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Abstract

The maximum planar subgraph problem (MPSP) asks for a planar subgraph of a
given graph with the maximum total cost. We suggest a new approximation algorithm
for the weighted MPSP. We show that it has performance ratio of 5/12 in the case
of graphs where the maxumum cost of an edge is at most twice the minimum cost of
an edge. For the variant of MPSP that asks for an outerplanar graph, the algorithm
suggested is the first with the higher performance ratio (7/12 instead of 1/2).

Keywords: Combinatorial problems, approximation algorithms, planar sub-
graph.

1 Introduction

Let G = (V, F) be a graph with a nonnegative cost function on edges ¢ : F — R*. The
maximum planar subgraph problem (MPSP) asks for a planar subgraph of G with the
maximum total cost. This problem has applications in circuit layout, facility layout, and
graph drawings [8, 11]. So many approximation algorithms appear in the last decade [7, 5,
3, 10].

The quality of an approximation algorithm is measured by its performance ratio: a lower
bound on the ratio between achieved cost and optimal cost. This problem is MAX SNP-
hard [4]. This means that there is a constant € > 0 such that unless P = N P, there is no
polynomial-time approximation algorithm for MPSP with the performance ratio 1 — e.

A simple heuristic for MPSP finds the maximum cost spanning tree of G and then tries
to add some edges while it is possible to keep the graph planar. Unfortunately, it was shown
in [7] that this heuristic and minimum spanning tree based heuristics cannot guarantee that
the output graph costs more than one third of the optimal one.

Better heuristics for the unweighted MPSP have been recently appeared in [4]. They
found the best and approximately best 3-block trees. A graph is a 3-block tree if any its
2-connected component (block) has at most three vertices. It was proved that performance
ratios of these heuristics are at least % and %7 respectively.

Here we suggest several approximation algorithms for the weighted MPSP. These algo-
rithms are applications of heuristics first suggested for the Steiner tree problem [12, 1, 2, 13].
The greedy algorithm approximates the best weighted 3-block tree in the given graph G
(Section 2). In Section 3 we estimate the quality of the greedy algorithm. We prove that it
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Greedy Algorithm

M — @; Go — G
repeat forever

find a triangle 7 € Gy, with the maximum gain,
T — argmax g(T)

if g(7) < 0 then exit repeat

M—Mur

stretch 7 (G — G U N(1))
output A= M U(MST(Go) N MST(G))

Figure 1: The greedy algorithm GA.

cannot guarantee more than 5/12 of the optimum and this performance ratio is achievable
in the case of graphs where the maxumum cost of an edge is at most twice the minimum cost
of an edge. In the last section the greedy algorithm is applied to the maximum weighted
outerplanar subgruph problem [9]. In this case it guarantees the output cost at least 7/12
of the optimum.

2 The Greedy Algorithm

Let T' be a maximum spanning tree (MST) of G. We denote the cost of T' by t; = t5(G).
This tree is a planar graph and its cost is at least one third of O PT, the cost of the optimal
planar graph. We try to improve T adding some 3-blocks and keeping the graph to be a
3-block tree.

Let 7 be a triangle in G. We say that an edge e € T cuts 7 if the both connected
components of T'\ {e} contain vertices of 7. Let e; be the smallest edge which cuts 7 and e,
be the smallest edge of T such that each of the three connected components of T'\ {eq, 2}
contains one vertex of 7. We denote Cut(1) = {ey,e2} and cut(r) = c(eq1) + c(ez). The
gain of 7, g(1) = ¢(7) — cut(7), is the value which we can gain by adding 7 to MST. The
greedy algorithm (GA) (Fig. 1) finds a triangle with the biggest gain and then stretches
T, i.e. assigns the cost oo to edges of 7. GA interrupts when there are no triangles with a
positive gain and returns all chosen triangles with the rest of MST-edges.

For the purposes of analysis we slightly modify GA in the following way. We assume
that to stretch 7 means to extend G with two edges €} and €} between ends of 7 with costs
c(el) = c(e;)+ g(1), 1= 1,2, such that the forests T'\ {e1} U {e}} and T\ {ey, ez} U {e], €}}
are connected. We denote N(7) = {¢|,e,}. Let the modified GA find triangles ,..., 7.
For brevity denote N; = N(7;), G; = Go U Ny U ...UN,;, T; = MST(G;), and denote the
gain of 7 in G; by gi(7), i =1,...,p.

The following lemma shows that N(7;)-edges of a chosen triangle 7; should be in M ST(G)
till the algorithm stops. In other words, if we assign the cost oo to edges of N(7;), then the
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Figure 2: The step of induction

modified GA will output the same 3-block tree. Therefore, the modified and the original
GA have the same output.

Lemma 1 Ny U..UN, C MST(G)).

