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1 Introduction
Historically, research in synchronization algorithms

(protocols) for parallel discrete event simulation
(PDES) has followed two tracks: conservative and
optimistic [Fuji90]. A significant result of this research
is that neither approach seems to be universally
efficient. As defined in [Reyn88],adaptive protocols are
those that modify their behavior dynamically in
response to changes in the state of the simulation.
Several adaptive protocols have been proposed and
implemented recently, with encouraging results.
However, there are no analytical studies comparing the
performance of adaptive protocols with that of
traditional protocols. While experiments have shown
that adaptively optimistic protocols improve on the
performance of the purely optimistic Time Warp
protocol [Jeff85] in general, it is interesting to question
whether they can perform worse than Time Warp. We
present a comparison of a general class of adaptive
protocols called the asynchronous adaptive waiting
protocols (AAWP’s) with Time Warp in the vein of the
worst-case comparison between the Chandy-Misra
protocol [ChMi79] and Time Warp in [LiMi90]. We
show that it is possible for Time Warp and AAWP’s to
outperform each other arbitrarily. Thus, while intuition
suggests that adaptive protocols should enhance
performance in general, our analysis indicates that they
must be designed carefully since incorrect adaptive
decisions can lead to arbitrarily worse performance than
Time Warp.

We assume familiarity with the common approach
to PDES [Fuji90], namely the partitioning of a discrete
event simulation into components called logical
processes (LP’s). Each LP is itself a sequential discrete
event simulator. The LP’s must execute events, whether
generated internally or scheduled by other LP’s, without
violating causality constraints (effectively). Typically,
this is the responsibility of aprotocol.

A conservative protocol is one in which an LP
executes an event only after determining that it is safe to
do so (i.e. no other event with a smaller timestamp will
be scheduled later). Thus, it is possible for an LP to
remain blocked for some period of time while there is
insufficient information to proceed with the next
scheduled event. Anoptimistic algorithm takes the
opposite approach in that LP’s execute events without
the guarantee of safety and “repair” their execution if
and when an error is detected, typically using a
checkpoint and rollback approach. In [Reyn88],
aggressiveness is defined to be the property by which an
LP processes events conditionally (i.e. without a
guarantee of safety) andrisk is defined as passing

messages that are based on aggressive or inaccurate
processing. Conservative protocols are non-aggressive
and without risk while optimistic protocols are
completely aggressive and with risk. Therefore, these
two classes of protocols represent the extremities of a
spectrum of possibilities.

Both conservative and optimistic strategies have
their pros and cons. The main advantage of conservative
protocols is that they do not have any checkpointing and
rollback overheads. However, processes may be blocked
due to insufficient information when in fact it would be
safe for them to proceed. This artificial blocking
[Reyn82] introduces lost-opportunity cost [SrRe94]. On
the other hand, optimistic protocols do not incur lost-
opportunity costs since processes never block. The main
hazard of optimistic protocols is that the checkpointing
and rollback costs may degrade performance severely.
The gap between these two extremes may be bridged
either by adding optimism to conservative protocols or
by limiting the optimism of purely optimistic protocols.
The inherently dynamic nature of simulations [NiRe90]
suggests that regardless of the approach to combine the
conservative and optimistic strategies, the hybrid
scheme must also be dynamic.Adaptive protocols are
those that change the bindings of one or more of their
design variables dynamically [Reyn88]. Adaptive
protocols that modify their aggressiveness and risk
(collectively called optimism) dynamically seem the
most likely to perform well consistently. Henceforth, we
will refer to such protocols simply as adaptive protocols.

Several protocols have been proposed that either
limit optimism in Time Warp or add optimism to
conservative protocols [SrRe94]. Most of these have
been shown to improve the performance of the protocols
from which which they are derived. Since all of these
results are experimental, it is interesting and important
to question whether adaptive protocols can perform
worse than traditional protocols. Our analysis shows
they can.

In the next section we define the AAWP class of
adaptive protocols and identify several members of this
class. We then show by example that Time Warp can
outperform an AAWP arbitrarily. Next, we describe a
framework for a family of adaptive protocols called
NPSI adaptive protocols (which are also AAWP’s).
Finally, we describe a specific NPSI adaptive protocol,
ETA, based on this framework and show that ETA can
outperform Time Warp by a factor proportional to the
amount of logical time simulated.
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2 Assumptions
The reader is referred to [Fuji90] for details of Time

Warp and related concepts. We assume the following for
all protocols in this paper:

• Each LP is located on its own processor.

