the system, such as pre-
conditions, post-conditions, invariants, and flow of data and control

• The toolset provides the ability to animate the specification in order to view its
behavior

• The toolset provides useful static analyzers for mechanical checking

• The specification is easily understood by a client or domain expert

• The specification can be checked by a client or domain expert for completeness
and correctness

7.3  Design Phase

• The specification decreases the time needed to create a design

• Useful examples of creating designs from the notation are available

• Non-functional requirements are documented in a manner useful to design

• The specification method is compatible with current design methods

• The toolset integrates with software and hardware used in design

• The specification is easily understood by a designer

• The structuring and information hiding of the specification are useful in design

• The specification facilitates design 

• The specification facilitates the identification of key parts of the system

• The specification facilitates the identification of interactions or dependencies
between parts of the system

• The toolset facilitates the creation of a system prototype

7.4  Implementation Phase

• The specification decreases the time needed to implement the system

• The toolset provides support for automatic code generation from the specifica-
tion

• Every feature of the notation is implementable

• Useful examples of how derive code from the notation are available

• The notation does not have an affinity to certain implementation hardware or
software

• The specification integrates with the design document
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• The toolset is compatible with the hardware and software used in implementa-
tion

• The specification is easily understood by an implementor

• Non-functional requirements are documented in a manner useful for implemen-
tation

• The structuring and information hiding in the specification are useful to imple-
mentation

• The specification facilitates implementation

• The specification provides an appropriate level of detail about the functionality

• The specification facilitates unit testing

7.5  Verification Phase

• The specification decreases the time needed to verify the system

• Useful examples of verification based on a specification in the notation are
available

• The specification methods is compatible with current verification methods

• The toolset integrates with the software and hardware used in verification

• Non-functional requirements are documented in a manner useful for verifica-
tion

• The specification is easily understood by a verifier

• The specification provides the ability to determine the outcome in every situa-
tion

• The specification facilitates verification

• The toolset provides automatic test generation

• The specification facilitates code inspections

• The toolset provides the ability to perform theorem proving or model checking

7.6  Maintenance Phase

• The specification decreases the time and effort needed to maintain the system

• The specification is useful as an introduction to the system for a new maintainer

• The specification is useful as an introduction to the system for a new client or
domain expert

• Non-functional requirements are documented in a manner useful for mainte-
nance
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• The specification integrates with other artifacts of the system (design, imple-
mentation, test suite)

• The specification is easily understood by a maintainer

• The specification is easy to modify (small textual changes as well as large-scale
changes such as moving sections)

• The structuring and information hiding of the specification facilitates under-
standing of the specification

• The structuring and information hiding in the specification facilitates modifica-
tion of the specification

• The specification facilitates changes to the system

• The specification can be used to validate a proposed change before changing the
implementation

• The specification facilitates verification of the system after change is made

7.7  Evaluation

With this list of criteria, that were derived systematically from current practice,

formal specification methods can be evaluated.  This evaluation can be conducted using all

of the criteria or only a portion that are deemed most relevant to a particular project.  Ide-

ally, the criteria would be given weights in accordance with the relative importance of sat-

isfying that criteria in order to meet the goals of a particular project.  The results of this

evaluation can be used to assess the applicability of a formal specification method to a

project or to identify features that require improvement.
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8 Evaluation Method

Using the defendable list of criteria presented in the previous chapter, an evalua-

tion of three formal specification methods, Z, PVS, and statecharts was conducted.  The

criteria aim to expose deficiencies in the specification methods that have kept them from

receiving widespread use in industry, as well as benefits that these methods provide over

the current practice of using natural language for specification.  The evaluation that was

conducted was not ideal due to restrictions in resources.  An ideal evaluation method is

briefly described, followed by the actual evaluation method used in this study.

8.1  Ideal Evaluation Method

The only way to determine for certain whether a formal specification method is

beneficial to a particular project and working environment is to actually use it in that set-

ting.  To evaluate its usefulness in industrial practice in general, a formal specification

method must be tested in a large number and variety of projects.  The projects chosen for

study should be numerous and encompass a wide range of application areas.  The goals of

the projects should also be as varied, including safety critical systems and embedded sys-

tems, as well as text editors and database systems.  Systems with varying characteristics,

such as reactive or computational-intensive, should be included.  The population surveyed

should consist of experienced industrial software practitioners, including clients, manag-

ers, designers, implanters, documenters, and maintainers.  Data should be gathered while
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the formal specification method is used by these practitioners on an actual project.  The

project should be followed from conception through a period of maintenance.  Measure-

ments of productivity and product quality should be taken before and after the addition of

formal specification to the development process, so that a comparison can be made.  A

study with these characteristics would require many years and the cooperation of thou-

sands of people.

8.2  Actual Evaluation Method

The resources needed to conduct a statistically significant evaluation of even one

formal specification method are too extensive for this endeavor. Instead three formal spec-

ification methods were evaluated based on one project, a nuclear reactor control system,

using a limited number of criteria. For summaries of the notations and the application, see

item 3 - Notation Summaries. The project was not followed through all phases of the life-

cycle, only specification. A specification of the preliminary version of the control system

using each of the three formal specification methods was developed by members of the

research group. Then assessments of the formal specification methods were performed by

three groups of participants, nuclear engineers, computer scientists, and the authors of the

specifications. Below, the evaluation criteria and technique used are described for each of

these groups.

• Nuclear Engineers

The nuclear engineers were domain experts for the project and their role was to vali-

date the specifications.  They were familiar with the system that was being specified,

but not with the formal specification methods.  Their evaluation of the notations was

performed during an interview in which the printout of one of the specifications was

explained to them and they were asked to assess their ability to understand the specifi-

cation and check it for completeness and correctness.  This format was intended to

approximate meetings between the specifier and the domain expert during the require-
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ments specification phase of the lifecycle.  The parts of the specifications for which

they displayed  ease or difficulty in understanding were noted.  Their comments on the

notations were recorded as anecdotal evidence.  The criteria evaluated by the nuclear

engineers were:

• The notation and toolset are reasonably easy to learn

• The notation facilitates navigation and searching

• The notation provides support for understandability (e.g. infinite-length vari-
able names, meaningful keywords, common mathematical notation)

• The specification facilitates communication about the system

• The specification is easily understood by a client or domain expert

• The specification can be checked by a client or domain expert for completeness
and correctness

• The specification is useful as an introduction to the system for a new client or
domain expert

• The structuring and information hiding of the specification facilitates under-
standing of the specification

• The specification can be used to validate a proposed change before changing the
implementation

• Computer Scientists

The computer scientists received a brief introduction to the notations and the applica-

tion, studied printouts of the specifications, and completed a questionnaire (see

Appendix B) for each of the three notations that was intended to evaluate their ability

to perform tasks necessary in the software development process such as learning the

notation, understanding a specification written in the notation, and locating informa-

tion in the specification.  The questionnaires were written in a multiple choice format

in order to standardize the answers, however comments were welcome and, in fact,

provided some of the most useful information.  The volunteers were also asked to mea-

sure the time it took them to complete certain tasks.  Clearly the range of criteria that

they could evaluate is limited by their lack of experience with the formal notation,

however this data is nevertheless valuable because initial impressions can determine

whether a formal specification method is adopted for use in a project.  The criteria that

were evaluated by the computer scientists were:
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• The notation and toolset are reasonably easy to learn

• The size and complexity of the notation is appropriate

• The notation facilitates navigation and searching

• The notation provides support for understandability (e.g. infinite-length vari-
able names, meaningful keywords, common mathematical notation)

• The specification facilitates communication about the system

• The specification is easily understood by a computer scientist

• The specification facilitates the identification of key parts of the system

• The specification facilitates the identification of interactions or dependencies
between parts of the system

• Every feature of the notation is implementable

• The specification provides an appropriate level of detail about the functionality

• The specification is useful as an introduction to the system for a new maintainer

• The structuring and information hiding of the specification facilitates under-
standing of the specification

• The specification is complete

• Authors

The authors of the specifications provide a perspective of the formal specification

notations and toolsets that is very different from the other two groups of participants in

this study. Only the authors spent a considerable amount of time writing and studying

the specifications. Only the authors had experience with the toolsets. Because they

contribute this vastly different perspective, it was necessary to include their assess-

ments of the notations and toolsets. Their input could be objectionable because they

were members of the research group, however these results are anecdotal, based on

their experience with one project. The author of each specification was asked to com-

plete a questionnaire (see Appendix A). In order to minimize the bias from these par-

ticipants, an effort has been made to limit the subjectivity of the evidence. Anecdotal

evidence from the development of the specifications was also included. The criteria

that were evaluated by the authors were:

• Training in the notation and toolset is available and of appropriate length and
extent

• Quality technical support for the notation and toolset is available
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• The space requirements and run-time of the toolset are reasonable

• The toolset provides an easy way to print a hard copy

• The notation and toolset facilitate navigation and searching

• The toolset provides support for multiple users

• The notation and toolset provide support for differing levels of abstraction

• The notation provides support for understandability (e.g. infinite-length vari-
able names, meaningful keywords, common mathematical notation)

• A useful method exists for creating a specification in the notation

• Useful examples of system specifications in the notation are available

• All aspects of a system and its environment can be expressed in the notation

• The notation and toolset provide the ability to document non-functional require-
ments

• The toolset and notation integrate with other hardware and software in the
development environment

• The toolset provides the ability to represent the specification in a common file
format

• The toolset provides easy creation, manipulation, and organization of files

• The toolset allows the use of version control

• The toolset is compatible with the documentation system

• The notation and toolset support the notion of separate compilation

• The toolset tolerates incompleteness in the specification during development

• The toolset facilitates modification of the specification (small textual changes
as well as large-scale changes such as moving sections)

• The notation and toolset facilitate structuring and information hiding in the
specification

• The notation and toolset facilitate completeness and consistency checking by a
developer

• The notation and toolset describe static properties of the system, such as pre-
conditions, post-conditions, invariants, and flow of data and control

• The toolset provides the ability to animate the specification in order to view its
behavior

• The toolset provides useful static analyzers for mechanical checking

• The toolset provides support for automatic code generation from the specifica-
tion

Many of the criteria that were derived from current practice could not be evaluated
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in this study.  For example, criteria that required statistics to be kept during the entire life-

cycle could not be evaluated since only one phase had been completed.  Because of the

limits of this study, the goal was to collect anecdotal evidence on a subset of the criteria.

This evidence provided an early indication as to the validity of the hypothesis that formal

specification methods must overcome practical hurdles before they can be accepted by

industry.
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9 Results

This chapter contains the results of the evaluation of three formal specification

methods, Z, PVS, and statecharts, based on a subset of the criteria derived from the soft-

ware development process.  The formal specification methods were evaluated from three

points of view, the expert in the domain of nuclear engineering, the computer scientist, and

the specifier, thus there are three groups of results corresponding to these three perspec-

tives.  The nuclear engineers and computer scientists evaluated only the notation, not the

toolset, while the specifiers evaluated both.  The methods of evaluation were different for

each set of participants and were described in the previous chapter.  The evidence recorded

here is anecdotal, but relevant because the participants of the study are representative of

the type of people who would work with formal specification in industry.  An effort has

been made to document problems with the evaluation methods so that they can be taken

into consideration when drawing conclusions from these results.

9.1  Nuclear Engineers

General Results

• The role of the specification has to be understood

Communicating with people from a different field of expertise is always difficult

because the terminology used is different and each group makes assumptions about the
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knowledge of the other that often prove to be incorrect.  In this experiment, a particu-

larly troublesome issue was the role of the specification in software development.  One

of the participants considered it computer code and wanted to see the execution to

check correctness.  Another considered it a summary that should be easy to read and

not contain many details.  Since the role of the specification is debated within the soft-

ware community, it was difficult to provide the nuclear engineers with an exact defini-

tion, but the lesson learned was that it was vital to convey an understanding of the role

of the specification before any further discussion.

• Direct and indirect influence on the system are difficult to distinguish

A common difficulty for the nuclear engineers in understanding the specifications was

with the difference between direct and indirect influence on the state of the system.

The nuclear control system is reactive, meaning that it is constantly making alterations

in response to input received from sensors.  A change in the height of a rod causes

changes in the sensor values.  The height of the rod can be altered directly by the sys-

tem, but the sensor values change indirectly as a result of the movement of the rod.

The formal specification notations designate parts of the system that can be influenced

directly differently than those that cannot, for example Z uses primes and delta sche-

mas to indicate items that can be changed directly.  These designations were a constant

source of questions because, along with the changes in the system from direct influ-

ence, there are expected indirect changes in the state of the system.  By no means is

this an argument to abolish the separate designations for items that can be directly

influenced, rather to point out a difficulty in understanding these notations that is for-

gotten once the notation is familiar.

• The use of constant identifiers is problematic

An interesting anecdote involves the use of constants.  It is customary, in fact

preached, in computer science that constants should be defined in one place and given

identifiers so that no “magic” numbers are used throughout the rest of the system.  The

reasons are that the numbers are unexplained and, if changed, require the location of

every use.  To most of the nuclear engineers, this organization was preferable since
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they did not have the set point values memorized and the values would have to be

checked against other documentation in an effort separate from the general perusal of

the specification.  However, one participant was confused by the use of constant iden-

tifiers rather than numbers.  This suggests that the ability to dynamically replace the

constant identifiers with their values would be useful when the specification is viewed

by certain audiences.

Z

• Z is effective for communication

The Z specification was described as meaningful and useful for communication.  One

participant felt comfortable with the notation after a short period of time, no longer

needed full translations of the schemas, and began to find errors in the specification.

This participant felt that, after a few iterations of discussion and correction of the spec-

ification, he would feel that there was a mutual understanding of the system.

• Mathematical notation is not familiar

A surprising discovery was that the mathematical notation used in Z was not familiar

to the nuclear engineers.  One participant expressed the desire for a glossary of sym-

bols, including for all, there exists, and implies.  Another asked why words, which are

universally understood, were not used in place of the symbols.

• Errors in the specification were found by the presenter

An additional benefit of the presentation of the formal specification to the nuclear

engineers was the discovery of errors in the specification by the presenter.  In this case,

the presenter of the Z specification was not the author, but another computer scientist

familiar with the project, and the process of explaining the specification to the nuclear

engineers uncovered errors.  In this sense, the presentation of the specification served

as a kind of inspection of the specification.  This confirms the generally accepted view

of the community.
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PVS

• PVS looks like computer code

 The first impressions of the PVS specification were that it looked like computer code,

it was too long, and there was too much text.  One participant said he did not even want

to try to read it.  Another criticism was that there were too many variables.

• Errors in the specification were evident, despite an inability to read the specification
notation

Although the participant was not comfortable reading the PVS notation, a detailed

explanation of the specification facilitated useful discussions that identified errors in

the specification and in the specifiers’ understanding of the system.  One way that this

occurred was that the participant would ask questions to check the model.  He identi-

fied a misunderstanding of the power levels of the reactor that necessitated the rede-

sign of a section of the specification.  If this error had not been found until the system

had been implemented, it would have been impossible to increase the power level of

the reactor above about half of the value at which it is licensed to operate.  The use of

meaningful variable names was key to the understanding of the specification.

• Errors in specification were found by the presenter

In addition to errors found by the nuclear engineers, presenting the specification

caused the specifier to discover an error in his own specification.

Statecharts

• Statecharts’s graphical notation is appealing

After less than an hour of introduction to the statecharts notation and specification, one

participant was no longer intimidated by the notation and was able to understand the

specification without assistance.  The graphical notation was appealing, as well as the

obvious  flow of the system following the arrows.  The cliche “a picture is worth a

thousand words” was used repeatedly.  The structure of the specification was much

more evident in statecharts than the other two notations because of its hierarchical
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nature.

• Statecharts is difficult to search and navigate

In a very detailed examination of the specification, participants complained of the dif-

ficulties of knowing the state of the whole system at once and of identifying the results

of actions since the actions could affect any page of the specification.  Whenever the

details of a state were included in the diagram of that state rather than being saved in

another file, the lack of abstraction seemed to be confusing.  

• Statecharts is easy to learn!

Within two hours of discussion of the specification, the participants displayed the

desire to learn the syntax of the notation in order to understand the subtleties of the

specification.  A large number of errors were identified during the discussion of the

specification and the need for additional robustness was evident.  The participants

found the specification easy to understand with the explanation from the specifier and

felt that they could then continue to study it alone.  They also felt comfortable enough

with the notation that, if there were changes to be made to the system, they felt they

could write statecharts of the proposed changes!

• The statecharts specification is superior to existing documentation

The participants from the nuclear reactor staff felt that the specifiers understood the

system better than most of the operators.  They felt that they could eventually come to

an agreement that the statechart specification correctly described the system and did

not feel that they would have the same confidence with an English document.  They

said that this specification had the potential to be used in the training of their operators

and perhaps even to replace their SAR which describes the control of the nuclear reac-

tor.
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9.2  Computer Scientists

Background of Participants

The participants in this portion of the study were seven computer science students.

There was one undergraduate, four students working toward or finished with a master’s

degree, and two Ph.D. candidates.  Two participants had a year or less work experience

developing software, three had one to five years experience, and two had more than five

years of work experience.  All had knowledge of the C programming language.  Regarding

their experience with formal specification methods, four had no experience prior to this

study, two had a segment of a course, and one had an entire course.  All had some, but not

extensive, knowledge of basic science and engineering and little to no knowledge of

nuclear reactors.

Z

• Z is fairly easy to understand and navigate

The Z specification was generally well-structured and this aided the participants in

understanding and searching the specification.  However, one participant expressed

difficulty locating the definitions of types since they are not defined near their use and

another suggested that the specification would be easier to search, navigate, and use

for reference if there were a table of contents.  The participants felt strongly that Z

would aid communication about the system, however they considered it only average

for use in the maintenance phase as an introduction to the system and as a reference

document about the system.  Familiarity with logic symbols, the smallness and sim-

plicity of the notation, and the natural language descriptions aided the participants in

understanding the specification.  

• Z is reasonably easy to learn

None of the participants felt very confident in their ability to use Z after this short

introduction. A few of the participants felt that Z was harder to learn than a program-
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ming language, but most felt that it was as easy or easier to learn. Difficulties in learn-

ing Z were attributed to the mathematical notation, the unusual delimiters of inputs

and outputs, and the unfamiliarity of the notation in general. No one thought that Z

was too large of a notation and almost everyone thought the complexity of the notation

was appropriate for specification.

