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Abstract

This paper describes the details of a hardware realization of a framework to support parallel
discrete event simulation [Reyn92]. We first motivate the need for hardware to compute and
disseminate critical synchronization information in all parallel simulations. We establish
correctness criteria and functional requirements of the framework hardware. We then describe
details of a completed prototype design which is expected to be operational Summer, 1992.
Throughout this discussion, we show how our design goals of speed, scalability, adaptability,
and generality have been met. Our framework offloads all parallel simulation synchronization
overhead from host processors and the host communication network in a closely coupled
network of high-speed computers.
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1. Introduction

Despite the fact that parallel simulation and the potential speed-up it offers are regarded as
crucial to many applications — digital network simulation, military simulations, air traffic
control simulations, and the like — very few efforts have focussed on specialized hardware to
support parallel simulation. Exceptions include Fujimoto’s rollback chip [FuTG92] and virtual
computer [Fuji89] efforts, Filoque’s global virtual time (GVT) network [FiGP91] and our own
framework [Reyn92]. Recent simulation results [Srin92] show beyond a doubt that specialized
hardware such as the framework we describe here can yield significant benefits to parallel
simulations.

We describe the details of a hardware realization of the framework described in [Reyn92].
This description is based on a completed design of a four-node prototype expected to be
operational Summer, 1992. This prototype is designed to interface with a Sparc Cluster — a set
of Sparc-1e engines connected through a VME backplane. The interface to the Sparcs is through
the Sun SBus.

Goals of the design include speed, scalability, adaptability and generality. Simulations
project our framework hardware will be able to compute GVT asynchronously in 10 to 20
microseconds on a 32-node system, easily two orders of magnitude faster than on conventional
parallel processor host networks. While the prototype design includes a synchronous reduction
network for speed, a scalable asynchronous design has been completed. We chose to go with the
synchronous design in the prototype to reduce potential problems such as race conditions and to
extract speed reliably. To achieve adaptability — the potential to interface to any parallel
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processor — we have isolated the SBus interface completely. Interconnection to other parallel
processors or through alternate channels has been kept simple. We have kept the network
general by incorporating high-speed general purpose ALU’s in the reduction network. All
operations, including 32-bit fixed-point arithmetic, can be performed in less than 40
nanoseconds. The importance of attaining our goals will become clearer in the remainder of this
paper.

In the sections that follow we present a brief overview of the framework first described in
[Reyn91]. The ease and speed with which important synchronization values such as Time
Warp’s GVT can be computed will be made evident. Also, we present a set of correctness
criteria for the hardware portion of the framework. Race conditions were a persistent problem
that had to be addressed from the outset. Following that we describe the hardware prototype in
detail, and close with a discussion of the future directions of our effort.

2. Motivation: Using Globally Reduced Values in Support of Parallel Simulations

Three components integral to the design of a low-level framework supporting parallel
discrete event simulation (PDES) are: (1) small sets of global values needed by various PDES
synchronization protocols, (2) a hardware-based method for rapidly reducing and disseminating
these values, and (3) algorithms for using disseminated information to enhance efficiency in a
parallel simulation. Throughout this paper we use the term "framework" to refer to these three
components. Sets of global values can be computed by performing reductions on input values
across all processors. The high-speed framework hardware [RePa92] rapidly computes and
disseminates these values; the framework hardware we propose consists of a parallel reduction
network (PRN) augmented with dedicated processors to manage the high frequency I/O from the
network and execute synchronization algorithms. The algorithms calculate input values to the
reduction operations and use the global output values to synchronize logical processes in any
PDES. We discuss how rapidly reduced values can support various PDES synchronization
protocols first. In the remainder of the paper we elaborate on the design of our framework
hardware, the parallel reduction network and its interfaces.

Critical synchronization information can be disseminated in the form of reductions
performed on values provided by logical processes (LP’s). The underlying hardware computes
and rapidly disseminates results of global reduction operations; reductions are binary,
associative operations — for example, sum, minimum, maximum, logical AND, logical OR, etc.
— performed on data across all processors. The success of disseminating global synchronization
values is contingent on the high speed at which these values are made available to all processes.
We expect a new global value to be emitted from the reduction network every 150 nanoseconds.

