The WM Computer Architectures:
Military Standard Manual

Anita K. Jones
Rohit Wad

Computer Science Report No. TR-90-19
August 1990

This work was supported in part by the Defense Advanced Research Agency (DARPA) under contract
number N00014-89-J1699.

Abstract

This report is a military standard definition of the instruction set of the WM
family of computer architectures. The WM instruction set architecture supports
microconcurrency at the instruction level; i.e. it facilitates the execution of several
scalar instructions concurrently. Also, WM supports vector processing; that is, it has
single instructions that apply the same operation o a collection of data items. Another
interesting feature of the WM architectures is streaming -- a mechanism for
asynchronous loads and stores of "vector-like” data, that is, data with a known
displacement between successive items. This facllity applies to WM's scalar as well as
its vector execution units, and has the effect of potentially executing many load/store
operations concurrent with the execution of other instructions.

The report has been patterned after the 1750 military standard manual,

Table of Contents

Document Derivalion.....ccciiriivrrirrasrresrrrrresnrnsssrssrssrsarasassssnnssssasssassannns 1

1.

2.
3.

Scope and PuUrpPoSe......ccicvevimriiinnrsrrarre e, cerernane SRR
R o o BT -
1.2 PUPOSE...ciiiervcrrecrrrnnnn e venreenans TR
1.3 Applicability........cccceiinniiiennnn verreranrerernsernn O PR POY -
I 3 == 4 o (- T U PO 2
Referenced Documents...........oeveeennnees eereaer hrasrsessiireisenssrerernarsniead
Definitions....... -
3.1 Address....... T O U OO 2
3.2 AIGRMENT..criveercrrree it rereneeen SR PPUOTOTOTORIIO. |
3.3 Arithmetic logic unit (ALU) ., vrerebeeracnes N
K S - 3| OO PR rreeetee et s s as e e s s s oy n e o
3.5 BYl8. i s e erererrreererransnerrsrressserrnrne s rrarrneennrerens]
3.6 Concurrent OperationNS......cccccvvccinniiriii e rerereened
3.7 Condition Codecovrvicccnenrireirsiernneens veeerenrenanas vrrennes BT P O RPRRORRRREL. |
3.8 DeadloCK.......ccvvereiirinerireerr e U UR PR URRTRO. |
3.9 DBVICE cuvvereerrirrrrsnarsersrrrsassssssnnsesssssssrasesssessssenssrasssssessesssssassenersnssnsnsnane teereeressanees 3
T T 1T 11 T OO JOURTRORRORTO:
3.11 Doubleword........ccceevineennee e erereeeesesnesersateserRaertoasebe e AR et S R eR R g et e e sraeyarebnnnennes 3
3.12 Entry........ O PO UOSE PN 3
3.13 First-in-first-out queue (FIFO) . crevenenenn
3.14 Floating execution unit (FEU) cvviininrr e TR OTIRPI -
3.15 Floating point register . e e s 4
3.16 General PUIPOSE T8GISTOT .cor e rrccre i et s e s s 4
3.17 Halfword............. rereetereseseees i et a e b e anan voneaes vrerer e verernes - 4
3.18 Handler 1asK ..o vvcereeercererre e e s ers e s e sese s snnans ieveseeeramnennas vetrenreres -
3.19 Input/output (I/O)......... verareserassneeraan vereneas revtererersenestnas i ses s annavvesssssenasassernsdh
3.20 INSIFTUCHION coiiiiriiciisisiisiieeinisrbsssisnsstnsss s is rss s s ssssanssassennsenssnssnes peeeerbernenasnened 4
3.21 Integer execution unit (IEUY ..o e
3.22 Instruction fetch unit (IFU) e esrnssssnsson
3.23 Instruction set architecture {ISA) e er e 4
3.24 interrupt....cvcveviiiniinnees verereremnnene terveenrnnee reemnrenees e e s e et oD
3.25 Load prefeiCh ..t e s e D
3,26 MEBIMOTY wreiiiiriiiriiivinisrirev s rssas s s tasssssssnnsssssss brsssssssssssnstenesnasss sessnsnsssessssnens 5
3.27 Micro-concurrencyuueee... I .
3.28 Multi-computer...vivinrrccnineens vrevreraneens veereerenens ererertenserese sy abesenaransnnte re s
3.29 Normal mode................. BTSRRI -
3.30 Operation code (OPCODE).. ..ottt s eressessssasssssssssne save 5
8 B0 3 B 1177 (o 3 TR PP RO 5
3.32 Program COUNIBE (PO eeeerecrcrceirvetectecer s n s er s e nemanrasse sens sunranns 5
3.33 Register i OO TRt 5
3.34 RESEIVEU. et e s e e e e en 5
3.35 RiGhE.eciiiicrrcirrirrceesrsessce v s s se e see s ense e ean feeereneeeesseressaneenanaesenrenaneesneen 5
B TRCTS 1 - T | U reesrarereranans BT OTVRURRTRRRROPBPOR: -
3.37 SHrAM ..t ecev s e e e e s e s sen s e reeerenas vereeresseerreraeerans 5
3.38 Stream MOde......ccveerereeriicce e treeereeiresneneesensrasseniseienssnee s
3.39 SHrEAMING...ccvcccreierecrrrerer e crtesrrisere e s s s rrases s sarenesssnesnneroene reerereeane remeoeeesanand 6
B.40 TaSK cevrvrreererrieersirereisererasnrrrssne ersr s asssassssnnssssenssssasesesessanesans vereeeerersrssnesssneserens B

3.41 Typed proteCtion......viiiminii et s e 6

3.42 Vector execution unit (VEU} .o, cerrreseenasnsone 6
3.43 VECtor re0iStar i rerssisssinasssrsss s ssss s seeseessnnns R treeestteerresnrreees 6
3.44 WOIG..ociiiiiieersrcsss st inve s s s s nsscesesssasessanas reresesesbieersranans rerrenmtssesniiias 6
3,45 ZOTO FRQISIEN ciiceeeervresiverssirnrsssnr st sessn s s sn s ess s b ee s anaase s e n s en e an versessesenne 6
General Requirements....... P e R
4,7 FUNCHON UNIS...ccivrererercieriirsss s sarssnnensvssesnnes Ceieettveteraiar i r s nranans 7
4.1.1 Scalar exXecUlion UNHS....ccecvcereerreeeenresnsiirsnrsers s e se e nssssssaessssasasaes 8
4.1.1.1 Data dependency FUIRcuvveevrmirrmrcmrenisnne e snessassinsen 9
4.1.2 Vector eXxecution UNit........mermmmerieesesniesansnscnnssen 9
4.1.3 Instruction felCh UnNi.......vimimreir s s e 10
4.1.4 Parameter DYPEASS weomverrrimeciirvianmessssnuesissnes ssrnasss sssasesss st ssssas s 11
4.1.5 SIRAIMING . corvrerrrrrrreerrrerissirisssr et re e rvar s s s as s e rasaneaesnsnannnssannes b athes 12
4.1.5.1 Streaming to and from the IEU and FEU......... reraeseenerrenreanne 12
4.1.5.2 Streaming to and from the VEU.....ccovmeievvnnninniccenniienines 13
4.1.6 Special instructions and synchronization................. rtnreeeeereitnneaesrsanas 13
4.1.7 DeadloCK.eeinininnns rereneetsisesrrens rersrereesressrerr e annes veererreree s raanes 14
4.2 Data formats .ovvccciiiniinim s s sss s veeverernesssinarsereasaans reeneranes 15
4.2.1 Data alignment......ccoocvenreninimeniinniiisnenines Veveeesreeeeserersrareseeenesraesietnsssasnns 15
4.2.2 Data SIZES.rererrcieiin e O 15
4.2.3 Data TYPES coeeererrriiercirceesntivsvss s s ssae s st s e e s ena s a s s 15
4.2.3.1 Boolean values.........vuveeeenne ereeueeeerasessrenrestecressirasebesenissRaresnas 156
4.2.3.2 Signed integer valus ... s 16
4.2.3.3 Floating point valUES. . nnrsrs e s ssanes 16
4.3 Instruction formats. .. s e bersrereseraens 16
4.3.1 Literals in instructions........eeeue. e reersererereRtreersTs e areeeearasiretsaraserannTaes 16
4.3.2 Instruction format RotatioNcceviiiim 16
4.3.3 Integer format instructions........uvvnnnennn rerrrareeseserenn e eres s nbseestane 16
4.3.4 LOAD/STORE format instructionS. ..ccovvvivsrremnnimncsicnsnnns s 16
4.3.5 Floating point format instructions ...ccvevvvenminnicircenene, reenrrrssers 17
4.3.6 Control format inStructionsS......covviveiiissinii s csiensns 17
4.3.7 Vector format instructions.coiiniiniiiiinninincnnnns ieeeerererennterierettirias 18
4.3.8 Special format INSHUCHONS ..o 18
4.4 Registers and support fEalUrescvmisrrrssser s cvrssss e e 18
4.4.1 General registers........... FeraebeeeriraseereaRaRreEeeaseeseeiratsia v e s e as e b nen bR en bbb RRRae 18
4.4.2 Special regiSters ...ccccouiiimrmiisrisiinsers s s st serasene R I :
O T B - Vo OO PR UUPPPO 18
4.5 MEIMIOIY . oiecreteeciirie it e s n it bt ssh s e s s b e n s e s s e s it e s e e s s ansa e b am e meab e b e b o b As s eR R e e 19
4.5.1 Memory reads & WIHES i e 19
4.6 Operating system Supportooevveeivenvennann, feeeeteessreereeireeessrentansarnasta s re e s ar e s nan 20
4.8.1 TABK SLAIR...iciiriiirririerrre it rirr st s iss s erarr e rrmnra b srssabas st asasssarns s s srsssearnrsranorn 20
4.6.2 ProteCtioNu..cmmerirecninnneinnnn, rerrnererie s rarssannns rrerereraresessenannenns 22
4.6.3 Address mapping...c...oeeerrisinensmresrevivisnnnas revereesrree s srantesase st ra e nesanbnes 23
4.6.4 Imttahzat:on Of the MAaChING a1 s 24
A7 DHOVICES. cirrerrererensrnebbitscsssstassusissssninsnrtrsntnessinsassessssbonbssebessbasnnsssnssnnses rererrereennanens 24
4.8 Input/ouipul..meserrrrrrsens SO OO OO PUPPOR 25
4.9 Traps (exceptions) and interrupts......... rvereeeeesessreserenseeesiansareesasnsbes bt s n e AR by senn 25
T T B 14 = 1] o £ USSP T SR 25
4.9.2 TIAPS .eevreeeririiircecns i rais s r s s s s e e s s s 26

4.9.3 ExXceptions ...cc.ccevenrinraennn. PP 27

4.9,3.1 Integer eXCePtioNS ... s 27

4.9.3.2 Load/Store exceplions......cccvcivenvcrreenraces . - 4

4.9.3.3 Control exceptions ...c.oimeemmmsrercrinininenar e sesrsnsssesnes 27

4.9.3.4 Floating point exCeplions ... 28

5. Detailed Requirements............ N eraeresirararaserans vesasneararens 29
5.1 instruction set NOtatoN...t e e R, 29
5.1.1 Registers ..ouicvvmnmsininens ereeee e vreveesstesiseenaessennan reareeseressenanranens 29
5.1.1.1 General 1e0i1sters s e e e 29

5.1.1.1.1, IEU registersccvimmmmnsrnnincenen revenrenna 29

5.1.1.1.2 FEU registers.....ceveirreernisnnemsesmimmencssecnssecnsnnes 30

5.1.1.1.3 VEU registers.....ccocvvvimverrirmeniniiosisnnnnnsinnn veseatees 30

5.1.1.2 Implementation dependent registers ... 30

5.1.1.3 Special registers......ccccovvnievnnncennas VereeetesstiraverererrsarE e s 31

5.1.2 SymDOIS . reeeeetnene s 31

L T B OO PSR 31

5.1.2.1.1 Symbols to the left of<= ... 31

5.1.2.1.2 Symbols to the right of e 31

5.1.2.2 "«" The assighment Operator.ueeresieninvsn s s 31

5.1.2.2.1 Symbols to the left of «—ceeeienee erereresrnrneenarnenas 31

5.1.2.2.2 Symbols to the right of e .oovivvinminiiii 32

5.1.2.3 ™" The bit selection OPErator ... rreerrieenrirre st 33

5.1.2.4 ":" The operator-argument operator......veeeveveennnees rerssearasnasees 33

5.1.2.5 "Isi* The arithmetic shift left operator.....vervnccninns 33

5.1.2.6 "asr® The arithmetic shift right operator.......ccccevnviinveenneenns 33

5.1.2.7 "8&" The bitwise and operator....... revrrrerieressntesssssraans vrereesennees 33

5.1.2.9 "|}" The bitwise 0Or OPeralor......ccocrrvcimenrenvenrrece e 33

5.1.2.10 "or" The logical or OpPerator.... i anenes 33

5.1.2.11 "EQV" The bitwise equivalence operator.........c.ce.e. verirsnan 33

B.1.2.12 "4, - = N L e eeee3 3

51213 "=, <>, <, <=, B, B rrrrerereeersennenniorsersrinnas ety aaan 33

5.1.2.14 "¢" .. 33

B.1.3 FUNCHONS v mererr s s s i assnnrens Feeeeeeretusar 34
5.1.4 Operations.......cuuuee rereraressssinasesian ererererreesereesetressesennrreesiesessssarasissaseres 34
5.1.5 Miscelaneous VAIUBS....c.ciemmmeeemicir s ssnaresesansnressmsassssrsnases 35