• Z is implementable

After a thorough inspection of the description of the scram logic in the specification,

everyone saw ways that it could be implemented.  No one was sure that the description

was complete, however.  Some participants found errors in the specification.  Upon

quick perusal of the rest of the specification, almost everyone felt that all the features

of the notation were implementable.  It was practically unanimous that Z provided the

appropriate level of detail about the system for a specification.

PVS

• PVS received low marks in structure, understandability, searching, and navigation

Although PVS is structured like code in the C programming language which all partic-

ipants claimed a lot or extensive knowledge of, it received low ratings in the areas of

structure, understandability, and searching.  One participant cited the formatting as

hindering understanding.  It was deemed average to bad for use during the mainte-

nance phase as an introduction to the system or as a reference document.  The answers

were widely varied as to whether PVS would aid communication between people

involved in the software development process.  

• Responses about the ease of learning PVS were mixed

None of the participants felt confident using PVS after this short introduction.  Most

felt that PVS was as easy or easier to learn than a programming language, but a few

felt that it was harder to learn.  No one thought that the PVS notation had too few fea-

tures and most people thought that it had the appropriate amount of complexity, while

a few felt that it was too complex.  Difficulties in learning the notation were attributed

to the size and complexity of the notation and the difficulty in understanding the key-
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words and constructs.  However, some participants felt that the keywords and con-

structs were easy to learn and PVS was similar to other notations they were familiar

with.

• PVS seems implementable

After examining the scram logic in the PVS specification, everyone saw ways that it

could be implemented, but a few saw some problems.  No one was certain whether the

description of the scrams was complete.  After a quick inspection of the rest of the

specification, the participants felt that everything was implementable.  There was a

wide range of responses when asked whether PVS provided the appropriate level of

detail for a specification.

Statecharts

• Statecharts is easy to understand

Statecharts was described as well-structured and this aided the participants in under-

standing the specification.  Difficulties in understanding the specification were attrib-

uted to the global nature of events and the division of the specification over many

pages.  The responses indicated strongly that statecharts would aid communication

between people in the development of a software product.  

• Statecharts is difficult to navigate and search

The structure of statecharts aided in searching, but one participant noted that the spec-

ification would be easier to navigate, search, and use as reference, if it had a table of

contents.  It was deemed average for use in the maintenance phase as an introduction

to the system and as a reference document.  

• Statecharts was rated fairly easy to learn

The participants did not feel confident in their ability to specify a system using state-

charts at this point. Difficulties in learning statecharts were attributed to the notation

being unlike any notation they had seen before and the constructs being difficult to

understand. However some people felt that statecharts was easy to learn  because the
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notation was familiar, graphical, small and simple, and the constructs were easily

understood. Most of the participants thought that statecharts was as easy or easier to

learn than a programming language.

• Statecharts can be implemented

After studying the scram logic described in the statecharts specification, everyone saw

ways to implement it, however no one was certain the description was complete. After

a quick survey of the specification, almost every participant thought that all the fea-

tures of the notation were implementable. It was almost unanimous that statecharts

provided the appropriate level of detail about the system. Most of the participants

thought that statecharts notation contained the appropriate level of complexity.

Searching the Specification

The computer scientists were asked to measure the amount of time required to

locate three particular pieces of information in each of the specifications. In the statecharts

and Z specifications, the answers to all three questions were present in the specification,

however the answer to one of the questions was not present in the PVS specification. This

was not an intended feature of the experiment, but in retrospect it would have been inter-

Statecharts PVS Z

total for 3
successful
searches

average
successful

search

total for 2
successful
searches

average
successful

search

time for 1
unsuccessful

search

total for 3
successful
searches

average
successful

search

11:00 3:40 7:00 3:30 15:00 4:00 1:20

4:33 1:31 2:27 1:14 4:33 3:31 1:10

10:55 3:38 5:30 2:45 15:00 6:39 2:13

6:15 2:05 3:52 1:56 :40 4:14 1:25

8:30 2:50 3:50 1:55 4:00 3:45 1:15

2:10 :43 3:15 1:38 3:50 2:37 :52

2:45 :55 1:45 :53 5:30 1:50 :37

Table 5: Time to Locate Specific Information (min:sec)
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esting to collect this data on all the specifications since it indicates the amount of time

needed for the participant to be sure the answer is not present. table 5 contains the data

from the seven participants.

• Z was easiest to search, then PVS

Although most people had the impression that statecharts was the easiest to search

because of the limited amount of text, in fact the time needed to search the statecharts

specification was consistently higher.  Z had the lowest times overall.  The results for

PVS may have been affected by having only two successful searches.

9.3  Authors

Z

• Training, documentation, and tools are available

The Z specification was written in Framemaker for Windows using a Z font. Training

is becoming more widely available for learning to both read and write Z. In addition,

there are books, papers, newsgroups, and conferences about Z. Complete specifica-

tions for real systems have been published. Toolsets are also becoming more widely

available. There are typecheckers, static analyzers, and theorem provers for Z. How-

ever, there is little to no training in the use of these tools.

• The expressivity of Z has limits

The Z notation supports integers, but not real numbers or the declaration of constant

identifiers.  Semantics for timing principles are not built-in to the notation, but they

can be expressed in Z and extensions are available that provide this capability.  Z is not

suited for describing the behavior of a user-interface, so it needs to be able to integrate

with a tool that can.  Non-functional requirements can not be described in the Z nota-

tion, but Z is conventionally accompanied by natural language text in which these

requirements can be documented.
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• The Z notation is built for readability

Infinite-length identifiers are permitted, common mathematical notation used, tabs can

be used to format the text, and lower and upper case letters can be used in identifier

names.  The one convention that is not supported is the use of underscores in identifier

names.  Different levels of abstraction, structuring, and information hiding can be used

in Z, but this is not enforced.

• The use of a text editor has many benefits

The editor used in this project was a text editor, so it tolerates incompleteness during

composition and supports printing and regular expression matching.  It also provides a

selection of  common file formats and is clearly compatible with a documentation sys-

tem.  Because it is text editor, rather than an editor specific to Z, it does not allow the

user to view the specification at different levels of abstraction.  

• Group development issues were not encountered

The editor does not provide internal version control, but can be used with external ver-

sion control systems.  It supports multiple users and separate compilation since it is

easy to manipulate text.  These issues are more critical in other tools, such as a

typechecker or theorem prover, which were not evaluated in this study.

• Symbols in the notation make Z difficult to compose and modify

It is very time consuming to compose a Z specification because the symbols of the

notation are not found on a traditional keyboard.  A symbol pad or elaborate key

sequences must be used.  Additionally, in Framemaker, the schemas are represented as

figures and the Z text is contained in text frames.  Modification of these is tedious.

PVS

• Documentation and tutorials are available

PVS 2.0 requires about 40 megabytes of memory and was used on Solaris. Training to

learn to write the notation exists, but is not readily available. Documentation and tuto-

rials for the toolset have been published and were very useful. Technical support for
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the toolset is available via email. There is documentation of the notation and toolset

available, as well as specifications of example systems. Real systems have been speci-

fied using PVS, but the complete specifications are not available. The toolset provides

type-checking and theorem proving capabilities. 

• The PVS notation is fairly expressive

The notation can represent integers and real numbers.  Constants can be defined,

although not in a straightforward manner.  Timing is not built-in, but can be specified.

It is possible to document non-functional requirements as comments.  The notation

provides infinite-length identifiers, meaningful keywords, and upper and lower case

letters and underscores are allowed in identifiers.  Common mathematical notations

that require symbols not on the keyboard are expressed with the English words, such

as for all, exists, and implies.  Tabs to format the text, however, are not well-supported.

User-interfaces cannot be represented in PVS, so it needs to be compatible with a tool

that can.  The notation supports, but does not enforce, different levels of abstraction.   

• The editor is capable, but not user-friendly

Emacs is the user-interface for PVS and saves the files as text which is clearly compat-

ible with any documentation system.  The files can also be pretty-printed in LaTex.

The specification is easy to navigate, search, and modify.  The user-interface is not

very user-friendly.  

• Group development is not well supported

Multiple users can compose files, but typechecking and other capabilities that use

more than one file require the files to be in one PVS context, which usually means they

must be in the same directory. PVS does not have built-in version control and it is

unclear whether external version control can be used. 

• There is no published method for building a PVS specification

It took several months for the specifier to develop a successful approach to structuring

theories.
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Statecharts

• The documentation is useful, but training and tutorials are scarce

The statecharts specification was written using Express 3.1.3 of the STATEMATE

family of tools running on SunOS 4.1.3. It required 30 megabytes of memory. The tool

supports three notations; of these, only statecharts was used. The graphical notation is

supplemented by a set of forms that provide a means to express properties that are dif-

ficult to represent graphically. These forms were also not used in this study. Training in

writing the notation exists, but is not locally available. The documentation on the nota-

tion is useful and readily available, however the manual on the toolset, which included

a tutorial, could use improvement. 

• The expressiveness of statecharts has limits

The notation can represent integer and real numbers, but not constants.  Some timing is

built in, but other notations based on statecharts have extended this capability.  Non-

functional requirements can be documented in the notation, but it is not easy or natural

to do so.  User-interfaces cannot be represented.  The notation does provide strong

support for representing the environment effecting the system.

• Support for readability of the text is lacking

While the graphical nature of the notation is very readable, support for readability of

the text is limited to infinite-length identifiers and allowance of underscores.  Mean-

ingful keywords are abbreviated automatically by the editor to strings lacking readabil-

ity.  Tabs and extra spaces are automatically removed and all identifiers are written in

capital letters.  

• Group development is over-constrained

External version control can not be used because the tool saves the information in a

complex database of directories in the workspace of the user. The toolset does support

multiple users and has built-in version control. It requires the categorization of the

users into groups, such as project managers, and provides varying permission to make

modifications based on these categorizations. The internal database of files and tight
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control of permissions makes it difficult or impossible to move files between projects,

delete files, delete projects, or to group files, for example into different directories. 

• It is difficult to extract a statechart from the STATEMATE tool

It is difficult to print the statecharts or import them into another documentation system

because they are not saved in a common file format.  They can be printed using a plot-

ter or saved as postscript, but the author of this specification found it easiest to use the

XV tool to grab the image and save it in a format that can be more easily manipulated.  

• The toolset provides many capabilities

Code can be generated automatically from this tool.  Several static checking capabili-

ties are provided, including completeness, consistency, and non-determinism.  Anima-

tion is provided which helped identify problems in the specification.  There is support

for structured design in the STATEMATE tool and various reports can be generated.

• The user-interface is inconsistent and not user-friendly

The menuing system that drives the toolset is not intuitive. It was difficult to make

changes to the specification in this notation. Because it is graphical, the spacing had to

be constantly modified. Identifiers are associated with graphical objects, so if the

object was moved, deleted, or a naming conflict arose, often identifiers would be auto-

matically deleted. These identifiers could be conditions on a transition consisting of

several lines of text. There is no support for regular expression matching. 

• Statecharts enforces structure, but not information hiding

The notation enforces a hierarchical structure that creates levels of abstraction and the

editor supports the ability to view the specification at different levels of abstraction.

While structuring was well-supported, information hiding was not.  Most elements are

global.   

Shortcomings in the Evaluation Method

A shortcoming of this evaluation was that the nuclear engineers, while familiar
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with the reactor, had not been in discussions about the proposed computer system before.

This had several repercussions.  Terminology used by the participants was not consistent

with each other or with the specifications.  They did not know which parts of the system

were being modeled.  It would have been more realistic if the nuclear engineers had been

part of the project from the start of the development of the specifications and if the evalua-

tion consisted of multiple interviews spread over a period of time.

The Z specification contained a mixture of Z and natural language, whereas the

other two specifications contained only the formalisms.  This natural language may have

aided the understandability of the specification.  The natural language also grouped

together the schemas pertaining to a particular part of the system, such as the schemas

dealing with alarms.  This structure is not imposed by the formalism, but helped in naviga-

tion and understanding.

Only a subset of the notations being evaluated were used in the specification, so

difficulties with other features may occur.  This also may have affected the ratings of the

size, complexity, and difficulty of learning the notations. 

The evaluations by the nuclear engineers and computer scientists were done with

paper versions of the specifications, so no benefits or problems associated with the toolsets

were studied by them.  Also, no experimentation was done with a natural language specifi-

cation, so no conclusions can be drawn about the usefulness of these notations in compar-

ison to natural language.   Additionally, the role the specification in the software

development process was not explained to the computer scientists, so their judgements

about the appropriateness of the level of detail may be unsubstantiated.

9.4  Implications

• Modeling is hard

An issue that is not often mentioned is that modeling is hard. Even if the syntax of the

notation is simple, the modeling concepts are difficult. This is true for computer scien-



100 Results

Department of Computer Science University of Virginia

tists learning a formal specification notation and it is true for nuclear engineers study-

ing a completed specification for the first time. Nobe and Warner discuss their

difficulty with modeling when using statecharts in [NW96]. 

• Formal notations are easy to learn to read

Although none of the participants could read the formal specifications before receiving

an introduction to the notation, they were able to learn the notations well enough to

understand the specifications in a short amount of time.  Interviews with the nuclear

engineers lasted no longer than two hours and they could learn to read one formal

notation fairly well in that time.  The computer scientists were asked to spend approx-

imately an hour to an hour and a half with each notation.  This time included reading a

brief introduction to the notation.  Like the nuclear engineers, they also felt fairly com-

fortable reading the notations in this short time frame.

• Specification is a group effort

Creating a specification takes a lot of time and effort on the part of the specifiers.  It

may be written by one person or a small group.  The goal of the specification, however,

is communication between the specifiers and the clients or domain experts, so input

from all parties should be heeded.  In this study, the nuclear engineers requested a lot

of changes in identifier names and organization of the specification.  Since they must

accept the specification as a description of the desired system, every effort must be

made on the part of the specifiers to accommodate the suggestions of the client or

domain expert in order to make the model intuitive and the terminology familiar.  If

there is existing documentation on the system, the specification should have a one-to-

one correspondence with this documentation to facilitate checking for consistency.

• Meaningful variable names are key to understanding

Despite effort by the specifiers to choose meaningful variable names, the identifiers

were still confusing to the nuclear engineers.  Appropriate variable names made the

notation almost immediately understandable, while poor choices led to lengthy discus-

sions.  All of the nuclear engineers wanted to change the variable names.
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• There is no road back to natural language specification.

Once the nuclear engineers had experience with one or more of the formal specifica-

tion notations, they said they would never trust a natural language specification again.

They were impressed by the level of understanding of the system that was required to

write the specifications and felt that with natural language they could never be sure

that the words were not just copied down with little understanding of the system.

While they would have liked some natural language to accompany the formal specifi-

cations, they wanted to retain the formalisms.

• Inspections of the specification are priceless

Many errors, poor structure, and confusing identifiers can be eliminated from the spec-

ification through inspection and discussion with other specifiers.  During the develop-

ment of the three specifications used in this study, several informal inspections

occurred and resulted in major revisions.  The presentation of the specification to other

specifiers or to a client or domain expert often caused the specifier to discover errors in

his own specification.

• Completeness should be checked by a computer

When asked about the completeness of the specifications, the participants in this study

balked at the idea.  In protest, one calculated the space of cases that would have to be

checked.  Regardless of the enormity of the state space, completeness of the specifica-

tion is vital to its success as a reference document about the system.  Completeness

checks are not an activity for humans, rather for a computer.  Research is ongoing in

tools that check completeness.  These would be excellent additions to the toolsets that

support these formal notations.

• Formal specifications appear to be implementable, but more study is needed

The computer scientists in this evaluation felt that they could implement the specifica-

tions, but they were not required to demonstrate this ability.  Clearly the ease of imple-

mentation is an important criteria for formal notations and further study should be

done on this issue.
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• Support for navigation and searching is lacking

Practically every participant complained of the difficulty of navigating and searching

the specifications.  They expressed the desire for a table of contents or some similar

overview of the structure.  Tool support for searching was also deficient.  If the specifi-

cation is to be used for reference, it must be easy to navigate and search.

• User-interfaces are not friendly

Little emphasis seems to have been spent on making the user-interfaces for these

toolsets friendly, yet this is the first impression that a new user receives of the capabil-

ity of the toolset.  In order for formal specification to gain popularity in industry, the

user-interface must not be more difficult to learn than the formal notation!  

• Compatibly with other software packages is vital

The specification toolset must integrate into the larger development environment. All

three of the notations evaluated were lacking the ability to specify user-interface

behavior, so they need to be compatible with a tool that has that capability. Printing,

exporting, and importing portions or all of the specifications are necessary functional-

ities of the toolset. The use of existing text editors by PVS and Z was more successful

than the indigenous editor used for statecharts, but none fully satisfied the needs of a

specification editor.

9.5  Questions Raised

• Should  a client or domain expert be able to read a formal specification without assis-
tance?

 Since a natural language specification can be read by a client or domain expert with-

out aid, it can be mailed to them for extensive examination.  If the specification written

in a formal notation can not be read by the client or domain expert without help, then

all of the examination, discussion, and checking of the specification must be done in

meetings with the specifier.  This would take a lot of time and the subtleties of the

model might be missed if the client or domain expert can not read the notation.  If the

formal specification could be read by the client or domain expert after some introduc-
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tion, then they could study it at their own leisure.  The question then focuses on how

much introduction is reasonable to require of the client or domain expert.

• Should the specification always be referenced on-line?

In this study, the formal specifications were presented to the nuclear engineers on

paper, however there might be benefits to letting them view it on-line.  For example,

statecharts provides the ability to animate the model and this could aid the client or

domain expert in checking the behavior of the system.  If the formal specification is to

be viewed on-line, then questions again arise about the client or domain expert’s abil-

ity to view the specification without the assistance of the specifier and, if they can view

it alone, the availability of the toolset and the ease of learning to use it.

• Should natural language be included in Z specifications?