One such set of globally reduced values and related synchronization algorithms have been
presented in detail in [Reyn92] and [Panc92]. The values computed are the minimum next event
time and the minimum logical timestamp of messages that have been sent but not acknowledged.
These values, along with synchronization algorithms to correctly maintain them, are sufficient to
eliminate causality errors and support deadlock-free parallel simulation even when message
traffic is always present. The elimination of causality errors allows an LP to recognize when it
can commit to processing an irreversible act such as I/O.

Simulations [Srin92] show that messages can be acknowledged efficiently in a high-speed
reduction network (as proposed by [Panc92]) in order to support the maintenance of a minimum
outstanding message time. Message acknowledgements in a reduction network are supported by
tagged selective reduction operations; in a selective reduction operation, such as minimum or
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maximum, a tag accompanies the "winning" value of the binary operation. The tag field for a
message acknowledgement is a unique message ID.

In an aggressive PDES synchronization protocol (See [Reyn88].), such as Time Warp
[Jeff85], GVT can be efficiently computed by an LP at any time using our framework; it is
simply, by definition, the minimum of the two globally reduced values: minimum next event
time and minimum outstanding message time. GVT computation and dissemination in this
hardware-based framework is a significant improvement in algorithm complexity and
implementation efficiency over previously proposed GVT maintenance schemes ([Jeff85],
[JeSo85], [Sama85], [LiLa89], [Bell90], [CoKe91]).

Researchers have shown that minimum event processing times and lookahead values can
produce significant performance improvements in a non-aggressive PDES protocol (See
[Fuji87], [Fuji88], [ReMM88], and [FeKl92].). A hardware-based framework can be used to
calculate and disseminate the smallest future time that an LP can send event messages. Each LP
computes the value it submits to this reduction based on its current local clock and its minimum
processing time.

In addition to lookahead values, another possible enhancement to parallel simulations may
be the rapid dissemination of reduction values which estimate the maximum (or minimum) rate
at which an LP is processing events. If each LP submits a current estimate of its rate of
simulation, the fastest (or slowest) LP (with respect to logical time) can be identified. In
[FeKl90] the authors show analytically that a Time Warp simulation can be more efficient if a
faster LP is slowed down; they do not propose how the information might be propagated. We
have a hardware-based framework for disseminating this information easily.

Iterative PDES algorithms, such as Bounded Lag [Luba88], Moving Time Window
[SoBW88], and the aggressive Global Windowing Algorithm discussed in [DiRe92], require the
rapid computation and dissemination of ceiling values or fault values. Lubachevsky has
recognized that a special-purpose network can be used to broadcast a minimum event time in his
bounded lag protocol [Luba88]; a reduction network can efficiently support this PDES algorithm
and other PDES windowing algorithms. The efficiency of these algorithms can be increased
since these algorithms typically rely on a host network, much slower than our hardware, to
disseminate windowing values. Furthermore, additional global reduction values, such as a
minimum outstanding message time or a minimum next event time, could enhance iterative
algorithms. For example, a window may be enlarged by including this additional knowledge.

Finally, the challenge of global termination detection and the calculation of output
measures in a PDES [AbRi91] can be realized easily within our framework. Many global
termination conditions — for example, sums and boolean operations — can be calculated and
disseminated efficiently in a reduction network. Unlike Chandy and Lamport’s distributed
snapshot algorithm [ChLa85], a framework consisting of synchronization values and related
algorithms can be used to evaluate termination conditions even when there are outstanding
messages in the parallel simulation. As mentioned above, computing minimum unreceived
message times and acknowledging messages in a reduction network can be used in order to
detect outstanding messages in a system. Moreover, a sum of the number of all messages sent
minus messages received at all LP’s can be computed in a reduction network to detect
outstanding messages in the system. If this value is maintained correctly, a sum of zero indicates
that there are no outstanding messages in the host communication network.
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Our hardware-based framework supports the computation and dissemination of all of the
values just discussed, across all processors without coordination of host processors, i.e., without
barrier synchronization. The reduction network interfaces with dedicated auxiliary processors
that manage the high speed I/O from the network. Employing auxiliary processors provides a
separation of the synchronization activity (performed on auxiliary processors) and the
application being simulated (performed on host processors). In sum, our framework offloads all
parallel simulation synchronization overhead from host processors and the host network.