5.2 MNEmMONIC CONVENTIONS...cuitierrirsrieieriisiiiiirinesiisssssenssssissrerssrsss sssssssanessesssssssases 35
5.3 EXECUTION SEMANTICS cevoreeeeiiisisrrersriiisnriiesisstssiiseenssesnms s btsvssivssssssssssnnns sarsnsenss 35
5.4 Integer Arithmetic and Logical InSruCtions.......coovvvcnimsnriene e 36
L T B o o RSO OO PP PP SPS PP PITOY 37
5.4.2 OP = 88l e e e e e e 38
543 0D = Cvrevevnerennnens HeverraressteerereerRnaeearerenaeeereeb At ta s ee bR R b e Er e s RereRbeeR AL sana 39
B.44 OD = - rvccinimcnvmssrsnnnrere s nreeerebseasussssaras s e s nane e sreenenanans 40
545 0D = e Herteeereeaee i r e b RS a sars s rae s e an b U 3|
546 0p=and.....evnnnn. veererrrs s narassrian PP 42
547 OP = OFcceireriicenecernirienassnrecsninsnnes reesrressessrresaaae e s et s iRt asare s Rrasern et 3
54.8 0p = eqv......... TN 44
5.4.3 0D = " e, revenssressiasnasrnnes veeresares e vreveene 45
B.4.10 OP = /ircrirerrnnnse st s s s e va gt s e r e s s n e s n s ne s 46
B.A.11 OP = / orrsiriiiciirirssiir e s e b s e e e s e 47

= ennaner L LI R R P E TR PR) ErrHeUNEASA N A RS NNUSETSRRT AN T L L LI LY LR R TR X ouu48

D rhrunnsseannsrreanuneons e sreseanrrnREaERsarTraeasesrnnns coenirrenensd 8

5.4.12 op
5.4.13 op
5.4.14 op
5415 0p = >= ceecevciennnen, feeeerrrreas s i ese s ran s O, rerarvnranan D 1
B.4.16 OP = >rvvrrnceniveinsivnnnnens creesrarserar e e v cevrereninnnD 2

il

it

Ty rvrarernerivesrerennrens trertenrrrrnirerrreneen reeresranssnnsrenesncrnrrnnnarre TS ¢

5.5 Floating Point Instructions ...ecnnennnncens OO RR. SESTPUPRPIE . 3 |

551 0p = <vveerrrrennns ceetbras s aa it treeceerarassranrerer i e arean ierreserrannraenrae 54
552 0p = +.ueenns revieeesarsber e aar s crettresse s ar s e s ttersiresssssannaneeererannne 55
5.5.3 op
554 0p = -

555 0P = M rreessesrrse s nren e rns rerevernersraserne s s raraeas .58
5.5.8 0P = [viinnrnnincerinenns Vrerervesseraaseereeiaressnnas treverersesarareeesaeresarennanens 3 9
BE.7 0P = /errenieiniinnnnnens vrverersasaeessenrrarnenes O, FRRRUPPRRR - 1
5.5.8 0P = NMOP.creieirrrrrrrmrmensucensssnarsses SO, . 61
5.5.9 op = NOP . iiecviniiniinirnnne e veverererrres e re s are e naans ererreane s s e ares een8 2
B.5A0 OP = =.immvrrrrrenernennnns reree e s aas verersererasnnenssreesaas RN 3
BEAT 0D = <>t rreeeruve e aanees rereaeereurre e ner s asiaras 64
5.5.12 op
55.13 op
5514 op = »>=....... cerreseerresr s Crevsennansseanr e rerreressersssisenaranaeaans 87

1
.
.
.
-
.
.
-
K
»
+
.
-
.
.
.
.
-
.
.
.
*
.
.
-
-
.
-

.
:
:
:
:
3
:
3
:
:
i
:
:
i
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
;
:
:
:
:
:
i
:
:
:
:
:
:
:
:
:
:
:
:
t

H

o
L ariarrvrenneens T LT O N YT TR FTE R IRTUUTORU . 3.+

------------------ n-unuu------.-n-----....o.-o”.--u------n-.------n...n.nnnu..uu-----6 6

f
v

5.6 Vector Instructions: integer, Logical and Floating Point......cccocceeen werevavennennnnB 8

5.6.1 op = iadd.............. bevernreraerreesrererseananen rerererrrrraenetaraasrar e aan ceverasrnrransnsnes 69
5.6.2 op = isub.......ee... e rrrereresaner et nrean verrverrrsresersetesarerernene ieresseisrsrsisesanes 70
5.6.3 op = imul...ccnniviennniiennnns reertrsersess it s rresnanan verseressanrssersraisanenreraras vt 1
5.6.4 op = idiV.riiinnnnn arrenerr e e rae e rereess e s PRI &
5.6.5 op = iasl.......... errsrnaarre e ranas Crereereesissananersee e s rranararaan revsersrsninrre e anrane 73
5.6.6 0p = 80 cciirriiinrrnreinnire e deeesrssssrernsananrenan SO 74
5.8.7 op = IN€Q.ecuerevrrinnea. feeetbeestt e e e aaats reeereesr e s tear e er e s corernrnn? B
568 op = igtreecvnnnnvnnnneen, ceeveestsisisessaeserensnrarnes eererrerresrere e e snaesanas " A -
5.6.9 OP = 1080 ccceverrrrirssrrnsierrernes e vvenmnrasreeseraiesasaiaraararey verevenrrrrranereneae 77
56.10 op = il8S.vriinireneninnens tvetresisressestere s rare e are cerevensaenennseresensnsneaees 78
56.11 op = Heg.eiinniennnens reeeerrerrr e e rnnnarees feeeerereseinaner e e ab s e aaes wnnad 8
5.6.12 op = iaddC....ccoceivinvienns rerereserranee e ee e n e eraresesnerersese s n e s ane 80
5.6.13 op = iandC......cccccrunnn. vevrrereseeaesnenesrensannene verrreresernrr e e anenn e corrneneaB 1

il

L]

5.6.15 op = ieqvC............. rerreraresaaseesnesnanessanees erverassrr e rerreereennnnnanne 8 3
5.6.16 op = isubC....cccceveene reveveesrrseessreessarareeaans rrrrserres et r e vveeren8 4
5.6.17 op = imuiC.......... Cerrererressesanansessarsreranes rrereesrearenaneererassranens rrerenersnssennenn8 B
5.6.18 op = idivC...oonirreriennnniene reee e e hreererersers oo b saes 86
5.6.19 op = iasiC..vrvrrerrnnnne rrevresaree s ererstarenen reeerrrrevere st ae s e e e e rarnraas w87
5.6.20 op = iediC .ceeveirririinnieenens SO, reeeree s e are s es e s ne s arearae 88
5.6.21 op = ineqC..nnnininrniannn, retres e s as e en s cretrere e a e e 89
5.6.22 op = igtrC.ecnercerinenne verereerresreseres e bere s arrneaas vereerernereseesteresarbeasarans 90
5.6.23 op = igeqC..coccririiininnnn. crrreressrenrnenaresaaaas beeneersbsasasras e e rba s e e aas .91
5.6.24 op = HIssC .ereviiniiiiiiinnnns veveeseseaesasrasrenaaanens rreeernee s et easen et essrae s ran e 92
5.6.25 op = ileqC........... rneerereressenreserarae s e nsenaras veteeeraeseate s esstr e s e ae s sesarneans 93
5.6.26 op = faddG.....ccovummirinienniien tereeers e e e vt 94
5.6.27 op = fsUbC .vcvvvriiieeii reeeeeerereer st vrersersnersssenn 3 8
5.6.28 op = fMUIC...ccvimmecinrrinecnnne reeee s crresan e 96

i

5.6.29 OP = THIVG correvvveemssemssesssensssssssssssssssmsssssass s serssssssssscesssssssssrasessssssinss 97

5.6.30 0p = fleql oo s s 98
5.8.31 0P = fISSC ottt 99
5.6.32 0P = fJBGC .evvrvirrrecmnrerirnie st s e 100
5.8.33 0P = TOUC oot s 101
5.6.34 0D = fMNEAC. it e 102
B.6.35 0P = TEUIC oooiiiiir it creiissir e sr sttt s s s 103
5.6.36 OP = f8OA oot s 104
5.6.37 OP = fSUD civinci e s 105
5.6.38 0P = fMUL.eerrrrici s e s 106
B.6.39 0P = FAIV. oottt s s 107
5.6.40 0P = fOQNoiiier i e 108
5.6.41 0P = TNBQ ittt e 109
5.6.42 0P = FQW i i10
5.8.43 0P = {8 . cccoimmirernmrrrereiesirinsenrse s b s e s s 111
B.8.44 OP = T188 coercericisinirrcriis s et e 112
B.6.45 0P = flo0 criciriiiiriinertnie st s s 113
5.7 Load and S10rg INSITUCHONS .vuericvveenirsress st s sesiessss s esssssss s svsssenssesnsnssee 114
5.8 Control Flow INSIFUCHIONS .vvvcrereieirirtin i rnnsr i s anss st crnesnas s tbs p e sen e 116
5.9 Special INSIUCHONS ...ovrrricieirirsiesesss e s e 118
B.O.T JUMPL et bt s s st s e s s 118
B.0.2 CAlll.cveviireirieeirraeireeererisasssierisnsnsssnes sassssssassrnssenssssassnasasssse s assnssssasssssassns 119
B.,9.3 EREIUIM ciovrvivvrererrereriueeessarssrssessaissssssssssss sssssansbesssesvensaasessannessassssisanasssn 120
5.9.4 Streaming to and from the 1EU and FEU ... 121
5.9.5 Streaming to and from the VEU ...t 124
B.9.8 ASSERT coveiviveevitrissesrreeessensssessesssssshsssississssnssssassasseessassesosassssosnt s e ssens e sae 127
B.0.7 FASSERT 1ovctveeeereecerrressrireeesiensersassssnsesssnsssnsasbrsissssasssssssansssnsnesssnssan s sass vnn 128
5.9.8 FEDMOV ooiiiieirieemrerrrtissrssscrsss s msssssesansss st assanssrssassssssnsenssssesassasesnssosnsssas 129
5.9.9 FLDMOVX ..oovtecereeneererrntsenninsosenssnssessnsisssassasssness s assstassas snsssssnesssnssisansas 130
B.9.10 FFB ottt ceieicecmiesrovissaesserssseesasssaesasessaressssssssnssssnsasnnssnssassssassssnasnsesoses 131
SRR T 02 I OO USSP 132
5.9.12 CVTFl ceoriirieivneereersteessnssssesassesesssssessasssssssssanssressssmssatssresssansnsanssnessasss san 133
Eo 2 T 1 T | U O UO PP PR 134
BB, T4 T iiiieeeesieecistissnersesssnssonsenesssnessseresstssssnsensnssssassnsessssanssssenassnssssssassn 135
BLO.15 TIV e ccieteeeneiserneerssrsraresase sesmsnsssst s snesssne s shaass b s s sreenn e e sane e srne s ne bt svans 136
B.0.T8 TIVX.iiiiieriiieeieeirrerivesseesseseesss e ssns st rsn e se e br sy b e s s e snsa e e na e e nanaasnnenaaesata e s 137
B.8.17 TV crivieerveeeseesereesssesss s escessonsnssssnnesss sssessns ass s ssnasaanes ssapasssnasssessossass 138
B.9.18 LLH uviirecerecnevireetre e messiarssisassssanss s san s s s s n s sv bbb e sa s anassasas s s esbebesanes 139
B.9.79 SLL risreiecirernreessrerrrrersesssrassseesssssesas s s n i e st e h s e s R T A bR e e r e r e s aen e e an e et 140
5.9.20 REAAPCW ... e rires st senmec e sintse s sanr s ens s v b s s s ran e s sasan s sane s rabbuae s 141
5.0.21 WIBP O W e cteerre e ssscene s s e sann s e raae s s s sm e s st e san s svnn s s e 142
5.9.22 CONSUMEBL . ueeeiriciirersesrairmrrsesssrsnsssriersrstbtnssssssnannnessssnanseness snsasssnensnsisans 143
5.9.23 CONSUMEBE ..o rrer e s nses e cesn s sss s an s saes s s s rae e s raemesntns s senbnenas 144
5.9.24 SYNCH o uoeieceivriortrererrirresenesrseaessicesstsssbasessessns st rsssnsessnsessasnannsssussssenesas 145
B.0.25 LOAAM ..oviveevrirrneeesenrereneessseenssassassssssasnssssssessseanes sansassssenssssrsnsenasassssesssnsss 146
5.9.26 FLOAGM wrevirreceiirererre e necenssarnserssnssessesssssssnssssssssssssassossressssnsensssasnnssass § &7
5.9.27 VLOGAM oo ceserinesrneesseissssate s senessssbs s san e sssnansvsnns snssssanensas bs s ssann 148
B.9.28 SHOTEM.ureiieeceeeerereressrest et ab s e e st e s n et a s b 149
5.9.20 FOIOPEBMuiiiiiiiieireerreesirrerrartrsesnsesseseessreesssssansssssesnsessansassasanenssnnarssantasss 150

vi

B.9.30 VSIOTEM.eevuiiiiiieeiiesseeessssssersvnsrsesnrasssinssasssresesssssssssssesssneesesnnrerssrassrannnnsss 151

5.9.31 LoadFifoll, LoadFifoFl, LoadFioV] ..o e seiraninnnes 152
5.9.32 LoadFifolQ, LoadFifoFO, LoadFifoVO ... veieeieeecccenrccisniiessasvesseessmnarensn 153
5.9.33 StoreFifoll, StoreFifoFl, S10raFifoV] ... 154
5.9.34 StoreFifolQ, StoreFifoFO, StoraFifoVO ... incvvivanisiniesisinn 155
Lo TR Mo T: Ua |65 I G OO U OO 156
B.0.36 SI0FECT X e iiretiitiiiriireisirisssiseerssansssrssssarsssereressrsvsrvavennrsssrsnnnsnnesssnnasacnens 157
5.9.37 SWAPCTX eoiiiitiiierinninrr s enissiessanessssessrasasnrsssressassssne v sn e esssnassasasensans 158
5.9.38 SWAPLT ..ot nrvs s s s e e e s s R ae s 159

Document Derivation

This report is a draft of the military standard manual for the WM Computer
Architectures. The report is derived from "The WM Computer Archifectures: Principles
of Operation, Wm. A Wulf" (Computer Science Report No. TR-90-02, University of
Virginia).