• The protocols employ aggressive cancellation
and aggressive rollback.

The following assumptions defineasynchronous
adaptive waiting protocols (AAWP’s), the class of
adaptive protocols to which our analysis applies. These
protocols are based on Time Warp and control optimism
by introducing delays between event executions:

i) The simulation loop of an LP is as follows:

Note, we do not make any assumptions about the
particulars of the AAWP, such as criteria for
deciding if an LP should wait on a given iteration or
how long it should wait. We only assume that such
waiting occurs between event executions, if at all.
An LP aborts its waiting if it receives a message
that will cause it to roll back. A separate delay
scheme may be used to control risk.

ii) The waiting at each LP is asynchronous with
respect to the waiting at other LP’s.

iii) The actions of an LP that are relevant to the
analysis are: event execution, rollback and adaptive
waiting. We ignore overheads such as state saving,
receiving messages, global virtual time (GVT)
computation and fossil collection for simplicity; the
analysis can be extended to include these as well.

iv) The AAWP does not increase the capability of the
LP’s to guess computation. An increase in the
guessing power of an LP could compensate for any
deleterious effects of the adaptive control. Since an
LP’s guessing capability depends entirely on the
application being simulated, it is reasonable to
assume the AAWP cannot increase this capability.

v) Since adaptive waiting is expected to reduce
rollback costs, the depth (and therefore cost) of
each rollback is assumed to be bounded by a
constant for the AAWP. If the rollback costs are not

While not done

Process event

Wait for time δ >= 0

Rollback if necessary

Process received messages

Save state

Collect fossils

endwhile

bounded for the AAWP, our claim that an AAWP
can perform arbitrarily worse than Time Warp can
be shown trivially.

vi) Since the delay timeδ can be controlled directly by
the AAWP, it is assumed to be bounded by a
constant. Once again, if this were not true, our
claim that an AAWP can perform arbitrarily worse
than Time Warp can be shown trivially.

Several protocols that have been proposed and
implemented belong to the class of AAWP’s. In the
penalty based throttling scheme of [ReJe89], an LP that
has been rolling back excessively is made to block for
some period of time. This decision is made
independently of other LP’s. Similarly, in Adaptive
Time Warp [BaHo90], an LP may decide to block after
executing an event based on local history and statistical
estimation. In [Madi93], LP’s estimate each others’
logical clock values and block if their clock value
differs largely from that of another LP. In [HaTr94], a
real-time blocking window is computed each time an LP
executes an event and the LP blocks for an amount of
time equal to this window (which may be zero).
Similarly, in [FeTr94], an LP blocks probabilistically for
some amount of time after each event execution. The
new class of adaptive protocols we have described in
[SrRe94], which we call NPSI adaptive protocols, also
satisfy the AAWP assumptions. Windowing algorithms
in which the windows are computed individually for
different LP’s (such as Unified Distributed Simulation
system [McAf90] and Breathing Time Warp [Stei93])
are AAWP’s as well since the LP’s wait when they reach
the ceilings of their independent windows. Note, global
windowing algorithms do not fit the AAWP model since
the global window forces all LP’s to synchronize before
any of them can proceed. Protocols in which optimism
is limited based on spatial clustering [Gima89, RaAT93]
also satisfy our assumptions, since waiting may be
required at cluster boundaries where events are
exchanged conservatively and the clusters operate
asynchronously.

3 Time Warp outperforms AA WP’s
We show by example that an AAWP can take

arbitrarily longer than Time Warp to complete a
simulation. The intuition behind the example is this: on
the one hand, it is possible for Time Warp simulations to
execute very efficiently, with few rollbacks; on the other
hand, it is also possible for a Time Warp simulation to
generate many false events and consequent rollbacks
which can degrade its performance severely [LuWS91].
Errors in adaptive decisions regarding when and how
long to wait can cause a Time Warp execution to move
from the former category to the latter. In the example
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here, we show a situation where the AAWP induces a
false rollback chain that delays the committing of an
event (relative to the Time Warp execution) by at least
an amount of time proportional to the length of the
rollback chain. By arguing that this rollback chain can
be arbitrarily long, we show that the committing of an
event can be delayed arbitrarily.