3. A Top-level View

Often sets of values such as those mentioned above have temporal relationships that must
be preserved. In this section we discuss steps to ensure that necessary temporal relations can be
maintained.

3.1. Correctness Criteria

There are two properties that must be ensured in the design of the framework hardware in
order to maintain temporal relations among globally reduced values and, thus, to guarantee
correctness of synchronization algorithms: (1) atomicity of read accesses to an instance of
globally reduced values and (2) order preservation of inputs from a given LP. Meeting these
requirements in hardware is challenging; hence, interfaces into and out of the reduction network
must be designed with care.

When the PRN computes multiple reductions representing a state of a simulation, it is
crucial that each LP can access the globally reduced values atomically to guarantee that the
values represent a consistent global state. In addition to atomicity, some synchronization
algorithms [Reyn92] require that the order an LP changes values input to the network be
preserved in global counterparts by the underlying hardware. This is necessary, for example, if
an LP sends a message, updates a minimum unreceived message time, and then changes its
current next event time, other LP’s must see any effect that the unreceived message time has on
its global minimum no later than the effect its new next event on the global minimum next
event time is seen in the system. This ordering constraint prevents race conditions that can cause
global reduction values to reflect an incorrect global state.

The no later than ordering property suggests that if two reduction input values, v 1 i and
v 2 i , are updated in order, this ordering must be guaranteed at two times: (1) when values enter
the reduction network and (2) when their globally reduced counterparts leave it. There is no
simple way to guarantee that an LP will see globally reduced values in exactly the same order in
which they had local changes submitted to them on an input side of the network. Even if the
network is designed to input local values from an LPi in the order in which LPi changes them,
and therefore emit any changes to globally reduced values in the same order, when the network
emits these values, there is no simple way to guarantee that they will be processed in the same
order. This is compounded further by the fact that a "well-intentioned" LP may not see changes
in global values in the desired order. This can occur with the following sequence of events:

LPi changes v 1 i .
Reduction network reads v 1 i .
LPi changes v 2 i .
Reduction network reads v 2 i .
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LPj reads old globally reduced v 1 ′ (i.e. without impact of v 1 i).
Reduction network emits new v 1 ′ (i.e. with impact of v 1 i).
Reduction network emits new v 2 ′ (i.e. with impact of v 2 i).
LPj reads new v 2 ′.

Note, with these events, that LPj is reading reduced values in the "proper order". Also note that
LPj will not always know the "proper reading order", i.e. it may not be the case that v 1 i is
always changed before v 2 i . We conclude the hardware should compute different binary,
associative operations across state vectors of values. Each element of a state vector is an input to
a binary, associative operation. The state vector is the basic unit of operation in an
implementation of the framework hardware: the hardware reads a state vector of size m,
computes m globally reduced values, and writes a globally reduced state vector. The hardware
must guarantee that a partial or incomplete global state vector is never seen by the application.
State vectors are sufficient to ensure the no later than property; they keep logically related data
together, capture consistent snapshots of the application, and avoid race conditions. Application
programs, in turn, must then guarantee that state vectors which are fed into the reduction
network represent valid states.

There are two interesting ways in which an auxiliary processor may modify its local state
vector. It is desirable that the hardware support these cases:

1) atomic write without overwrite — one or more of the values in the state vector are
changed effectively simultaneously and further changes to the local state vector are not
made until the network reads the state vector; and
2) atomic write with overwrite — one or more of the local values are changed effectively
simultaneously, yet further changes to the local state vector may be made prior to the
network reading the state vector.

We now discuss a hardware design for a parallel reduction network which supports PDES
in a manner consistent with our established correctness criteria.

3.2. A Functional View of the Framework Hardware

A top-level view of the system including the framework hardware appears in Figure 1. The
host system for the framework hardware is a closely coupled network of high-speed processors
with its own network for interprocess communication. This host network is independent of the
framework hardware. In our prototype the host system is a Sparc Cluster where Sparcs can
communicate through a VME backplane.