8/90 WM Computer Architectures : Military Standard Manual 1

1. Scope and Purpose

1.1 Scope
This standard defines the WM instruction set architecture family. 1t does not define
specific implementation details.

1.2 Purpose

The purpose of this document is to establish a single architecture family suitable for
a spectrum of military applications from embedded signal processors to large-scale,
high-performance, general purpose multi-computers.

1.3 Applicability

This standard is intended 1o be used to define only the instruction set architecture of
a family of computers. System-unique requirements such as speed, weight, power,
additional input/output commands, and environmental operaling characteristics are
defined in the computer specification for each computer. Application of this standard is
not restricted to any particular function or specific hardware implementation or
specific family member. This standard is not restrictired to implementations of stand-
alone computers such as a mission computer or fire control computer.

1.4 Benefits

The expected benefits of this standard instruction set architecture family are the use
and re-use of available support software such as compilers and instruction level
simulators and the ability to tailor the architecture and implementation to the specific
mission capability. Other benefits may also be achieved such as: (a) reduction in total
support software gained by the use of a standard instruction set architecture family for
two or more computers in a weapon systems, and (b) software development independent
of hardware development.

2. Referenced Documents
IEEE Floating Point Standard 754.

3. Definitions

3.1 Address
An address on the WM architecture is an j-bit signed value which identifies a

location in memory where information is stored. Memory is 8—b§t byte addressed. Note
that addresses are signed; valid addresses lie in the range -2-1 .., (2i-1.1).

8/90 WM Computer Architectures : Military Standard Manual 2

3.2 Alignment

All instructions are 32-bits in length, and the Program Counter (PC) always
specifies a word-aligned address. Default instruction sequencing is linear and increasing
(i.e., the execution of the instruction at address XXX+4 follows the execution of the
instruction at address XXX).

3.3 Arithmetic logic unit (ALU)
That portion of hardware in an execution unit in which arithmetic and logical
operations are performed.

3.4 Bit

Contraction of binary digit; may be either zero or one. In information theory, a
binary digit is equal to one binary decision or the designation of one of two possible
values or states of anything used to store or convey information.

3.5 Byte
A group of eight binary digits.

3.6 Concurrent operations

Operations specified by instructions are executed concurrently. The IFU, IEU, FEU
and VEU exeucute instructions in paraliel. The IEU and FEU have two pipelined ALUs
which perform operations in parallel. Streamed LOAD/STORE operations imply
potential concurrent performance of operations.

3.7 Condition code
Scalar execution units can perform relational operations which generate condition
codes that are to be consumed by conditional jump and consume instructions.

3.8 Deadlock
The condition in which two or more units cannot execute further beacuse each
depends upon an action to be taken by another such unit.

3.9 Device

A "device" is one hardware-understood page type. Device-specific operations are
performed by reading and storing bit patterns into memory-mapped device registers in
such a page.

3.10 Domain

An addressing domain consists of a flat, paged address space; each page in this space
has two independent properties: (1) address transiation information, and (2} typed
protection information; these are defined by a map table and protection table
respectively. Pointers to these tables are part of the task state in the TCB. Two tasks can
share the same address space but may have different access to portions of that space.

3.11 Doubleword
Sixty-four bits.

3.12 Entry

A type of page. It is a generalization of the "trap vector" of some other architectures.
An "entry call', ECall, instruction may reference (only}) an eniry page and requires
"call rights" to that page. Traps are ECall's on predefined locations {in "page 0}.

3 WM Computer Architectures : Military Standard Manual 8/90

3.13 First-in-first-out queue (FIFO)

A queue of items such that when the queue is read the value returned is the least
recenily enqueued item which has not been read and as a side effect it is removed from
the queue.

3.14 Floating execution unit (FEU)
That portion of a computer that performs floating point arithmetic and relational
instructions.

3.15 Floating point registier
A register that may be used for floating point arithmetic and relational operations
and general storage of temporary floating point data.

3.16 General purpose register
A register that may be used for integer arithmetic, relational and logical operations,
indexing, shifting, and general storage of temporary integer and logical data.

3.17 Halword
Sixteen bits.

3.18 Handler task
The task which is dispatched to handle, i.e. react to, a specific kind of interrupt.

3.19 Input/output (1/0)
That portion of a computer which interfaces to the external world.

3.20 Instruction
A 32-bit word of program code which tells the WM computer what to do.

3.21 Integer execution unit (IEU)
That portion of a computer that initiates singleton memory reads and writes and
performs integer arithmetic, relational and logical instructions.

3.22 Instruction fetch unit (IFU)
That portion of a computer which fetches instructions and dispatches some of them
for execution in other units. The IFU executes certain special and control instructions.

3.23 Instruction set architecture (ISA)

The atiributes of a digital computer as seen by a machine {(assembly) language
programmer. ISA includes the processor and input/output instruction sets, their
formats, operation codes, and addressing modes; memory management and partitioning if
accessible to the machine language programmer; the speed of accessible clocks;
interrupt structure; and the manner of use and format of all registers and memory
locations that may be directly manipulated or tested by a machine language program.
This definition excludes the time or speed of any operation, internal computer
partitioning, electrical and physical organization, circuits and components of the
computer, manufacturing technology, memory organization, memory cycle time, and
memory bus widths.

8/90 WM Computer Architectures : Military Standard Manual 4

3.24 Interrupt

A special control signal that suspends the normal flow of the processor operations
and allows the processor to respond to a logically unrelated or unpredictable event. An
interrupt is essentially a forced context swap.

3.25 Load prefetch
The case in which a load is started well before a memory data being read is needed.
The purpose is to reduces the effect of cache misses and long memory access latency.

3.26 Memory
That portion of a computer that holds data and instructions and from which they can
be accessed.

3.27 Micro-concurrency
The ability to dispatch multiple operations per cycle.

3.28 Muiti-computer
A computer composed of multiple WM computer processors capable of communicating
with one another via messages.

3.29 Normal mode

A state of a scalar execution unit FIFO register in which the location of data values
currently in the FIFO or next to pass through the FIFO are specified by LOAD/STORE
instructions,

3.30 Operation code (OPCODE)
That part of an instruction that defines the machine operation to be performed.

3.31 Prefeilch

Because the 1FU runs concurrently with the execution units, it may prefetch the next
instruction before the execution unit to execute the current instruction has commenced
1o do so.

3.32 Program counter (PC)
A register in the IFU that holds the address of the next instruction to be fetched.

3.33 Register
A device in an execution unit for the temporary storage of one or more words o
facilitate arithmetic, logical, or transfer operations.

3.34 Reserved
Must not be used.

3.35 Right
Permission to perform a specified access or action.

3.36 Stack
A sequence of memory locations in which data may be stored and retrieved on a last-
in-first-out (LIFQ) basis.

3.37 Stream
A linear sequence of memory items, all of the same size and type, that start at a
known address and are spaced a constant distance {stride) from each other.

5 WM Computer Architectures : Military Standard Manual 8/90

3.38 Stiream mode
A state of an execuion unit FIFO register in which the location of data values
currently in, or next to pass through, the FIFO are specified by a stream instruction.

3.39 Streaming

Asynchronous loads and stores of vector-like data, that is, data with a known
displacement between successive items. A single instruction can be executed to cause a
stream of such data items to be delivered to any of WM's execution units. Data items can
then be processed at the speed of the consuming algorithm. Streaming permits many
load/store operations to execute concurrently with other instructions.

3.40 Task
A task is a "thread of control”. The WM hardware supports a hardware-defined "task
control block®, TCB, 1o hold the state of the task when it is not executing.

3.41 Typed protection
Each page is typed; only instructions appropriate to the type are permitted to
reference a page. A task must have rights appropriate for the instruction.

3.42 Vector execution unit (VEU)
That portion of a computer that performs vector arithmetic and relational
instructions.

3.43 Vector register
An (implementation-dependent size) block of registers that may be used for
arithmetic and logical operations and general storage of temporary data.

3.44 Word
Thirty-two bits.

3.45 Zero register
A register that which has the value zero whenever read.

8/90 WM Computer Architectures : Military Standard Manual]

4. General Requirements

4.1 Function units
WM has three execution units under common conirol of the instruction fetch unit.

The instruction set is partitioned so that each instruction is executed by a particular
unit.

ey
¢ Execution

Figure 1: WM System Components

As shown in Figure 11, the IFU can be thought of as enqueuing instructions for
execution by each of the other execution units in a set of FIFOs. In addition the IFU

1This figure and the several that foliow it are intended to provide an intuitive, model
implementation to explicate the semantics of the WM instruction set. Actual
implementations may or, more likely, may not have a similar structure.

7 WM Computer Architectures : Military Standard Manual 8/90

executes certain instructions itself, notably control instructions. The other execution
units dequeue instructions and execute them as rapidly as their respective
implementations permit.

4.1.1 Scalar execution units

The scalar data manipulation instructions of WM are implemented by the integer and
floating point execution units; each such instruction specifies 3 source operands, 2
operators, and a destination register, and evaluate an assignment of the form:

RO = (R1 opi R2) op2 R3

The source operand of integer/logical instructions may be the contents of a register,
the contents of an input FIFQ, or an unsigned literal; the destination may be either a
register or an output FIFO. The source operands of a floating point instruction may be
either a register or an input FIFO, and the destination may be either a register or an
output FIFQ. Floating literals, other than zero, are not supported as source operands.

The integer and floating point execution units of WM are implemented as a pair of
pipelined AlUs, as shown in Figure 2. In general, while the second (outer, op2)
operation of one instruction is being executed in ALU2, the first (inner, op1) operation
of the successor instruction is being executed in ALU1. Thus one instruction (iwo
operations) can be dispatched to each of the scalar execution units each cycle.

Integer/logical instructions refer to the integer registers; floating point
instructions refer to the floating point registers. Conversion instructions refer to one
register of each type as appropriate. in the floating point execution unit literals cannot
be specified as operands; only floating register operands are permitted.

Relational operators produce their left operand as a result. They also produce a
boolean value. If two relationals exist in the same instruction, their boolean values are
either AND'd or OR'd together and written to the conditional bit under control of a PCW
bit. Otherwise, the singie boolean value sets the condition bit. in either case, if the
boolean result is False, then the instruction’s register write and exception conditions
are nullified. Software must guarantee that exactly one instruction with relational
operations is specified before each conditional jurp or consume instruction. The number
of instructions containing relationals preceding the associated conditional jump or
consume instruction must not exceed the size of the condition bit FIFO.

8/90 WM Computer Architectures : Military Standard Manual 8

Register
File

Figure 2: Scalar Execution Unit Structure

4.1.1.1 Data dependency rule
The pipelined structure of the WM scalar execution units induces the data dependency
rule:
The result of an instruction is not available as an operand of the
inner operation of the foilowing instruction for the same
execution wunit. The value of an inner operand is specifically
independent of the effect of the previous instruction.

Valid programs must obey this rule. Clever programs will exploit it.

Data dependencies are defined with respect to instructions for the same execution
unit!

4.1.2 Vector execution unit

The Vector Execution Unit supports integer, logical and floating point operations on
"blocks” of N y-bit items, where N is an implementation defined parameter.

The vector instructions of WM specify a single operation. The performance of the
operation is conditioned on an item-by-item basis by a boolean vector specified by the
third source operand. The boolean "mask" determines whether components of the result
vector are affected by the operation. In general, the form of a vector instruction is

RO := (R1 op R2) if R3

9 WM Computer Architectures : Military Standard Manual 8/90

Each instruction performs the computation
forall k, Osk<N, ROk = if R3k # 0 then (R1k op R2k) else ROk fi

At least conceptually all of these operations are performed simultaneously; an
implementation may choose to perform them serially (as with a single pipelined ALU),
but this is not visible to the program.

The vector relational operations are different from their counterparts for the IEU and
FEU; they do not produce a condition code. Rather they produce a vector of boolean values
in the specified destination register -- such a vector may, for example, be used to
control a subsequent conditional vector operation.

32xN Vector Register
File

Figure 3: Vector Execution Unit

4.1.3 Instruction fetch unit

The instruction fetch unit fetches sequential instructions from memory based on the
value of the Program Counter. Fetched instructions are either executed by the IFU or
quequed for execution by the one execution unit capable of executing the fetched
instruction. The IFU executes selected special instructions and all control instructions.
Control instructions replace the Program Counter with a new value, the target address.

8/90 WM Computer Architectures : Military Standard Manuai 10

There are eight conditional jumps associated with the two condition FIFOs: “Jump
True" and "Jump False" for each of the integer and floating conditions; each jump may
predict whether the jump will be taken or not. Conditional Jumps “"consume" a condition
bit generated by a relational operation. Valid programs must guarantee that exactly one
instruction containing a relational operation is executed for each conditional jump.

There are twelve conditional jumps associated with the streaming facility of the
machine; these support jumps on the on “"stream count not zero" for each of the input and
output streams.

There are two call instructions: Cali and ECall. Call simply stores the current PC in
register 4 and jumps to the specified destination. ECall performs the function of a
"supervisor call”.