Consider the Time Warp execution shown in
Figure 1. The x-axis denotes advance of wall-clock time
while the y-axis denotes the different LP’s. The numbers
below the events are their respective timestamps. A
dashed arrow indicates the causal dependence of an
event on a message (i.e. the event at the head of the

arrow was scheduled by the arrival of the message at the
tail of the arrow). The two important events to note in
this execution are: (i) the event with timestamp 140 at
LP1, which is causally dependent on a message from
LP0 that arrives just in time to be executed by LP1, and
(ii) the event with timestamp 165 at LP5, which is the
one whose committing execution will be delayed due to
an erroneous waiting decision.

Figure 2 shows an execution of the same simulation
as in Figure 1 using an AAWP. For simplicity, we
assume the initial conditions for the two executions are
the same except for one difference: both LP0 and LP1
wait for some time at the beginning of the portion of the

135
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149 157

148 152 158

156 150 156

140 165 170 175 180

154 162

Wall clock time

Figure 1 - Time Warp execution

Event execution - committed

Event execution - uncommitted

Rollback

Adaptive waiting
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Figure 2 - False rollback chain with cycle due to incorrect waiting
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execution depicted. Due to what will turn out to be an
error in the decision process, LP0 delays longer than
LP1. As a result, LP1 is ready to execute an event before
the message from LP0 arrives and causes the event with
timestamp 140 to be scheduled. LP1 executes its next
scheduled event (with timestamp 150) and sends a
message to LP2. Since we assume aggressive rollback,
this event is afalse one as it is executed out of order.
When the message from LP0 arrives later, this false
event is rolled back and an antimessage is sent to LP2.
However, the message sent to LP2 by the false event has
already intiated a chain of false events. The antimessage
starts a chain of rollbacks and antimessages that follows
close behind the chain of false events. Regarding these
two chains, we observe the following:

i) It is possible that the rollback chain catches up with
the false event chain immediately and thus
terminates both chains. However, the case that is
relevant to this discussion is the one shown in
Figure 2 where the rollback chain does not catch up
with the event chain until the latter reaches LP5 and
initiates an unnecessary rollback. This scenario is
feasible [LuWS91].

ii) The chains by themselves may be harmless - the
problem arises from the fact that the final false
message that arrives at LP5 (marked MF in Figure
2) has timestamp 160, which is smaller than 165,
the timestamp of the second event at LP5 (marked
ED in Figure 2). Thus, MF rolls back the first
execution of ED, even though that execution was
correct and could have been committed. ED is re-
executed after the false rollback completes.
Therefore, the committing execution ED is delayed
by at least an amount of time proportional to the
length of the false rollback chain.

iii) Each of the two chains has a cycle in it, involving
LP2, LP3 and LP4. While we have shown only one
iteration of this cycle, it is possible to have an
arbitrary number of iterations, i.e. the chains could
revisit these LP’s an arbitrary number of times
before reaching LP5.

iv) For the false event chain to delay the committing
execution of ED, the timestamp of MF must be
smaller than that of ED. Since we assume a correct
implementation of the underlying Time Warp
protocol and the application, it follows that logical
time must advance eventually as we traverse the
false event chain. Therefore, an arbitrarily long
chain would require that the timestamp of ED also
be arbitrarily large (we disregard pathological
situations such as when the false chain makes
diminishing advances in logical time such that the

timestamp of MF is bounded; such situations reflect
a flaw in the implementation - the physical system
being simulated cannot make diminishing progress
in real time!). The larger the timestamp of ED, the
less likely that its first execution is on the critical
path of the simulation, since other LP’s are farther
behind in logical time. Thus, while it is possible for
the false chains to be arbitrarily long, the
probability that these chains are damaging to the
simulation decreases with the length of the chain.
However, the probability is not zero - we can
imagine a simulation where ED marks the transition
to a new phase of simulated time, i.e., the entire
simulation makes a “jump” in logical time to the
next phase of activity. If so, the delaying of ED
could cause the entire phase transition to be
delayed.

v) It is possible to have very long false chains which
do not span much logical time, as shown in Figure
2. Here, logical time does not increase in an
iteration of the cycle in the false chain; it increases
only across iterations. Thus, the timestamp of MF is
small but the chains are long.

vi) Finally, even if the lengths of the chains are
bounded (by some means), it is possible to have an
arbitrary number of instances of such chains in the
course of a single simulation run.