Each host processor (HP) is paired with a corresponding auxiliary processor (AP) which
interfaces directly to the reduction network. The general-purpose auxiliary processors, one
processor per host processor, provide the interface between host processors and the reduction
network. There is a high-speed bidirectional communication channel between a host processor
and its corresponding auxiliary processor. The prototype interface between a host, a Sparc-1e,
and the 32-bit general purpose auxiliary processor, a 25 MHz Motorola 68020, is a dual-ported
RAM connecting the Sun SBus and the auxiliary processor. The SBus has a bandwidth of about
100 megabytes per second for 32-bit words [SBus90]. We expect a potential throughput of 25
megabytes per second from host to auxiliary processor.

Each AP has 256 Kbytes of RAM — expandable up to 1Mbyte — to store synchronization
programs and related data structures (See [Reyn92], [Panc92], and [Srin92].). Furthermore, each
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AP has 128 Kbytes of EPROM to store a boot-up monitor which is executed upon reset.

The addition of auxiliary processors at the interface to the reduction network facilitates the
management of high-frequency data coming out of the network. We estimate a new state vector
to be written every 150 * m nanoseconds, where m is the number of elements in a state vector.
The AP’s are responsible for inserting state vectors into the PRN as well but with much lower
frequency since this is performed under program control.

High speed synchronization activity in the parallel simulation framework is performed on
the dedicated AP’s. Host processors are responsible for executing events and sending/receiving
event messages, and auxiliary processors are responsible for executing framework
synchronization algorithms (See [Panc92] and [Srin92].). When an AP reads new globally
reduced values from the network, it writes selected groups of these values into the HP-AP
interface readable by the host processor. An LP, executing on a host processor, can compute
GVT, avoid deadlocks, and make processing decisions based on the global synchronization
values. Other than simple tests such as these, the execution of the framework algorithms does
not interfere with an LP’s event processing. A further advantage of a dedicated processor
interfacing with the host processor and the reduction network is that an AP can compute the
input reduction values based on multiple LP’s executing on one host processor and coordinate
the synchronization activity of multiple LP’s.

The specific details of the interfaces — both between a host processor and its auxiliary
processor and between an auxiliary processor and the PRN (both input and output) — are
discussed in later sections.

4. Details of the Hardware Design

In the sections that follow we discuss the specifics of the hardware in our prototype design.
In this discussion we focus on how we ensure the correctness criteria established earlier.

4.1. Setup

Each auxiliary processor boots up in a "listening" state in which it monitors its host
processor interface. A host processor sends tagged data to its auxiliary processor representing a
program to be loaded and executed by the AP. The physical interface between a host processor
and its auxiliary processor is described in the next section.

One of the host processors in the system and its corresponding auxiliary processor is
designated as a master pair of processors. The master pair communicates PRN programming
information to the state machine controlling the PRN. Critical information to be passed to the
state machine includes the number of components in a state vector and the operations to be
performed on components. For example, it can be specified that all first components are to be
summed, all second components OR’ed, and the minimum is to be taken on all third components
in a three component state vector.

The master host processor can send tagged data representing new PRN programming
information to its auxiliary processor at any time. Similarly, host processors can send data to
their respective auxiliary processors indicating they are to receive new programs to execute.
This will permit dynamic reprogramming of the AP’s and the PRN. We assume that
applications running on the HP’s and programs running on the AP’s are sufficiently robust to
support this dynamic reprogramming.
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4.2. Host Processor - Auxiliary Processor Interface

Functionally, there are two data paths between a host processor and auxiliary processor:
one from the HP to the AP and the other from the AP to the HP. Each processor is a reader on
one data path and a writer on the other path. The host occasionally writes tagged information to
the interface which the AP processes, based on the tag, and generates values to input into the
PRN. Similarly, the AP writes globally reduced values to the interface which is read by the HP.
Framework algorithms require that (1) no information sent by the HP is lost and (2) the AP
processes the data in the order in which it is sent by the HP. Under the established correctness
criteria, an application executing on the HP does not need to see all globally reduced values; a
recent version of globally reduced values, however, is expected to be available to the HP.
Hence, the implementation requires at least a FIFO queue from HP to AP and a single set of
registers from AP to HP.