ECall provides the functionality of "supervisor call” in other architectures; it has
three effects:

(1) it changes the protection table pointer to that contained in the entry
page (note, the map table pointer is not changed),

(2) it jumps indirectly through the specified PC-relative location, and

(3) it saves the prior protection table pointer and program counter in a
special protected stack area.

The address specified in by the PC-relative target address must be that of an "Entry
Page", and that the task executing the ECall must have "cali rights" to this page.

Three instructions that affect control flow are encoded among the "special”
instructions because they do not need to specify a PC-relative address: they are Jumpl
(Jump Indirect), Calll (Call Indirect) and EReturn (Return from ECalil).

4.1.4 Parameter bypass

Register 1 in each of the scalar execution units is also a FIFO, with somewhat
different properties than that of register 0. Specifically, a value stored (computed) into
the register 1 output FIFO is immediately enqueued in the register 1 input FIFO. As with
register 0, items are dequeued simply by using register 1 as a source operand.

Register 1 can hold a short queue of temporary values -- in particular parameters
during a subroutine call. The caller enqueues actual parameters, and the called routine
dequeues formals,

A call consists of at least:

r1 = pi -- 1st parameter
ri = pn -- Nth parameter
call subr -- implicitly, 1 = PC

11 WM Computer Architectures : Military Standard Manual 8/90

4.1.5 Streaming

The WM computer architecture supports a feature called streaming. Streaming is a
method of loading and storing structured data elements without having to do explicit
address computations for each element. lt assumes a vector of data elements are present,
or are to be created, in memory, and that they are a constant stride {number of bytes)
apart from each other. Stream instructions are used to read/write such vectors from/io
FIFOs. Streaming is conceptually identical for the IEU, FEU, and VEU, but the
implications with respect io the VEU are slighily different and will be discussed
separately.

Either register 0 or register 1 in each of the execution units may be used in stream
mode. Streaming is the only mode for the VEU; each of these registers supports two
modes of operation in the IEU and FEU, normal and streaming mode respectively. Normal
mode for register 0 is the LOAD/STORE mode. Normal mode for register 1 is the
parameter bypass mode. Stream mode is identical for both registers in all execution
units.

When in streaming mode, the first/next data transfer occurs due to a single “start
streaming” instruction which initiates the transfer of the entire stream. Asynchronous
"stream control units" compute the addresses of the "next" data item{s) and initiate the
transfer.

When streaming, data is removed from the input FIFOs in the same manner as in
normal mode -- that is, by instructions that reference register 0 or register 1.
Similarly, by designating register 0 or register 1 as the destinaticn of an instruction,
data is inseried into the output FIFO (same as the normal mode for register 0 but
different from register 1's normal mode.) If streaming is performed only with register
0, programs that exploit streaming are functionally identical to those that do not, except
that no LOAD/STORE instructions appear in the sireaming programs. If register 1 is
involved in a stream, however, the parameter bypass capability is not available.

4.1.5.1 Streaming to and from the IEU and FEU

There are 15 instructions that initiate streaming operations to the IEU and FEU.
These are analogous to the 15 types of loads and stores. They specify data as integer or
floating point and size of the data items. The operands of streaming operations specify a
base address (R1), a count! (RL2), a stride? (RL3), and which FIFO to use (0 or 1).

Finally, there are seven instructions to stop streaming operations. These
instructions stop input or output streaming and flush the relevant FIFOs.

A stop instruction applied to an output FIFO will complete pending memory writes
(where data is available), reset the stream count, remove any exira addresses which
have been calculated and restore the FIFO {o normal -- i.e., non-streaming -- mode. A

1 A count of -1 is defined to be an infinitely long stream. That is, the stream will
continue until a stop streaming instruction is performed.
2 in bytes.

8/90 WM Computer Architectures :'Military Standard Manual 12

stop instruction applied to an input FIFO will take the counterpart action, discarding all
data currently in the FIFO,

Only one input stream and one output stream per FIFO may coexist. This imposes a
maximum of eight (four input and four output) simultaneous streams for the integer and
floating point units.

An input FIFO is considered to be in streaming mode until all of its data has been
consumed or until the stream is halted by a stop streaming instruction. An output FIFO is
considered to be in streaming mode uniil all data has been written to it or until the
stream is halted by a stop streaming instruction.

Note that unlike LOAD/STORE instructions, consistency is not guaranteed between
input and output streams. More specifically, when streaming both in and out of the same
locations, the memory system has no responsibility of maintaining the order between
memory reads and writes.

Streaming instructions may cause Page Fault exceptions. If a Page Fault exception
occurs during a memory read, the exception is not raised untii an attempt to read
register 0 or 1 unsuccessfully. If such an exception occurs during a write of register 0
or 1 (to be written into memory), the exception is raised immediately.

4.1.5.2 Streaming to and from the VEU
Streaming to and from the VEU is conceptually similar to streaming to and from the
IEU and FEU; however, it differs in a few details:

data is moved in "blocks" of N entities.

because there are no LOAD or STORE instructions for the VEU, there is only
one "mode" for the VEU FIFOs. Note specifically that v1 cannot be used as a
parameter bypass.

because the VEU supports integer, logical, and floating operations, appropriate
streaming operations are provided to do the proper form of operand
expansion or contraction.

because the operations of the VEU may be controlled by 1-bit {boolean)
control vectors, the ability to stream such vectors is provided.

1

]

Vector streaming occurs in "blocks" of N items, where N is the implementation-
defined number of items per vector register. In the event that the stream count is not a
multiple of N the "last block" of items read or written will contain less than N items. On
input the block will be padded with suitable values, and any addressing violations
resulting from attempting to access these invalid values will be suppressed. Similarly,
on output, only the valid items will be written to memory, and no inappropriate
addressing violations will be raised. The implication of these rules is that the program
does not need to worry about the "boundary conditions”.

4.1.6 Special instructions and synchronization

Responsibility for execution of the special instructions resides in the Instruction
Fetch Unit; in reality, however, one or more of the other execution unils may be
involved. When more than one execution unit is involved, the IFU must ensure that the

13 WM Computer Architectures : Military Standard Manual 8/90

proper synchronization of the other units occurs so that sequential semantics are
enforced!.
The class of special instructions include instructions to

- provide access to special state, to help save and restore the state of the
processor and the individual FIFOs efficiently and to perform context loads,
stores and swaps.

- convert between the integer and floating numeric data types. Convert
instructions reference one register in the integer execution unit and one in
the floating execution unit as appropriate. In addition, there exist transfer
instructions, which use "bit copy" semantics to transfer between two
registers in different execution units (integer, floating and vector). No data
conversion is performed except as necessary to expand/contract their
representation2,

- determine if a value is within certain bounds. If it is not, a hardware Assert
Fault is generated. Unlike the integer and floating point relationals, the two
boolean values are AND'd together by these instructions and no condition code
is enqueued.

- move, with or without sign extension, a field within a word in the IEU. These
instructions provide for field extraction (with or without sign extension)
and basic shifts.

- find the first (different) bit, i.e. the location of the most significant bit that is
different from the sign bit in a value.

- consume ohe condition code as do conditional jump instructions without
dependence on its value.

- read and write the Program Control Word.

The SYNCH instruction causes the processor to synchronize the IFU, IEU, FEU, and
VEU. In effect, it will inhibit instruction dispatch until a consistent, "as though the
instructions were really executed sequentially” state is reached.

4.1.7 Deadlock

Centain sequences of operations may lead to a deadlock situation (each of the IFU, IEU
and FEU unable to make progress). Such programs are invalid. The WM computer will
detect a deadlock and trap.

The minimum sizes of the various FIFOs are specified that it is always possible to
construct a valid WM program. For example, the minimum size of the input FIFOs are 3
so that, at worst, an instruction requiring 3 source operands from memory can be
emitted, and consume, its operands without blocking.

1 In general this may imply waiting for all previous instructions to complete and
inhibiting all subsequent instructions until the special instruction has completed. In
practice, however, many relatively simple optimizations can be detected by an
implementation.

2 Aside from the obvious "bit hacking" these instructions allow, they may also be
used to get more streams 1o one of the executions units if the other has them free.

8/90 WM Computer ‘Architectures : Military Standard Manual 14

4.2 Data formats

The instruction set shall support j-bit fixed point precision, {-bit floating point
single precision, and y-bit vector (fixed and floating) point precision data in twos
complement representation. A member of the family is denoted by three parameters, and
is denoted WM; ¢y. The parameters denote the size, and implicitly the existence, of the
integer, floating, and yector data manipulation operations of the family member. The
parameters are constrained such that:

i e {16, 32, 64}
i ¢ {0, 32, 64}
v ¢ {0, 32, 64}

Data format determines what LOAD and STORE instructions are supported on a
particular family member: on 32-bit versions of the machine, 8-, 16-, and 32-bit
integer data types are supported in memory, and operations are provided 1o load these
data types into the registers. On a 16-bit version of the family, only 8- and 16-bit
integer data types are supported, and the operation to load a 32-bit integer is iliegal.

4.2.1 Data alignment

Data elements are assumed to be aligned. For example, addresses of halfword data
elements are assumed to have a zero least significant bit, thus specifying a halfword
boundary. This least significant address bit is ignored when accessing such data
elements. Instructions are aligned on word boundaries. Doublewords are aligned on
sixty-four bit boundaries.

4.2.2 Data sizes
Data elements in memory may be stored in 8-bit byte, 16-bit halfword, 32-bit
word, or 64-bit doubleword sizes.

4.2.3 Data Types
The WM architecture supports values of several types: boolean values, signed
integer values, and ficating point values.

Bits within bytes, halfwords, words, and doublewords are numbered from left to
right starting with 0. The lefthand side is the most significant. Bytes within larger
entities, such as words, are also numbered from left to right starting with 0. The last
byte (number 3) in word 327 is just before the first byte (number 0) in word 328.

4.2.3.1 Boolean values.

No explicit instructions exist to support operations on boolean values. However, the
avallable operations were created with such support in mind. In particular, any bit in
an integer register may be set, tested, or selected in one instruction, and any bit may be
cleared in two instructions. These macro functions are synthesized by the proper
operation combination. Vectors of boolean values may be loaded from and stored to
memory as bytes, halfwords, words, or doublewords. i-bit boolean vectors may be
logically manipulated with register/register instructions. Shorter boolean fields may
also be extracted from larger vectors with a single instruction.

15 WM Computer Architectures : Military Standard Manual 8/90

4.2.3.2 Signed integer values

Arithmetic on 2's-complement j-bit signed integers with the most significant bit
(MSF) as the sign bit is supported by individual operations. While, on appropriate
family members, signed integers may be loaded and stored as doublewords, words,
halfwords, or bytes, all integer arithmetic is performed on j-bit register quantities.
Unsigned integers are not supported by the machine. Explicit underflow checking is
required when synthesizing unsigned arithmetic with this architecture.

4.2.3.3 Floating point values
Arithmetic is performed using the f-bit value obeying the IEEE floating point
standard.

4.3 Instruction formats
Six instruction formats are supported. Each instruction is 32-bits. The operation
code consists of bits 4..11 or 8..11 of the instruction,

4.3.1 Literals in instructions

Certain instructions may specify unsigned, 5-bit literals as operands. These
literals are the integers 1-32 and are encoded in the obvious way, except that 32 is
encoded as zero.

4.3.2 Instruction format notation
The WM [SA definition has five instruction formats.

4.3.3 Integer format instructions.

Integer arithmetic and logical instructions are executed by the IEU. The three source
specifiers -- R1, RL2 and RL3 -- may name integer registers. RL2 and RL3 may also
name 5-bit literals. OP1 is the operation with source inputs R1 and RL2. OP2 is the
operations with source inputs consisting of the result of OP1 and RL3. RO is the
destination integer register.

01234 78 1112 1617 21 22 2627 31

0C|RL | OP1 ! oP2 RO R1 RL2 RL3

4.3.4 LOAD/STORE format instructions.

Load and Store instructions are executed by the IEU. RO, R1, RL2 and RL3 may name
integer registers. RL2 and RL3 may name 5-bit literals. OP1 is the operation with
source inputs R1 and RL2. OP2 is the operations with source inputs consisting of the
result of OP1 and RL3. RO is the destination register into which a computed address is
stored.

0123 4 7 8 1112 1617 21 22 2627 31
op op
0f|RL | LSOP} 1 2 RO R1 RL2 RL3

8/90 WM Computer Architectures : Military Standard Manual 16

The LOAD and STORE instructions specify two things: (1) the address of the data to be
read or written, and (2) the size/type of the data (e.g., byte vs. halfword vs. double-
precision fioating point). The type specified implicitly determines the execution unit
involved.

The address computation is formally and semantically identical to the assignments of
the integer/logical instructions:

RO := (R1 op1 RL2) op2 RL3

The only differences are that the set of operators is smaller and the result of the
computation is sent to the memory system in addition to being sent to the destination
register. The permilted operations are:

+ addition
subtraction
multiplication
asl arithmetical shift left

*

The type/size of the data to be read or written is specified by the LOAD or STORE
instruction.

The memory system ensures that certain sequences of load/store operations are
performed properly. Loads and stores from one execution unit are not synchronized with
those of the other!

There are no LOAD/STORE instructions for the Vector Execution Unit. All memory-
VEU transfers are accomplished with streaming instructions.

4.3.5 Floating point format instructions

Floating point arithmetic instructions are executed by the FEU. R0, R1, R2 and R3
may name floating registers. OP1 is the operation with source inputs R1 and R2. OP2 is
the operations with source inputs consisting of the result of OP1 and R3. RO is the
destination register.

0123 4 78 1112 1617 21 22 2627 31

11100 { OP1 I OopP2 RO R R2 R3

4.3.6 Controi format instructions
Control instructions are executed by the IFU.

0123 4 11 12 31

1111 oP OFFSET

The offset is extended tih two least significant zero digits.