In summary, we have shown by example that the
committing execution of an event may be delayed
(relative to the Time Warp execution) by an arbitrary
amount of time due to false events and rollbacks created
by errors in the waiting decision.

3.1 Lazy cancellation
Since the events in the rollback chain are false

events (i.e. they should not have been generated), they
will have to be rolled back even under lazy cancellation.
Thus, the example holds under lazy cancellation as well.
In fact, the problem is aggravated to a certain extent
with lazy cancellation because the initial antimessage
generated by the rollback of the event with timestamp
150 at LP1 will be delayed until LP1 crosses time 150
after executing the event with timestamp 140. Thus, the
physical time lag between the two chains may be longer,
allowing the false event chain to propagate farther.

3.2 Lazy rollback
The commitment of the first execution of ED in the

Time Warp execution implies that the event with
timestamp 150 at LP1 must be a false one even with lazy
rollback. Thus, the two chains will be generated in this
case also. However, ED may not be rolled back when
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MF arrives. This can happen due to one of the following:
(i) MF has no impact on the state in which ED was
executed, or (ii) the rollback chain arrives at LP5 while
LP5 executes the event scheduled by MF so that when
the execution is complete (or is preempted, assuming
event preemption), it is cancelled immediately and the
operating state for ED is not affected. However, even if
the final execution of ED is not delayed, the advance of
GVT* beyond 165 will be delayed by at least the
amount of time it takes for the chains to disappear. Since
GVT is the commitment horizon for events [Jeff85], the
committing of ED can be delayed arbitrarily even with
lazy rollback.

3.3 Pragmatic issues
We have identified a general class of adaptive

protocols, the AAWP’s, and shown that it is possible for
Time Warp to outperform them by an arbitrary amount.
Since several practical protocols belong to the AAWP
class, this counter-intuitive result suggests that AAWP’s
must be designed with care. Correspondingly, while we
have developed several very effective NPSI adaptive
protocols [SrRe94], we have also discovered some that
perform no better than Time Warp and some that
perform worse.

It is possible to modify protocols so as to avoid the
scenario described earlier. However, it is not clear
whether doing so will be beneficial in the general case.
Moreover, since there may be other scenarios similar to
the one we have described, establishing a property of
AAWP’s that avoids this scenario cannot guarantee that
Time Warp will not outperform AAWP’s by more than a
constant factor.

4 NPSI adaptive protocols
We describe a design framework for a new class of

adaptive protocols. This framework will be used in
section 5.3 to define a specific adaptive protocol that
outperforms Time Warp by a factor proportional to the
length of the simulation run. We call this new class
near-perfect state information (NPSI) adaptive
protocols because these protocols assume the
availability of near-perfect information at each LP about
the state of the system, at little or no cost to the
simulation. The adaptive waiting decisions of LP’s are
based on this NPSI. In practice, such information can be
disseminated using a high-speed reduction network
[PaRe93] at almost no cost to the simulation. Our
studies [SrRe93] have shown that such a network can
disseminate critical information to the LP’s at latencies

* Global virtual time is the minimum of all logical clocks
and timestamps of any messages in transit [Jeff85].

that are two or three orders of magnitude smaller than
typical event execution times (i.e microseconds versus
milliseconds). We have designed and implemented
NPSI protocols over a prototype reduction network with
very encouraging results. A more detailed discussion on
the rationale behind NPSI protocols, their design and
performance can be found in [SrRe94].

There are two phases in the design of NPSI
adaptive protocols:

• identifying the information that must be
collected dynamically and on which the
decision to limit optimism is to be based

• designing the mechanism that translates the
collected information into control over an LP’s
aggressiveness and risk

The framework depicted in Figure 3 separates these
phases by introducing a quantity we call error
potential (EPi), associated with each LPi. EPi is an
estimate of the need for LPi to dcrease its optimism. The
mapping M1 translates the relevant NPSI to a value of
EPi. The NPSI adaptive protocol keeps EPi up-to-date
for each LPi as the simulation progresses, by evaluating
M1 at high frequency using state information it receives
from the feedback system. M2 dynamically reflects new
values of EPi in the event execution and communication
rates. Different NPSI adaptive protocols may be
constructed by designing the mappings M1 and M2.
Note, these mappings only specify if an LP should wait
and how long it should wait; the general structure of
NPSI protocols conforms to the AAWP model in section
2.