It is customary to write Z interspersed with natural language descriptions of each

schema.  When one participant was presented with the Z specification without any

introduction to the notation, he read only the natural language and ignored the Z alto-

gether.  After an explanation of  a few schemas, however, he felt that he could under-

stand the specification without aid.  Another participant was presented the

specification without the natural language and each schema was explained.  He felt

that, with a short natural language description of each schema, he could read the Z

specification easily.  When interspersed with natural language, the Z specification

seemed to work much better as a stand-alone document than any of the three formal-

isms alone.
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10 Conclusions

During this evaluation of Z, Statecharts, and PVS, the well-known benefits of for-

mal specification were seen.   The precision of the notation and automated analysis tools

have the potential to provide industrial practitioners with much needed improvements in

the development process and product quality. However, significant refinements are essen-

tial before cost-effective usage in industry is possible. These shortcomings pose substan-

tial barriers to the acceptance of formal specification in industry. 

Considerable further research is needed before formal specification methods will

be ready for routine industrial use. Currently, formal specification methods generally con-

sist of a notation supported by immature tools. A method for creating and using formal

specifications is needed. Improvements must be made in the notations and tools. They

need to support the development of large, multi-authored systems. The resources required

to learn to use the formal specification methods must be widely available before they will

be adopted by industry.

Conclusions such as these resulted from this study and indicated the following

research agenda:

• Formal specification method as well as notation

In order to become routinely used in industry, there must be a method for using formal

specifications. This method should prescribe the steps needed to specify the require-

ments of a system using the formal notation. It must be evident that formal specifica-



106 Conclusions

Department of Computer Science University of Virginia

tion can be incorporated into current industrial practice. The method for using formal

specification must be compatible with other methods currently in use. Inspections of

the specification should be included in its development. Investigation into the use of

formal specification during interaction with clients is needed. 

• Attention to vital scale-up issues

Current formal specification notations and tools are not sufficient for use in large,

multi-authored systems. They must facilitate group development. Many different pro-

grammers in different locations and on different platforms often work together on a

project.

Some of the specific requirements that are dictated by the need to specify large sys-

tems are:

- Group development

- Specification navigation

- Specification evolution

• Preparation for wide-spread use

The requirements that need to be met to permit the wide-spread use of formal specifi-

cations are the following:

- Availability of training

- Quality of documentation for the notation, tools, and method

- Availability of specifications of real systems

- Availability of support from other users

• Application of lessons from programming language research

The requirements suggested by prior research in the theory of programming languages

and design that could be adopted in formal specifications are the following:

- Structuring mechanisms

- Information hiding

- Use of symbolic constants
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• Maturity of toolset

The requirements for high-quality tool support in the use of formal specifications are

the following:

- Compatibility with other software and hardware

- Improvements in usability

- Association with tools that provide expressibility that is lacking in the notation

- Provide unified working environment

- Provide analysis tools

• Social and cultural acceptance of science in software development

The approach to evaluation employed here was successful in identifying flaws in three

prominent formal specification methods. Although the flaws that were identified were

not previously unknown, the use of current software development practice as the basis

for this evaluation provided rationale for the choice of criteria that led to the identifica-

tion of these flaws. These criteria, together with their systematic derivation, form a

detailed agenda for the improvement of formal specification methods. Although there

may be other barriers, unless these criteria are satisfied, there is little hope of formal

specification obtaining widespread use in industry.





Department of Computer Science 109 University of Virginia

11 References

[AA92] Amla, Nina, and Paul Ammann. “Using Z Specifications in Category Parti-
tion Testing.” COMPASS ‘92. Proceedings of the Seventh Annual Confer-
ence on Computer Assurance, p.3-10.

[AH96] Archer, Myla M., and Constance L. Heitmeyer. “Mechanical Verification
of Timed Automata: A Case Study.” Proceedings of the 1996 Real-Time
Technology and Applications Symposium, 1996.

[Ard96] Ardis, Mark A., et al. “A Framework for Evaluating Specification Methods
for Reactive Systems: Experience Report.” IEEE Transactions on Software
Engineering 22(6):378-389, June 1996.

[BMweb] R-Active. “R-Active Concepts, Inc.” http://www.r-active.com/ (Jan. 1997).

[But93] Butler, Ricky W. “An Elementary Tutorial on Formal Specification and
Verification using PVS 2.” NASA Technical Memorandum 108991, NASA
Langley Research Center, Hampton, VA, June 1993. Revised June 1995. 

[But96] Butler, Ricky W. “An Introduction to Requirements Capture using PVS:
Specification of a Simple Autopilot.” NASA Technical Memorandum
110255, NASA Langley Research Center, Hampton, VA, May 1996.

[CGR93] Craigen, Dan, and Susan Gerhart, and Ted Ralston. “An International Sur-
vey of Industrial Applications of Formal Methods.” U.S. Department of
Commerce, March 1993.

[CTLR93] Clements, P. C., and C. L. Heitmeyer, and B. G. Labaw, and A. T. Rose.
“MT: A Toolset for Specifying and Analyzing Real-Time Systems.” Pro-
ceedings of the Real-Time Symposium, Raleigh-Durham, NC, December
1-3, 1993, pp. 12-22.

[CW96] Clarke, Edmund M., and Jeannette M. Wing. “Formal Methods: State of



110 References

Department of Computer Science University of Virginia

the Art and Future Directions.” ACM Workshop on Strategic Directions in
Computing Research--Group Report: Formal Methods, June 14-15, 1996,
Cambridge, MA, USA.

[Day93] Day, Nancy. “A Model Checker for Statecharts (Linking CASE tools with
Formal Methods).” Technical Report 93-35, Department of Computer Sci-
ence, University of British Columbia, October 1993.

[Day94] Day N., and J. Joyce, and M. Donat. “S: A Machine Readable Specification
Notation based on Higher Order Logic.” Proceedings of the 1994 Interna-
tional Meeting on Higher Order Logic Theorem Proving and its Applica-
tions, Lecture Notes in Computer Science, vol. 859, pp.285-299, Springer-
Verlag.

[Dil94] Diller, Antoni. Z: An Introduction to Formal Methods. Chichester: John
Wiley & Sons,1994.

[Fau95] Faulk, Stuart. “Software Requirements: A Tutorial.” Technical Report
NRL/MR/5546--95-7775, Naval Research Laboratories, November 14,
1995.

[Hal90] Hall , Anthony. “Seven Myths of Formal Methods.” IEEE Software 7(5):11-
19, September 1990.

[Har87] Harel, David. “Statecharts: A Visual Formulation for Complex Systems.”
Science of Computer Programming 8(3):231-274, June 1987.

[Har88] Harel, David. “On Visual Formalisms.” Communications of the ACM.
31(5):514-530, May 1988.

[HBGL95] Heitmeyer, C., and A. Bull, and C. Gasarch, and B. Labaw, “SCR*: A
Toolset for Specifying and Analyzing Requirements.” Proceedings of the
Tenth Annual Conference on Computer Assurance (COMPASS ‘95),
Gaithersburg, MD, June 25-29, 1995, pp. 109-122.

[Hen80] Heninger, Kathryn L. “Specifying Software Requirements for Complex
Systems: New Techniques and Their Application.” IEEE Transactions on
Software Engineering 6(1):2-13, January, 1980.

[HJL96] Heitmeyer, Constance L., and Ralph D. Jeffords, and Bruce G. Labaw.
“Automated Consistency Checking of Requirements Specifications.” ACM
Transactions on Software Engineering and Methodology 5(3):231-261,
July 1996.

[HL96] Heimdahl, Mats P. E., and Nancy G. Leveson. “Completeness and Consis-
tency in Hierarchical State-Based Requirements.” IEEE Transactions on



Department of Computer Science University of Virginia

References 111

Software Engineering 22(6):363-377, June, 1996.

[HM83] Heitmeyer, C., and J. McLean. “Abstract Requirements Specification: A
New Approach and Its Application.” IEEE Transactions on Software Engi-
neering 9(5):580-589, September 1983. 

[Hoo95] Hooman, Jozef. “Verifying part of the ACCESS.bus Protocol using PVS.”
Proceedings 15th Conference on the Foundations of Software Technology
and Theoretical Computer Science, LNCS 1026, Springer-Verlag, pages
96-110, 1995.

[HS96] Havelund, Klaus, and N. Shankar. “Experiments in Theorem Proving and
Model Checking for Protocol Verification.” Proceedings of Formal Meth-
ods Europe (FME '96 ), Springer-Verlag Lecture Notes in Computer Sci-
ence No. 1051, pp. 662-681, March 1996, Oxford, UK.

[iLo87] Harel, D., and A. Pnueli, and J. P. Schmidt, and R. Sherman. “On the For-
mal Semantics of Statecharts (Extended Abstract).” Proceedings, Sympo-
sium on Logic in Computer Science, pp.54-64, Ithaca, New York, 22-25
June 1987. The Computer Society of the IEEE.

[iLo90] Harel, David, et al. “STATEMATE: A Working Environment for the Devel-
opment of Complex Reactive Systems.” IEEE Transactions on Software
Engineering 16(4):403-414, April 1990.

[iLoweb] iLogix. “i-Logix Success Stories.” http://www.ilogix.com/company/suc-
cess.htm (6 May 1997).

[Jac95] Jacky, Jonathan. “Specifying a Safety-Critical Control System in Z.” IEEE
Transactions on Software Engineering 21(2):99-106, February 1995.

[JM94] Jahanian, F., and A. Mok. “Modechart: A Specification Language for Real-
Time Systems.” IEEE Transactions on Software Engineering 20(12):933-
947, December, 1994.

[JMC94] Johnson, Steven D., and Paul S. Miner, and Albert Camilleri. “Studies of
the Single Pulser in Various Reasoning Systems.” Available:
http://www.csl.sri.com/pvs-users.html (6 May 1997).

[LA94] Lutz, Robyn R., and Yoko Ampo. “Experience Report: Using Formal
Methods for Requirements Analysis of Critical Spacecraft Software.” Pro-
ceedings of the 19th Annual Software Engineering Workshop, pp.231--
248, Greenbelt, MD, December 1994. NASA Goddard Space Flight Center.

[LHHR94] Leveson, Nancy G., and Mats P. E Heimdahl, and Holly Hildreth, and Jon
Damon Reese. “Requirements Specification for Process-Control Systems.”



112 References

Department of Computer Science University of Virginia

IEEE Transactions on Software Engineering 20(9):684-707, September,
1994.

[MPJ94] Miner, Paul S., and Shyamsundar Pullela, and Steven D. Johnson. “Interac-
tion of Formal Design Systems in the Development of a Fault-Tolerant
Clock Synchronization Circuit.” Computer Science Department, Indiana
University, Technical Report No. 405, April 1994.

[NRP95] Nagasamy, Vijay, and Sreeranga Rajan, and Preeti R. Panda. “Fibre chan-
nel protocol: Formal specification and verification.” Sixth Annual Silicon
Valley Networking Conference. SysTech Research, April 1995.

[NW96] Nobe, C. R., and W. E. Warner. “Lessons Learned from a Trial Application
of Requirements Modeling using Statecharts.” Proceedings the Second
International Conference on Requirements Engineering, April 15-18, 1996,
pp. 86-93.

[Par96] Park, Seungjoon. “Computer Assisted Analysis of Multiprocessor Memory
Systems.” Ph.D. Thesis, Department of Electrical Engineering, Stanford
University, June 1996.

[PD96] Park, Seungjoon, and David Dill. “Verification of FLASH Cache Coher-
ence Protocol by Aggregation of Distributed Transactions.” 8th ACM Sym-
posium on Parallel Algorithms and Architectures, Padova, Italy, June 1996. 

[PH97] Pfleeger, Shari Lawrence, and Les Hatton. “Investigating the Influence of
Formal Methods.” Computer 30(2):33-43, February, 1997.

[PMS95] Puchol, Carlos, and Aloysius K. Mok, and Douglas A. Stuart. “Compiling
Modechart Specifications.” Technical Report CS-TR-95-38, Department of
Computer Science, University of Texas at Austin, October 1, 1995.

[Pre92] Pressman, Roger S. “Softwate Engineering: A Practicioner’s Approach.”
McGraw-Hill, New York, NY, 1992.

[PVSweb] Rushby, John. “SRI International Computer Science Laboratory.”
http://www.csl.sri.com/pvs-users.html (6 May 1997).

[Rus93] Rushby, John. “Formal Methods and the Certification of Critical Systems.”
Technical Report CSL-93-7, SRI International, December 1993.

[SC94] Sherrell, Linda B., and Doris L. Carver. “Experiences in Translating Z
Designs to Haskell Implementations.” Software--Practice and Experience
24(12):1159-1178, December 1994.

[SCweb] Stringer-Calvert, David. “High Integrity Systems Engineering Group.”



Department of Computer Science University of Virginia

References 113

http://www.york.ac.uk/~dwjsc100/compilers.html (6 May 1997).

[SM95] Srivas, Mandayam K., and Steven P. Miller. “Formal Verification of an Avi-
onics Microprocessor.” Technical Report SRI-CSL-95-4, Computer Sci-
ence Laboratory, SRI International, June 1995.

[Spi90] Spivey, J. Michael. “Specifying a Real-Time Kernel.” IEEE Software
7(5):21-28, September 1990.

[STM] iLogix. The Languages of Statemate. iLogix, 22 Third Avenue, Burlington,
MA 01803. November 1987.

[STMweb] iLogix. “Statemate Family Overview.” http://www.ilogix.com/prod-
ucts/statemat.htm (6 May 1997).

[UVAR] University of Virginia Reactor, “The University of Virginia Nuclear Reac-
tor Facility Tour Information Booklet”. http://minerva.acc.vir-
ginia.edu/~reactor

[UvarSC] University of Virginia Reactor Safety Committee, “University of Virginia
Reactor Safety Analysis Report”, http://minerva.acc.virginia.edu/~reactor

[VH96] Vitt, Jan, and Jozef Hooman. “Assertional Specification and Verification
using PVS of the Steam Boiler Control System.” Formal Methods for
Industrial Applications: Specifying and Programming the Steam Boiler
Control, LNCS 1165, Springer-Verlag, pages 453-472, 1996.

[Zweb] Bowen, Jonathan. “The Z Notation.” http://www.com-
lab.ox.ac.uk/archive/z.html (6 May 1997).





Appendices





Department of Computer Science A-I University of Virginia

Appendix A
PVS Specification

cooling                     :    THEORY

  BEGIN

  header_status             :    TYPE = { UP, DOWN }
  pump_status               :    TYPE = { ON, OFF }
  line_valve_status         :    TYPE = { CLOSED, TO_AIR, TO_COMPRESSED }
  pressure_status           :    TYPE = { HIGH, NORMAL }
  cooling_status            :    TYPE = 

      [# %RECORD
          header            :    header_status,
          pump              :    pump_status,
          sec_pump          :    pump_status,
          line_valve        :    line_valve_status,
          line_pressure     :    pressure_status
      #]

  lower_header(cool :  cooling_status) :   
      cooling_status        =    cool WITH [header := DOWN]
  
  raise_header(cool :  cooling_status) :   
      cooling_status        =    cool WITH [header := UP, 
                                 line_valve := TO_COMPRESSED, 
                                 line_pressure := HIGH ]  
  
  bleed_line(cool   :  cooling_status) :     
      cooling_status        =    cool WITH [line_valve := TO_AIR, 
                                 line_pressure := NORMAL ]

  close_valve(cool  :  cooling_status) : 
      cooling_status        =    IF line_valve(cool) = TO_AIR 
                                 THEN cool WITH [line_valve := TO_COMPRESSED]
                                 ELSE cool
                                 ENDIF

  pump_off(cool     :  cooling_status) :       
      cooling_status        =    cool WITH [pump := OFF]

  pump_on(cool      :  cooling_status) :
      cooling_status        =    cool WITH [pump := ON]

  sec_pump_off(cool :  cooling_status) :
      cooling_status        =    cool WITH [sec_pump := OFF]

  sec_pump_on(cool  :  cooling_status) :    
      cooling_status        =    cool WITH [sec_pump := ON]



A-II PVS Specification

Department of Computer Science University of Virginia

  pumps_off(cool    :  cooling_status) :
      cooling_status        =    cool WITH [pump := OFF, sec_pump := OFF]

  pumps_on(cool     :  cooling_status) :
      cooling_status        =    cool WITH [pump := ON, sec_pump := ON]
  

  END cooling
sensors                     :    THEORY

  BEGIN

  sensors_status            :    TYPE = 

      [# %RECORD
          pool_temp         :    nat,
          pool_level        :    nat,
          pool_level_low    :    bool,
          power_indic1      :    nat,
          power_indic2      :    nat,
          water_cond        :    nat,
          react_period      :    nat,
          gamma_rad         :    nat,
          air_mont          :    nat,
          %duct_mont        :    nat,
          area_rad          :    nat,
          core_temp         :    nat,
          core_flow         :    nat,
          %line_pressure    :    bool,
%-----------------------------------------------------------
          auto_ctrl_lost    :    bool,
          her_door_open     :    bool,
          dr_door_open      :    bool,
          sec_pump_off      :    bool,
          thimble_too_hot   :    bool,
          key_removed       :    bool,
          bridge_rad        :    nat,
          face_rad          :    nat,
          t_door_open       :    bool,
          ehatch_open       :    bool,
          r1_up             :    bool,
          r1_down           :    bool,
          r1_seated         :    bool,
          r1_mag_eng        :    bool,
          r2_up             :    bool,
          r2_down           :    bool,
          r2_seated         :    bool,
          r2_mag_eng        :    bool,
          r3_up             :    bool,
          r3_down           :    bool,
          r3_seated         :    bool,
          r3_mag_eng        :    bool
          #]
 

  raise_shim_rods_10(sensors       :  sensors_status) :
      sensors_status        =    sensors WITH [r1_up      := false,
                                               r1_down    := false,
                                               r1_seated  := false,
                                               r1_mag_eng := true,
                                               r2_up      := false,
                                               r2_down    := false,
                                               r2_seated  := false,
                                               r2_mag_eng := true,
                                               r3_up      := false,
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                                               r3_down    := false,
                                               r3_seated  := false,
                                               r3_mag_eng := true]

  lowest_shim_rod_position(sensors :  sensors_status) :
      sensors_status        =    sensors WITH [r1_up      := false,
                                               r1_down    := true,
                                               r1_seated  := true,
                                               r1_mag_eng := true,
                                               r2_up      := false,
                                               r2_down    := true,
                                               r2_seated  := true,
                                               r2_mag_eng := true,
                                               r3_up      := false,
                                               r3_down    := true,
                                               r3_seated  := true,
                                               r3_mag_eng := true]