17 WM Computer Architectures : Military Standard Manual 8/90

4.3.7 Vector format instructions.
Vector instructions are executed by the VEU.

0123 4 1112 1617 21 22 2627 31
11101 OoP RO R1 R2 R3

RO, R1, R2, and R3 are vector registers. RO is the destination.

4.3.8 Special format instructions
Special instructions are executed by the IFU.

0 12 3 4 1112 1617 2122 2627 31

101 RL OP RO R1 RL2 RL3

RO, the destination register, and R1 are general registers. RL2 and RL3 are either
literals or general registers.

4.4 Registers and support features

4.4.1 General registers

There are 32 general register names that may be specified in an instruction --
however integer, floating point, and vector registers are distinct, providing 96 total
register names. As an aid in computation, register 31 in all three units are defined to be
identically zero. Although it is possible to write to these registers, whenever read, their
value is zero.

4.4.2 Special registers

Other aspects of the machine state, such as the Program Counter (PC), the Cycle
Counter (CC), the Program Control Word (PCW), and the Program Status Word (PSW)
cannot be directly accessed by instruction (other than certain bits of the PSW which
may be set as a side effect of another instruction -- e.g., condition codes); these
registers are only (re)set as a consequence of a context-swap. Details of the special
registers are discussed in section 4.6.

4.4.3 Stack
The WM architecture defines
- Stack Limit as register 2, and
- Stack index as register 3 of the integer execution unit.

The Stack Limit register is guaranteed by software to lie on a page boundary, thus
having its lower bits be zero accordingly. (The page size is implementation-dependent,
so the number of zeroed lower bits is not specified by the architecture.) The Stack Index
contains an integer such that the address of the top of stack is computed as follows:

8/90 WM Computer Architectures : Military Standard Manual 18

TOS := 8L + Si

The Stack Index normally has a negative value. The stack grows towards the positive
addresses, and a transition from negative to positive Stack Index is the overflow
condition. This condition is checked by hardware whenever the Stack Index is written;
an exception is generated if it is met. The Stack Limit may only be written by programs
with proper privileges. No push or pops are supported, nor needed, on this machine.

4.4.4 Register convention
The conventions with respect to register usage are:

r3 Si

ro input integer FIFO; always assumed empty at calls

r1 input integer FIFO; contains 1st N parameters on cails, and the result(s)
on returns

fo input floating FIFQ; always assumed emply at calls

f1 input floating FIFO; contains 1st N parameters on calls and the resuli(s)
on returns

v input vector FIFO; always assumed empty at calls

vi input vector FIFQ; always assumed empty at calls

rb5 FP (frame-pointer; software convention)
ré HP (exception-handler pointer; software convention)

4.5 Memory

4.5.1 Memory reads & writes

WM interposes FIFOs ("first in, first out queues") between the register sets and the
memory. LOAD and STORE instructions are operations on these FIFOs, and are executed
by the IEU when the queues are in normal mode.

LOADs and STORESs specify an address. A LOAD is a request to enqueue data from
memory into a specified input FIFO, and a STORE is a request to dequeue data from a
specified output FIFO and store it to memory.

Data manipulation instructions (executed by the IEU, FEU, or VEU), which can name
registers as operands, use "register 0" to name the input and output FIFOs.

To dequeue data from an input FIFO, an instruction references register 0 as a
source operand. To enqueue data in an output FIFO, an instruction specifies register 0 as
the destination of a computation. "Register 0" is interpreted differently when used as a
source and destination operand; as a source operand it refers to an input FIFO of the
execution unit, and as a destination operand it refers to an output FIFO of the execution
unit.

LOAD and STORE instructions are executed by the Integer execution unit, but may
imply that the data to be loaded or stored is destined for either the Integer or Floating
execution Unit FIFOs; memory operations for the Vector Execution Unit are handled by
streaming.

19 WM Computer Architectures : Military Standard Manual 8/90

Multiple LOAD instructions (with implementation dependent limits) may be
executed; the data is enqueued in an input FIFO in the order of the LOAD instructions.
Access to register 0 dequeues the next value from the FIFO for use.

LOADs precede access to the read value. STOREs and the production of the data value
to be ouput may occur in either order. The action of writing to memory is taken only
when an appropriate pair of instructions have both been executed. Several STORE
instructions could have been executed before the first value to be stored is computed into
register 0; the addresses are queued until the value to be stored is computed.

The WM architecure defines minimum sizes of the input and output FIFOs; actual
sizes are implementation defined. The architecture requires at least:

i-bit entries in the integer unit's input FIFOs

i-bit entry in the integer unit's output FIFO

f-bit entries in the floating unit's input FIFOs,

f-bit entry in the floating unit's output FiFOQ,

N-component blocks of y-bit entries in the vector unit's input FIFO, and
N-component block of y-bit entries in the vector unit's input FIFO.

¥
— O3 wk G D

These minimums ensure that any single instruction can execute, even if it names all
its source operands and i's destination operand as FIFOs.

For any particular implementation, hence specific FIFO sizes, it is possible to
construct a program that will deadlock - for example, by trying to enqueue more than a
particular FIFO can hold. Such programs are invalid.

4.6 Operating system support

4.6.1 Task state

A task is a thread of control. Whenever a task is saved or restored, all of its
processor state is transferred 1o or from its hardware-defined Task Control Block. This
is an area in memory with room for:

(1) State visible to the program
integer, floating point and vector registers.
- Program Counter, PC.
- Program Control Word, PCW.
- Program Status Word, PSW.
- Cycle Counter, CC.
- Last TCB Pointer, LTP,
- Protection Table Pointer, PTP.
- Map Table Pointer, MTP.

(2) State visible only indirectly by the program
- input/output FIFO state.
- sireaming slate.
- other implementation-defined state

8/90 WM Computer Architectures : Military Standard Manual 20

in general, the amount and description of the state is implementation-dependent.
Only the TCB format for the state visible to the program is defined. Some of the
architecturally-defined state is discussed below.

The PCW and PSW are two architecturally-defined CPU device registers.
implementations may add other registers (e.g., to control hardware diagnostics).

The Program Control Word collects a number of fields whose values affect the
execution of a task, such as the bit which indicates whether the results of two relational
operators in an instruction are AND'd or OR'd as well as the bits that enable/disable
certain traps. The PCW consists of:

Bit# Meaning
0 AND/OR relationals (AND == 1)

- - Exceptions Enabled (enabled == 1):

1 Attempted Stack Limit Modification
2 Stack Index Negative

3 Assert Fault

4 integer Divide By Zero

5 Floating Divide By Zero

8 Integer Arithmetic Overflow

7 Integer Arithmetic Underflow

8 Floating Arithmetic Overflow

9 Floating Arithmetic Underflow
10 Cycle Counter Overflow

11 Raise Address

12 Raise Call

13 Raise Jump

The Program Status Word collects a number of fields that reflect status of the task,

such as the run/halt bit, the interrupt enabling bit, the priority and the condition FIFOs.
For example, the PSW could include:

21 WM Computer Architectures : Military Standard Manual 8/90

Bit # Meaning

Run/Halt (run == 1)
Interrupts Enabled
:5 Priority[0:3]
:8 Integer Condition FIFO Bits
110 integer Condition FIFO Depth
11:13 Floating Condition FIFO Bits
14:15 Floating Condition FIFO Depth

OoON O

The Cycle Counter is a 32-bit register that is incremented by one every cycle that
the task executes. It may overflow (once every ~200 seconds with a 50ns cycle time),
in which case an exception may be raised.

The Last TCB Pointer, LTP, in general points to a TCB. When an interrupt occurs, a
forced context swap is performed and the LTP of the new task is set to point to the TCB of
the task that was running at the time of the interrupt. Thus, in the case of nested
interrupts, the LTPs form a chained "stack" of the suspended handlers; the SwaplLT
instruction will resume the previous task.

A task's virtual address space is divided into pages. An address is divided into two
parts, the virtual page number, and the byte within page address. The boundary between
these paris is implementation-dependent, as is the structure of the tables (one-level,
two-level, etc.). Pages must, however, be at least 512 bytes.

Yirtual Page Number ... Byte Within Page

__4

boundary somewhere

Assume K bits of virtual page number and j-K bits that specify the byte within the
page. Associated with every virtual page number is a protection table and map table
entry, as described below.

4.6.2 Protection

Each task has a Protection Table that defines its memory access rights on a page-by-
page basis. The Protection Tabie Pointer (PTP) in the TCB is either null (zero), or the
physical address of the base of this table and virtual address page numbers are used to
index into it. If the PTP is null no type or rights checking is performed, otherwise
protection is checked as specified below?.

TThe PTP may be null because protection is not implemented on a certain model of
WM. In addition, however, PTP is null when the processor is first "booted” -- this
corresponds to the "most privileged state”.

8/90 WM Computer Architectures : Military Standard Manual 22

A Protection Entry is a byte, with the following format:

type rights
|

The first four bits define the page type. This field is interpreted as:

0000 Memory

0001 TCB

0010 Entry

0011 Device

0100-0111 reserved for hardware
1111 reserved for software

1000-

Only the first four are hardware defined. Accesses to pages with reserved protection
types raise a memory protection exception.

An access to "Memory" pages may either be reads, writes, or executes. The
rights bits are R, W, and X, and determine if such operations are allowed, or if
they result in memory protection exceptions.

Accesses to a TCB page may be reads, writes, or context save/restore/swap; the
protection bits are correspondingly, R, W, and S. Note that saving context is not a
privileged operation.

Accesses to an Entry page may be reads, writes, or ECalls; the protection bits are
correspondingly, R, W, and C.

Accesses to Device pages may be only reads and writes, and the corresponding
rights bits are R and W.

4.6.3 Address mapping

Each task has a Map Table that defines its virtual-to-physical address transiation.
The Map Table Pointer (MTP) in the TCB is either null (zero), or the physical address
of the base of this table and virtual address page numbers are used to index into it. If the
MTP is null, no translation is performed; otherwise translation proceeds as specified
below?.

The MTP may be null because virtual memory is not implemented on a certain
model of WM. In addition, however, MTP is null when the processor is first "booted” --
this corresponds 10 the "unmapped processor state”.

23 WM Computer Architectures : Military Standard Manual 8/90

Map table entries have the following format:

via
Ll isw physical page number

and their bits are interpreted as follows:
0 Valid - this page exists in physical memory
Locked --this page is locked into memory1
Accessed - this page has been read
Modified - this page has been written

5 Software usable/defined

:31 Physical Page Number - 26 bits

[+ >3- 4~ I

The 26-bit physical page number is catenated with the Byte Within Page field to
form the physical address. This limits the physical memory (without bank-switching)
to an address space of 26 plus size(Byte Within Page} bits.

4.6.4 Initialization of the machine
Machine implementation determines initialization.

4.7 Devices
Each device connected to WM must conform to the following conventions:

1. The device must "knoW" the physical TCB address to which it is to interrupt.
This may be wired-in for certain devices, or may be a seitable register.

2. DMA devices must use "the zero-th register”, the zero-th location relative o
the device page, as the memory address register; non-DMA devices are
advised not to use this location at all. The memory translation hardware
recognizes stores into the zero-th location of device pages, and assumes the
value 10 be stored is a virtual address; it then

- verifies that the specified page is both valid and locked, and
- stores the transiated (physical) address rather than the virtual one.

3. DMA transfers may not cross a page boundary, thus the maximum size biock
that can be transferred is a page.

1 The "locked bit" is a software convention; it is, however, checked by hardware
when DMA 1O transfers are specified. See Section 4.5.

8/90 WM Computer Architectures : Military Standard Manual 24

4.8 Input/output

Control of input/output devices is "memory mapped". A portion of the physical
address space reserved for "device registers”. Unpriviledged applications program are
permitted to directly access 1O devices.

At least three devices are required of all implementiations:

- "the CPU", conirol and status registers for the processor itself. One
processor can probe or start/stop another or itself with bit set/reset
operations on the appropriate device register,

- one or more "timers", which are 32-bit counters that decrement each
100ns and, if enabled, interrupt when they become negative (but
continue counting until reset), and,

- a “calendar" which is a 64-bit counter that is incremented each 100ns,
runs continuously when power is enabled, and will interrupt when it
overflows.

4.9 Traps (exceptions) and interrupts
Non-programmed control flow changes can occur through two types of events:

interrupts these are asynchronous with respect to instruction execution and
may not be associated with the currently executing task.

traps these are hardware-defined and are the direct resuit of an
instruction just executed.

Interrupts are implemented as context-swaps o a handler task; traps are
implemented as ECall's to handler entries. The terms "trap" and "exception" are used
interchangeably.

4.9.1 Interrupts

interrupts are best viewed as communication (messages) from asynchronous
cooperating processes that happen to be implemented in hardware -- and as such, the
task mechanism Is the proper one for handling them. Thus, the effect of an interrupt is
almost identical to a SwapCTX instruction; the only difference is that, on interrupts, the
LTP (last TCB pointer) of the new task is set to point to the TCB of the task that was
running at the time of the interrupt.

Note that each device capable of interrupting the processor must retain one or more
addresses of the TCBs for the handiers of the interrupts it generates, and present this
address to the processor along with the priority of the interrupt.

An interrupt (context swap) will be performed to the handler task if the priority of

the interrupt is higher than that of the processor, and indeed, is the highest of all
outstanding interrupts.