5 AAWP’s outperform T ime Warp
We show by example that Time Warp can take

arbitrarily longer than an AAWP to complete a
simulation. Our approach is to describe the execution of
a simulation using both Time Warp and a specific
AAWP. We show that Time Warp takes an amount of
time that is quadratic in the amount of logical time
simulated while the AAWP takes linear time. Since the
difference in completion times is not bounded by a

Figure 3 - Framework for NPSI adaptive protocols

Error Potential

Event
processing

and

M1 M2

message
sending

System
State
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constant for a given simulation, the AAWP outperforms
Time Warp arbitrarily.

5.1 Physical system
The system we consider for simulation was

described previously in [LuWS89] as an example of
“echoing” in Time Warp. We refer to it as EchoSystem.
It consists of three physical processes (PP’s), A, B and C
with the communication topology shown in Figure 4.
Upon receiving a message from PPA, PPB processes it
and sends a message to PPA and vice-versa. If no
message is received from the other, both of them
prepare a message to send to PPC. If a message arrives
when one is being created or sent to PPC, that sending is
aborted and the new message is processed. Sending and
receiving of messages takes no time. Processing a
message from PPA (PPB) takesu real time units on PPB
(PPA). Preparation of a message to PPC takes 2u real
time units. Suppose at time 0 PPA receives the first
message from PPB. Then it may be verified that the only
message traffic that occurs in this system is between
PPA and PPB at intervals ofu real time units. The idle
periods between intervals are insufficient to build a
message to PPC. Note, real time in the physical system
corresponds to logical time in the simulator.

For the simulator, we assume the following:
processing a message between PPA and PPB takes one
unit of wall-clock time (including sending the follow-on
message), preparing a message to PPC takes one time
unit and sending of an antimessage also takes one time
unit. LP’s advance their simulation clocks to the
timestamp of the next eventafter executing that event.
We assume this to simplify the proofs - the theorems can
be proven even if it is assumed that logical clocks are
advanced before commencing event execution. LPC is
assumed to perform its work fast enough so that its
actions are irrelevant to the discussions and proofs.σX
denotes the logical clock value of LPX.

PPA

PPB

PPC

Figure 4 - Physical system for echoing

5.2 Time Warp execution
The Time Warp execution of this simulation is

shown in Figure 5. The x-axis represents wall-clock
time. The numbers (in multiples ofu) at the junctions of
the LP time lines and the unit time intervals indicate the
logical time to which the LP’s have simulated (i.e. the
logical clock value of the LP). A solid arrow indicates a
message transmission while a dashed arrow indicates an
antimessage transmission. The bold lines at various
points on the time lines of LPA and LPB indicate
rollback. From the picture, the echoing is evident
immediately in the fact that the two LP’s roll back
alternately, with increasing amplitudes.

THEOREM 1: A Time Warp execution of
EchoSystem takesn(n+1)/2 wall-clock time units
to simulatenu units of logical time.

PROOF: The theorem is proved by induction on the
amount of wall-clock time required for GVT to advance
from logical time(n-1)u to nu.

Induction hypothesis: It takes n units of wall-clock
time for GVT to advance from logical time(n-1)u to nu.

Base case: n = 1: From Figure 5 we see that in the first
wall-clock time interval (i.e. wall-clock time [0:1)) LPA
advancesσA to u and LPB advancesσΒ to 2u. Thus,
GVT has advanced from 0 tou in one wall-clock time
unit and the hypothesis holds.

Induction step: Assume the hypothesis holds for the
logical time window [(n-1)u:nu). Recall that the
message traffic in the physical system consists only of
the single message being exchanged by LPA and LPB.
Thus, in any correct simulation of this system, GVT
advances byu logical time units each time an LP
receives this message, processes it and sends it back.
During this process, the actions of other LP’s cannot
affect GVT. Without loss of generality, assume LPA
takes n wall-clock time units to advance GVT from
(n-1)u to nu (by induction hypothesis). In thesen wall-
clock time units, LPB will send n messages to LPC.
Thus, at the end of [(n-1)u:nu), LPA has just sent a
message to LPB with timestampnu and LPB has sentn
false messages to LPC. Therefore, LPB takesn wall-
clock time units to send then antimessages to LPC and
one wall-clock time unit to process the message,
advanceσB to (n+1)u and send the message back to
LPA with timestamp(n+1)u. At this point, GVT will
have advanced to logical time(n+1)u, requiring n+1
wall-clock time units to do so. Thus the total wall-clock
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time required to simulate up to logical timenu is

. ■

We have thus shown that Time Warp takes O(n2) wall-
clock time to simulate the specified physical system,
where n is a measure of the logical time span of the
simulation run.

