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Abstract

Adaptive synchronization algorithms have been proposed to improve upon purely
conservative and purely optimisitic algorithms. Experimental studies have have indeed
provided encouraging results. In the spirit of previous analyses, we present the first known
analytical comparison of adaptively optimisitic algorithms with tire€l\Warp protocol.

We define a class of adaptive protocols, the asynchronous adaptive waiting protocols
(AAWP’s) and identify several practical protocols that belong to this classhdiv that

Time Warp can outperform an AKP arbitrarily We describe NPSI adaptive protocols, a
sub-class of AWP'’s, and specify a member of this sub-class, the Elaistie Algorithm.

We show that this algorithm can outperforim& Warp arbitrarily
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1 Introduction messages that are based on aggressive or inaccurate

Historically, research in synchronization algorithms Processing. Conservative protocols are non-aggressive
(protocols) for parallel discrete event simulation@nd without risk while optimistic protocols are
(PDES) has followed two tracks: conservative anccompletely aggressive and with risk. Therefore, these
optimistic [Fuji90]. A significant result of this research WO classes of protocols represent the extremities of a
is that neither approach seems to be universallSPectrum of possibilities.

efficient. As defined in [Reyn88daptive protocols are Both conservative and optimistic strategies have
those that modify their behavior dynamically in their pros and cons. The main advantage of conservative
response to changes in the state of the simulatiolygtocols is that they do not have any checkpointing and
Several adaptive protocols have been proposed aryg|pack overheads. Howevarocesses may be blocked
implemented  recently with encouraging results. gye to insuficient information when in fact it would be
However there are no analytical studies comparing théggfe for them to proceed. This artificial blocking
performance of adaptive protocols with that ofReyng2] introduces lost-opportunity cost [SrRe94]. On
traditional protocols. While experiments have shownihe other hand, optimistic protocols do not incur lost-
that adaptively optimistic protocols improve on the gpnortunity costs since processes never block. The main
performance of the purely optimisticinfe Warp  hazard of optimistic protocols is that the checkpointing
protocol [Jef85] in general, it is interesting to question gnd rollback costs may degrade performance severely
whether they can perform worse thaim& Warp. Ve The gap between these two extremes may be bridged
present a comparison of a general class of adaptivejther by adding optimism to conservative protocols or
protocols called the asynchronous adaptive waiting,y fimiting the optimism of purely optimistic protocols.
protocols (AAVP's) with Time Warp in the vein of the = The jnherently dynamic nature of simulations [NiRe90]
worst-case comparison between the Chandy-Misrigyggests that regardless of the approach to combine the
protocol [ChMi79] and ime Warp in [LIMi90]. We  conservative and optimistic strategies, the hybrid
show that it is possible forifie Warp and AAVP’S t0 gcheme must also be dynamidaptive protocols are
outperform each other arbitrarilyhus, while intuition  those that change the bindings of one or more of their
suggests that adaptive protocols should enhancdesign variables dynamically [Reyn88]. Adaptive
performance in general, our analysis indicates that theprotocols that modify their aggressiveness and risk
must be designed carefully since incorrect adaptiV‘(collectiver called optimism) dynamically seem the
dgcisions can lead to arbitrarily worse performance thay,ost likely to perform well consistentlienceforth, we
Time Warp. will refer to such protocols simply as adaptive protocols.

We assume familiarity with the common approach  geveral protocols have been proposed that either
to PDES_[Fuji9.0], ngmely the partitioning ofadiscr.ete“mit optimism in Time Warp or add optimism to
event simulation into components called logical conservative protocols [SrRe94]. Most of these have
processes (LB). Each LP is itself a sequential discretepeen shown to improve the performance of the protocols
event simulatorThe LPS must execute events, whether irom which which they are derived. Since all of these
generated internally or scheduled by others,.Rithout  resyits are experimental, it is interesting and important
violating causality constraints (ettively). Typicall, o question whether adaptive protocols can perform
this is the responsibility of protocol. worse than traditional protocols. Our analysis shows