The prototype interface between HP and AP is implemented by a dual-ported RAM, such
that the host processor is connected to one port and the auxiliary processor is connected to the
other. Each of these ports is memory-mapped into the respective processor’s address space. The
two data paths are managed in the dual-ported RAM by software resident on the host and
auxiliary processors; soft semaphores rely on the exclusive-write support provided by the dual-
ported RAM.

The host processor accesses the dual-ported RAM via SBus. This HP interface isolates the
particular host processor — a Sparc-1e in the prototype — from the rest of the system. If the
host system changes, this HP interface is the only thing that will need to be redesigned. Isolating
the HP interface provides adaptability to other parallel processors or closely coupled networks.
For example, the SBus interface could be changed to a SCSI or VME interface, and all that
would be required is the logic to respond to requests by the HP on the dual-ported memory.

4.3. The Parallel Reduction Network

As seen in Figure 1, the PRN is a binary tree of depth log2n, where n is the number of host
(and auxiliary) processors. Each stage of the PRN consists of half as many ALU’s as the stage
above it, with the first stage having n /2 ALU’s. The PRN’s binary tree properties allow a global
reduction operation to be computed and disseminated in O (log n) time.

A single ALU node is shown in Figure 2. The ALU’s in the prototype parallel reduction
network require 40 nanoseconds to perform a 32-bit fixed-point addition. Each 32-bit input
register is paired with a 32-bit tag register. The PRN propagates the tag of the input that "wins"
a selective operation, a minimum or maximum operation, so that the tag of the smallest or
largest element emerges from the bottom of the PRN for a minimum or maximum operation. In
the case where there is no single choice in a selective operation (i.e., both operands are equal),
the PRN selects deterministically the tag which is propagated. A selective operation requires
two operations in the ALU: a compare and a select; hence, this requires 80 nanoseconds in our
prototype.

Pipelining is employed in order to use this network efficiently: partial results are pipelined
through the log n stages of the PRN such that each stage of ALU’s is always busy. The PRN can
pipeline binary, associative operations at a rate equal to the delay time of a stage. The time for a
value to pass from one level of the PRN to the next is a minor cycle. Currently, this delay is
projected to be no more than 150 nanoseconds. Thus, the time to produce a sequence of values
for state vectors of length m is 150 * m nanoseconds (plus the time to fill the pipe: 150 * log2n
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Figure 2. An ALU node in the parallel reduction network.
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nanoseconds).

The pipelining in the prototype is performed synchronously. An asynchronous design for
the reduction network has been completed. In the asynchronous design, each ALU node of the
PRN computes and outputs a result once it has completed an operation and two input values are
available from the preceding stage. Each PRN node operates in a demand-driven manner, where
operations are performed as both inputs become available. This asynchronous design is
desirable for later versions of the reduction network for two reasons. First, a PRN operating
asynchronously is scalable since a hardware handshake can be used to control communication
between nodes; this eliminates both a central clock in the PRN and the potential problem of
clock skew in a large network. Second, this facilitates the addition of floating point processors at
each ALU node. A long operation, such as a floating point operation, forms a one-time "bubble"
in the pipeline. With a synchronous network, the minor cycle must allow for the longest
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operation. Thus, a synchronous design creates wasted time when a shorter binary, associative
operation is performed, and an asynchronous design alleviates this problem. We note that the
synchronous design is simpler, and it is faster when only operations with uniform execution
times are performed.

As seen in Figure 1, the interface to the PRN from each processor is identical. Each AP has
sets of memory-mapped input registers and memory-mapped output registers. A processor can
write to the input registers and read from the output registers; the PRN will read values from the
input registers and write the corresponding globally reduced results into the output registers.
This memory-mapped interface is a possible source of memory contention if both the PRN and
the auxiliary processor attempt to access the input or output registers simultaneously. We
discuss next how the interface between the processor and the PRN is constructed in order to
minimize the memory contention, to facilitate atomic writes with and without overwrite
capabilities, and to preserve state vectors.