  END sensors
alarm_display               :    THEORY

  BEGIN

  alarm_status              :    TYPE = { BOTH_ON, YELLOW_ON, BOTH_OFF }
  
  alarms_status             :    TYPE = 

      [# %RECORD
          %spare_alarm       :    alarm_status,
          core_temp_alarm   :    alarm_status,
          control_rod_alarm :    alarm_status,
          air_mont_alarm    :    alarm_status,
          water_cond_alarm  :    alarm_status,
          area_rad_alarm    :    alarm_status,
          her_door_alarm    :    alarm_status,
          sec_pump_alarm    :    alarm_status,
          gamma_rad_alarm   :    alarm_status,
          dr_door_alarm     :    alarm_status,
          thimble_temp_alarm:    alarm_status,
          scram_alarm       :    alarm_status
      #]

  scram(alarms                         :  alarms_status) : 
      alarms_status         =    alarms WITH [scram_alarm := BOTH_ON]

  reset_scram(alarms                   :  alarms_status) : 
      alarms_status         =    alarms WITH [scram_alarm := IF scram_alarm(alarms) /= BOTH_OFF
                                                             THEN YELLOW_ON
                                                             ELSE BOTH_OFF
                                                             ENDIF]

  clear_alarms(alarms                  :  alarms_status) : 
      alarms_status         =    alarms WITH 
          [ core_temp_alarm      :=  IF (core_temp_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          control_rod_alarm      :=  IF (control_rod_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
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          air_mont_alarm         :=  IF (air_mont_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF 
                                     ELSE BOTH_ON
                                     ENDIF,
          water_cond_alarm       :=  IF (water_cond_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          area_rad_alarm         :=  IF (area_rad_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          her_door_alarm         :=  IF (her_door_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          sec_pump_alarm         :=  IF (sec_pump_alarm(alarms) /= BOTH_ON) 
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          gamma_rad_alarm        :=  IF (gamma_rad_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          dr_door_alarm          :=  IF (dr_door_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          thimble_temp_alarm     :=  IF (thimble_temp_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          scram_alarm            :=  IF (scram_alarm(alarms) /= BOTH_ON) 
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF
          ]

  core_temp_alarm_signal_on(alarms     :  alarms_status) :
      alarm_status          =    BOTH_ON
  
  core_temp_alarm_signal_off(alarms    :  alarms_status) :
      alarm_status          =    IF core_temp_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF  

  control_rod_alarm_signal_on(alarms   :  alarms_status) :
      alarm_status          =    BOTH_ON 
  
  control_rod_alarm_signal_off(alarms  :  alarms_status) :
      alarm_status          =    IF control_rod_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  air_mont_alarm_signal_on(alarms      :  alarms_status) :
      alarm_status          =    BOTH_ON
  
  air_mont_alarm_signal_off(alarms     :  alarms_status) :
      alarm_status          =    IF air_mont_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF
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  water_cond_alarm_signal_on(alarms    :  alarms_status) :
      alarm_status          =    BOTH_ON
  
  water_cond_alarm_signal_off(alarms   :  alarms_status) :
      alarm_status          =    IF water_cond_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  area_rad_alarm_signal_on(alarms      :  alarms_status) :
      alarm_status          =    BOTH_ON
  
  area_rad_alarm_signal_off(alarms     :  alarms_status) :
      alarm_status          =    IF area_rad_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  her_door_alarm_signal_on(alarms      :  alarms_status) :
      alarm_status          =    BOTH_ON
  
  her_door_alarm_signal_off(alarms     :  alarms_status) :
      alarm_status          =    IF her_door_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  sec_pump_alarm_signal_on(alarms      :  alarms_status) :
      alarm_status          =    BOTH_ON
  
  sec_pump_alarm_signal_off(alarms     :  alarms_status) :
      alarm_status          =    IF sec_pump_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  gamma_rad_alarm_signal_on(alarms     :  alarms_status) :
      alarm_status          =    BOTH_ON
  
  gamma_rad_alarm_signal_off(alarms    :  alarms_status) :
      alarm_status          =    IF gamma_rad_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  dr_door_alarm_signal_on(alarms       :  alarms_status) :
      alarm_status          =    BOTH_ON
  
  dr_door_alarm_signal_off(alarms      :  alarms_status) :
      alarm_status          =    IF dr_door_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  thimble_temp_alarm_signal_on(alarms  :  alarms_status) :
      alarm_status          =    BOTH_ON
  
  thimble_temp_alarm_signal_off(alarms :  alarms_status) : 
      alarm_status          =    IF thimble_temp_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF
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  END alarm_display
shim_rods                   :    THEORY

  BEGIN

  lamp_status               :    TYPE = { ON, OFF }

  shim_lamp_status          :    TYPE = 

      [# %RECORD
          up                :    lamp_status,
          down              :    lamp_status,
          seated            :    lamp_status,
          mag_eng           :    lamp_status
      #]

  magnet_status             :    TYPE = { MAG_ON, MAG_OFF }

  scram_status              :    TYPE = { NOT_SCRAMMED, SCRAMMED }

  shim_rods_status          :    TYPE = 

      [# %RECORD
          scram_state       :    scram_status,
          r1_driver         :    nat,
          r1_lamps          :    shim_lamp_status,
          r1_magnet         :    magnet_status,
          r2_driver         :    nat,
          r2_lamps          :    shim_lamp_status,
          r2_magnet         :    magnet_status,
          r3_driver         :    nat,
          r3_lamps          :    shim_lamp_status,
          r3_magnet         :    magnet_status
      #]

  scram(safety_rods              :  shim_rods_status) : 
      shim_rods_status      =    safety_rods WITH [scram_state := SCRAMMED, 
                                 r1_magnet := MAG_OFF, r2_magnet := MAG_OFF,
                                 r3_magnet := MAG_OFF]

  reset_scram(safety_rods        :  shim_rods_status) : 
      shim_rods_status      =    safety_rods WITH [scram_state := NOT_SCRAMMED]

  r1_magnet_on(safety_rods       :  shim_rods_status) : 
      shim_rods_status      =    safety_rods WITH [ r1_magnet := MAG_ON ]

  r2_magnet_on(safety_rods       :  shim_rods_status) : 
      shim_rods_status      =    safety_rods WITH [ r2_magnet := MAG_ON ]

  r3_magnet_on(safety_rods       :  shim_rods_status) : 
      shim_rods_status      =    safety_rods WITH [ r3_magnet := MAG_ON ]

  all_magnets_on(safety_rods     :  shim_rods_status) : 
      shim_rods_status      =    safety_rods WITH [r1_magnet := MAG_ON, 
                                 r2_magnet := MAG_ON, r3_magnet := MAG_ON]

  lower_shim_rods(safety_rods    :  shim_rods_status) :
      shim_rods_status      =    safety_rods WITH [ r1_driver := 0,
                                 r2_driver := 0, r3_driver := 0]

  raise_shim_rods(safety_rods    :  shim_rods_status, 
                  height         :  posnat          ) :
      shim_rods_status      =    safety_rods WITH [ r1_driver := height, 
                                 r2_driver := height, r3_driver := height]
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  END shim_rods  
control_rod                :    THEORY

  BEGIN

  control_status            :    TYPE = { AUTOMATIC_CONTROL, MANUAL_CONTROL }

  control_rod_status        :    TYPE = 
      [# %RECORD
          control           :    control_status,
          position          :    posnat
      #]  

  start_auto_control(control_rod   :  control_rod_status) :
      control_rod_status    =    control_rod WITH [control := AUTOMATIC_CONTROL]

  start_manual_control(control_rod :  control_rod_status) : 
      control_rod_status    =    control_rod WITH [control := MANUAL_CONTROL]

  move_control_rod(control_rod     :  control_rod_status, 
                  height           :  posnat            ) :
      control_rod_status    =    IF control(control_rod) = MANUAL_CONTROL
                                 THEN control_rod WITH [ position := height]
                                 ELSE control_rod 
                                 ENDIF

  END control_rod
rods                        :    THEORY

  BEGIN

  IMPORTING shim_rods
  IMPORTING control_rod

  rod_status                :    TYPE = 

      [# %RECORD           
          shim_rods         :    shim_rods_status,
          control_rod       :    control_rod_status
      #]

  Rods                      :    VAR rod_status
  position                  :    VAR nat
  
  start_auto_control(Rods   :  rod_status) : 
      rod_status            =    Rods WITH [ control_rod := 
                                 start_auto_control(control_rod(Rods))]

  start_manual_control(Rods :  rod_status) : 
      rod_status            =    Rods WITH [ control_rod := 
                                 start_manual_control(control_rod(Rods))]

  scram(Rods                :  rod_status) : 
      rod_status            =    Rods WITH [ shim_rods := scram(shim_rods(Rods))]

  reset_scram(Rods          :  rod_status) : 
      rod_status            =    Rods WITH [ shim_rods := 
                                 reset_scram(shim_rods(Rods))]

  r1_magnet_on(Rods         :  rod_status) : 
      rod_status            =    Rods WITH [ shim_rods := 
                                 r1_magnet_on(shim_rods(Rods))]

  r2_magnet_on(Rods         :  rod_status) : 
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      rod_status            =    Rods WITH [ shim_rods := 
                                 r2_magnet_on(shim_rods(Rods))]

  r3_magnet_on(Rods         :  rod_status) : 
      rod_status            =    Rods WITH [ shim_rods := 
                                 r3_magnet_on(shim_rods(Rods))]

  lower_shim_rods(Rods      :  rod_status) : 
      rod_status            =    Rods WITH [ shim_rods := 
                                 lower_shim_rods(shim_rods(Rods))]

  all_magnets_on(Rods       :  rod_status) :
      rod_status            =    Rods WITH [shim_rods := 
                                 all_magnets_on(shim_rods(Rods))]

  move_shim_rods(Rods       :  rod_status, 
                  height    :  posnat    ) : 
      rod_status            =    Rods WITH [ shim_rods := 
                                 move_shim_rods(shim_rods(Rods), height)]
  
  END rods

power_level                 :    THEORY

  BEGIN

  range_switch_2_status     :    TYPE = { LOW_MODE, HIGH_MODE }

  operating_power_status    :    TYPE = { LOW_POWER, HIGH_POWER }

  operating_status          :    TYPE = { IDLE_CHECKED, IDLE_UNCHECKED,
                                          POWER_TO_LOW,

POWER_TO_HIGH, OPERATING }

  power_level_status        :    TYPE = 

      [# %RECORD
          sp_limit          :    nat,
          set_point         :    nat,
          operating         :    operating_status,
          power_level       :    operating_power_status,
          range_switch_2    :    range_switch_2_status
      #]

  scram(power            :  power_level_status) :    
      power_level_status    =    power WITH [ operating := 
                                              IF operating(power) = IDLE_UNCHECKED 
                                              THEN IDLE_UNCHECKED
                                              ELSE IDLE_CHECKED 
                                              ENDIF ]

  range_sw_to_low(power  :  power_level_status) :
      power_level_status    =    power WITH [ range_switch_2 := LOW_MODE,
                                 sp_limit := 250, set_point := 230 ]

  range_sw_to_high(power :  power_level_status) : 
      power_level_status    =    power WITH [ range_switch_2 := HIGH_MODE, 
                                 sp_limit := 2500, set_point := 2230 ]

  power_to_low(power     :  power_level_status) : 
      power_level_status    =    power WITH [ operating := POWER_TO_LOW ]

  power_to_high(power    :  power_level_status) :
      power_level_status    =    power WITH [ operating := POWER_TO_HIGH ]



Department of Computer Science University of Virginia

PVS Specification A-IX

  checked(power          :  power_level_status) : 
      power_level_status    =    power WITH [ operating := IDLE_CHECKED ]

  problem(power          :  power_level_status) : 
      power_level_status    =    power WITH [ operating := IDLE_UNCHECKED ]

  low_power_on(power     :  power_level_status) : 
      power_level_status    =    power WITH [operating := OPERATING, 
                                 power_level := LOW_POWER]
  
  high_power_on(power    :  power_level_status) : 
      power_level_status    =    power WITH [operating := OPERATING, 
                                 power_level := HIGH_POWER]

  END power_level

reactor                     :    THEORY 

  BEGIN

  IMPORTING cooling
  IMPORTING alarm_display
  IMPORTING rods
  IMPORTING power_level
  IMPORTING sensors

  states                    :    TYPE = 

      [# %RECORD
          rods              :    rod_status,
          cooling_system    :    cooling_status,
          alarms            :    alarms_status,
          power_level       :    power_level_status,
          sensors           :    sensors_status          
      #]

  events                    :    TYPE = 

      {
       scram,              raise_header,       lower_header,       pump_off,
       pump_on,            bleed_line,         close_valve,        reset_scram, 
       open_truck_door,    open_escape_hatch,  remove_key,         sb_console_pressed, 
       sb_rdoor_pressed,   sb_bdoor_pressed,   evacuation1,        evacuation2, 
       evacuation3,        evacuation4,        clear_alarms,       clear_scram_light, 
       r1_magnet_on,       r2_magnet_on,       r3_magnet_on,       range_sw_to_high, 
       range_sw_to_low,    start_auto_control, start_man_control,  check_power_ind, 
       check_alarms,       test,               startup 
      }
 
  
  END reactor
check_sensors               :    THEORY

  BEGIN

  IMPORTING reactor

  check_sensors(st : states) : 
      states                =    st WITH 
          [ rods                 :=  rods(st) WITH 
              [ shim_rods        :=  shim_rods(rods(st)) WITH
                  [ r1_lamps     :=  r1_lamps(shim_rods(rods(st))) WITH 
                      [ up       :=  IF r1_up(sensors(st))
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                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      down       :=  IF r1_down(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      seated     :=  IF r1_seated(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      mag_eng    :=  IF r1_mag_eng(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF
                      ],

                  r2_lamps       :=  r2_lamps(shim_rods(rods(st))) WITH 
                      [ up       :=  IF r2_up(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      down       :=  IF r2_down(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      seated     :=  IF r2_seated(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      mag_eng    :=  IF r2_mag_eng(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF
                      ],

                  r3_lamps       :=  r3_lamps(shim_rods(rods(st))) WITH 
                      [ up       :=  IF r3_up(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      down       :=  IF r3_down(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      seated     :=  IF r3_seated(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      mag_eng    :=  IF r3_mag_eng(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF
                      ]
                  ]
              ]
          ]
      
      
  END check_sensors

      
check_scrams                :    THEORY
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  BEGIN

  IMPORTING reactor

  scram_rods(st             :  states) : 
      states                =    st WITH [rods := scram(rods(st)), 
                                 alarms := scram(alarms(st)),
                                 power_level := scram(power_level(st))] 

  not_scrammed_rods(st      :  states) : 
      bool                  =    IF scram_state(shim_rods(rods(st))) = NOT_SCRAMMED
                                 THEN true
                                 ELSE false
                                 ENDIF

  check_scrams(st           :  states) :    
      states                =    IF scram_state(shim_rods(rods(st))) /= SCRAMMED
   THEN 
                                     IF (power_level(power_level(st)) = HIGH_POWER 
                                         AND (line_pressure(cooling_system(st)) = HIGH
                                             OR core_flow(sensors(st))<960))
                                     OR (pump(cooling_system(st)) = ON 
                                         AND header(cooling_system(st)) = DOWN)
                                     OR (pump(cooling_system(st)) = OFF 
                                         AND header(cooling_system(st)) = UP)
                                     OR power_indic1(sensors(st)) > sp_limit(power_level(st))
                                     OR power_indic2(sensors(st)) > sp_limit(power_level(st))
                                     OR bridge_rad(sensors(st)) > 30
                                     OR face_rad(sensors(st)) > 2
                                     OR pool_level_low(sensors(st)) = true
                                     OR pool_level(sensors(st)) < 231
                                     OR pool_temp(sensors(st)) > 108
                                     OR react_period(sensors(st)) < 33
                                     OR t_door_open(sensors(st)) = true
                                     OR ehatch_open(sensors(st)) = true
                                     OR key_removed(sensors(st)) = true
                                     THEN scram_rods(st)
                                     ELSE st
                                     ENDIF
                                 ELSE st

 ENDIF

  tran_reset_scram(st       :  states) : 
      states                =    IF not_scrammed_rods(check_scrams(st))
                                 THEN st WITH [rods := reset_scram(rods(st)), 
                                     alarms := reset_scram(alarms(st))] 
                                 ELSE st
                                 ENDIF

  tran_truck_door_open(st   :  states) : 
      states                =    st WITH [sensors := sensors(st) 
                                 WITH [ t_door_open := true]]  

  tran_escape_hatch_open(st :  states) : 
      states                =    st WITH [sensors := sensors(st) 
                                 WITH [ ehatch_open := true]]

  tran_key_removed(st       :  states) : 
      states                =    st WITH [sensors := sensors(st) 
                                 WITH [key_removed := true]]