A conservative protocol is one in which an LP they can.
executes an event only after determining thatitissafet |5 the next section we define the W& class of

do so (i.e. no other event with a smaller timestamp wiladaptive protocols and identify several members of this
be scheduled later). Thus, it is possible for an LP t(|3ss. W then show by example thain®e Warp can
remain blocked for some period of time while there isoutperform an AAVP arbitrarily Next, we describe a
insufiicient information to proceed with the next framework for a family of adaptive protocols called
scheduled event. Aroptimistic algorithm takes the Npg adaptive protocols (which are also \AR's).
opposite approach in that lsPexecute events without Finally, we describe a specific NPSI adaptive protocol,
the guarantee of safety and “repair” their execution iETA based on this framework and show thaAEEn

and when an error is detected, typically using Zytperform Tme Warp by a factor proportional to the
checkpoint and rollback approach. In [Reyn88],amount of logical time simulated.

aggressiveness is defined to be the property by which an
LP processes events conditionally (i.e. without a
guarantee of safety) andsk is defined as passing



2 Assumptions bounded for the AWP, our claim that an AA/P

The reader is referred to [Fuji90] for details @fi€ can perform arbitrarily worse tharirfe Warp can
Warp and related conceptse\ssume the following for be shown trivially
all protocols in this paper: vi) Since the delay tim& can be controlled directly by

the AAWPR it is assumed to be bounded by a

e Each LP is located on its own processor UL :
constant. Once again, if this were not true, our

* The protocols employ aggressive cancellation claim that an AAVP can perform arbitrarily worse
and aggressive rollback. than Tme Warp can be shown trivially
The following assumptions definasynchronous Several protocols that have been proposed and

adaptive waiting protocols (AAWP's), the class of jpplemented belong to the class of WR's. In the
adaptive protocols to which our analysis applies. Thespenalty based throttling scheme of [ReJe89], an LP that
protocols are based omrfe Warp and control optimism  ha5 peen rolling back excessively is made to block for
by introducing delays between event executions: some period of time. This decision is made
) The simulation loop of an LP is as follows: independently of other LB Similarly in Adaptive
Time Warp [BaH090], an LP may decide to block after
executing an event based on local history and statistical
estimation. In [Madi93], L estimate each others’
logical clock values and block if their clock value
differs lagely from that of another LRn [HaTr94], a
real-time blocking window is computed each time an LP

Wi | e not done
Process event
Wait for time 6 >= 0
Rol | back if necessary
Process received nmessages

Salvle st a; © . executes an event and the LP blocks for an amount of
d(\f\;_le“ osstis time equal to this window (which may be zero).
en 1le

Similarly, in [FeTr94], an LP blocks probabilistically for
some amount of time after each event execution. The
new class of adaptive protocols we have described in
A ; > h . [SrRe94], which we call NPSI adaptive protocols, also
deciding if an LP should wait on a given iteration OF satisfy the AAVP assumptions. dowing algorithms
how long it should wait. & only assume that such i, \yhich the windows are computed individually for
waiting occurs between event executions, if at all gifterent Lps (such as Unified Distributed Simulation
An LP.aborts |t§ waiting if it receives a messageSystem [McAf90] and Breathingiffie Warp [Stei93])
that will cause it to roll back. A separate delay 5o AaNP's as well since the LBWwait when they reach
scheme may be used to control risk. the ceilings of their independent windows. Note, global
windowing algorithms do not fit the AKP model since
the global window forces all LB'to synchronize before
any of them can proceed. Protocols in which optimism
iii) The actions of an LP that are relevant to theis limited based on spatial clustering [Gima89, R&3)
analysis are: event execution, rollback and adaptivalso satisfy our assumptions, since waiting may be
waiting. We ignore overheads such as state savincrequired at cluster boundaries where events are
receiving messages, global virtual time (GVT)exchanged conservatively and the clusters operate
computation and fossil collection for simplicity; the asynchronously
analysis can be extended to include these as well.

iv) The AAWP does not increase the capability of the3 1ime Warp outperforms AA° WP’s
LP's to guess computation. An increase in the = We show by example that an WP can take
guessing power of an LP could compensate for anarbitrarily longer than ime Warp to complete a
deleterious décts of the adaptive control. Since an Simulation. The intuition behind the example is this: on
LP’s guessing capability depends entirely on thethe one hand, it is possible foinie Warp simulations to
application being simulated, it is reasonable toexecute very étiently, with few rollbacks; on the other
assume the AWP cannot increase this capability ~hand, it is also possible for anfe Warp simulation to
generate many false events and consequent rollbacks
which can degrade its performance severely [LUWS91].
Errors in adaptive decisions regarding when and how
long to wait can cause arfie Warp execution to move
from the former category to the lattén the example