25 WM Computer Architectures : Military Standard Manual 8/90

4.9.2 Traps

The page zero of a program's virtual memory (starting at address 0) must contain
an Entry Page. A trap is implemented as an ECall on a hardware-understood location
within this page. The hardware-defined locations are:

Location

16
24
32
40
48
586
64
72
80
88
26
104
112
120
128
136
144
162
160
168
176
184
192
200
208
216
224
232
240
248

Exception

(reserved)

L.oad While Input Streaming

Store While Qutput Streaming
Input FIFO Full

input FIFO Empty

Output FIFO Full {Data Capacity Exceeded)
Output FIFO Full (Address Capacity Exceeded)
Congdition FIFO Full

Condition FIFO Empty

{reserved)

Undefined Instruction

Memory Protection Violation
Attempted Stack Limit Modification
Stack Index Negative

Jump On Stream Count while not streaming
Double Stream

(reserved)

Assert Fault

Integer Divide By Zero

Floating Divide By Zero

Integer Arithmetic Overfiow
Integer Arithmetic Underflow
Floating Arithmetic Overflow
Floating Arithmetic Underflow
(reserved)

Cycle Counter Overflow

Raise Address

Raise Call

Raise Jump

(reserved)

Page Fault

(reserved)

The exceptions are ordered. |If an instruction produces more than one exceplion, the
one that vectors to the lowest memory location is selected. The other exceptions related
to that instruction are nullified. An exception handling routine may itself cause an

exception.

The EReturn instruction is used to return from an exception, just as from an ECall.

8/90 WM Computer Architectures : Military Standard Manual 28

4.9.3 Exceptions
Exceptions are listed by function unit:

4.9.3.1 Integer exceplions
The following arithmetic conditions result in exceptions unless masked off in the
PSW:

¥

input FIFO 0/1 Empty: an attempt to read r0 or rt was made when no value is
present in the FIFO, nor is any value scheduled to be loaded.

Output FIFO 0/1 Full (Data Capacity Exceeded): an attempt to write r0 or 1
was made when the associated output FIFO was already full, and no value is
scheduled to be stored.

Overfiow/Underflow: an arithmetic operation overflowed or underflowed

Divide by 0: an attempt to divide by zero was made

1

H

4.9.3.2 Load/Store exceptions
The following exceptions may occur as a result of a load or store instruction:

Input FIFO 0/1 Empty: as per integer instructions when used as a source

operand in the address calculation.

- Input FIFO 0 Full: an attempt was made to perform a load when the input FIFO
was already full, or will be full after some pending loads complete.

- Qutput FIFO 0 Full (Address Capacity Exceeded): an attempt has been made to
perform a store when the output FIFO is empty and no further address can be
buffered.

- OQutput FIFO 0/1 Full (Data Capacity Exceeded): as per integer instructions
when specified as the destination register for the address calculation.

- Overfiow/Underflow: an arithmetic operation overflowed or underflowed.

- Memory Protection Violation: an attempt to read, write, or execute from/to a
memory location without proper access privilege (see Chapter 4 for a more
complete discussion).

- Load While Input Streaming: a load instruction while register 0 is in input
streaming mode.

- Store While Output Streaming: a store instruction while register 0 is in

output streaming mode.

4.9.3.3 Contro! exceptions
The following exceptions may be raised as the result of a control flow instruction:

- Condition FIFO Empty: A JumpIT{JumpFT) or JumplF(JumpFF)
instruction is being executed, and the condition bit has not been set (and is
not in the process of being set) by a previous relational operator.

- Memory Protection Violation: An attempt was made to transfer control to a
page without proper access privileges (see Chapter 4 for a more complete
discussion).

- Page Fault: In a virtual memory system, an attempt to execute from a virtual
address that does not exist in physical memory.

27 WM Computer Architectures : Military Standard Manual 8/90

4.9.3.4 Floating point exceptions
The following arithmetic conditions result in exceptions unless masked off in the
PCW: '

- Overflow/Underflow: as per integer instructions.
- Divide by 0: as per integer instructions,
- Condition FIFO overflow: As per the integer instructions.

Note that input/output FIFO empty/full are not exception conditions for the floating
point instructions as they were for the integer and load/store instructions. This allows
the integer and floating point units to proceed asynchronously preparing/consuming
addresses and data -- but does require a more global detection of erroneous (deadlocked)
programs.

8/80 WM Computer Architectures : Military Standard Manual 28

5. Detailed Requirements

5.1 Instruction set notation
5.1.1 Registers

5.1.1.1 General registers

There are 32 general register names that may be specified in an instruction --
however integer, floating point, and vector registers are distinct, providing 96 total
register names. As an aid in computation, register 31 in all three units are defined to be
identically zero. Although it is possible to write to these registers, these writes have no
effect.

Registers in the various execution units are given distinct mnemonic names:

ro, ..., r31 refer 1o the integer/logical registers in the IEU,
fo, .., 131 refer to the floating point registers in the FEU, and
vQ, ..., v3i refer to the registers in the VEU.

In addition rz, fZ, and vZ refer to register 31 (the "always zero" register) in the
IEU, FEU, and VEU respectively. Capital "R" is used to denote the contents of a register
field of an instruction, independent of the type of instruction.

5.1.1.1.1. 1IEU registers

ro Register r0 refers to an input or an oufput FIFO depending on the context.
Each FIFO consists of an implementation defined number of i-bit values. A
‘consume_count' is associated with each FIFO. A FIFO is in streaming mode if
cohsume_count is non-zero.
Input FIFQ: r0 refers to the input FIFO r0.nput when a) r0 appears to the
right of the « symbol or b) r0 appears in a value context as in a if statement
or ¢} when the input FIFO is explicitly specified.
Qutput FIFQ: 10 refers to the output FIFO r0.output when a) r0 appears to the
left of the « symbol or b) when the output FIFO is explicitly specified.
An output FIFO is a FIFO of records. Each record has three fields - a ‘value'
field which may contain data or address, a 'qualifier' field which qualifies the
contents of the 'value' field as DATA or ADDR and a 'size’ field which stores the
number of byles to be iransferred to memory. The default qualifier is DATA.
The size field is meaningful only when the qualifier is ADDR.

ri Register r1 is similar to r0 with the difference that an assignment to the
output FIFO r1 results in the value being enqueued in the r1 input FIFO as
well.

r2-r30 These denote i-bit integer registers.

r31 r31 is a i-bit register with the value 0. Assignments to r31 have no effect on
its contents.

28 WM Computer Architectures : Military Standard Manual 8/90

5.1.1.1.2 FEU registers

f0-f31 These are similar {o their integer counterparts except that a) these are f-bit
floating point registers and b) input/output FIFO fullfemply are not exception
conditions.

5.1.1.1.3 VEU registers

v Register v0 refers to an Input or an output FIFO depending on the context.
Each FIFO contains blocks of elements. Each block contains N v-bit values. A
tag' is associated with each v-bit value. Both N and the depth of the FIFO are
implementation defined. A ‘consume_count' is associated with each FIFO. A FIFO
is in streaming mode if consume_count is non-zero.
lnput FIEQ: vO refers fo the input FIFO v0 when a) vO appears to the right of
the « symbo! or b} v0 appears in a value context as in an Jf instruction or ¢)
when the input FIFO is explicitly specified.

Qutput FIFO: vO refers to the output FIFO v0 when a) v0 appears 1o the left of
the « symbol or b) when the output FIFO is explicitly specified.

Like the IEU/FEU output FIFOs, v0 is also a FIFO of records, with the same
fields as the IEU/FEU output FIFOs. As mentioned above, v0 has an additional
field - the tag field with two possible values - CHANGED and UNCHANGED. The
default for the qualifier field is DATA. The tag field is used only when the
qualifier is DATA and the size field is used only when the qualifier is ADDR.

vi Register v1 is similar to vO0.

v2-v30 Each of these registers is a block of N elements, each element consists of a v-
bit value and the associated tag.

v31 Register v31 is like registers v2-v30, except that 1) the value in the v-bit
data field of each element is 0, and 2) assignments to v31 have no effect on
this value.

5.1.1.2 Implementation dependent registers

The registers listed here are specified for use in the instruction semantics
specification in Chapter V. Other implementations may define different implementation
dependent registers.

CC1, CC2 Registers that hold intermediate condition code values. The possible values are
TRUE, FALSE and NOT EVAL.

X1, X2 IEU internal registers (at least i-bits).
Y1, Y2 FEU internal registers (at least f-bits}.
Z1, Z2 VEU internal registers (at least v-bits).

JC Boolean register used in the specification of control flow instructions.

8/90 WM Computer Architectures : Military Standard Manual 30

SM,
SCount Registers used in the specification of stream operations (at least i bils).

SMvV Record used in the specification of vector stream operations : it has two fields:
value and tag.

Shec 1-bit boolean register used in the specification of stream operations.

§.1.1.3 Special registers
These are described in Section 4.4.2.

5.1.2 Symbols
51.21 "&"
5.1.2.1.1 Symbols fo the left of «:

Output FIFO The values to the right of the «= symbol are enqueued in the specified
fields of the output FIFO.

SMV The fields of the record get the values of the corresponding fields of the
record to the right of the «.

Register The value(s) to the right of the « are assigned to the specified field(s)
of the register.

5.1.2.1.2 Symbols to the right of «
Output FIFO The FIFO is dequeued and the record obtained is the value of the symbol.

Register The value of the contents of the register is the value of the symbol.

5.1.2.2 "« ": The assignment operator.
The assignment operator syntax is
X « expression (Assignment 1o X from expression)
The result of the assignment depends on the symbols that appears to the left (in a name
context} and to the right (in a value context) of the « operator.

5.1.2.2.1 Symbols to the left of «

Input FIFO An assignment to an input FIFO has the effect of enqueuing the
value of the expression to the right of the « operator.

IEU/FEU Qutput FIFO If the ‘qualifier field of the record at the head of the FIFO is
ADDR, then the FIFO is dequeued, and the value of the
expression to the right of the « symbol is written to the
memory location given by the ‘'value' field of the dequeued
record.

Otherwise, the value of the expression to the right of the «
symbol is enqueued into the 'value' field at the tail of the FIFQ,
and the corresponding ‘qualifier' field is set to DATA.

31 WM Computer Architectures : Military Standard Manual 8/90

VEU output FIFO

rg-r30

f2-130, v2-v30

r31, 131,

CCi, CCf

v31

Miaddr, size]

5.1.2.2.2 Symbols to

Input FIFO

Output FIFO

r2-r3t
f2-f31,

CCi, CCf

8/90

v2-v3i

In either of the above cases, if the FIFO was is streaming mode,
consume_count is decremented by one.

if the output FIFO is r1 or f1, then the assignment to the FIFO
resuits in the value being enqueued in the corresponding input
FIFO as well.

If the 'qualifier’ field of the record at the head of the FIFO is
ADDR, then the FIFO is dequeued. If the 'tag’ field is being
assigned CHANGED, the value in the value field of the register 1o
the right of the « symbol is written to the memory location
given by the 'value' field of the dequeued record.

Otherwise the value in the value field of the register to the
right of the « symbol is enqueued into the 'value’ field at the
tail of the FIFQ, the corresponding 'qualifier' field is set to
DATA and the tag field is set as specified.

In either of the above cases, if the FIFO was is streaming mode,
consume_count is decremented by one.

The value of the expression fo the right of the « is assigned to
the specified register.

Similar to r2-r30

The assignment does not change the contents of the specified
register.

An assignment to CCI/CCf enqueues the value of the boolean
expression to the right of the «- operator.

size bytes of memory starting at location addr are assigned the
value of the expression to the right of the « operator. The value
of the expression should also be size bytes in length.

the right of «

The input FIFO is dequeued and this is the value of the symbol. i
the FIFO is in sireaming mode, the corresponding
consume_count is decremented for each value dequeued. If the
FIFO is empty and a value is scheduled to be loaded, the
assighment operation blocks until a value is enqueued.

The output FIFO is dequeued and the value in the 'value' field is
the value of the symbol.

The value of the symbol is the contents of the specified register.
Similar to r2-r31

The specified condition code FIFO is dequeued and this is the
value of the symbol.

WM Computer Architectures : Military Standard Manual 32

Mladdr, size] The value of size bytes of data from the memory starting at
location addr.

5.1.2.3 ":" : The bit selection operator
reg:i
Selects the ith bit of the specified register ‘reg'.

reg:i-j

Selects j-i+1 bits of the specified register starting from bit i.
5.1.2.4 "1 : The operator-argument operator

opr I args

Passes the arguments args to the operator opr.

5.1.2.5 "isl” : The arithmetic shift left operator
Xlsl'Y
Shifts the register X left by the amount specified by the register/literal Y

5.1.2.6 "ast” : The arithmetic shift right operator
XasryY
Arithmetic shifis register X right by the amount specified by the register/literal Y.

5.1.2.7 "&&": The bitwise and operator
X8&_&Y
The two registers X and Y are bilwise and-ed.

5.1.2.8 ‘and’ : The logical and operator
XandY
The two boolean values X and Y are logical and-ed and the resuit is TRUE or FALSE.

5.1.2.9 "{|" The bitwise or operator
XNy
The registers X and Y are bitwise or-ed.

5.1.2.10 "or" The logical or operator
XorY
The two boolean values X and Y are logical or-ed and the result is TRUE or FALSE.

5.1.2.11 "EQV" The bitwise equivalence operator

XEQVY

The registers X and Y are checked for equivalence bit by bit. For two corresponding bits
that are the same, a 1 Is produced and for two corresponding bits that are different a 0 is
produced.

5.1.2.12 "+, =, ', %/, /"

These have the usual meaning. These operators are overloaded -- they operate on two
integer or two floating point operands and produce an integer or floating point
representation accordingly.

5.1.2.13 "=, <>, <, <=, »=, »"
These have the usual meaning. These relattonat operators are overloaded -- they
operate on two integer or two floating point operands and produce a boolean result.

5.1.2.14 "¢"
The 'don't care' symbol. The value of the symbol is immaterial.