4.4. Auxiliary Processor-PRN Interface

The AP-PRN interface is designed to operate on state vectors in order to support both
atomic accesses of globally reduced values and order preservation of input values to the
reduction network. From an LP’s point of view, it feeds a valid state vector to the PRN, where
"valid" is defined by the application using the framework hardware. Furthermore, the hardware
provides an atomic read access to a single output state vector so than an AP can read an entire
state vector. The application software, however, must access whole state vectors, not individual
elements.

The prototype hardware limits state vectors to size eight; each of the eight elements is a
register pair, one 32-bit data register and one 32-bit tag register. The data register can be a 32-
bit integer, a 32-bit fixed point number, or any 32-bit logical value, depending on the reduction
operation to be applied. All numeric values are two’s complement. The tag register can contain
any 32-bit value. The PRN can be programmed to operate on state vectors of size two to eight,
depending on the application. The PRN reads the state vectors, processes them by performing
the corresponding reduction on each element, and writes a globally reduced state vector at each
AP.

An auxiliary processor and the reduction network operate asynchronously with respect to
one another. As shown in Figure 3, three banks of eight input and output register pairs provide
an interface of isolation, such that both can access the register banks with minimal interference.
This interface is designed to guarantee that the PRN never blocks while waiting to read a value
or write a value. The PRN is expected to read and process state vectors at a rate much faster
than an AP produces them; the PRN, therefore, may read and process the same state vector
repeatedly. Similarly, on the output side, the PRN will produce globally reduced state vectors
faster than an AP can read and process them, and as a result the AP’s may lose some state
vectors. All reads to registers from the PRN or an AP are nondestructive. We now discuss the
input and output interfaces in greater detail.

4.4.1. Auxiliary Processor-PRN Interface: Input

The interface from an auxiliary processor to the PRN consists of three banks of eight
register pairs: the AP input registers, the Intermediate input registers, and the PRN input
registers. The AP writes state vectors of size m, where m is between two and eight, to the top
row of registers, the AP input registers, and the PRN reads state vectors of size m from the
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Figure 3. Interface between an auxiliary processor and the PRN.
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bottom row, the PRN input registers. The state machine which controls the interface transfers
state vectors from the AP input registers to the Intermediate input registers and then to the PRN
input registers. The transfer is done so as to minimize interference. Intermediate registers
facilitate getting snapshots of valid local state vectors to be passed on to the PRN input registers
without blocking the PRN.

When an auxiliary processor has completed writing a new state vector, it sets two single-bit
control flags: the overwrite bit (OW) and the owner bit (O). The owner bit is always set when
the AP has finished writing a valid state vector into the AP input registers; this indicates that the
interface controller now owns the top level of registers. When the interface state machine
transfers this state vector to the Intermediate input registers, it resets the owner bit indicating that
the AP once again owns the AP input registers. If the AP attempts to write to the AP input
registers while the owner bit is still set, it will be blocked. However, given the relative speeds of
the PRN and the AP, this is not expected to happen often.

The overwrite bit gives the application some control over what values are eventually fed
into the reduction network. Specifically, if the AP marks a state vector as "non-overwritable", it
is guaranteed that the entire vector will be processed by the PRN. When the control logic
transfers the AP input registers to the intermediate level, the overwrite bit is also transferred. If
the AP indicates a state vector is overwritable then the state machine controlling the register
banks can allow subsequent state vectors written by the AP to overwrite the state vector in the
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Intermediate input registers. If the AP signals a state vector as non-overwritable and it is
transferred to the Intermediate registers, the overwrite bit will prevent the transfer of a newly
written AP level state vector until the Intermediate input registers are ultimately transferred to
the PRN input registers. The control logic guarantees that AP input registers are only moved to
the Intermediate input registers when this process does not cause the PRN to block or when it
does not lead to a loss of integrity of a state vector. Finally, we note that due to the relative
speeds of an AP and the PRN, it is very unlikely that an overwritable state vector will be
overwritten prior to being read by the PRN; however, we have designed the network to provide
the guarantee anyway, for future use.