Note, we do not make any assumptions about th
particulars of the AWP, such as criteria for

ii) The waiting at each LP is asynchronous with
respect to the waiting at other IsP’

v) Since adaptive waiting is expected to reduce
rollbback costs, the depth (and therefore cost) o
each rollback is assumed to be bounded by ;
constant for the AWP. If the rollback costs are not
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here, we show a situation where the AAWP induces a
false rollback chain that delays the committing of an
event (relative to the Time Warp execution) by at least
an amount of time proportional to the length of the
rollback chain. By arguing that this rollback chain can
be arbitrarily long, we show that the committing of an
event can be delayed arbitrarily.

Consider the Time Warp execution shown in
Figure 1. The x-axis denotes advance of wall-clock time
while the y-axis denotes the different LP's. The numbers
below the events are their respective timestamps. A
dashed arrow indicates the causal dependence of an
event on a message (i.e. the event at the head of the

arrow was scheduled by the arrival of the message at the
tail of the arrow). The two important events to note in
this execution are: (i) the event with timestamp 140 at
LP;, which is causally dependent on a message from
LPg that arrives just in time to be executed by LP,, and
(ii) the event with timestamp 165 at LPs, which is the
one whose committing execution will be delayed due to
an erroneous waiting decision.

Figure 2 shows an execution of the same simulation
as in Figure 1 using an AAWP. For simplicity, we
assume the initial conditions for the two executions are
the same except for one difference: both LPy and LP;
wait for some time at the beginning of the portion of the



execution depicted. Due to what will turn out to be ar
error in the decision process, d-Belays longer than
LP,. As aresult, LRis ready to execute an event before
the message from IgRarrives and causes the event with
timestamp 140 to be scheduled. L&xecutes its next
scheduled event (with timestamp 150) and sends
message to LR Since we assume aggressive rollback,
this event is dalse one as it is executed out of order
When the message from §Rarrives later this false
event is rolled back and an antimessage is sent jo LF
However the message sent to 4 By the false event has
already intiated a chain of false events. The antimessay
starts a chain of rollbacks and antimessages that follow
close behind the chain of false events. Regarding the:
two chains, we observe the following:

i) Itis possible that the rollback chain catches up witt
the false event chain immediately and thus

terminates both chains. Howeydhe case that is V)

relevant to this discussion is the one shown ir
Figure 2 where the rollback chain does not catch u|
with the event chain until the latter reaches BRd
initiates an unnecessary rollback. This scenario i
feasible [LUWS91].

i) The chains by themselves may be harmless - thvi)

problem arises from the fact that the final false
message that arrives atd4 fmarked M in Figure

2) has timestamp 160, which is smaller than 165
the timestamp of the second event at [(Rarked
Ep in Figure 2). Thus, M rolls back the first
execution of I, even though that execution was
correct and could have been committed. Ep is re-

timestamp of M is bounded; such situations reflect
a flaw in the implementation - the physical system
being simulated cannot make diminishing progress
in real time!). The lager the timestamp of4; the
less likely that its first execution is on the critical
path of the simulation, since other ERire farther
behind in logical time. Thus, while it is possible for
the false chains to be arbitrarily long, the
probability that these chains are damaging to the
simulation decreases with the length of the chain.
However the probability is not zero - we can
imagine a simulation whereEnarks the transition

to a new phase of simulated time, i.e., the entire
simulation makes a “jump” in logical time to the
next phase of activitylf so, the delaying of §
could cause the entire phase transition to be
delayed.

It is possible to have very long false chains which
do not span much logical time, as shown in Figure
2. Here, logical time does not increase in an
iteration of the cycle in the false chain; it increases
only across iterations. Thus, the timestamp @fi$/
small but the chains are long.

Finally, even if the lengths of the chains are
bounded (by some means), it is possible to have an
arbitrary number of instances of such chains in the
course of a single simulation run.

In summary we have shown by example that the

committing execution of an event may be delayed
(relative to the me Warp execution) by an arbitrary
amount of time due to false events and rollbacks created

executed after the false rollback completes.byerrors in the waiting decision.

Therefore, the committing execution, ks delayed
by at least an amount of time proportional to the
length of the false rollback chain.