  END check_scrams



A-XII PVS Specification

Department of Computer Science University of Virginia

check_alarms                :    THEORY

  BEGIN

  IMPORTING reactor

  tran_clear_alarms(st      :  states) :    
      states                =    st WITH [alarms := clear_alarms(alarms(st))]

  check_alarms(st           :  states) : 
      states                =    st WITH 
          [ alarms               :=  alarms(st) WITH 
              [core_temp_alarm   :=  IF (core_temp(sensors(st)) > 0)
                                     THEN core_temp_alarm_signal_on(alarms(st))
                                     ELSE core_temp_alarm_signal_off(alarms(st)) 
                                     ENDIF,
              control_rod_alarm  :=  IF (auto_ctrl_lost(sensors(st)) = true)
                                     THEN control_rod_alarm_signal_on(alarms(st))
                                     ELSE control_rod_alarm_signal_off(alarms(st)) 
                                     ENDIF,
              air_mont_alarm     :=  IF (air_mont(sensors(st)) > 0)
                                     THEN air_mont_alarm_signal_on(alarms(st))
                                     ELSE air_mont_alarm_signal_off(alarms(st)) 
                                     ENDIF,
              water_cond_alarm   :=  IF (water_cond(sensors(st)) > 2)
                                     THEN water_cond_alarm_signal_on(alarms(st))
                                     ELSE water_cond_alarm_signal_off(alarms(st)) 
                                     ENDIF,
              area_rad_alarm     :=  IF (area_rad(sensors(st)) > 0)
                                     THEN area_rad_alarm_signal_on(alarms(st))
                                     ELSE area_rad_alarm_signal_off(alarms(st)) 
                                     ENDIF,
              her_door_alarm     :=  IF (her_door_open(sensors(st)) = true)
                                     THEN her_door_alarm_signal_on(alarms(st))
                                     ELSE her_door_alarm_signal_off(alarms(st)) 
                                     ENDIF,
              sec_pump_alarm     :=  IF (sec_pump_off(sensors(st)) = true) 
                                     THEN sec_pump_alarm_signal_on(alarms(st))
                                     ELSE sec_pump_alarm_signal_off(alarms(st)) 
                                     ENDIF,
              gamma_rad_alarm    :=  IF (gamma_rad(sensors(st)) > 0)
                                     THEN gamma_rad_alarm_signal_on(alarms(st))
                                     ELSE gamma_rad_alarm_signal_off(alarms(st)) 
                                     ENDIF,
              dr_door_alarm      :=  IF (dr_door_open(sensors(st)) = true)
                                     THEN dr_door_alarm_signal_on(alarms(st))
                                     ELSE dr_door_alarm_signal_off(alarms(st)) 
                                     ENDIF,
              thimble_temp_alarm :=  IF (thimble_too_hot(sensors(st)) = true)
                                     THEN thimble_temp_alarm_signal_on(alarms(st))
                                     ELSE thimble_temp_alarm_signal_off(alarms(st)) 
                                     ENDIF
              ]
          ] 

  tran_clear_scram_light(st :  states) : 
      states                =    st WITH [alarms := reset_scram(alarms(st))]

  END check_alarms
check_conditions            :    THEORY
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  BEGIN

  IMPORTING check_sensors
  IMPORTING check_scrams
  IMPORTING check_alarms

  END check_conditions
transition                  :    THEORY

  BEGIN

  IMPORTING reactor
  IMPORTING check_conditions

  tran_raise_header(st                   :  states) : 
      states                =    st WITH [cooling_system := 
                                 raise_header(cooling_system(st))]

  tran_lower_header(st                   :  states) : 
      states                =    st WITH [cooling_system := 
                                 lower_header(cooling_system(st))]

  tran_pump_off(st                       :  states) : 
      states                =    scram_rods(st WITH [cooling_system := 
                                 pump_off(cooling_system(st))])

  tran_pump_on(st                        :  states) : 
      states                =    scram_rods(st WITH [cooling_system := 
                                 pump_on(cooling_system(st))])

  tran_bleed_line(st                     :  states) : 
      states                =    st WITH [cooling_system := 
                                 bleed_line(cooling_system(st))]

  tran_close_valve(st                    :  states) : 
      states                =    st WITH [cooling_system := 
                                 close_valve(cooling_system(st))]

  tran_scram(st                          :  states) :        
      states                =    scram_rods(st)

  tran_r1_magnet_on(st                   :  states) : 
      states                =    st WITH [ rods := r1_magnet_on(rods(st))]

  tran_r2_magnet_on(st                   :  states) : 
      states                =    st WITH [ rods := r2_magnet_on(rods(st))]

  tran_r3_magnet_on(st                   :  states) : 
      states                =    st WITH [ rods := r3_magnet_on(rods(st))]

  tran_pumps_on(st                       :  states) : 
      states                =    scram_rods(st WITH [ cooling_system := 
                                 pumps_on(cooling_system(st))])

  tran_all_drivers_to_lowest_position(st :  states) : 
      states                =    st WITH [ rods := lower_shim_rods(rods(st)),
                                 sensors := lowest_shim_rod_position(sensors(st))]

  tran_all_magnets_on(st                 :  states) : 
      states                =    st WITH [rods := all_magnets_on(rods(st))]

  tran_all_drivers_up_10(st              :  states) : 
      states                =    st WITH [ rods :=
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                                 move_shim_rods(rods(st), 10), 
                                 sensors := raise_shim_rods_10(sensors(st))]

  tran_range_sw_to_high(st               :  states) : 
      states                =    st WITH [ power_level := 
                                 range_sw_to_high(power_level(st))]

  tran_range_sw_to_low(st                :  states) : 
      states                =    st WITH [ power_level := 
                                 range_sw_to_low(power_level(st))]

  tran_start_auto_control(st             :  states) : 
      states                =    st WITH [ rods := start_auto_control(rods(st))]

  tran_start_manual_control(st           :  states) : 
      states                =    st WITH [ rods := start_manual_control(rods(st))]

  tran_check_power_ind(st                :  states) : 
      states                =
          IF control(control_rod(rods(st))) = AUTOMATIC_CONTROL 

          AND (power_indic1(sensors(st)) > (6/5 * set_point(power_level(st)))
      OR power_indic2(sensors(st)) > (6/5 * set_point(power_level(st)))
      OR power_indic1(sensors(st)) < (4/5 * set_point(power_level(st)))
      OR power_indic2(sensors(st)) < (4/5 * set_point(power_level(st))))

          THEN tran_start_manual_control(st)
          ELSE st
          ENDIF

  tran_check_alarms(st                   :  states) : 
      states                =    check_alarms(st)

  scrammed(st                            :  states) : 
      bool                  =    IF scram_state(shim_rods(rods(st))) = SCRAMMED
                                 THEN true
                                 ELSE false
                                 ENDIF

  not_scrammed(st                        :  states) : 
      bool                  =    IF scram_state(shim_rods(rods(st))) = NOT_SCRAMMED
                                 THEN true
                                 ELSE false
                                 ENDIF

  not_header_up(st                       :  states) : 
      bool                  =    IF header(cooling_system(st)) = DOWN
                                 THEN true
                                 ELSE false
                                 ENDIF

  not_seated(st                          :  states) : 
      bool                  =    IF seated(r1_lamps(shim_rods(rods(st)))) /= ON
                                     OR seated(r2_lamps(shim_rods(rods(st)))) /= ON
                                     OR seated(r3_lamps(shim_rods(rods(st)))) /= ON
                                 THEN true
                                 ELSE false
                                 ENDIF

  not_mag_eng(st                         :  states) : 
      bool                  =    IF mag_eng(r1_lamps(shim_rods(rods(st)))) /= ON
                                     OR mag_eng(r2_lamps(shim_rods(rods(st)))) /= ON
                                     OR mag_eng(r3_lamps(shim_rods(rods(st)))) /= ON
                                 THEN true
                                 ELSE false
                                 ENDIF
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  not_seated_off_and_down_off(st         :  states) : 
      bool                  =    IF seated(r1_lamps(shim_rods(rods(st)))) = ON
                                     OR seated(r2_lamps(shim_rods(rods(st)))) = ON
                                     OR seated(r3_lamps(shim_rods(rods(st)))) = ON
                                     OR down(r1_lamps(shim_rods(rods(st)))) = ON
                                     OR down(r2_lamps(shim_rods(rods(st)))) = ON
                                     OR down(r3_lamps(shim_rods(rods(st)))) = ON
                                 THEN true
                                 ELSE false
                                 ENDIF

  check(st                               :  states) :
      states                =    check_sensors(check_alarms(check_scrams(st)))

  reset_and_raise(st                     :  states) :      
      states                =
check(tran_raise_header(check_sensors(check_alarms(check_scrams(tran_reset_scram(st))))))

  bleed_close_and_reset(st               :  states) :
      states                =
check(tran_reset_scram(check(tran_close_valve(check(tran_bleed_line(st))))))

  turn_pump_on(st                        :  states) :         
      states                =    check(tran_pump_on(check(bleed_close_and_reset(st))))

  test_step1(st                          :  states) : 
      states                =    reset_and_raise(st)

  test_step2(st                          :  states) : 
      states                =    check(turn_pump_on(test_step1(st)))

  test_step3(st                          :  states) : 
      states                =    check(tran_pump_off(check(tran_reset_scram(test_step2(st)))))

  test_step4(st                          :  states) : 
      states                =    check(tran_reset_scram(test_step3(st)))
    

  perform_tests(st                       :  states) : 
      states                =    IF operating(power_level(st)) = IDLE_UNCHECKED 
                                 OR operating(power_level(st)) = IDLE_CHECKED
                                 THEN IF not_scrammed(test_step1(st))
                                      THEN check(tran_scram(test_step1(st)))
                                          WITH [ power_level := problem(power_level(st))]
                                      ELSIF not_scrammed(test_step2(st))
                                      THEN check(tran_scram(test_step2(st)))
                                          WITH [ power_level := problem(power_level(st))]
                                      ELSIF not_scrammed(test_step3(st))
                                      THEN check(tran_scram(test_step3(st)))
                                          WITH [ power_level := problem(power_level(st))]
                                      ELSE check(test_step4(st))
                                          WITH [ power_level := checked(power_level(st))]
                                      ENDIF
                                 ELSE st
                                 ENDIF
 
  low_step1(st                           :  states) : 
      states                =
check(tran_all_drivers_to_lowest_position(check(tran_reset_scram(st))))

  low_step2(st                           :  states) : 
      states                =
check(tran_all_drivers_up_10(check(tran_all_magnets_on(low_step1(st)))))
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  startup_low(st                         :  states) : 
      states                =    IF not_seated(low_step1(st))
                                 THEN check(tran_scram(low_step1(st))) 
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_mag_eng(low_step1(st))
                                 THEN check(tran_scram(low_step1(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_seated_off_and_down_off(low_step2(st))
                                 THEN check(tran_scram(low_step2(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSE check(tran_start_auto_control(low_step2(st)))
                                     WITH [ power_level := low_power_on(power_level(st))]
                                 ENDIF

  high_step1(st                          :  states) : 
      states                =    reset_and_raise(st)

  high_step2(st                          :  states) : 
      states                =    bleed_close_and_reset(tran_pumps_on(high_step1(st)))

  high_step3(st                          :  states) : 
      states                =    check(tran_all_drivers_to_lowest_position(high_step2(st)))

  high_step4(st                          :  states) : 
      states                =
check(tran_all_drivers_up_10(check(tran_all_magnets_on(high_step3(st)))))
    
  startup_high(st                        :  states) : 
      states                =    IF not_scrammed(high_step1(st))
                                 THEN check(tran_scram(high_step1(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_header_up(high_step1(st))
                                 THEN check(tran_scram(high_step2(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_seated(high_step3(st))
                                 THEN check(tran_scram(high_step3(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_mag_eng(high_step3(st))
                                 THEN check(tran_scram(high_step3(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_seated_off_and_down_off(high_step4(st))
                                 THEN check(tran_scram(high_step4(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSE check(tran_start_auto_control(high_step4(st)))
                                     WITH [ power_level := high_power_on(power_level(st))]
                                 ENDIF

  startup(st                             :  states) : 
      states                =    IF operating(power_level(st)) = IDLE_CHECKED
                                     AND range_switch_2(power_level(st)) = LOW_MODE
                                 THEN startup_low(st 
                                     WITH [power_level := power_to_low(power_level(st))])
                                 ELSIF operating(power_level(st)) = IDLE_CHECKED
                                     AND range_switch_2(power_level(st)) = HIGH_MODE
                                 THEN startup_high(st 
                                     WITH [power_level := power_to_high(power_level(st))])
                                 ELSE st
                                 ENDIF

  check_new_state(st                     :  states) : 
      states                =    check(st)
        
  nextstate(st                           :  states, 
            event                        :  events) : 
      states                =    check_new_state(
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          CASES event OF
          raise_header      :    tran_raise_header(st),
          lower_header      :    tran_lower_header(st),
          pump_off          :    tran_pump_off(st),
          pump_on           :    tran_pump_on(st),
          bleed_line        :    tran_bleed_line(st),
          close_valve       :    tran_close_valve(st),
          open_truck_door   :    tran_truck_door_open(st),
          open_escape_hatch :    tran_escape_hatch_open(st),
          remove_key        :    tran_key_removed(st),
          scram             :    tran_scram(st),
          reset_scram       :    tran_reset_scram(st),
          sb_console_pressed:    tran_scram(st),
          sb_rdoor_pressed  :    tran_scram(st),
          sb_bdoor_pressed  :    tran_scram(st),
          evacuation1       :    tran_scram(st),
          evacuation2       :    tran_scram(st),
          evacuation3       :    tran_scram(st),
          evacuation4       :    tran_scram(st),
          clear_alarms      :    tran_clear_alarms(st),
          clear_scram_light :    tran_clear_scram_light(st),
          r1_magnet_on      :    tran_r1_magnet_on(st),
          r2_magnet_on      :    tran_r2_magnet_on(st),
          r3_magnet_on      :    tran_r3_magnet_on(st),
          range_sw_to_high  :    tran_range_sw_to_high(st),
          range_sw_to_low   :    tran_range_sw_to_high(st),
          start_auto_control:    tran_start_auto_control(st),
          start_man_control :    tran_start_manual_control(st),
          check_power_ind   :    tran_check_power_ind(st),
          check_alarms      :    tran_check_alarms(st),
          test              :    perform_tests(st),
          startup           :    startup(perform_tests(st))
          ENDCASES
  )

  END transition
verified_theorems           :    THEORY

  BEGIN

  IMPORTING transition

  lamps1                    :   shim_lamp_status =
      (# up   := OFF,
      down    := ON,
      seated  := ON,
      mag_eng := ON #);

  lamps2                    :   shim_lamp_status =
      (# up   := OFF,
      down    := ON,
      seated  := ON,
      mag_eng := ON #);

  lamps3                    :   shim_lamp_status =
      (# up   := OFF,
      down    := ON,
      seated  := ON,
      mag_eng := ON #);

  initial_cooling           :   cooling_status =

      (# pump            := OFF,
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      header             := DOWN,
      sec_pump           := OFF,
      line_valve         := CLOSED,
      line_pressure      := NORMAL
      #);

  initial_sensors           :   sensors_status =

      (# pool_temp       := 75,
      pool_level         := 240,
      pool_level_low     := false,
      power_indic1       := 0,
      power_indic2       := 0,
      water_cond         := 0,
      react_period       := 50,
      gamma_rad          := 0,
      air_mont           := 0,
      area_rad           := 0,
      core_temp          := 0,
      core_flow          := 0,
      auto_ctrl_lost     := false,
      her_door_open      := false,
      dr_door_open       := false,
      sec_pump_off       := true,
      thimble_too_hot    := false,
      key_removed        := false,
      bridge_rad         := 25,
      face_rad           := 1,
      t_door_open        := false,
      ehatch_open        := false,
      r1_up              := false,
      r1_down            := true,
      r1_seated          := true,
      r1_mag_eng         := true,
      r2_up              := false,
      r2_down            := true,
      r2_seated          := true,
      r2_mag_eng         := true,
      r3_up              := false,
      r3_down            := true,
      r3_seated          := true,
      r3_mag_eng         := true
      #);

  initial_alarms            :    alarms_status =

      (# core_temp_alarm := BOTH_OFF,
      control_rod_alarm  := BOTH_OFF,
      air_mont_alarm     := BOTH_OFF,
      water_cond_alarm   := BOTH_OFF,
      area_rad_alarm     := BOTH_OFF,
      her_door_alarm     := BOTH_OFF,
      sec_pump_alarm     := BOTH_OFF,
      gamma_rad_alarm    := BOTH_OFF,
      dr_door_alarm      := BOTH_OFF,
      thimble_temp_alarm := BOTH_OFF,
      scram_alarm        := BOTH_OFF
      #);

  initial_shim_rods         :    shim_rods_status =

      (# scram_state := NOT_SCRAMMED,
      r1_driver      := 0,
      r1_lamps       := lamps1,
      r1_magnet      := MAG_OFF,
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      r2_driver      := 0,
      r2_lamps       := lamps2,
      r2_magnet      := MAG_OFF,
      r3_driver      := 0,
      r3_lamps       := lamps3,
      r3_magnet      := MAG_OFF
      #);

  initial_control_rod        :    control_rod_status =
      (# control     := MANUAL_CONTROL,
         position    := 0
      #);

  initial_high_power_level   :    power_level_status =

      (# sp_limit        := 2500,
      set_point          := 2230,
      operating          := IDLE_UNCHECKED,
      power_level        := HIGH_POWER,
      range_switch_2     := HIGH_MODE
      #);

  initial_power_level       :    power_level_status =

      (# sp_limit        := 250,
      set_point          := 230,
      operating          := IDLE_UNCHECKED,
      power_level        := LOW_POWER,
      range_switch_2     := LOW_MODE
      #);

  st0                       :    states = 

      (#cooling_system           :=  initial_cooling,
      sensors                    :=  initial_sensors,
      alarms                     :=  initial_alarms,
      rods                       :=  (# shim_rods       := initial_shim_rods,
                                     control_rod        := initial_control_rod
                                     #), 
      power_level                :=  initial_power_level
      #);

  st0prime                  :    states = 

      (#cooling_system           :=  initial_cooling,
      sensors                    :=  initial_sensors,
      alarms                     :=  initial_alarms,
      rods                       :=  (# shim_rods       := initial_shim_rods,
                                     control_rod        := initial_control_rod
                                     #), 
      power_level                :=  initial_high_power_level
      #);

  is_initial(st : states): bool = st = perform_tests(st)

  reachable_in(n : posnat, st : states): RECURSIVE bool =
                        IF n =0  THEN st = st0
                        ELSE 
                        EXISTS (pst : states, event : events) : st = nextstate(pst,event)
                        AND reachable_in(n-1, pst)
                        ENDIF MEASURE n

  is_reachable(st : states): bool = EXISTS (n : posnat) : reachable_in(n,st)
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  startup_on_n(n : posnat, st : states):  RECURSIVE bool =
                        IF n = 1 
                        THEN EXISTS (pst : states) : is_reachable(pst)
                           AND st = nextstate(pst, startup)
                           AND operating(power_level(st)) /= OPERATING
                        ELSE EXISTS (pst : states, event : events) : st = nextstate(pst,event)

AND startup_on_n(n-1, pst)
                        AND event /= startup

ENDIF MEASURE n

  startup_encountered(st : states): bool = 
                        is_reachable(st) 
                        AND EXISTS (n : posnat) : startup_on_n(n, st)
                        AND FORALL (p : posnat) : p < n AND NOT(startup_on_n(p, st))

  no_startup_on_n(n : posnat, st : states): RECURSIVE bool =
                        IF n = 1 
                        THEN EXISTS (event : events) : st = nextstate(st0,event)
                        AND event /= startup
                        ELSE EXISTS (pst : states, event : events) : st = nextstate(pst,event)