The PRN reads state vectors of a specified size cyclically, starting with the mth element and
proceeding to the first element. Thus, the PRN reduces the mth element, followed by the
(m −1)st, and so on. The PRN is pipelined, thus the processing of the (i −1)st elements
commences as soon as the top level of ALU’s completes processing the ith elements. The PRN
reads the ith register pair from each of the n input banks simultaneously. The time for the PRN
to read an entire state vector is an input cycle. An input cycle finishes when the first elements of
the state vector are consumed. At the end of an input cycle, the controller transfers the
Intermediate input registers to the PRN input registers. The transfer is overlapped with the last
PRN read in the input cycle; for this reason, our hardware requires a minimum state vector size
of two. The transfer from the Intermediate registers to the PRN registers has a higher priority
than the transfer from the AP registers to the Intermediate registers so that the PRN never
blocks.

We note that log2 of n and m are not necessarily equal. Therefore, while the PRN is
reading from the ith input register pair from all n processors, it is not necessarily writing the ith
output register pairs. That is, the PRN may complete reading state vectors from each of n input
register banks at a different time than when it completes writing new reduced state vectors. The
writing of a reduced state vector for a set of input state vectors will lag by (((m −1) + log2n) *
150) nanoseconds, where the minor cycle time is 150 nanoseconds and there are n processors.

4.4.2. Auxiliary Processor-PRN Interface: Output

As shown in Figure 3, the three banks of output registers are constructed to preserve state
vectors and to minimize AP-PRN interference in a similar fashion to the input register banks.
Once every m minor cycles (assuming a full pipe in the PRN), the PRN generates a globally
reduced state vector, which is written to the PRN output registers. This state vector is
transferred to the Intermediate output registers and finally to the AP output registers, which are
readable by the AP. Once again the interface controller guarantees that the PRN never blocks,
and transfers between output register levels are prioritized to prevent this.

Each time the PRN completes writing a state vector into the bottom row of registers, the
values are shifted into the Intermediate output registers. When the bottom row is shifted, the
values in the intermediate row are concurrently shifted into the AP output registers unless the AP
has locked the top row because it is reading the AP output registers. In that event, the
Intermediate output registers are overwritten by the PRN output registers, and the contents in the
intermediate registers are lost forever. The AP output registers have a control bit, an owner bit
(O), that is set and reset by the auxiliary processor. The owner bit determines whether
Intermediate output registers can be written to the AP output registers or are lost; it also ensures
an atomic read of a state vector by the AP. The AP may block momentarily if it attempts to set
the owner bit to itself while the intermediate values are written in parallel to the registers
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readable by the AP. Applications using the framework hardware must be robust enough to
tolerate the loss of state vectors emerging from the PRN. We note that an AP never sees a
partial state vector. State vectors are either lost in their entirety or not at all.

5. Related Work

Using a separate synchronization network for improving system performance is not a new
idea. The IBM RP3 [PfBG85] was designed as a shared memory multiprocessor that houses
both a combining network for synchronization traffic and a low latency network for regular
message traffic. Our reduction network is not as complex or expensive as a combining network,
yet it performs global synchronization operations very efficiently.

We claim no novelty with respect to reduction networks. Lubachevsky [Luba88] suggests
using a binary tree implemented in hardware in order to support synchronization barriers and to
compute and broadcast a minimum next event time in a bounded lag PDES. His control
synchronization network is presented strictly in support of this PDES protocol. The Finite
Element Machine [CrKn85, JoSc79], a NASA prototype, utilizes a binary tree-structured
max/summation network to perform the global sum and maximum calculations necessary to
support structural analysis algorithms. Like the hardware we propose, the sum and max
calculations in the FEM are calculated alternately without processor synchronization. Our
hardware design, however, employs a set of input and output registers which are treated as a
single state vector, whereas the FEM uses a single input and a single output register.