33 WM Computer Architectures : Military Standard Manual 8/90

5.1.3 Functions
The following functions have been used for describing the semantics of some
instructions. They create no side effects -- each takes an argument, and returns a value.

float

int_to_float

float_to_int

sign_extend

relational

sizeof

qualifier_type

Takes a floating point register as argument and returns the floating
point number corresponding to the contents of the register.

Takes an integer register as argument and returns the integer in
floating point format.

Takes a floating point register as argument and returns the integer
corresponding to the floating point register, rounded as specified by a
particular machine implementation.

Takes an integer register or literal as argument and returns the sign
extended form of this argument or the argument itself depending on
the ‘sign extension’ column of the table for the instruction. Sign
extension is performed to i bits, where i is the size of the {EU
registers.

Takes an 'op' as argument and returns TRUE if 'op' is a relational
operator and FALSE otherwise. =, <>, <, <=, >= and > are the relational
ops.

Takes an integer or floating point register as argument and returns
the size of the register in bits.

Takes a FIFO as an argument and returns the qualifier field of the
element at the head of the FIFO. The FIFQ is not dequeued.

5.1.4 Operations

The following operations have been used to describe the semantics of instructions.
These operations have the side effect of changing the machine state. The general syntax
for these operations is

Possible operation
specifications:

exception

initiate stream
operation

operation-specifier :1 arguments

Takes as an argument the cause of the exception (e.g. Double
Stream) and causes a jump to the address specified in 4.9.2. The
jump is implemented as an ECall.

Takes as arguments a FIFO name, a base address, a count, a stride
and the type of streaming operation to be performed (stream_in,
stream_out or stop_streaming). It staris the specified stream
operation on the specified FIFO. It is described in more detail in the
description of stream instructions.

8/90 WM Computer Architectures : Military Standard Manual 34

initiate vector

stream operation

Similar to ‘initiate stream operation’. It is described in more detail
in the description of vector stream instructions.

5.1.5 Miscellaneous values

TRUE, FALSE

NOT EVAL

AND

The boolean values TRUE and FALSE respectively.

A value used for condition code operations. This value is
neither TRUE nor FALSE and means 'not evaluated'.

A constant with value 1.

CHANGED, UNCHANGED Constants used as tags in vector operations. A tag with

value 'CHANGED' indicates that the corresponding value
was modified and a tag with the value 'UNCHANGED'
indicates that the corresponding value was not modified.

5.2 Mnemonic conventions

Each instruction has an associated mnemonic convention. e.g. a load instruction
might be written as L8i 15:= (16 + r7) - r8.

Integer instructions begin with an 'int', e.g. int r4 = (r5 + r6) - r0.

Floating instructions begin with a 'flt', e.g. fit ¥4 = (i5 + 16) - 0.

Vector instructions begin with a 've¢', e.q. vec v4 :

(v5 + vB) if vO.

5.3 Execution semantics

Cycles

Execution

Exceptions and
Interrupts

Each instruction is composed of a finite sequence of cycles. An
instruction description may use any of the following cycles: Cycle 1,
Cycle 2, Synch Cycle or the Memory Cycle,

Cycle 1 and Cycle 2 terminate when the last operation in these cycles
is executed. The Synch Cycle synchronizes the IFU, IEU, FEU and the
VEU. The Synch Cycle terminates when all the instructions prior to
the instruction executing the Synch Cycle are executed. The Memory
Cycle is used in instruction descriptions that require memory
references and terminates when the last operation in the cycle is
executed.

Each instruction is executed during a finite sequence of cycles. The
execution of an instruction is complete when the last cycle in the
instruction description terminates. However, for stream
instructions, execution of the instruction is complete when the
Memory Cycle commences.

if an exception is raised during the execution of a cycle, the succeeding
cycle(s) are not executed, and the instruction execution terminates.
Interrupts are handled at the end of each instruction. Exceptions and
interrupts are discussed in Section 4.9

35 WM Computer Architectures : Military Standard Manual 8/90

5.4 Integer Arithmetic and Logleal Instructions

Mnemonig: int RO := (R1 opt RL2) op2 RL3
Eormat:
0 1 2 3 4 7 8 11 12 16 17 21 22 28 27 31
00 | RL OP1 OP2 RO R RL2 RL3
OP1, OP2
symbol encoding operation
3 0010 addition

- 0000 subtraction
-t 0100 reverse sublraction

* 0001 multiplication

/ 1000 division

/e 1100 raverse division

asl 0011 arithmetically shift left

eqv 0101 bitwlse EQUIVALENCE

or 0110 bitwise OR

and 0111 bitwise AND

= 1010 equal

<> 1110 not equal

< 1011 less than

<= 1101 lJess than or equal

P 1001 greater than or squal

> 1111 greater than
Description: The operation opl is performed during cycle 1 with R1 and RLZ as operands. If no

exception conditions are generated, operation op2 is psrformed during cycle 2 with the result
of op1 and RL3 as operands. if no exception conditions are generated, the result is written io
Ro.

Cycle Descrintion:

Cycle 1: Cycle 1 for op1

Cycle 2: Cycle 2 for op2

8/90 WM Computer Architectures : Military Standard Manual 36

Integer Arithmetic and Logical Instructions

541 op = +

Cycie 1 X1 « R1 + RL2
it overflow then PSW:§ ¢ 1
CCt1 « NOT EVAL

Cycle 2: X2 « X1 + RL3
CC2 « NOT EVAL

if overflow then
if CCt = FALSE then PSWi8 « 1

else
if CC1 # FALSE then RO « X2
if relational {(op1) then CCi« CCH

37 WM Computer Architectures : Military Standard Manual 8/90

Integer Arlthmetic and Logical Instructlons

5.4.2 op = asi

Cycle 1; X1 « R1 as| RL2
CC1 « NOT EVAL

Cycle 2: X2 « X1 aslRL3
CC2 « NOT EVAL
H CC1 = FALSE then RO « X2
if relational (op1) then CCi ¢ CC1

8/90 WM Computer Architectures : Military Standard Manual

38

Integer Arithmetic and Logical [Instructions

543 op = «

Cycle 1. X1« R1
if Rt < RL2 then CC1 « TRUE else CC1 « FALSE

Cycle 2. if X1 < RL3 then CC2 « TRUE else CC2 « FALSE

if relational {(op1) then
if PCW:0 = AND then CCi « CC1 and CC2 else CCi « CCT ar CC2

else CCi « CC2
If CCi was assigned TRUE then RO « X1

39 WM Computer Architectures : Military Standard Manual 8/90

Integer Arithmetle and Logical Instructions

5.4.4 op

Cycie 1:

Cycle 2:

8/90

X1« R1 - RL2
if underflow then PSW.7 « 1
CC1 « NOT EVAL

X2 « X1 -AL3
CC2 «- NOT EVAL
if underfiow then
if CC1 # FALSE then PSW:7 « 1
else
if CC1 # FALSE then RO « X2
if relational (op1) then CCi « CC1

WM Computer Architectures : Military Standard Manual

40

Integer Arithmetic and Logical Instructions

5.4.5 op = -

Cycle 1: X1 « RL2 - Rt
if underflow then PSW:7 « 1
CC1 « NOT EVAL

Cycle 2: X2 « RL3 - Xi
CC2 «— NOT EVAL
if underflow then
if CC1 # FALSE then PSW.7 « 1
else
if CC1 = FALSE then RO « X2
if reiational (op1) then CCi « CCH

41 WM Computer Architectures : Military Standard Manual 8/90

Integer Arithmetic and Loglcal Instructlons

5.4.6 op

= and

Cycle 1: X1« R1 && RLZ

Cycle 2:

8/90

CG1 « NOT EVAL

X2 « X1 && R13

CC2 « NOT EVAL

if CC1 = FALSE then RO « X2
if relational {op1} then CCi « CC1

WM Computer Architectures : Military Standard Manual

42

integer Arithmetic and Logical Instructions

5.4.7 op = or

Cycle 1: X1 « R1 || Ri.2
CC1 « NOT EVAL

Cycle 2: X2 « X1 || RL3
CC2 « NOT EVAL
if CC1 « FALSE then RO « X2
if relational {op1)} then CCi « COC1

43 WM Computer Architectures : Military Standard Manual 8/90

Integer Arithmetic and Logilcal Instructions

5.4.8 op = eqv

Cycle 1. X1 « R1 EQV RL2
CC1 « NOT EVAL

Cycle 2: X2 « X1 EQV RL3
CC2 « NOT EVAL
If CC1 +# FALSE then RO « X2
if relational {op1) then CCi « CC1

8/90 WM Computer Architectures : Military Standard Manual

44

Integer Arithmetic and Logleal Instructions

5.4.9 op = *

Cyele 1. X1 « R1 * RL2
if overflow then PSWiE « 1
CC1 « NOT EVAL

Cycle 2: X2 « X1 * RL3
CC2 « NOT EVAL
if overflow then
¥ CC1 # FALSE then PSW:8 ¢ 1
else
If CC1 = FALSE then RC « X2
if relational (op1) then CCi « CC1

45 WM Computer Architectures : Military Standard Manual 8/90

integer Arithmetic and Logical Instructions

5.4.10 op = /

Cycle 1. if RL2 = 0 then PSW:4 « 1 else
X1 « R1/R2
if underflow then PSW:7 « 1
CC1 « NOT EVAL

Cycle 2: if RL3 = 0 then
if CC1 « FALSE then PSW:4 « 1

else
X2 « X1/RL3
CC2 « NOT EVAL

if underfiow then
if CC1 = FALSE then PSW . 7¢- 1

else
if CC1 = FALSE then RO « X2

if relational (op1) then CCi « CC1

8/90 WM Computer Architectures : Military Standard Manual

46

Integer Arithmetic and Logical Instructions

54.11 op = [

Cycie 1. I R1 = 0 then PSW:4 « 1 else
X1 « RLZ / R1
if underilow then PSW:7 « 1
CC1 « NOT EVAL

Cycle 2: if X1 = 0 then PSWi4 « 1 else
X2 « RL3 /X1
CC2 « NOT EVAL
if underilow then
if CC1 # FALSE then PSW:7« 1
alse
If CC1 = FALSE then RO « X2
if relational {opt) then CCi « CC1

47 WM Computer Architectures : Military Standard Manual

8/90

Integer Arithmetic and Logical Instructions

5.4.12 op = =

Cycle 1. X1 « R1
if R1 = RL2 then CC1 « TRUE else CC1 « FALSE

Cycie 2o if X1 = RL3 then CC2 « TRUE else CC2 « FALSE

if relational (op1) then
if PCW:0 = AND then CCi « CC1 and CC2 else CCi « CC1 or CC2

else CCi « CC2
if CCI was assigned TRUE then RO « X1

8/90 WM Computer Architectures : Military Standard Manual

48

Integer Arithmetie and Logleal iInstructions

5413 op = «<»

Cycle 1: X1 « R1
if R1 # RL2 then CC1 « TRUE else CC1 « FALSE

Cycle 2: if X1 = RL3 then CC2 « TRUE else CCZ « FALSE
i relational (op1) then
If PCW:0 = AND then CCi « CC1 and CC2 else CCi « CC1 or CC2
else CCi ¢« CC2
if CCi was assigned TRUE then RO « Xi

49 WM Computer Architectures : Military Standard Manual 8/90

Integer Arithmetic and Logical Instructions

5.4.14 op = <=

Cycle 1: X1 « R1
if R1 < RL2 then CC1 « TRUE else CC1 « FALSE

Cycle 2: if X1 < RL3 then CC2 «- TRUE else CC2 « FALSE
if relational {opt) then
if PCW:0 = AND then CCi « CC1 and CC2 else CCi « CC1 or CC2
else CCi « CC2
if CCi was assigned TRUE then RO « X1

8/90 WM Computer Architectures : Military Standard Manual

50

Integer Arithmetic and Logical Instructions

5.4.15 op = »=

Cycle 1: X1 « Rt
if R1 > RL2 then CC1 « TRUE else CC1 « FALSE

Cycle 2: If X1 z RL3 then CC2 « TRUE else CC2 « FALSE
if relational (op1) then
1f PCW:0 = AND then CCi « CC1 and CC2 else CCi « CC1 or CC2
else CCi « CC2
if CCi was assigned TRUE then RO « X1

51 WM Computer Architectures : Military Standard Manual 8/90

Integer Arlthmetic and Logical Instructions

5.4.16 op = >

Cycle 1. X1 « R1
if R1 > RL2 then CC1 « TRUE else CC1 « FALSE

Cycle 2; if X1 > RL3 then CC2 « TRUE else CC2 « FALSE

if relational (op1} then
if PCW:0 = AND then CCi « CC1 and CC2 else CCi «+ CC1 or CC2

else CCi e CC2
if CCt was assigned TRUE then RO « X1

8/90 WM Computer Architectures : Military Standard Manual

52

5.5 Floating Point Instructions

Mnemonic: i RO = (R1 op1 R2) op2 R3

ormat.
0 12 34 78 1112 1817 21 22 28 27 31
11{00} OP1 oP2 RO R1 R2 R3
OP1, OP2
symbol g@ncoding operation
+ 0010: addition

- 0000: subtraction
-t 0100: reverse subtraction

* 0001: muitiplication

/ 1000; division

A 1100: reverse division

nop 0011: pass the left oparand

nop' 0111: pass the right operand
0t10: reserved
0101: reserved

= 1010: equal

< 1110 not equal

< 1011: less than

<= 1101: less than or equal

= 1001: greater than or equal

> 1111: greater than

Description: The operafion op1 is performed with registers R1 and R2 as operands dufing cycle
1. If no excepticn conditions are generated, operation op2 is performed with the result of op1
and register R3 as operands during cycle 2. If no exception conditions are generated, the result

is written to RO.