3.1 Lazy cancellation

Since the events in the rollback chain are false

iif) Each of the two chains has a cycle in it, involvingevents (i.e. they should not have been generated), they
LP,, LP3 and LR,. While we have shown only one |l have to be rolled back even under lazy cancellation.
iteration of this cycle, it is possible to have anThus, the example holds under lazy cancellation as well.
arbitrary number of iterations, i.e. the chains could|n fact, the problem is aggravated to a certain extent
revisit these LFS an arbitrary number of times with lazy cancellation because the initial antimessage

before reaching LP

generated by the rollback of the event with timestamp

iv) For the false event chain to delay the committingl®0 at LR will be delayed until Lip crosses time 150

execution of kg, the timestamp of M must be

after executing the event with timestamp 140. Thus, the

smaller than that of & Since we assume a correct Physical time lag between the two chains may be longer

implementation of the underlying ifhe Warp
protocol and the application, it follows that logical

allowing the false event chain to propagate farther

time must advance eventually as we traverse th3.2 Lazy rollback

false event chain. Therefore, an arbitrarily long
chain would require that the timestamp ¢f &so

The commitment of the first execution of, i the

Time Warp execution implies that the event with

be arbitrarily lage (we disregard pathological timestamp 150 at Lffmust be a false one even with lazy
situations such as when the false chain makerollback. Thus, the two chains will be generated in this
diminishing advances in logical time such that thecase also. HoweveEp may not be rolled back when

4



Mg arrives. This can happen due to one of the following:
(i) Mg has no impact on the state in which Ep was
executed, or (ii) the rollback chain arrives at LP5 while
L Pg executes the event scheduled by Mg so that when
the execution is complete (or is preempted, assuming
event preemption), it is cancelled immediately and the
operating state for Ep is not affected. However, even if
the final execution of Ep is not delayed, the advance of
GVT" beyond 165 will be delayed by at least the
amount of timeit takes for the chains to disappear. Since
GVT isthe commitment horizon for events [Jeff85], the
committing of Ep can be delayed arbitrarily even with
lazy rollback.

3.3 Pragmatic issues

We have identified a genera class of adaptive
protocols, the AAWP's, and shown that it is possible for
Time Warp to outperform them by an arbitrary amount.
Since severa practical protocols belong to the AAWP
class, this counter-intuitive result suggests that AAWP's
must be designed with care. Correspondingly, while we
have developed several very effective NPSI adaptive
protocols [SrRe94], we have also discovered some that
perform no better than Time Warp and some that
perform worse.

It is possible to modify protocols so as to avoid the
scenario described earlier. However, it is not clear
whether doing so will be beneficial in the general case.
Moreover, since there may be other scenarios similar to
the one we have described, establishing a property of
AAWP's that avoids this scenario cannot guarantee that
Time Warp will not outperform AAWP’s by more than a
constant factor.

4 NPSI adaptive protocols

We describe a design framework for a new class of
adaptive protocols. This framework will be used in
section 5.3 to define a specific adaptive protocol that
outperforms Time Warp by a factor proportional to the
length of the simulation run. We call this new class
near-perfect state information (NPSI) adaptive
protocols because these protocols assume the
availability of near-perfect information at each L P about
the state of the system, at little or no cost to the
simulation. The adaptive waiting decisions of LP's are
based on this NPSI. In practice, such information can be
disseminated using a high-speed reduction network
[PaRe93] at almost no cost to the simulation. Our
studies [SrRe93] have shown that such a network can
disseminate critical information to the LP's at latencies

* Global virtual time is the minimum of all logical clocks
and timestamps of any messages in transit [Jeff85].

)

Event
processing

Error Potential and

message
sending

N

Figure 3 - Framework for NPSI adaptive protocols

that are two or three orders of magnitude smaller than
typical event execution times (i.e microseconds versus
milliseconds). We have designed and implemented
NPSI protocols over a prototype reduction network with
very encouraging results. A more detailed discussion on
the rationale behind NPSI protocols, their design and
performance can be found in [SrRe94].