Proof. Each time GA stretches a chosen triangle 7;, it modifies the current MST in the
following way T; < T;—1 \ Cut(1;) U N;. So we need to show that for i > j,

Cut(Ti)ﬂN]‘ = (. (1)

We need the following denotations. Let 7 be a triangle and T be an MST. Let e cut
7 and € be the smallest edge of T' such that each of the three connected components of
T\ {e, €'} contains one vertex of 7. The value ¢g(7,¢e) = ¢(7) — c(e) — ¢(€’) is called e-gain of
7 and the edge ¢’ is denoted by Cut(r,e). Note that g(7,e) < g(7).

After stretching of a triangle 7;, the total cost of Cut(7) and C'ut(r, e) may only increase,
so the gain and e-gain of a triangle may only decrease.

The following claim proves (1). It shows that if g(7) > 0, then Cut(r) N N; = () in any
G, k> 1.

Claim 1 Let e € N(7;) cut a triangle T € Go in G,k > i. Then gi(t,e) < 0.

Proof. Induction on k, the number of stretched triangles. For k = 1, if e € N(7y) cuts
7 in Gy then some f € Cut(m) cuts 7 in Go. So if ¢1(7,€) > 0, then

90(T) > g1(7,€) + go(T1) > go(T1)-
Let Lemma be true for £ — 1. If e cuts 7 already in G_1, then
02> gr-1(7.€) > gi(7,€).

Now let e do not cut 7 in G_1 and cut 7 in G. Then e cuts 7 and an edge h € Cut(ry)
cuts 7 in G_1 (Fig. 2). Note that 7; has the biggest gain in G_1. By induction,
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To bound the performance ratio of GA we need the following constant. Let N be some
set of weighted edges with the vertex set V such that any triangle of G has a nonpositive
gain in the graph G’ = (V, EU N). We denote by t5 = t5(G) the infimum of MST cost of
G' over all such N'’s.

Theorem 1 The cost of A, the output of GA, is at least

1(G) + 13(G)
R

Proof. GA interrupts when there are no triangles with the positive gain. So for N =
N1U...UN,, no triangle has a positive gain in GUN. Therefore, the cost of T, = M ST(GUN )
is at least #3(G).

Each time we stretch a triangle 7; we increase the cost of MST by 2¢(7;). From the other
side, each time we accept a triangle 7; we increase the cost of a 3-block tree by g(7;). Let &
denote the total gain of chosen triangles, i.e. G =3 "_, g(7;). By Lemma 1, T, contains all
edges of N, thus,

P
ts < e(T,) = e(To) + Z'Zg(n) =ty + 2@,
=1
and ; b4 ¢
3=ty ta+13
I

We may estimate the performance ratio of GA using the other constant. Let opts(G) be
the cost of the biggest 3-block tree in G.

t
C(A)It2+G2t2—|-

Remark 1 For any graph G, opts(G) < t3(G).

Proof. Let P be an optimal 3-block tree in G and 7;, ¢ = 1, ..., p, be its triangles. Let T
be an MST of G U N such that any triangle of G has a nonpositive gain in G’ = G U N.
Let stretch triangles 7;, ¢ = 1,...,p, consequently and denote by G = G', G, ..., G}, the
corresponding graphs. Let ¢g;_1(7;) be the gain of 7; in G;_1. Then

d(P)—d(T) < Zp:giq(ﬂ) < Zp:g(ﬂ) <0 ¢

Corollary 1 The cost of the output of GA, is at least

tz(G) —|— 0pt3(G)
5 .




3 The Performance Ratio of the Greedy Algorithm
Conjecture 1 Let P be the mazimum planar subgraph of the graph G. Then
5
15(G) > e(P)

Remark 2 If Conjecture 1 is true then performance ratio of the greedy algorithm is at least
3

s = .375.

8

Remark 3 There is a series of planar graphs G; such that lim;_, . tj’(gi)) = 15—2

Proof. Let take ¢ triangles which have exactly one vertex in common and make the graph
maximum planar adding 37 — 3 edges. Assign the cost 2 to each edge of the graph. In each
face we put a vertex and connect it with the boundary vertices. Assign the cost one to
each new edge. Let GG; denote the resulted graph. The set of edges N; is a spanning tree of
original ¢ triangles in which any edge has cost 3. It is easy to check that no triangle of G;
has a positive gain in G; U N;, ¢(G;) = 247 — 30 and the MST-cost of G; U N; is 10i — 4. {

Theorem 2 Let the mazimum cost be at most twice the minimum cost of an edge in the
mazimum planar subgraph P of a graph G'. Then Conjecture 1 is true, i.e. t3(G) > 15—_26(]3).

Proof. In order to make P triangulated we add zero cost edges to P. Let N be an edge
set such that in P U N no triangle has a positive gain. Let 77 be an MST of G U N. Let
P = (V,E,d) be the graph in which the cost of any edge e € E equals to the least cost of
an edge in T'(e), the T'-path connecting the ends of e.