AND no_startup_on_n(n-1, pst)
AND event /= startup
ENDIF MEASURE n

  startup_not_encountered(st : states): bool = 
                        is_reachable(st) 
                        AND FORALL (n : posnat) : no_startup_on_n(n, st)

%--------------------------VERIFIED THEOREMS-------------------------------------

  case_analysis: LEMMA FORALL (event : events) : 
      event = scram 
      OR event = raise_header 
      OR event = lower_header 
      OR event = pump_off 
      OR event = pump_on 
      OR event = bleed_line 
      OR event = close_valve 
      OR event = reset_scram 
      OR event = open_truck_door 
      OR event = open_escape_hatch 
      OR event = remove_key 
      OR event = sb_console_pressed 
      OR event = sb_rdoor_pressed 
      OR event = sb_bdoor_pressed 
      OR event = evacuation1 
      OR event = evacuation2 
      OR event = evacuation3 
      OR event = evacuation4 
      OR event = clear_alarms 
      OR event = clear_scram_light 
      OR event = r1_magnet_on 
      OR event = r2_magnet_on 
      OR event = r3_magnet_on 
      OR event = range_sw_to_high 
      OR event = range_sw_to_low 
      OR event = start_auto_control 
      OR event = start_man_control 
      OR event = check_power_ind 
      OR event = check_alarms 
      OR event = test 
      OR event = startup

  checking_scrammed:   LEMMA FORALL (st: states) : scrammed(st) IMPLIES scrammed(check(st))
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  basic_lemma1:   LEMMA not_scrammed(test_step1(st0)) = false

  basic_lemma2:   LEMMA not_scrammed(test_step2(st0)) = false

  basic_lemma3:   LEMMA not_scrammed(test_step3(st0)) = false

  basic_last_lemma:   LEMMA FORALL (st: states) : st = nextstate(st0, test)
                      IMPLIES operating(power_level(st)) = IDLE_CHECKED

  check_alarms_lemma: LEMMA FORALL (st: states, pst: states) : is_reachable(pst)
                      AND operating(power_level(pst)) /= OPERATING
                      AND st = nextstate(pst, check_alarms)
                      IMPLIES operating(power_level(st)) /= OPERATING

  testing_lemma: LEMMA FORALL (st : states, pst : states) : is_reachable(pst)
                 AND operating(power_level(pst)) /= OPERATING
                 AND st = nextstate(pst, test)
                 IMPLIES operating(power_level(st)) /= OPERATING

  startup1_lemma: LEMMA FORALL (st : states, pst : states) : is_reachable(pst)
                  AND operating(power_level(pst)) /= OPERATING
                  AND st = nextstate(pst, startup)
                  IMPLIES operating(power_level(st)) = OPERATING

      induction_step: 
          LEMMA FORALL (st : states, pst : states, event : events) : is_reachable(pst)
          AND operating(power_level(pst)) /= OPERATING
          AND st = nextstate(pst, event)
          AND event /= startup
          IMPLIES operating(power_level(st)) /= OPERATING

      induction_step1: 
          LEMMA FORALL (st : states) : is_reachable(st)
          AND operating(power_level(st)) = OPERATING
          IMPLIES startup_encountered(st)

          if_high_testing_high: 
              LEMMA FORALL (pst : states) : is_reachable(pst)
              AND range_switch_2(power_level(pst)) = HIGH_MODE
              IMPLIES range_switch_2(power_level(perform_tests(pst))) = HIGH_MODE

          if_next_high: 
              LEMMA FORALL (st : states, pst : states) : is_reachable(pst)
              AND st = nextstate(pst, startup)
              AND power_level(power_level(st)) = HIGH_POWER
              IMPLIES range_switch_2(power_level(pst)) = HIGH_MODE

      if_startup_header_up_pump_on: 
          LEMMA FORALL (st : states, pst : states) : is_reachable(pst)
          AND operating(power_level(pst)) /= OPERATING
          AND st = nextstate(pst, startup)
          AND operating(power_level(st)) = OPERATING
          AND power_level(power_level(st)) = HIGH_POWER
          IMPLIES pump(cooling_system(st)) = ON
          AND header(cooling_system(st)) = UP

      if_header_falls_scram: 
          LEMMA FORALL (st : states, pst : states, event : events) : is_reachable(pst)
          AND operating(power_level(pst)) = OPERATING
          AND power_level(power_level(pst)) = HIGH_POWER
          AND st = nextstate(pst, event)
          AND header(cooling_system(st)) = DOWN
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          IMPLIES operating(power_level(st)) /= OPERATING
                 
      if_pump_off_scram: 
          LEMMA FORALL (st : states, pst : states, event : events) : is_reachable(pst)
          AND pump(cooling_system(pst)) = ON
          AND operating(power_level(pst)) = OPERATING
          AND power_level(power_level(pst)) = HIGH_POWER
          AND st = nextstate(pst, event)
          AND pump(cooling_system(st)) = OFF
          IMPLIES operating(power_level(st)) /= OPERATING
                 
      startup_lemma: 
          LEMMA FORALL (st : states) : st = nextstate(st0, startup)
          IMPLIES operating(power_level(st)) = OPERATING

      if_high_was_high:
          LEMMA FORALL (st : states, pst : states, event : events) : st = nextstate(pst, event)
          AND operating(power_level(st)) = OPERATING
          AND power_level(power_level(st)) = HIGH_POWER
          AND event /= startup
          IMPLIES power_level(power_level(pst)) = HIGH_POWER

      if_high_was_high1:
          LEMMA FORALL (st : states, pst : states) : st = nextstate(pst, startup)
          AND operating(power_level(st)) = OPERATING
          AND power_level(power_level(st)) = HIGH_POWER
          AND operating(power_level(pst)) = OPERATING
          IMPLIES power_level(power_level(pst)) = HIGH_POWER

  header_up_pump_on_in_high_power : 
      LEMMA FORALL (n : posnat, st : states, pst : states, event : events) : startup_on_n(n,
st)
      AND is_reachable(pst)
      AND st = nextstate(pst, event)
      AND operating(power_level(st)) = OPERATING
      AND power_level(power_level(st)) = HIGH_POWER 
      IMPLIES header(cooling_system(st)) = UP 
      AND pump(cooling_system(st)) = ON
 

%*******************************THEOREMS*************************************

  running: LEMMA IF operating(power_level(startup(perform_tests(st0)))) /= IDLE_UNCHECKED  
           THEN operating(power_level(startup(perform_tests(st0)))) = OPERATING
           ELSE scram_state(shim_rods(rods(startup(perform_tests(st0))))) = SCRAMMED 
           ENDIF

  power_up: LEMMA IF operating(power_level(startup(perform_tests(st0)))) /= IDLE_UNCHECKED  
            THEN (operating(power_level(startup(perform_tests(st0)))) = OPERATING
            AND power_level(power_level(startup(perform_tests(st0)))) = LOW_POWER)
            ELSE scram_state(shim_rods(rods(startup(perform_tests(st0))))) = SCRAMMED 
            ENDIF

%  high_power: LEMMA reachable(st)

  test_prime: LEMMA FORALL (st : states) : is_reachable(st)
              AND operating(power_level(st)) = OPERATING 
              IMPLIES NOT(startup_not_encountered(st))
 

  basic_lemma:   LEMMA not_scrammed(test_step1(st0)) IFF FALSE
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  basic1_lemma:   LEMMA not_scrammed(test_step2(st0)) IFF FALSE

  test2: LEMMA FORALL (st : states, event : events) : st = nextstate(st0, event)
               AND operating(power_level(st)) = OPERATING 

       AND power_level(power_level(st)) = HIGH_POWER 
               IMPLIES event = startup               

  END verified_theorem
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Appendix B
Statechart Specification
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1  Reactor

1.1  Power Level



Department of Computer Science University of Virginia

Statechart Specification B-III

1.1.1  Testing
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1.1.2  Power to Low
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Statechart Specification B-V

1.1.3  Power to High
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2.2a  Alarms: Display Alarms
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Statechart Specification B-VII

2.2a.1  Core Temperature Alarm

2.2a.2  Control Rod Alarm
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2.2a.3  Air Monitor Alarm

2.2a.4  Water Conductivity Alarm
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Statechart Specification B-IX

2.2a.5  Area Radiation Alarm

2.2a.6  Heat Exchange Room Door Alarm
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2.2a.7  Secondary Pump Alarm

2.2a.8  Gamma Radiation Alarm
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Statechart Specification B-XI

2.2a.9  Demineralizer Room Door Alarm

2.2a.10  Thimble Temperature Alarm
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3.2b  Alarms: Check Alarm Conditions

3.2b.1  Area Radiation Alarm Signal
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Statechart Specification B-XIII

3.2b.2  Gamma Radiation Alarm Signal

3.2b.3  Heat Exchanger Room Door Alarm Signal
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3.2b.4  Demineralizer Room Door Alarm Signal

3.2b.5  Air Monitor Alarm Signal
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Statechart Specification B-XV

3.2b.6  Core Temperature Alarm Signal

3.2b.7  Water Conductivity Alarm Signal
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3.2b.8  Thimble Temperature Alarm Signal

3.2b.9  Secondary Pump Alarm Signal
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Statechart Specification B-XVII

3.3  Cooling System
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4.4a  Rods: Control Rod

5.4b  Rods: Shim Rods
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Statechart Specification B-XIX

5.4b.1  Check Scram Conditions
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5.4b.2  Rod1 Lamps
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5.4b.3  Rod2 Lamps
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5.4b.4  Rod3 Lamps
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Appendix C
Z Specification

1  Introduction

This document describes the University of Virginia Nuclear Reactor in terms of

reactor system, scram conditions, alarms and start-up procedures. For each informal

description, there is a corresponding Z formal specification.

The informal specification is taken from a pre-specification document that was

elaborated previously. In the original documentation, there are three different limits for

monitored variables describing reactor operation. In this document, only the actual limits

used in the scram conditions and alarms are used.

2  Reactor System Specification

The reactor system specification will consist of only of information that is neces-

sary to describe the reactor operation, without any regard to scram conditions or alarms.

The following signals are necessary for the description of several parts of the system:

OperationStatus == {Idle, Operating}
ScramStatus == {Scrammed, NotScrammed}
PowerSelector == {LowPower, HighPower}
Switch == {On, Off}
VerticalPosition == {Up, Down}
OpenClose == {Open, Close}
Button == {Pressed, NotPressed}
Signal == {High, Low}
Valve == {CompressedAirToLine, LineClosed, LineToAtmosphere}

Using these signals, the schema describing the shim rods is:



C-II Z Specification

Department of Computer Science University of Virginia

The schema describing the control rod is:

The schema will describing pumps in the system is:

The schema describing the signals provided by the different sensors in the system is:

Position : Œ
MagCurrent : Œ
MinHoldingCurrent : Œ
Engaged : Switch
MinPosition : Œ
MaxPosition : Œ
Reactivity : PositionâŒ

ShimRod

MinPosition º Position 
Position º MaxPosition
¡ a : Œ | (MinPosition º a º MaxPosition) @ Reactivity(a) æ 0

Position : Œ
AutoControl : Switch
MinPosition : Œ
MaxPosition : Œ
Reactivity : Position âŒ

ControlRod

MinPosition º Position
Position º MaxPosition
¡ a : Œ | (MinPosition º a º MaxPosition) @ Reactivity(a)æ0

PumpSwitch : Switch
Voltage : Œ

Pump

Voltage > 0 Æ PumpSwitch = On
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With the previous schemas, the schema describing the reactor system is:

PowerIndic1? : Œ
PowerIndic2? : Œ
SPLimitLow? : Œ
SPLHigh? : Œ
PoolLevelHigher19ft3in? : HighLow
PoolLevelMonitor? : Œ
BridgeRad? : Œ
FaceRadiation? : Œ
AirLinePressureAbove2psi? :  HiLow
TruckDoor? : OpenClose
EscapeHatch? : OpenClose
SwitchAtRoomDoor? : Button
SwitchAtBackDoor? : Button
EvacuationAlarm1? : Switch
EvacuationAlarm2? : Switch
EvacuationAlarm3? : Switch
EvacuationAlarm4? : Switch
PoolTemperature? : Œ
ReactorPeriod? : Œ
Flow? : Œ
KeySwitch? : Switch
ManualScram? : Button
ResetButton? : Button
ArgonRadiationIndicator? : Signal
CoreGammaAlarm? : Signal
SpareSignal? : Signal
AirMonitorSignal? : Signal
HeatExchangerDoor? : Door
DemireralizerRoomDoor? : Door
CoreDiffTempIndic? : Œ
DiffTempAlarmLevel? : Œ
WaterCondIndic? : Œ
WaterCondAlarmLevel? : Œ
ThimbleTemperature? : Œ
ThimbleTempAlarmLimit? : Œ
HeaderDown? : Signal
ShimRod1Seated? : Signal
ShimRod2Seated? : Signal
ShimRod3Seated? : Signal
TouchingDriver1? : Signal
TouchingDriver2? : Signal
TouchingDriver3? : Signal

Inputs
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The schema that sets the initial conditions on the reactor is:

3  Scram Condition Description

Power Range #1 or Power Range #2 Exceeded

Informal Description:

• There are two different channels for measuring power level.

• The reactor is scrammed if the power level goes above 250 kW in natural convection
mode or 2.5 MW in forced convection mode, in either of the channels.

Z Formal Specification:

It is necessary to represent the two different measures given by the two different

ReactorStatus : OperationStatus
Scram : ScramStatus
PowerSelection : PowerSelector
HeaderPosition : VerticalPosition
ShimRod1 : ShimRod
ShimRod2 : ShimRod
ShimRod3 : ShimRod
ShimRods = {ShimRod1, ShimRod2, ShimRod3}
RegulatingRod : ControlRod
PrimaryPump : Pump
SecondaryPump : Pump
Pumps = {PrimaryPump, SecondaryPump}
CoolingTower : Switch
HeaderValve : Valve

Reactor

Scram = Scrammed Æ ReactorStatus = Idle

ƒReactor
ReactorInit

ReactorStatus’ = Idle
Scram’ = NotScrammed
PowerSelection’ = LowPower
HeaderPosition’ = Down
CoolingTower’ = Off
HeaderValve’ = LineToAtmosphere
¡a | a % Rods @ a.Position’ = a.MinPosition
¡a | a % ShimRod @ a.TouchingDrive’ = False
¡a | a % ShimRod @ a.MagCurrent’ = 0
¡a | a %Pumps @ a.PumpSwitch’ = Off
¡a | a %Pumps @ a.Voltage’ = 0
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channels. In this specification, the values from the different channels will be represented

by the natural numbers PowerIndic1? and PowerIndic2?. The same will hold true for the scram

limits SPLimitLow and SPLimitHigh? of the power level. All sensor information is present in

the schema Inputs.

Given these representations, the schema for the scram caused by exceeding the

power range limit is:

Pool Water Level Low

Informal Description

• There are two different sensors: electrical conductivity and mechanical switch.

• The pool level electrical conductivity sensor is able to measure intermediate values.

• The pool level mechanical switch sensor gives a boolean result: the water level is either
above 19'3 " or below 19'3''.

• The reactor is scrammed if any of the sensors report that the water level above the core
has dropped below 19'3''.

Z Formal Specification

To represent this scram condition, it is necessary to represent the different sensors.

The electrical conductivity sensor can be represented by a natural number PoolLevelMoni-

tor?, representing the number of inches of water above the core. The mechanical switch

provides only a Hi or Low Boolean value PoolLevelHigher19ft3in?. All this sensor information

is in the Inputs schema.Given this representations, the schema for this scram condition is:

ƒReactor
Inputs

Scram = NotScrammed 
(PowerIndic1? > SPLimitLow? ÷ PowerSelection = LowPower) Æ Scram’ =Scrammed 
(PowerIndic2? > SPLimitLow? ÷ PowerSelection = LowPower) Æ Scram’ =Scrammed 
(PowerIndic1? > SPLimitHigh? ÷ PowerSelection = HighPower) Æ Scram’ =Scrammed 
(PowerIndic2? > SPLimitHigh? ÷ PowerSelection = HighPower) Æ Scram’ =Scrammed

CheckPowerRange
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Bridge Radiation Level High

Informal Description

• The sensor is an ion chamber placed above the pool.

• The reactor is scrammed if the radiation level on the ground floor goes above 2 mR/h.

Z Formal Specification

The bridge radiation level can be represented by BridgeRad?, a natural number

describing the radiation level at the bridge when measured in mR/h. This sensor informa-

tion is described by the Inputs schema. The schema corresponding to this scram condition

is:

Face Radiation Level High

Informal Description

• The sensor is an ion chamber placed at ground level.

• The reactor is scrammed if the radiation level on the ground floor goes above 2 mR/h.

Z Formal Specification

The face radiation level can be described by FaceRadiation?, a natural number

describing the radiation level at the core face when measured in mR/h. This sensor infor-

mation is described by the Inputs schema. The schema corresponding to this scram condi-

ƒReactor
Inputs

Scram = NotScrammed
PoolLevelHigher19ft3in? = Low Æ Status’ = Scrammed
PoolLevelMonitor? < 231 Æ Status’ = Scrammed

CheckPoolWaterLevel

ƒReactor
Inputs

Scram = NotScrammed
BridgeRad? > 30 Æ Scram’ = Scrammed

CheckBridgeRadiationLevel
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tion is:

Primary Pump Switch Turned from Off to On

Informal Description

• There is a contact sensor is on the switch.

• When the switch goes from off to on, the reactor is scrammed.

• The reactor is scrammed by the action of turning the pump on.

Z Formal Specification

The schema representing this scram condition is:

Primary Pump Power Turned from On to Off

Informal Description

• The sensor measures the voltage to the motor.

• The reactor is scrammed when the power goes from on to off.

• This pump should only be turned off with the reactor completely stopped.