There are two phases in the design of NPSI
adaptive protocols:

* identifying the information that must be
collected dynamically and on which the
decision to limit optimismis to be based

e designing the mechanism that translates the
collected information into control over an LP's
aggressiveness and risk

The framework depicted in Figure 3 separates these
phases by introducing a quantity we cal error
potential (EP;), associated with each LP. EP, is an
estimate of the need for LP, to dcrease its optimism. The
mapping M, translates the relevant NPSI to a value of
EP;. The NPSI adaptive protocol keeps EP; up-to-date
for each LP; as the simulation progresses, by evaluating
M at high frequency using state information it receives
from the feedback system. M, dynamically reflects new
vaues of EP; in the event execution and communication
rates. Different NPSI adaptive protocols may be
constructed by designing the mappings M, and M.
Note, these mappings only specify if an LP should wait
and how long it should wait; the general structure of
NPSI protocols conforms to the AAWP model in section
2.

5 AAWP’s outperform T ime Warp

We show by example that Time Warp can take
arbitrarily longer than an AAWP to complete a
simulation. Our approach is to describe the execution of
a simulation using both Time Warp and a specific
AAWP. We show that Time Warp takes an amount of
time that is quadratic in the amount of logical time
simulated while the AAWP takes linear time. Since the
difference in completion times is not bounded by a



5.2 Time Warp execution

@ The Time Warp execution of this simulation is
\ shown in Figure 5. The x-axis represents wall-clock
time. The numbers (in multiples of at the junctions of
the LP time lines and the unit time intervals indicate the
logical time to which the LB have simulated (i.e. the
logical clock value of the LP). A solid arrow indicates a
message transmission while a dashed arrow indicates an

) ) ) antimessage transmission. The bold lines at various
Figure 4 - Physical system for echoing points on the time lines of LPand LR indicate
rollback. From the picture, the echoing is evident
constant for a given simulation, the YA® outperforms immediately in the fact that the two IsPYoll back
Time Warp arbitrarily alternatelywith increasing amplitudes.

5.1 Physical system THeorem 1: A Time Warp execution of
The system we consider for simulation was EchoSystem takes(n+1)/2 wall-clock time units

described previously in [LUWS89] as an example of ! Simulatenu units of logical time.
“echoing” in Time Warp. We refer to it as EchoSystem. ) ) )
It consists of three physical processes {pR, B and ¢ PRooF: The theorem is proved by induction on the
with the communication topology shown in Figure 4. a@mount pf wgll-clock time required for GVT to advance
Upon receiving a message from,PPR; processes it from logical time(n-1)u to nu.
and sends a message to,P&hd vice-versa. If no
message is received from the othéoth of them
prepare a message to send tg.HPa message arrives
when one is being created or sent tg,RRat sending is
aborted and the new message is processed. Sending ¢
receiving of messages takes no time. Processing
message from RA(PR) takesu real time units on R
(PPRy). Preparation of a message tocPkes 2 real
time units. Suppose at time 0 PReceives the first
message from RP Then it may be verified that the only |y, tion step: Assume the hypothesis holds for the
message trét that occurs in this system is between|ogica| time window (n-l)unu). Recall that the
PP, and PR at intervals ofu real time units. The idle  \,a5qaq6 1rgiE in the physical system consists only of
periods between intervals are irfsiént to build a the single message being exchanged by afd LR,
message to RP Note, real time in the physical system . . . .
: S . Thus, in any correct simulation of this system, GVT

corresponds to logical time in the simulator advances byu logical time units each time an LP

For the simulatgr we assume the following: receives this message, processes it and sends it back.
processing a message betweep BRd PR takes one During this process, the actions of other 4 Bannot
unit of wall-clock time (including sending the follow-on affect GVT. Without loss of generalityassume LP
message), preparing a message tg RRes one time takesn wall-clock time units to advance GVT from
unit and sending of an antimessage also takes one tin(n-1)u to nu (by induction hypothesis). In thesewall-
unit. LP's advance their simulation clocks to theC|ock time units, LB will send n messages to |_€P
timestamp of the next eveafter executing that event. Thus, at the end of(fi-1)u:nu), LP, has just sent a
We assume this to simplify the proofs - the theorems Camessage to Lpwith timestammu and LR has senh

be proven even if it is assumed that logical clocks arlf | heref ” I
advanced before commencing event execution, isP  121S€ messages to gPTherefore, LB takesn wall-

assumed to perform its work fast enough so that itclock time units to send theantimessages to lgPand

actions are irrelevant to the discussions and pragfs. one wall-clock time unit to process the message,

denotes the logical clock value of P advanceog to (n+1)u and send the message back to
LP, with timestamp(n+1)u. At this point, GVT will
have advanced to logical tim@+1)u, requiringn+1
wall-clock time units to do so. Thus the total wall-clock

Induction hypothesis: It takesn units of wall-clock
time for GVT to advance from logical tinfe-1)u to nu.