At about the same time that we introduced our framework, Filoque, et.al., [FiGP91]
proposed the use of a processor network with programmable logic for efficient global
computations, such as the computation of GVT in a Time Warp simulation. This hardware is not
a single network like the PRN; it is, however, a distributed system of sockets, one per processor.
The reprogrammable sockets are connected in a pipelined ring, forming the computation engine.
A token is inserted into the ring by a designated control socket. It travels around the ring,
performing partial computations at each socket. When the token returns to the controller, the
global computation is complete. Therefore, their proposed hardware performs global
computations in O (n) time whereas the PRN performs the same computations in O (logn) time.
Furthermore, the proposed synchronization algorithms for computing GVT in [FiGP91] rely on
the host communication network for message acknowledgements and our framework uses the
framework hardware for this purpose. The goals of both approaches are similar, but our
framework is more efficient, more flexible, and more scalable.

Several researchers have proposed the use of hardware to implement barrier
synchronization. Hoshino [Hosh85] has an efficient barrier synchronization in the PAX
computer. Stone [Ston90] suggests the use of global busses to compute maximum values and to
implement fetch-and-increment. The hardware that we propose, on the other hand, provides
support for a larger class of algorithms than barrier synchronization algorithms.

Many parallel architectures provide for global binary, associative operations across all
processors. Global operations on the Intel iPSC/2 [Inte89] are provided for arithmetic and
logical operations. The Thinking Machines CM-5 [Thin92] contains two separate networks for
different types of communication and synchronization: the data network is the primary
message-passing network in the machine and the control network provides hardware support for
common cooperative operations. The CM-5 control network supports "soft" barrier
synchronization, arithmetic and logical reduction operations, parallel prefix operations, and
segmented parallel prefix operations. The reduction operations on both of these machines
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require the complete synchronization of all processors. All processors must call global operation
functions with a contributed value, and a global operation blocks until all processors enter it.
Our framework hardware, on the other hand, computes and disseminates globally reduced values
on state vectors without the coordination of the host processors; the reduction operations on the
PRN are performed continuously (i.e., allowing stale data to be contributed to global operations).
Furthermore, the hardware design employs auxiliary processors to manage the high-speed data
emitted from the reduction network.

6. Conclusions

We have introduced prototype framework hardware, a parallel reduction network
augmented with dedicated processors, as special-purpose hardware to rapidly compute and
disseminate synchronization information, based on state vectors, in a parallel simulation. This
hardware supports an experimental approach to PDES; we can easily change the critical state
information that is disseminated and the related synchronization algorithms in order to study
various PDES protocols. We expect new reduction values and algorithms within the framework
to develop over time. Our longer term goals lie in demonstrating how this hardware-based
framework can support adaptive protocols which have been neglected because of the costs
associated with gathering and using information for adaptive decisions. It has been suggested
that an adaptive protocol, one which is an intelligent combination of aggressive and non-
aggressive protocols, may be more powerful than either in a pure form
[LuWS91, Reyn88, Reyn92].

In the future we intend to report on the performance of the prototype PRN, which is a
collaborative effort of the Computer Science and Electrical Engineering Departments at the
University of Virginia to be completed in Summer 1992. Simulations [Srin92] have
demonstrated the feasibility of this hardware; however, actual PDES implementations on the
prototype will validate our performance predictions. Furthermore, we have proposed to integrate
our hardware, which offloads global synchronization in a PDES, with Fujimoto’s rollback chip
[FuTG92], which offloads state saving and state restoration in an aggressive PDES, in order to
build a Parallel Simulation Engine.

Finally, an open research problem is the construction of the next version of the framework
hardware which rapidly disseminates target −specific reductions on contributed values. A PDES
with completely static properties — the number of LP’s and the communication topology are
known a priori — should show significant runtime speedup if the framework hardware were
enhanced to include the dissemination of target-specific synchronization information, where an
LP receives reduced values from its predecessors as determined by the transitive closure of the
static communication graph. Hence, each LP receives reduced information only from those LP’s
that can have an impact on its performance. By providing efficient dissemination of target-
specific synchronization information to all LP’s in a PDES, the LP’s receive more accurate state
information and can make event processing decisions accordingly. The final result would be a
hardware-based framework for PDES that efficiently supports a wide range of parallel
simulations.
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