Z Formal Specification

The schema representing this scram condition is:

ƒReactor
Inputs

Scram = NotScrammed
FaceRadiation? > 2 Æ Scram’ = Scrammed

CheckFaceRadiation

ƒReactor

Scram = NotScrammed
PrimaryPump.PumpSwitch = Off 
PrimaryPump.PumpSwitch’ = On Æ Scram’ = Scrammed

CheckSwitchPrimaryPumpTurnsOn
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Pump On with Header Down

Informal Description

• The reactor is scrammed if the flow header is down and the primary pump is turned on.

Formal Z Specification

The schema representing this scram condition is:

Pressure in the Air Line to the Header

Informal Description

• The reactor is scrammed if, during forced convection mode operation, the pressure in
the air line that is used to raise the flow header goes above 2 psi.

• The sensor breaks a circuit if the pressure goes above 2 psi.

• This scram is used to make sure that the head is held in position only by the water flow
caused by the primary pump.

• If the primary pump stops and the reactor has not been scrammed by the primary pump
off scram, the water flow will reduce and the header will fall due to gravity, causing
this sensor to scram the reactor.

Z Formal Specification

The pressure in the air line to the header is sensed by a device that is only able to

inform if the pressure is above 2 psi or below 2 psi. Therefore, the sensor can be modeled

by a signal that can either be Hi or Low. The signal corresponding to this sensor,

AirLinePressureAbove2psi?, is described in the Inputs schema. Using this modeling, the schema

ƒReactor

Scram = NotScrammed
PrimaryPump.Voltage > 0
PrimaryPump.Voltage’ = 0 Æ Scram’ = Scrammed

CheckPrimaryPumpPowerTurnsOff

ƒReactor

Scram = NotScrammed
PrimaryPump.PumpSwitch = On 
HeaderPosition = Down Æ Scram’ = Scrammed

CheckPumpAndHeader
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representing this scram condition is:

Truck Door Open

Informal Description

• The sensor is a mechanical switch.

• The reactor is scrammed if this door is opened.

• The door gives access to the reactor room.

• The door is used to remove old fuel from the reactor pool.

Z Formal Specification

The schema representing this scram condition is:

Escape Hatch Open

Informal Description

• The sensor is a mechanical switch.

• If the escape hatch is open, the reactor is scrammed.

Z Formal Specification

The Door type defined previously will be used to describe the EscapeHatch?, defined

in the Inputs schema. The schema describing this scram condition is:

ƒReactor
Inputs
Scram = NotScrammed
AirLinePressureAbove2psi? = Hi Æ Scram’ = Scrammed

CheckPressureInAirLineToHeader

ƒReactor
Inputs

Scram = NotScrammed
TruckDoor? = Open Æ Scram’ = Scrammed

CheckTruckDoor
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Manual Switch at Room Door Pressed

Informal Description

• The sensor is a mechanical switch.

• The reactor is scrammed if this switch is pressed.

Z Formal Specification

The schema describing this scram condition is:

Manual Switch at Back Door Pressed

Informal Description

• The sensor is a mechanical switch.

• The reactor is scrammed if this switch is pressed.

Z Formal Specification

Using the Button construction defined previously, the schema describing this scram

condition is:

ƒReactor
Inputs

Scram = NotScrammed 
EscapeHatch? = Open Æ Scram’ = Scrammed

CheckEscapeHatch

ƒReactor
Inputs

Scram = NotScrammed 
SwitchatRoomDoor? = Pressed Æ Scram’ = Scrammed

CheckManualSwitchAtRoomDoor

ƒReactor
Inputs

Scram = NotScrammed 
SwitchatBackDoor = Pressed Æ Scram’ = Scrammed

CheckManualSwitchAtBackDoor
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Evacuation Alarm On

Informal Description

• There are four mechanical switches and alarms.

• The reactor is scrammed if any of this switches is pressed.

Z Formal Specification

To represent this scram condition, all the alarms and mechanical switches will be

treated as being a single type of entity, a EvacuationAlarm that can be either On or Off.

Using this abstraction, the schema describing this scram condition is:

Pool Water Temperature Too High

Informal Description

• The reactor is scrammed if temperature goes above 108 °F.

• The goal is to keep the water at 75 °F.

• Pool temperature rarely exceeds 95 °F. 

Z Formal Specification

To represent this scram condition, the temperature wil l be represented by a natural

number PoolTemperature?, corresponding to the pool water temperature in degrees Faren-

heits. This sensor signal is described in the Inputs schema. Using this representation, the

schema describing this scram condition is:

ƒReactor
Inputs

Scram = NotScrammed
EvacuationAlarm1? = On Æ Scram’= Scrammed
EvacuationAlarm2? = On Æ Scram’= Scrammed
EvacuationAlarm3? = On Æ Scram’= Scrammed
EvacuationAlarm4? = On Æ Scram’= Scrammed

CheckEvacuationAlarm
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Reactor Period Too Short

Informal Description

• The reactor is scrammed if the reactor period drops below 3.3 seconds.

Z Formal Specification

The period is represented in tenth of seconds by the natural value ReactorPeriod?.

This signal is described in the Inputs schema. The schema describing his scram condition

is:

Water Flow Through the Core too Low

Informal Description

• The sensor is composed of one orifice and associated pressure lines that measure the
differential pressure.

• The reactor is scrammed if the flow across the core drops bellow 960 gal/min, with the
reactor in the forced convection mode.

Z Formal Specification

The water flow through the core can be represented by the real number Flow? that

reflects the number of gallons per minute that is passing through the core. This sensor sig-

nal is described in the Inputs schema. Using this representation for the water flow, the

schema describing this scram condition is:

ƒReactor
Inputs

Scram = NotScrammed
PoolTemperature?> 108 Æ Scram’ = Scrammed

CheckPoolTemperature

ƒReactor
Inputs

Scram = NotScrammed 
ReactorPeriod? < 33 Æ Scram’ = Scrammed

CheckReactorPeriod
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Key Switch Off

Informal Description

• There is a lock in the panel.

• The lock is a mechanical switch,

• The reactor is scrammed if this key is moved to the Off position.

• The reactor can' t be started without this key on the On position.

Z Formal Specification

The schema describing this scram condition is:

Manual Scram Button Pressed

Informal Description

• The sensor for this scram is a hard contact mechanical switch.

• This is an emergency button to scram the reactor located on the operator console.

• The manual scram button does not comes back after pressed.

• The operator has a reset button to restore this button to the previous position.

• The reactor is scrammed if this button is pressed.

Z Formal Specification

The schema describing this scram condition is:

ƒReactor
Inputs

Scram = NotScrammed 
Flow? < 960 Æ Scram’ = Scrammed

CheckWaterFlowThroughTheCore

ƒReactor
Inputs

Scram = NotScrammed 
KeySwitch? = Off Æ Scram’ = Scrammed

CheckKeySwitch



C-XIV Z Specification

Department of Computer Science University of Virginia

Reactor Already Scrammed

Informal Description

• If the reactor has been scrammed, it stays scrammed.

Z Formal Specification

All of the previous schemas have as a pre-condition that the status of the reactor is

NotScrammed. The schema defining what should happen if the reactor is on the Scrammed

condition is:

Global Scram Condition

The global scram condition is simply composed by stating that the reactor is

scrammed if any of the individual scram conditions is met. The schema describing the glo-

bal scram condition is:

ƒReactor
Inputs

Scram = NotScrammed 
ManualScram? = Pressed Æ Scram’ = Scrammed

CheckManualScram

ƒReactor
ƒInputs

((Scram = Scrammed) ÷(ResetButton? = NotPressed)) Æ Scram’ = Scrammed
((Scram = NotScrammed) ˆ(ResetButton? = Pressed)) ¨ Scram’ = NotScrammed

CheckReactorAlreadyScrammed
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4  Alarms

Informal Description

• There are several alarm types.

• Each alarm is indicated individually.

• Sensor signals used by the alarm system are described in the Inputs schema.

Z Formal Specification

The schema describing the different alarm types is:

CheckPowerRange
CheckPoolWaterLevel
CheckBridgeRadiationLevel
CheckFaceRadiation
CheckSwitchPrimaryPumpTurnsOn
CheckPrimaryPumpPowerTurnsOff
CheckPumpAndHeader
CheckPressureInAirLineToHeader
CheckTruckDoor
CheckEscapeHatch
CheckManualSwitchAtRoomDoor
CheckManualSwitchAtBackDoor
CheckEvacuationAlarm
CheckPoolTemperature
CheckReactorPeriod
CheckWaterFlowThroughTheCore
CheckKeySwitch
CheckManualScram
CheckReactorAlreadyScrammed

GlobalScramCondition

Alarms == {Scram, ServoLost, ArgonHi, CoreGamma,
Spare, AirMonitor, HeatXDoor, DeminDoor,
CoreDiffTemp, ConductHigh, SecondaryPump,
ThimbleTemperature}

AlarmStates: {Raised, Lowered}

AlarmSystem
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Scram Alarm

Informal Description

• A scram alarm is generated if the reactor is in a scram condition.

Z Formal Specification

The schema describing this alarm is:

Servo Control Lost

Informal Description

• An alarm is generated if automatic control over the control rod is lost.

Z Formal Specification

The schema describing this alarm is:

Argon Radiation High

Informal Description

• An alarm is generated if argon radiation levels are high.

Z Formal Specification

The following schema describes this alarm:

ƒAlarmSystem
ƒReactor

Scram = Scrammed ¨AlarmConditions’(Scram)=Raised

ScramAlarm

ƒAlarmSystem
ƒReactor

if Reactor.RegulatingRod.AutoControl = Hi ÷ Reactor.RegulatingRod.AutoControl’ = Low
then AlarmConditions’(ServoLost) = Raised
else AlarmConditions’(ServoLost) = Lowered

ServoLostAlarm
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Core Gamma Radiation High

Informal Description

• An alarm is generated if core gamma radiation is high.

Z Formal Specification

The schema describing this alarm is:

Spare Alarm (Not used)

Informal Description

• An alarm is generated if there is a high signal on a spare indicator.

Z Formal Specification

The schema describing this alarm is:

ƒAlarmSystem
Inputs

if ArgonRadiationIndicator? = Hi 
then AlarmConditions’(ArgonHi) = Raised
else AlarmConditions’(ArgonHi) = Lowered

ArgonRadiationHighAlarm

ƒAlarmSystem
Inputs

if CoreGammaAlarm? = Hi
then AlarmConditions’(CoreGamma)=Raised
else AlarmConditions’(CoreGamma)=Lowered

CoreGammaAlarm

ƒAlarmSystem
Inputs

if SpareSignal? = High
then AlarmConditions’(Spare)=Raised
else AlarmConditions’(Spare)=Lowered

SpareAlarm
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Air Monitor Indicates High Level

Informal Description

• An alarm is generated if the air monitor indicates a high level of radiation.

Z Formal Specification

The schema describing this alarm is:

Heat Exchanger Door Open

Informal Description

• An alarm is generated if the heat exchanger door is open.

Z Formal Specification

The schema describing this alarm is:

Demineralizer Room Door Open

Informal Description

• An alarm is generated if the demineralizer room door is open.

Z Formal Specification

The schema describing this alarm is:

ƒAlarmSystem
ƒReactor
Inputs

if AirMonitorSignal? = High
then AlarmConditions’(AirMonitor)=Raised
else AlarmConditions’(AirMonitor)=Lowered

AirMonitorAlarm

ƒAlarmSystem
Inputs

if HeatExchangerDoor? = Open
then AlarmConditions’(HeatXDoor)=Raised
else AlarmConditions’(HeatXDoor)=Lowered

HeatExchangerAlarm
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Core Differential Temperature Too High

Informal Description

• An alarm is generated if the core differential temperature is too high.

Z Formal Specification

The schema describing this alarm is:

High Water Conductivity

Informal Description

• An alarm is generated if the water conductivity is too high.

Z Formal Specification

The schema describing this alarm is:

ƒAlarmSystem
Inputs

if DemireralizerRoomDoor? = Open
then AlarmConditions’(DeminDoor)=Raised
else AlarmConditions’(DeminDoor)=Lowered

DemineralizerRoomAlarm

ƒAlarmSystem
Inputs

if CoreDiffTempIndic?æDiffTempAlarmLevel?
then AlarmConditions’(CoreDiffTemp)=Raised
else AlarmConditions’(CoreDiffTemp)=Lowered

CoreDiffTempAlarm

ƒAlarmSystem
Inputs

if WaterCondIndic?º WaterCondAlarmLevel?
then AlarmConditions’(ConductHigh)=Raised
else AlarmConditions’(ConductHigh)=Lowered

ConductHighAlarm
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Secondary Pump Off With Reactor In High Power Mode

Informal Description

• An alarm is generated if the secondary pump is off and the reactor is in high power
mode.

Z Formal Specification

The schema describing this alarm is:

Hot Thimble Temperature

Informal Description

• An alarm is generated if the thimble temperature is too high.

Informal Description

The schema describing this alarm is:

Global Alarm Conditions

Informal Description

• All alarm checks are performed concurrently.

Z Formal Specification

The schema describing the global alarm conditions is:

ƒAlarmSystem
Reactor

if (SecondaryPump.PumpSwitch = Off ÷PowerSelection = HighPower)
then AlarmConditions’(SecondaryPump)=Raised
else AlarmConditions’(SecondaryPump)=Lowered

SecondaryPumpAlarm

ƒAlarmSystem
Inputs

if ThimbleTemperature?æThimbleTempAlarmLimit?
then AlarmConditions’(ThimbleTemperature)=Raised
else AlarmConditions’(ThimbleTemperature)=Lowered

ThimbleTemperatureAlarm
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The schema used to set initial conditions for the alarms is:

5  Startup

Informal Description

• There are two different processes for start-up.

• If the reactor is to operate in high-power mode, the header has to be up and the primary
pump is to be on.

• If the reactor is to operate in low-power mode, there is no need for the header to be up
and the primary pump can be off.

Z Formal Specification

Progress through the start-up process will be indicated by step numbers. A step

number of -1 will indicate that the start-up procedure is to be stopped. The schema that

represents the step number is:

The schema that sets the initial value for the step number is:

AlarmSystem
ScramAlarm
ServoLostAlarm
ArgonRadiationHighAlarm
CoreGammaAlarm
SpareAlarm
AirMonitorAlarm
HeatExchangerAlarm
DemineralizerRoomAlarm
CoreDiffTempAlarm
ConductHighAlarm
SecondaryPumpAlarm
ThimbleTemperatureAlarm

Alarms

AlarmSystem’

¡a : Alarms | AlarmConditions’(a) =  Lowered

InitAlarmSystem’

StepNum : …
Step
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The schema that indicates the output signals used to call the operator and to start

the control algorithm is:

The schema that sets the initial value for the outputs is:

Step 1

Informal Description

• Reset reactor scram.

Z Formal Specification

The schema describing this step is:

Step 2

Informal Description

• If the reactor is to operate in high-power mode, admit air to header until it raises to the

ƒStep

StepNum’ = 0

StepInit

CallOperator! : Signal
StartControlAlgorithm! : Signal

Outputs

ƒOutputs

CallOperator!’ = Low
StartControlAlgorithm!’ = Low

OutputsInit

ƒReactor
ƒScram
ƒStep

StepNum = 0
Scram’ = NotScrammed
StepNum’ = 1

StartUpStep1
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grid plate.

• If the reactor is to operate in low-power mode, go to step 9.

Z Formal Specification

The schema describing this step is:

Step 3

Informal Description

• Verify that a scram was generated; if not, stop the procedure and call the senior opera-
tor.

Z Formal Specification

An output signal CallOperator! is used to call the operator. Using this signal, the

schema describing this step is:

Step 4

Informal Description

• Start the primary and secondary pumps.

ƒReactor
ƒScram
ƒStep

StepNum = 1
if PowerSelection= HighPower

then HeaderValve’= CompressedAirToLine ÷ StepNum’ = 2
else StepNum’ = 8

StartUpStep2

ƒReactor
ƒScram
ƒStep
ƒOutputs

StepNum = 2
If Scram = NotScrammed

then CallOperator!’ = High ÷ StepNum’ = -1
else Scram’ = NotScrammed ÷ StepNum’ = 3

StartUpStep3
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Z Formal Specification

The schema describing this step is:

Step 5

Informal Description

• Turn the line to the header valve so that the line is conected to the atmosphere.

Z Formal Specification

The schema describing this step is:

Step 6

Informal Description

• Close valve on the air line to the header.

Z Formal Specification

The schema describing this step is:

ƒReactor
ƒScram
ƒStep

StepNum = 3
Reactor.PrimaryPump.PumpSwitch’ = On
Reactor.SecondaryPump.PumpSwitch’ = On
StepNum’ = 4

StartUpStep4

ƒReactor
ƒScram
ƒStep

StepNum = 4
Reactor.HeaderValve’ = LineToAtmosphere
StepNum’ = 5

StartUpStep5
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Step 7

Informal Description

• Reset reactor scram.

Z Formal Specification

The schema describing this step is:

Step 8

Informal Description

• Check that the header remains up.

ƒReactor
ƒScram
ƒStep

StepNum = 5
Reactor.HeaderValve’ = LineClosed
StepNum’ = 6

StartUpStep6

ƒReactor
ƒScram
ƒStep

StepNum = 6
Scram’ = NotScrammed
StepNum’ = 7

StartUpStep7
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Z Formal Specification

Step 9

Informal Description

• Bring all the shim rod drivers to the lowest position.

Z Formal Specification

The schema describing this step is:

Step 10

Informal Description

• Verify that the seated lamps are on for each individual rod; if not, stop the procedure
and call the senior operator.

Z Formal Specification

The schema describing this step is:

ƒReactor
ƒScram
ƒStep
ƒOutputs
Inputs

StepNum = 7
if HeaderDown? = Hi

then CallOperator!’ = High ÷ StepNum’ = -1
else StepNum’ = 8

StartUpStep8

ƒReactor
ƒScram
ƒStep

StepNum = 8
¡a : a % ShimRods @ a.Position’ = a.MinPosition
StepNum’ = 9

StartUpStep9
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Step 11

Informal Description

• Verify that the magnetically engage lamp corresponding to each of them is on; if not,
stop the procedure and call the senior operator.

Z Formal Specification

The schema describing this step is:

Step 12

Informal Description

• Turn on the magnetic currents on the shim rod drivers.