5.3 AAWP execution
We describe a specific NPSI adaptive protocol

based on the design framework described in section 4.
The error potential (EPi) of each LPi is given by the
following M1:

M1 :

where GVTi is the value of GVT made available to LPi
by the feedback system. M2 is a function that maps EPi
into a wall-clock time delay, δi, given by:

i
i 1=

n

∑ n n 1+( )⋅
2

---------------------------=

EPi σi GVTi–=

M2 :

whereMaxEPi is the maximum value of EPi observed
thus far. After executing an event, LPi re-computesδi
and waits for δi units of wall-clock time before
proceeding to the next event. If a message is received
during a wait period that will cause a rollback, the LP
aborts the waiting and proceeds to roll back. Since this
algorithm is a variant of theelastic time algorithm
(ETA) described in [SrRe94], we will refer to it by the
same name.

Figure 6 shows the execution of the simulation
using the protocol described above. The shaded lines
represent waiting due to the adaptive protocol. It is
evident from the diagram that the echoing observed
under Time Warp (Figure 5) has been avoided since
each rollback is of only unit length.

δi

EPi

MaxEPi
--------------------- EPi 0>

0 EPi 0=




=

u

Figure 5 - Echoing in Time Warp
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Figure 6 - Avoiding echoing with adaptive aggressiveness
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The discussion in section 4 justifies the following
assumption:

NPSI Assumption: A change in an LP’s logical clock
value is reflected in the values of GVT visible to the
different LP’s in a fraction of the time it takes for an
LP to execute an event.

For example, we may assume this latency is equal to 0.1
wall-clock time units since an LP takes one wall-clock
time unit to execute an event.

THEOREM 2: An execution of EchoSystem using
ETA takes 2n-1 wall-clock time units to simulatenu
units of logical time.

PROOF: The proof consists of induction on the amount
of wall-clock time required for GVT to advance from
logical time(n-1)u to nu.

Induction hypothesis: Forn = 2, 3, ... (i) it takes 2 units
of wall-clock time for GVT to advance from logical
time (n-1)u to nu, (ii) MaxEPA <= 2u, and
(iii) MaxEPB <= 2u.

Base case: n = 2: Referring to Figure 6, at wall-clock
time 1 LPA is at logical timeu and has sent a message to
LPB while LPB is at logical time2u and has sent a false
message to LPC. Thus GVT= u at wall-clock time 1.
The message from LPA causes LPB to roll back to
logical time u and send an antimessage to LPC,
requiring one wall-clock time unit. In the wall-clock
time interval [2:3), LPB processes the message,
advancesσB to 2u and sends a message with timestamp
2u back to LPA. In the wall-clock time period [1:2), LPA
advancesσA to 3u, builds a message and sends it to
LPC. Since LPB rolls σB back tou just after wall-clock
time 1, by the NPSI assumption, at wall-clock time 2 we
haveσA = 3u, GVTA = u and therefore EPA = 2u. Since
MaxEPA was 0 initially, MaxEPA = 2u, giving δA = 1.
Thus LPA waits during the wall-clock time period [2:3).
Consequently, at wall-clock time 3, GVT= 2u,
MaxEPA = 2u and MaxEPB = 0.

Induction step: Assume the hypothesis holds for the
logical time window [(n-1)u:nu). As in the proof of
Theorem 1, the argument is made that in any correct
simulation of the specified physical system, (i) GVT
advances byu logical time units each time an LP
receives a message, processes it and sends it back and
(ii) the actions of other LP’s during this period cannot
influence this GVT advance. Without loss of generality,
assume LPA takes 2 wall-clock time units (by
hypothesis), say [i-1:i) and [i:i+1), to advance GVT

from (n-1)u to nu and send a message with timestamp
nu to LPB. In [i-1:i), LPB advancesσB from (n-1)u to
(n+1)u and sends a message to LPC. Since LPA sent a
message with timestampnu to LPB at the end of [i:i+1),
σA must be(n-1)u at the end of [i-1:i). Further, LPA