Claim 2 For anye,e' € E,

(i) ¢(e) = cfe)

(ii) ¢(e) > Le(e!
Proof. (i) follows from the definition of 7’. Wlog, we may assume that the original graph
P (without 0-cost edges) is connected. So the least cost of an edge in 7" is no less than the
minimum cost of an edge in the original P. ¢

It is easy to see that MST(P’) has the same property as N, i.e. no triangle in P U
MST(P') has a positive gain. From the other side the cost of MST(P’) is at most the
cost of T'. We wish to prove a lower bound on the cost of 77, so we may assume that
T' = MST(P").

Now we will show that the cost of P’ is at least 3¢(P) and therefore, ¢/(T") > 1c/(P') >
Ze(P).

Consider an arbitrary triangle 7 of P with edges z,y,2z € F. Since the cost of a planar
graph is half of the sum of the costs of its faces, it is sufficient to show that

o)+ )+ ¢(2) 2 (el@) + ely) (=) (2)

Note that a pair of edges of 7, say y and z, has the same cost in P’, ¢/(y) = ¢/(z) and
d(z) > (y). (In other words, the least cost edge of T'(z) U T’(y) U T'(2) belongs to
T'(y)NT'(z).) Since g(1) < 0in P, (z)+ (y) > c(z) + e(y) + ¢(2). So to prove (2) it is
necessary to show that ¢/(y) > I(c(z) + c(y) + ¢(z)). This is true because ¢(y) is at least
c(y), ¢(z) and half of ¢(z) (Claim 2 (ii)). ¢

Corollary 2 The performance ratio of the greedy algorithm is at least .375 for the graphs
where the maximum cost of an edge is at most twice the minimum cost.



4 Outerplanar Subgraphs

The greedy algorithm produces outerplanar graphs, so it is an approximation algorithm for
maximum outerplanar subgraph problem (MOSP). The unweighted case was considered in
[4]. They proved that in any outerplanar graph there is a 3-tree which contains at least two
thirds of the total number of edges. In this section we will prove that the same fact is true
for the weighted case.

Theorem 3 Let P be a mazximum outerplanar graph of a graph G. Then
2
opts(G) > gc(P)
Collorary 1 yields

Theorem 4 The performance ratio of the greedy algorithm is at least 17—2 ~ .583.

We will show that any outerplanar graph P = (V| F) can be represented as a union of
three 3-block trees such that any edge of P belongs to two of these 3-block trees.

We may assume that P is a maximal outerplanar graph, since we may add zero-cost
edges. For the purposes of analysis we add a copy for each outer face edge. Consider the
dual graph P = (F, E') of the graph P, where I is the set of faces of P and ¢’ € E’ is an
edge corresponding to an edge e € F (Fig. 3).

It is easy to see that P is a cubic tree T (each inner vertex has degree 3) with an
additional vertex b corresponding to the outer face. This vertex b is adjacent to all leaves of
T corresponding to the outer face edges. We assume that T is rooted in a fixed inner vertex
T

A proper coloring of P is a partition of F—{b,r} into three subsets (colors) X;,i = 1,2, 3,
such that
(i) adjacent vertices have different colors;

(ii) the subgraph of P induced by F — X; — {r} is connected;
(iii) three neighbours of the root have different colors.

Let C; be a set of edges of P correspnding to edges of P which have both ends colored
and one of these colors is X, (¢ = 1,2,3). We also add to C; two edges of the triangle face
r. The first of them corresponds to an edge incident to X;-vertex and the other is the next
in the clockwise order.

Lemma 2 A set C; corresponding to a color X;, is a 3-block tree.

Proof. We will show that each block of C; has at most 3 vertices. Let H C C; be a cycle
and H be not a triangle corresponding to three edges of P incident to the same vertex. Then
there is at least one inner face f # r of P inside this cycle. Let remove all edges incident to
the vertices of X; U {r} from P. Then the vertex of P corresponding to f has no path to b
which contradicts (ii). Moreover, triangles in H cannot share edges by (i). ¢

Let e € E corresponds to an edge of ¢’ € E’ which is incident neither to b nor to r. Then
e belongs to two different 3-block trees corresponding to two colors of the ends of €’. Tt is
easy to see that edges of the face r also belong to two different 3-block trees. Thus, three
3-block trees corresponding to a proper coloring has the cost 2¢(P).

To finish the proof of Theorem 3 we will prove the following



Figure 3: An outerplanar graph (solid lines) with auxiliary edges (thick dashed lines) and
its dual graph (dashed lines).



Lemma 3 The graph P has a proper coloring.

Proof. The forest T'— {r} has three components 7T;,7 = 1,2,3. Each of them is a binary
tree. We root them in vertices incident to r in T. We color the root of T; in X; and further
color children in two different colors which do no coincide with the color of their parent. It
is obvious that any vertex has a path to a leafin 7;\ X;,4,j=1,2,3. {
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