Base case: n = 1: From Figure 5 we see that in the first
wall-clock time interval (i.e. wall-clock time [0:1)) P
advanceso, to u and LRy advancesg to 2u. Thus,
GVT has advanced from 0 toin one wall-clock time
unit and the hypothesis holds.



3ul 5ul 7ul! 9ul 11ul | | | | Sul 7ul! 9ul! 1w
| | | | A\ | | |
VAT M

M
||
lfl- 15
\

N

©o 1 2z 23 : : oo u 12 13 : : i :
S N N TV L
RO N (A (O (O (O (A
N T O S A T I N N
p \ TN \ | | VNN \ | \ | | VNN
B 2u'u ' 2ul 4!l 6ul 8ulT3u I ! " 4ul 6ul 8ul qoy! 12u 14u Tou ! ! !
Figure 5 - Echoing in Tme Warp
time required to simulate up to logical time is o EP;
oo EP;>0
n i:nlj(n+l) . My: 8 = DMaxEPi
> 2 O o EP,=0

o whereMaxEP; is the maximum value of ERbserved

We have thus shown thaire Warp takes 0(2) wall-  thus far After executing an event, LPe-computes),
clock time to simulate the specified physical systemand waits for & units of wall-clock time before
wheren is a measure of the logical time span of theproceeding to the next event. If a message is received

simulation run. during a wait period that will cause a rollback, the LP
aborts the waiting and proceeds to roll back. Since this
5.3 AAWP execution algorithm is a variant of thelastic time algorithm

We describe a specific NPSI adaptive protocol(ETA) described in [SrRe94], we will refer to it by the

based on the design framework described in section Same name.
The error potential (EP of each LR is given by the

following M: Figure 6 shows the execution of the simulation

using the protocol described above. The shaded lines
M;: EP, = 0,—GVT, represent waiting due to the adaptive protocol. It is
where GVT is the value of GVT made available to;LP evident from the diagram that the echoing observed

by the feedback system. N a function that maps Ep under Tme Warp (Figure 5) has been avoided since
into a wall-clock time delaﬁi, given by each rollback is of onIy unit Iength.

Figure 6 - Avoiding echoing with adaptive aggressiveness
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The discussion in section 4 justifies the followingfrom (n-1)u to nu and send a message with timestamp
assumption: nu to LPg. In [i-1:i), LPg advancesg from (n-1)u to
(n+1)u and sends a message ta-LBince LR sent a
message with timestanmpi to LPg at the end ofi[i+1),
op must be(n-1u at the end ofifl:i). Further LP,
received a message from g Bt the beginning ofi{1:i)
(because LR advances GVT). This implies kReould

For example, we may assume this latency is equal to Onot have built and sent a message te bBring -1:i).
wall-clock time units since an LP takes one wall-clockTherefore, LR must have rolled back during-T:i).
time unit to execute an event.

NPSI Assumption: A change in an LB’logical clock
value is reflected in the values of GVT visible to the
different LP5 in a fraction of the time it takes for an
LP to execute an event.

This meanss, must have been rolled back(f®1)u at
the beginning ofif1:i). By the NPSI assumption, at the
end of [-1i) GVTg=(n-u. Thus, og=(n+1)u,
EPs =2u, MaxER; =2u (by hypothesis) andg = 1.
ConsequentlyLPg waits during [:i+1). At the end of
Proor: The proof consists of induction on the amount|i:i+1), GVT = nu, LP, has sent a message with
of yvall—c_:lock time required for GVT to advance from timestampnu to LP; and LR has sent one false
logical time(n-1)u to nu.