received a message from LPB at the beginning of [i-1:i)
(because LPA advances GVT). This implies LPA could
not have built and sent a message to LPC during [i-1:i).
Therefore, LPA must have rolled back during [i-1:i).
This meansσA must have been rolled back to(n-1)u at
the beginning of [i-1:i). By the NPSI assumption, at the
end of [i-1:i) GVTB = (n-1)u. Thus, σB = (n+1)u,
EPB = 2u, MaxEPB = 2u (by hypothesis) andδB = 1.
Consequently, LPB waits during [i:i+1). At the end of
[i:i+1), GVT = nu, LPA has sent a message with
timestamp nu to LPB and LPB has sent one false
message to LPC. The message from LPA at the end of
[i:i+1) causes LPB to roll back and send one
antimessage to LPC (requiring one wall-clock time
unit). LPB uses another wall-clock time unit to process
the message, advanceσB to (n+1)u and send a message
with timestamp(n+1)u to LPA. Thus, after two wall-
clock time units, GVT is advanced fromnu to (n+1)u.
Since LPB controls the advance of GVT in these two
wall-clock time units, EPB = 0 and consequently,
MaxEPB = 2u. The actions of LPA in this period are
exactly the same as those of LPB in the interval
[(i-1)u:(i+1)u) described earlier. It follows that MaxEPA
also equals 2u.

The total wall-clock time required to simulatenu
units of logical time is therefore given by the sum of the
wall-clock times required to simulate the windows [0:u)
and [u:nu):

■

We have thus shown that ETA takes O(n) wall-
clock time to simulate EchoSystem, wheren is a
measure of the logical time span of the simulation run.
The corresponding completion time with Time Warp is
O(n2). Since the difference in completion times is not
bounded by a constant for a given simulation, the
adaptive protocol outperforms Time Warp arbitrarily.

5.4 Pragmatic issues
We have described a specific AAWP, the elastic

time algorithm (ETA) and shown that it can outperform
Time Warp arbitrarily. While the simulation for which
this phenomenon is observed is somewhat contrived,

1 2
i 2=

n

∑+ 2 n⋅ 1–=
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ETA is not. In [SrRe94] we describe an experiment on a
four-processor Time Warp implementation using a
workload very similar to EchoSystem. The experimental
set-up included a prototype high-speed reduction
network which was used to provide near-perfect state
information to implement ETA. In conformance with
our analysis here, we observed that the speedup of ETA
over Time Warp increased with the logical time span of
the simulation, i.e., the larger the maximum simulated
time, the larger the speedup.

6 Summary
The lack of consistent performance with the two

traditional approaches to synchronization in parallel
discrete event simulations (conservative and optimistic)
has led to a number of hybrid approaches. Many of these
have indeed demonstrated better performance under test
cases. An adaptive protocol, one that modifies itself in
response to changes in the simulation, appears to be the
most likely to perform well with a wide range of
simulations. However, there have been no analytical
studies comparing the performance of adaptive
protocols with that of traditional protocols. We present
the first known analytical comparison of adaptive
protocols with Time Warp. We demonstrate that it is
possible for Time Warp to arbitrarily outperform a class
of adaptive protocols we call asynchronous adaptive
wait protocols (AAWP’s). Protocols in this class control
aggressiveness and risk by introducing independently
controlled delays at the LP’s. This class is general
enough to include many practical protocols. Conversely,
we describe a member of a new class of adaptive
protocols called NPSI adaptive protocols (which are a
subset of AAWP’s), and present an example in which
this protocol outperforms Time Warp arbitrarily. Thus,
while adaptive limiting of optimism appears to enhance
performance in practice, our study shows that care must
be taken in the design of AAWP’s since incorrect
adaptive decisions can lead to arbitrarily worse
performance than Time Warp.

Acknowledgments
We are grateful to Bronis de Supinski for proof

reading the paper and for his insightful comments. We
thank Craig Williams for her suggestions. This work
was supported by Mystech, Inc. (Academic Affiliates
Program).



References
[BaHo90] Ball, D. and Hoyt, S., “The adaptive Time-

Warp concurrency control algorithm”,Proceedings
of the SCS Multiconference on Distributed
Simulation, January 1990, 174-177.