Z Formal Specification

The schema describing this step is:

ƒReactor
ƒScram
ƒStep
ƒOutputs
Inputs

StepNum = 9
if (ShimRod1Seated? = Hi ÷

ShimRod2Seated? = Hi ÷
ShimRod3Seated? = Hi)
then StepNum’ = 10
else CallOperator!’ = High ÷ Step’=-1

StartUpStep10

ƒReactor
ƒScram
ƒStep
ƒOutputs
Inputs

StepNum = 10
if (TouchingDriver1? = Hi ÷

TouchingDriver2? = Hi ÷
TouchingDriver3? = Hi)
then StepNum’ = 11
else CallOperator!’ = Hi ÷ StepNum’=-1

StartUpStep11
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Step 13

Informal Description

• Raise the shim rod drivers.

Z Formal Specification

The schema describing this step is:

Step 14

Informal Description

• Verify that the seated position indicator lamp and the rod down lamp indicator go off; if
not, stop the procedure and call the senior operator.

Z Formal Specification

The schema describing this step is:

ƒReactor
ƒScram
ƒStep

StepNum = 11
¡a:a%ShimRods@a.MagCurrent’ = a.MinHoldingCurret+1
StepNum’ = 12

StartUpStep12

ƒReactor
ƒScram
ƒStep

StepNum = 12
¡a:a%ShimRods@a.Position’ = 10
StepNum’ = 13

StartUpStep13
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Step 15

Informal Description

• Request power level from operator and start control algorithm for reactor.

Z Formal Specification

The schema describing this step is:

Start-Up Procedure

Informal Description

The start-up procedure can be described as being the execution of one of the steps

of the start-up.

Z Formal Specification

The description of the start-up procedure is:

StartUpProcedure ¾ StartUpStep1 ˆ

ƒReactor
ƒScram
ƒStep
ƒOutputs
Inputs

StepNum = 13
if (ShimRod1Seated? = Low ÷

ShimRod2Seated? = Low ÷
ShimRod3Seated? = Low )
then StepNum’ = 14
else CallOperator!’ = High ÷ StepNum’ = -1

StartUpStep14

ƒReactor
ƒScram
ƒStep
ƒOutputs

StepNum = 14
StartControlAlgorithm!’ = High
StepNum’ = 15

StartUpStep15
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StartUpStep2 ˆ
StartUpStep3 ˆ
StartUpStep4 ˆ
StartUpStep5 ˆ
StartUpStep6 ˆ
StartUpStep7 ˆ
StartUpStep8 ˆ
StartUpStep9 ˆ
StartUpStep10 ˆ
StartUpStep11 ˆ
StartUpStep12 ˆ
StartUpStep13 ˆ
StartUpStep14 ˆ
StartUpStep15

6  Reactor Specification

The complete reactor specification can be described by:

ReactorSystem ¾ (Reactor ÷ GlobalScramCondition ÷ Alarms) ÷
(StartUp ˆ Operate)
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Appendix D
Questionnaire for Authors

1  Non-subjective

What language/tool/platform did you use for the specification?

1.1  Language Issues

Is training for the language available?

How much of the language does it cover?

Does the language structuring support different levels of abstraction?

Does the language have formal syntax and semantics?

Is there documentation for this language?

Are there published examples of specifications for real systems written in this
language?

Are there published examples of designs derived from a specification in this
language?

Are there published examples of implementations from specifications in this
language?

Are there published examples of verification based on a specification in this
notation?

Can the following be represented in the language:
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• Integers?

• Real numbers?

• Constants?

• Timing?

Is it possible to document nonfunctional requirements or design decisions in
the specification notation?

is it possible in this notation to specify features that are not implementable in
a language such as C or C++?

Does your specification contain any features which are not implementable in
C or C++?

Is the notation built for readability?

• Infinite-length identifier names?

• Meaningful keywords?

• Common mathematical notation?

• Accomodation of tabs for readability?

• Allowance of upper and lower case in identifiers?

• Allowance of underscores in identifiers?

1.2  Toolset Issues

Is training for the toolset available?

How much of the toolset does it cover?

Is technical support available to answer questions about the toolset?

How large is the toolset (in computer memory)?

Is it possible to print a hard copy from the toolset?

Does the toolset support multiple users?

Does the editor allow the document be viewed at different levels of abstrac-
tion?
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What common file format(s) is supported by the toolset?

Was the file format compatible with a natural language text editor?

Did the toolset support the notion of separate compilation?

Does the toolset have its own version control system?

Is it possible to use external version control with this toolset?

Is there documentation for the toolset?

Are there tutorials for this toolset?

Can code be automatically generated from a specification in this notation?

Can test cases be automatically generated from a specification in this nota-
tion?

Did the toolset tolerate incompleteness during development of the specifica-
tion?

Does the toolset support regular expression matching?

Does the toolset provide static analysis of the specification?

• Pre-conditions?

• Post-conditions?

• Invarients?

• Data flow?

• Completeness?

• Consistency?

Is further validation/verification provided, such as:

• Model annimation?

• Theorem proving?

• Model checking?
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2  Subjective

How easy was it for you to understand the specification that you’d written?

❑ Very difficult
❑ Fairly difficult
❑ Fairly easy
❑ Very easy

How well does the formal method facilitate communication about the system?

❑ Hinders communication
❑ Allows communication
❑ Improves communication

Evaluate the size and complexity of the language.

❑ Too small and simple
❑ Appropriately small and simple
❑ Appropriately big and complex
❑ Too big and complex

How difficult is it to learn this notation?

❑ Very difficult
❑ Fairly difficult
❑ Fairly easy
❑ Very easy

How difficult is it to learn the modeling skills needed to use this notation?

❑ Very difficult
❑ Fairly difficult
❑ Fairly easy
❑ Very easy

Were the documentation and examples of the language useful and sufficient?

❑ They did not exist/Were not useful or sufficient
❑ Not very useful and sufficient
❑ Fairly useful and sufficient
❑ Very useful and sufficient

Is it convenient and natural to document nonfunctional requirements or
design decisions in the specification notation?

❑ Not possible
❑ Very inconvenient and unnatural
❑ Fairly inconvenient and unnatural
❑ Fairly convenient and natural



Department of Computer Science University of Virginia

Questionnaire for Authors D-V

❑ Very convenient and natural
Does the notation facilitate the identification of key parts of the system, thus

aiding in the design phase?

❑ No aid
❑ Little aid
❑ Some aid
❑ A lot of aid

Does the notation facilitate the identification of interactions or dependencies
between parts of the system, thus aiding in the design phase?

❑ No aid
❑ Little aid
❑ Some aid
❑ A lot of aid

Can a specification in this notation provide sufficient, but not too much,
detail for implementation?

❑ Too little detail
❑ A little detail
❑ A lot of detail
❑ Too much detail

How well was structuring and information hiding supported by the language
and toolset?

❑ Poorly supported
❑ Fairly well supported
❑ Well supported
❑ Excellently supported

Were the documentation and tutorials of the toolset useful and sufficient?

❑ They did not exist/Were not useful or sufficient
❑ Not very useful and sufficient
❑ Fairly useful and sufficient
❑ Very useful and sufficient

If technical support for the toolset exists, how high is the quality?

❑ Does not exist/Was not used
❑ Poor
❑ Fair
❑ Good
❑ Excellent

Are the time and space requirements of the toolset reasonable?
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❑ Unreasonably large or slow
❑ Tollerably large or slow
❑ Of reasonable size and speed
❑ Small and fast

How easy is it to print a hard copy from the toolset?

❑ Could not print
❑ Very difficult
❑ Fairly difficult
❑ Fairly easy
❑ Very easy

Was the file format(s) easy to manipulate?

❑ Very difficult
❑ Fairly difficult
❑ Fairly easy
❑ Very easy

Was it easy to create, manipulate, and organize files?

❑ Very difficult
❑ Fairly difficult
❑ Fairly easy
❑ Very easy

How user-friendly was the interface of the toolset?

❑ Very unfriendly
❑ Fairly unfriendly
❑ Fairly friendly
❑ Very friendly

How easy was it to make modifications (small and large) to the system?

❑ Very difficult
❑ Fairly difficult
❑ Fairly easy
❑ Very easy

How easy was it for you to navigate the specification (on-line) that you’d
written?

❑ Very difficult
❑ Fairly difficult
❑ Fairly easy
❑ Very easy

How easy was it for you to search the specification(online) that you’d writ-
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ten?

❑ Very difficult
❑ Fairly difficult
❑ Fairly easy
❑ Very easy

How useful is the static analysis provided by the toolset?

❑ Does not exist/Not useful
❑ Not very useful
❑ Fairly useful
❑ Very useful
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Appendix E
Questionnaire for Computer Scientists

1  Directions

This is part of an evaluation of four formal specification languages. Please take

your time learning the languages, but do not expect to become an expert. We are interested

in your thoughts about the languages even though you will not have much experience with

them. You should spend about an hour to an hour and a half with each of the four lan-

guages. If at any point you have a question about one of the languages or about part of this

survey, do not hesitate to ask. The multiple choice format is to make answering easier for

you as well as to standardize the answers for us, but if there is an idea that is not captured

in the choices, you are encouraged to comment in the margins. Remember that this is a test

of the language, not you. Do the sections of the packet in the following order:

1. Complete “Background Questions”

2. Read “Application Summary”

3. For each language:

- Read the summary of the language
- Complete “Structure and Navigation”
- Complete “Implementation”
- Complete “Maintenance”
- Complete “General Questions”

2  Background Questions

1. How much coursework have you received in computer science? Please indicate all that
apply. Include any degree in progress.

❑ None
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❑ Bachelors degree in computer science
❑ Masters degree in computer science
❑ Ph.D. in computer science
❑ Course(s) outside of a university
❑ Course(s) at a university that did not go toward a degree in computer science 

How much work experience do you have in developing software?

❑ None
❑ A year or less
❑ 1-5 years
❑ more than 5 years

Indicate your knowledge of the C programming language.

❑ Little to none
❑ Some
❑ Quite a lot
❑ Very extensive

How much instruction have you received in formal methods? Include courses
in progress.

❑ None
❑ A segment of one course
❑ One entire course
❑ Two or more courses

How much experience do you have using formal methods?

❑ Little to none
❑ Some
❑ A lot

Indicate your knowledge of science and engineering fields such as electron-
ics, mechanics, physics, and chemistry.

❑ None
❑ Only the basics
❑ Some knowledge
❑ Extensive knowledge

Indicate your knowledge of the equipment and functionality of a nuclear
reactor.

❑ None
❑ Only the basics
❑ Familiarity
❑ Intimate knowledge
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3  Structure and Navigation

3.1  First language

Take some time to examine the first specification.  You do not need to memorize,

rather to get a feel for the notation and the structure of the document.  When you have fin-

ished studying it, complete the following exercise.  Perform the following steps:

1. Read the question.

2. Start a timer.

3. Find the answer to the question.

4. Stop the timer.

5. Record your answer, the page on which it was found, and the time needed to find

it.

Remember that this is intended to measure the ease with which the specification can be

navigated, not your abilities, so time each question separately and as accurately as possi-

ble.

1. The reactor is scrammed if the pool water level is too low.  At what value is this scram
signal generated?

a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:_______________

What is the effect of the gamma radiation level becoming too high?

a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:_______________

What is the initial state of the primary pump?

a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:______________

3.2  Second language
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Take some time to examine the second specification.  You do not need to memo-

rize, rather to get a feel for the notation and the structure of the document.  When you have

finished studying it, complete the following exercise.  Perform the following steps:

1. Read the question.

2. Start a timer.

3. Find the answer to the question.

4. Stop the timer.

5. Record your answer, the page on which it was found, and the time needed to find

it.

Remember that this is intended to measure the ease with which the specification can be

navigated, not your abilities, so time each question separately and as accurately as possi-

ble.

1. What is the effect of the air monitor measuring a high radiation level?
a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:_______________

What is the initial state of the air line valve?

a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:______________

The reactor is scrammed if the reactor period is too low.  At what value is this
scram signal generated?

a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:_______________

3.3  Third language

Take some time to examine the third specification.  You do not need to memorize,

rather to get a feel for the notation and the structure of the document.  When you have fin-

ished studying it, complete the following exercise.  Perform the following steps:
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1. Read the question.

2. Start a timer.

3. Find the answer to the question.

4. Stop the timer.

5. Record your answer, the page on which it was found, and the time needed to find

it.

Remember that this is intended to measure the ease with which the specification can be

navigated, not your abilities, so time each question separately and as accurately as possi-

ble.

1. What is the initial state of the secondary pump?
a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:______________

The reactor is scrammed if the pool water temperature is too high.  At what
value is this scram signal generated?

a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:_______________

What is the effect of the area radiation level becoming too high?

a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:_______________

3.4  Fourth language

Take some time to examine the first specification.  You do not need to memorize,

rather to get a feel for the notation and the structure of the document.  When you have fin-

ished studying it, complete the following exercise.  Perform the following steps:

1. Read the question.

2. Start a timer.

3. Find the answer to the question.
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4. Stop the timer.

5. Record your answer, the page on which it was found, and the time needed to find

it.

Remember that this is intended to measure the ease with which the specification can be

navigated, not your abilities, so time each question separately and as accurately as possi-

ble.

1. What is the effect of the core temperature becoming too high?
a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:_______________

The reactor is scrammed if the flow through the core is too low  At what value
is this scram signal generated?

a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:_______________

What is the initial state of the header?

a nsw e r :_ ___ __ __ __ __ __ _               p a ge :_ __ __ __ ___ __ __ _

time:______________

3.5  All languages

How well structured was the specification?

❑ There was no structure.
❑ There was some structure, but it was hard to identify or illogical.
❑ It was fairly well structured.
❑ It was clearly and logically structured.

How much did the structure of the document assist you in finding the infor-
mation requested in the exercises above?

❑ None, I had to do a linear search.
❑ Some, I could eliminate sections after a quick glance.
❑ A lot, I was able to identify likely locations for the information.
❑ The structure allowed me to find the information immediately.

How did the quantity of text affect your search?
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❑ There was very little text, so it was easy to scan.
❑ The amount of text did not adversely affect my search.
❑ The quantity of text slowed me down somewhat.
❑ There was so much text I felt that I was looking for a needle in a haystack.

How effective was the structuring of the specification in aiding understanding

❑ The structure was illogical, so it didn’t aid understanding.
❑ The structure helped group things and made it easier to understand.
❑ Because of the structure, it was easy to understand.

Evaluate the aid from the specification in identifying key parts of the system.

❑ It provided no help. There was no identification of major components.
❑ After extensive study of the specification, the key components could be identi-

fied.
❑ It helped identify key components.
❑ The key components were easily identified.

Evaluate the aid from the specification in identifying the interactions or
dependencies between parts of the system.

❑ It provided no help. There was no identification of the relationships between 
components.

❑ After extensive study of the specification, the interactions could be identified.
❑ It helped identify the interactions between components.
❑ The interactions were easily identified.

4  Implementation

Envision that you are an implementer assigned to write the code for the module

containing the scram conditions.  Look carefully at the section(s) of the specification

related to the scrams.  Develop an implementation scheme.  Study the properties of the

system as described by the specification.

1. After some thought, can you think of a way to implement this section?
❑ From the specification I can conceive of more than one possible implementa-

tion.
❑ I see one possible implementation.
❑ I have some thoughts about the implementation, but see some problems.
❑ I don’t see any way to implement this.

Evaluate the level of detail in the specification.

❑ There are too many implementation details included and it over constrains the 
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implementer.
❑ The concepts expressed are not described precisely enough; the implementer is 

left with questions about functionality.
❑ The functionality is complete and the description is abstract enough that the 

implementer given the implementation decisions.

Is every possible behavior for this section of the system described by the
specification (i.e. is the specification complete)?

❑ It is impossible to tell.
❑ It’s hard to tell, but it’s doubtful.
❑ It’s hard to tell, but it looks like it.
❑ Missing cases are evident.
❑ A missing case would be easily identified and there aren’t any.

Is every feature of the specification notation implementable? Take some time
to look through more of the specification than just the section on the
scram conditions.

❑ Everything is definitely implementable.
❑ Everything seems implementable.
❑ There are some features which are dubious.
❑ There are one or more features which are not implementable.

5  Maintenance

Envision now that this system as already been built and you are assigned to main-

tain the code, fixing bugs and adding new features.  Previously you had no involvement

with the project.

1. How useful would this specification be as an introduction to the system?
❑ It is a very good introduction; it is complete, concise, and easy to understand.
❑ It is an average summary document, useful for introduction.
❑ It too hard to understand to be an introduction.

How useful would this specification be as a reference document?

❑ It is very useful for reference since it is well organized, complete, and concise.
❑ It is average as a reference because some things are hard to find or unclear.
❑ It is poor as a reference because it is hard to find things and the information is 

incomplete and/or unclear.
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6  General Questions

1. How well would the specification facilitate communication between people involved in
the development of the system?

❑ It would confuse more than help.
❑ It would slow down communication because it is hard to understand.
❑ It would aid communication because it is precise and unambiguous.
❑ It would aid communication because it is easy to understand and unambiguous.

Rate the size of the language (number of features/keywords/constructs).

❑ Larger than C
❑ About the same as C
❑ Smaller than C

How appropriate is the size of the language?

❑ Too big
❑ About right
❑ Too small

Rate the complexity of the language (number of ways to combine constructs).

❑ More complex than C
❑ About the same complexity as C
❑ Less complex than C

How appropriate is the level of complexity of the language?

❑ Too complex
❑ About right
❑ Not complex enough

How confident are you in your current ability to write a specification in this
language?

❑ I could specify a large, complex system with minimal assistance
❑ I could specify a simple system with minimal assistance
❑ I would need a lot of help to use this language for any system

Rate the difficulty of learning this language.

❑ Impossible
❑ More difficult than a programming language
❑ The same as a programming language
❑ Less than a programming language

Identify the source(s) of difficulty in learning the language.  If there are more
than one, please number them starting with (1) the largest cause of dif-
ficulty.  If a source of difficulty is not in the list, please add it in the
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margin.

❑ The notation is unlike anything I’ve seen before
❑ The language is very large and complex
❑ Keywords or other built-in language elements do not convey their meaning

Identify the feature of the language that makes it easy to learn.  If there are
more than one, please number them starting with (1) the most helpful
feature.  If something is not in the list, please add it in the margin.

❑ I have worked with similar notations before
❑ The language is small and simple
❑ Keywords or other built-in language elements effectively convey their meaning