THEOREM 2:  An execution of EchoSystem using
ETA takes 2-1 wall-clock time units to simulatau
units of logical time.

message to LP The message from |yPat the end of

Induction hypothesis: Forn= 2, 3, ... (i) it takes 2 units [i:i’_*l) causes LB to rp!l back and send one
of wall-clock time for GVT to advance from logical antimessage to LP (requiring one wall-clock time
time (n-L)u to nu, (i) MaxERy <= 2u, and unit). LP; uses another wall-clock time unit to process

(iif) MaxERz <= 2u. the message, advanag to (n+1)u and send a message
with timestamp(n+1)u to LPy. Thus, after two wall-

clock time units, GVT is advanced fronu to (n+1)u.
Since LR} controls the advance of GVT in these two

Base case: n = 2: Referring to Figure 6, at wall-clock
time 1 LR, is at logical timeu and has sent a message to
LPg while LPg is at logical time2u and has sent a false ) )
message to L Thus GVT=u at wall-clock time 1. Wall-clock time units, EF = 0 and consequently
The message from LPcauses LB to roll back to MaxERs = 2u. The actions of LR in this period are
logical time u and send an antimessage toclLP exactly the same as those of gefn the interval
requiring one wall-clock time unit. In the wall-clock [(i-1)u:(i+1)u) described earliett follows that MaxER
time interval [2:3), LB processes thg message, giso equals @

advance®p to 2u and sends a message with timestamy

2uback to LR. In the wall-clock time period [1:2), LP The total wall-clock time required to simulate

advanceso, to 3u, builds a message and sends it toynits of logical time is therefore given by the sum of the

LPc. Since LR rolls og back tou just after wall-clock  ajl-clock times required to simulate the windowsuJo:
time 1, by the NPSI assumption, at wall-clock time 2 weang i:nuy):

haveop = 3u, GVT, = u and therefore EP= 2u. Since
MaxEPR, was 0 initially MaxER, = 2u, giving o = 1.

Thus LR waits during the wall-clock time period [2:3).

Consequently at wall-clock time 3, GVE 2y,

MaxEP, = 2u and MaxER = 0.

n
1+ 2=2h-1 |
We have thus shown that ETtakes Of) wall-
clock time to simulate EchoSystem, whemeis a

i _ measure of the logical time span of the simulation run.
Induction step: Assume the hypothesis holds for the the corresponding completion time witime Warp is
logical time window (n-1)u:nu). As in the proof of r?) since the dference in completion times is not
Theorem 1, the gument is made that in any correct o nded by a constant for a given simulation, the

simulation of the specified physical system, (i) GVT 4qaniive protocol outperformsriie Warp arbitrarily
advances byu logical time units each time an LP

receives a message, processes it and sends it back ¢
(i) the actions of other LB’during this period cannot
influence this GVT advance. ithout loss of generality
assume LP takes 2 wall-clock time units (by

hypothesis), sayi{l:i) and [:i+1), to advance GVT

5.4 Pragmatic issues

We have described a specific W, the elastic
time algorithm (ER) and shown that it can outperform
Time Warp arbitrarily While the simulation for which
this phenomenon is observed is somewhat contrived,

8



ETA isnot. In [SrRe94] we describe an experiment on a
four-processor Time Warp implementation using a
workload very similar to EchoSystem. The experimental
set-up included a prototype high-speed reduction
network which was used to provide near-perfect state
information to implement ETA. In conformance with
our analysis here, we observed that the speedup of ETA
over Time Warp increased with the logical time span of
the smulation, i.e., the larger the maximum simulated
time, the larger the speedup.

6 Summary

The lack of consistent performance with the two
traditional approaches to synchronization in parallel
discrete event simulations (conservative and optimistic)
hasled to anumber of hybrid approaches. Many of these
have indeed demonstrated better performance under test
cases. An adaptive protocol, one that modifies itself in
response to changes in the smulation, appears to be the
most likely to perform well with a wide range of
simulations. However, there have been no analytical
studies comparing the performance of adaptive
protocols with that of traditional protocols. We present
the first known analytical comparison of adaptive
protocols with Time Warp. We demonstrate that it is
possible for Time Warp to arbitrarily outperform a class
of adaptive protocols we call asynchronous adaptive
wait protocols (AAWP's). Protocols in this class control
aggressiveness and risk by introducing independently
controlled delays at the LP's. This class is genera
enough to include many practical protocols. Conversely,
we describe a member of a new class of adaptive
protocols called NPSI adaptive protocols (which are a
subset of AAWP’s), and present an example in which
this protocol outperforms Time Warp arbitrarily. Thus,
while adaptive limiting of optimism appears to enhance
performance in practice, our study shows that care must
be taken in the design of AAWP's since incorrect
adaptive decisions can lead to arbitrarily worse
performance than Time Warp.
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