[ChMi79] “Distributed Simulation: A case study in the
design and verification of distributed programs”,
IEEE Transactions on Software Engineering,
Vol. SE-5, No. 5 (September 1979), 440-452.

[FeTr94] Ferscha, A. and Tripathi, S.K., “Parallel and
distributed simulation of discrete event systems”,
University of Maryland at College Park Technical
Report number CS-TR-3336, August 1994.

[Fuji90] Fujimoto, R.M., “Parallel discrete event
simulation”,Communications of the ACM, Vol. 33,
No. 10, October 1990, 30-53.

[Gima89] Gimarc, R.L., “Distributed simulation using
hierarchical rollback”,Proceedings of the 1989
Winter Simulation Conference, 1989, 621-629.

[HaTr94] Hamnes, D.O. and Tripathi, A., “Evaluation
of a local adaptive protocol for distributed discrete
event simulation”, Proceedings of the 1994
International Conference on Parallel Processing,
August 1994, Vol. III, 127-134.

[Jeff85] Jefferson, D.R., “Virtual time”, ACM
Transactions on Programming Languages and
Systems, Vol. 7, No. 3, July 1985, 404-425.

[LiMi90] Lipton, R.J. and Mizell, D.W., “Time Warp
vs. Chandy-Misra: A worst-case comparison”,
Proceedings of the 1990 SCS Multiconference on
Distributed Simulation, January 1990, 137-143.

[LuWS89]Lubachevsky, B., Weiss, A. and Shwartz, A.,
“Rollback sometimes works . . . if filtered”,
Proceedings of the 1989 Winter Simulation
Conference, December 1989, 630-639.

[LuWS91]Lubachevsky, B., Weiss, A. and Shwartz, A.,
“An analysis of rollback-based simulation”,ACM
Transactions on Modeling and Computer
Simulation, Vol. 1, No. 2, April 1991, 154-193.

[Madi93] Madisetti, V.K., “Randomized algorithms for
self-synchronization”, Private communication,
1993.

[McAf90] McAffer, J., “A unified distributed
simulation system”,Proceedings of the 1990 Winter
Simulation Conference, 1990, 415-422.

[NiRe90] Nicol, D.M. and Reynolds, P.F., Jr., “Optimal
dynamic remapping of parallel computations”,
IEEE Transactions on Computers, Vol. 39, No. 2,
February 1990.

[PaRe93] Pancerella, C.M. and Reynolds, P.F., Jr.,
“Disseminating critical target-specific
synchronization information in parallel discrete event
simulations”, Proceedings of the 7th Workshop on
Parallel and Distributed Simulation, May 1993, 52-
59.

[RaAT93] Rajaei, H., Ayani, R. and Thorelli, L-E., “The
Local Time Warp approach to parallel simulation”,
Proceedings of the 7th Workshop on Parallel and
Distributed Simulation, May 1993, 119-126.

[ReJe89] Reiher, P.L. and Jefferson, D., “Limitation of
optimism in the Time Warp operating system”,
Proceedings of the 1989 Winter Simulation
Conference, December 1989, 765-770.

[Reyn82] Reynolds, P.F., Jr., “A shared resource
algorithm for distributed simulation”,Proceedings of
the 9th Annual Symposium on Computer Architecture,
April 1982.

[Reyn88] Reynolds, P.F., Jr., “A spectrum of options for
parallel simulation”,Proceedings of the 1988 Winter
Simulation Conference, December 1988, 325-332.

[SrRe93] Srinivasan, S. and Reynolds, P.F., Jr., “Non-
interfering GVT computation via asynchronous
global reductions”,Proceedings of the 1993 Winter
Simulation Conference, December 1993, 740-749
(available by anonymous FTP from
ftp.cs.virginia.edu/pub/techreports/CS-93-17.ps.Z).

[SrRe94] Srinivasan, S. and Reynolds, P.F., Jr., “NPSI
adaptive synchronization algorithms for PDES”,
Technical report number CS-94-44, Department of
Computer Science, University of Virginia, November
8, 1994 (submitted to the 1995 Winter Simulation
Conference - available by anonymous FTP from :
ftp.cs.virginia.edu/pub/techreports/CS-94-44.ps.Z).

[Stei93] Steinman, J.S., “Breathing Time Warp”,
Proceedings of the 7th Workshop on Parallel and
Distributed Simulation, May 1993, 109-118.