Cycle Description:
Cycle 1: Cycle 1 for op1

Cycle 2: Cycle 2 for op2

53 WM Computer Architectures . Military Standard Manual

8/90

Ficating Point instructions

5.5.1 op = <

Cycle 1: Y1 « Ri
if R1 < R2 then CC1 « TRUE else CC1 « FALSE

Cycle 2: H Y1 < R3 then CC2 « TRUE else CC2 « FALSE

if relational (op1) then
if PCW:0 = AND then CCf « CC1 and CC2 else CCf « CC1 or CC2

else CCf « CC2
if CCf was assigned TRUE then RO « Y1

8/90 WM Computer Architectures ; Military Standard Manual

54

Floatihg Point Instructlons

552 op = +

Cycle 1: Y1 « Rl + R2
if overflow as defined by IEEE Std. 754 then PSW:8 « 1

CC1 « NOT EVAL

Cycle 2: Y2 « Y1 + R3
CC2 « NOT EVAL
if overflow as defined by the IEEE Sid 754 then
if CC1 # FALSE then PSWE8 « 1
else
if CC1 » FALSE then RO « Y2
if relational (opt) then CCf « CC1

55 WM Computer Architectures : Military Standard Manual 8/90

Floating Point Instructions

553 op = -

Cycie 1: Y1 « R1 - R2
if underflow as defined by the IEEE Std. 754 then PSW:9 « 1

CC1t « NOT EVAL

Cycle 2: Y2 « Y1 - R3
CC2 « NOT EVAL
if underflow as defined by the IEEE Std 754 then
if CC1 = FALSE then PSW:9 « 1
else
if CC1 = FALSE then RO « Y2
if relational {op1) then CCf « CC1

8/90 WM Computer Architectures : Military Standard Manual

56

Floating Peint Instructions

554 op = -

Cycle 1. Y1 « R2 - Ri

if underflow as defined by IEEE Stid. 754 then PSW:8 « 1
CC1 « NOT EVAL

Cycle 2: Y2 « R3 - Y1
CC2 « NOT EVAL
if underflow as defined by the IEEE Std 754 then
if CC1 # FALSE then PSW:9 « 1
else
if CC1 = FALSE then RO « Y2
If relational (op1) then CCf «- CC1

57 WM Computer Architectures : Military Standard Manual 8/90

Floating Point instructions

5.5.5 op = *

Cycle 1. Y1 « R1*R2
If overflow as defined by IEEE Std. 754 then PSW:8 « 1
CC1 « NOT EVAL

Cycle 2: Y2 « Y1 * R3
CC2 « NOT EVAL
if overflow as defined by the IEEE Std 754 then
it CC1 = FALSE then PSW.8 « 1
else
if CCt # FALSE then RO « Y2
if relational {op1) then CCf « CC1

8/90 WM Computer Architectures : Military Standard Manual

58

Floating Point Instructions

55,6 op = /

Cycle 1: if R2 = 0 then PSW:5 « 1 else Y1 « Ri/R2

if underflow as defined by the Std. 754 then PSW:9 « 1
CC1 « NOT EVAL

Cycle 2: If R3 = 0 then
It CC1 = FALSE then PSW:5 & 1
else

Y2 « Y1 /R3

CC2 « NOT EVAL

if underflow as defined by the IEEE Std 754 then
If CC1 = FALSE then PSW:9¢ 1

else
Iif CC1 « FALSE then RO « Y2
If relational {op1) then CCf « CC1

59 WM Computer Architectures : Military Standard Manual 8/90

Fioating Point Instructions

5557 op = /'

Cycle 1:#f R1 = 0 then PSW:5 « 1 else Y1 « R2/R1
CC1 « NOT EVAL

Cycle 2: if Y1 = 0 then
it CC1 # FALSE then PSW:5 & 1

else
Y2 « R3 /Y1
CC2 « NOT EVAL

if underflow as defined by the IEEE Sid 754 then
it CC1 = FALSE then PSW:0« 1

else
if CC1 # FALSE then RO « Y2
if relational (op1) then CCf « CC1

8/90 WM Computer Architectures : Military Standard Manual

60

Floating Point Instructions

5.5.8 op = nop

Cycle 1: Y1 « Rt
CC1 « NOT EVAL

Cycle 2: Y2 « Yi
CC2 « NOT EVAL
if CCt = FALSE then RO « Y2
if relational (op1} then CCf « CCAH

61 WM Computer Architectures : Military Standard Manual 8/90

Floating Point Instructions

5.5.9 op = nop'

Cycle 1: Y1 « R2
CC1 « NOT EVAL

Cycle 2: Y2 « HR3
CC2 « NOT EVAL
it CC1 = FALSE then RO « Y2
if relational {op1) then CCl{ « CC1

8/90 WM Compuier Architectures : Military Standard Manual

62

Floating Point Instructions

5510 op = =

Cycle 1. Y1 « Ri
if R1 = R2 then CC1 « TRUE else CC1 « FALSE

Cycle 2: If Y1 = R3 then CC2 « TRUE else CC2« FALSE

If relational {(op1) then
i PCW:0 = AND then CCf «— CC1 and CC2 eise CCf « CC1 or CC2

else CCf « CC2
if CCf was assigned TRUE then RO « Y1

63 WM Computer Architectures : Military Standard Manual 8/90

Floating Point Instructions

5.5.11 op = <»

Cycle 1: Y1 « Rt
If R12 R2 then CC1 « TRUE else CC1 « FALSE

Cycle 2: if Y1 = R3 then CC2 «- TRUE eise CC2 « FALSE

if relational {op1) then ,
if PCW:0 = AND then CCf « CC1 and CC2 else CCf « CC1 or CC2

else CCf « CC2
if CCf was assigned TRUE then RO « Y1

8/90 WM Computer Architectures : Military Standard Manual

64

Fioating Point Instructions

5.5.12 op = <=

Cycle 1 Y1 « R1
if R1 <€ R2 then CC1 « TRUE else CC1 « FALSE

Cycle 2: If Y1 € R3 then CC2 « TRUE else CC2 FALSE

it relational {op1) then
if PCW:0 = AND then CCf « CC1 and CC2 else CCf « CC1 or CC2

else CCf « CC2
If CCf was assigned TRUE then RO « Y1

65 WM Computer Architectures : Military Standard Manual 8/90

Floating Peint Instructions

55,13 op = >

Cycle 1: Yi « R1
if R1 > R2 then CC1 « TRUE eise CC1 « FALSE

Cycle 2: if Y1 > R3 then CC2 « TRUE else CC2 « FALSE

if relational {opt1) then
if PCW:0 = AND then CCf «- CC1 and CC2 else CCf « CC1 or CC2

else CCf « CC2
if CCf was assigned TRUE then RO « Y1

8/90 WM Computer Architectures : Military Standard Manual

66

Floating Point Instructions

5514 op = »=

Cycle 1: ¥1 « Ri1
if Rt = R2 then CC1 « TRUE else CC1 « FALSE

Cycle 2: if Y1 = R3 then CC2 « TRUE else CC2 « FALSE

If relational (op1} then
If PCW:0 = AND then CCf « CC1 and CC2 else CCf « CC1 or CC2

else CCf « CC2
if CCf was assigned TRUE then RO « Y1

67 WM Computer Architectures : Military Standard Manual 8/90

5.6 Vector Instructions: Integer, Loglcal and Floating Point

Mnemonic: vec RO = (R1 op R2) if B3
vec RO = R1 op R2

Egormat:
0 12 834 11142 1817 21 22 2627 3
1 1] 01 P RO Ri R2 R3
di b
0000 0001 0010 0011 0100 0101
0000 |isub isubC fsub fsubC VCVTIF VCVTIFC
0001 | imul imulC fmul fmulC VCVTEI VCVTFIC
0010 |iadd taddC fadd faddC
0011 {iasl jasiC
0100
0101 liegv ieqvC
0110 lior iorC
0111 [iand iandC
1000 |idiv idivC fdiv fdivC
1001 | igeq igeqC fgeq fgeqC
1010 |ieql ieglC feq| feqlC
1011 jilss ilssC fiss flssC
1100
1101 |ileg leqC fleq flegC
1110 |ineq ineqC fneg fnegC
1111 Jigtr igtrC fgtr fgirC

Description: These are integer, logical and floating point operations on "blocks” of N v-bit
items, where N is an implementation defined parameter. The operation op is performed with
registers R1 and R2 as operands. For a conditional vector instruction, if no exception condition
is generated and if R3 = 0, the result is assigned to RO. For a vector instruction with no
conditional, if no exception conditions are generated, the result is assigned to R0O. Conceptually,
all N component operations are performed simultansously.

Cycle Description:

Cycle 1: Cycle 1 for op

Cycle 2: Cycle 2 for op

8/90 WM Computer Architectures : Military Standard Manual 68

Vector Instructions: Integer, lLogical and Floating Point

5.6.1 op = ladd

Cycle 1; Viinio, i,., N - 1}

Z1i.ivalue « Rl.ivalue + R2.lLvalue
if overflow then PSW:14 « 1

Cycle 2: ¥V iin {0,1,..N - 1}
Ro.ivalue, tag « Z1.ivalue, CHANGED

69 WM Computer Architectures : Military Standard Manual 8/90

Vecter Instructions: Integer, Logical and Fioating Point

5.6.2 op = isub

Cyele 1: viin {0,1,.N - 1}
Z1.ivalue « Ril.ivaiue - R2.lvalue
if underilow then PSW:14 « 1

Cycle 2: ¥iin {0,1,...N - 1}
Ro.i.value, tag « Z1.i.value, CHANGED

8/90 WM Computer Architectures : Military Standard Manual

70

Vector Instructions: Integer, Logleal and Floating Point

5.6.3 op = imul

Cycle 1: ¥V iin {0,1,..N - 1}
Zi.ivalue « Rt.ivalue * R2.ivalue
overflow then PSW:14 « 1

Cycle 2: Viin {0,1,..N - 1}
RoO..value, tag « Z1.i.value, CHANGED

71 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point
5.6.4 op = idiv
Cycle 1: viin {0,1,..N - 1}

if R2.Lvalue = 0 then PSW:14 « 1 else

Z1.lvalue « Ri.ivalue / R2.ivalue
i undarflow then PSW:14 « 1

Cycle 2: Viin {0,1,.N - 1}
Ro.ivalue, tag « Z1.ivalue, CHANGED

8/90 WM Computer Architectures : Military Standard Manual

72

Vector Instructions: Integer, Logical and Floating Peoint

5.6.5 op = lasl

Cycle 1. Viin {0,1,.N - 1}

Z1.ivalue « Ri.ivalue asi R2.ivalue

Cycle 2: Viin {0,1,...N - 1}
RoO.i.value, tag « Z1.i.value, CHANGED

73 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.6 op = ieql

Cycle 1: Viin {0,1,..N - i}
if Ri.ivalue = R2.ivalue then Z1.ivalue « TRUE else Zi.ivalue « FALSE

Cycle 2: Viin {0,1,..N - 1}
Ro.i.value, tag « Z1.Lvalue, CHANGED

8/90 WM Computer Architectures : Military Standard Manual

74

Vector Instructions: Integer, lLoglical and Floating Point

5.6.,7 op = ineq

Cycle 1. viin {0,1..N - 1}

if R1.lvalue = R2.ivalue then Z1.ivalue « TRUE else Z1.ivalue « FALSE

Cycie 2: ¥ iin {0,1,..N - 1}
RO.i.value, tag « Z1.ivalue, CHANGED

75 WM Computer Architectures : Military Standard Manual

8/90

Vector Instructions: Integer, Logicai and Floating Point

5.6.8 op = igtr

Cycte 1: Viin {0,1,..N - 1}
if R1.i.value > R2.ivalue then Z1.ivalue « TRUE else Z1.ivalue « FALSE

Cycle 2: ¥ iin {0,1,..N - 1}
RoO.ivalue, tag « Z1.ivalue, CHANGED

8/90 WM Computer Architectures : Military Standard Manual

76

Vector Instructions: Integer, Logical and Floating Point

5.6.9 op = Igeqy

Cycle 1; Viin {01, .N - 1}

if Ri.ivalue = R2.ivalue then Zi.ivalue « TRUE else Z1i.ivalue « FALSE

Cycle 2: Viin {0,1,...N ~ 1}
RO.i.value, tag « Z1.ivalue, CHANGED

77 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Fleating Point

5.6.10 op = liss

Cyecle 1: Viin {0,1,..N - 1}

Ri.ivalue < R2.ivalue then Z1.ivalue « TRUE eise Zi.ivalue « FALSE

Cycle 2: Viin {0,1,..N - 1}
Ro.value, tag « Z1.lL.value, CHANGED

8/90 WM Computer Architectures : Military Standard Manual

78

Vector Instructions: Integer, Logical and Floating Polnt

5.6.11 op = ileq

Cyele 4: viin {0,1,..N - 1}

if Ri.ivalue < R2.ivalue then Z1l.ivalue « TRUE else Zi.ivalue « FALSE

Cycle 2: Viin {0,1,..N - 1}
Ro.ivalue, tag « Z1.vaiue, CHANGED

79 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.12 op = iaddC

Cycle 1: Vi in {0,1,..N - 1}
Zi.ivalue « Ri.ivalue + R2.i.value
if overflow then PSW:14 « 1

Cycle 2: VY iin {0,1,..N - 1}
If R3.i.value » FALSE then R0.ivalue, tag « Z1.iLvalue, CHANGED
eise R0.i.tag &= UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

80

Vector Instructions: integer, Loglcal and Floating Point

5.6.13 op = iandC

Cycle 1:V 1 in {0,1,..N - 1}
Z1.i.value « Rit.ivalue && RZ.i.value

Cycle 2: Vv iin {0,1,..N - 1}
if R3.i.value = FALSE then RO.i.value, tag « Z1.l.value, CHANGED
else RO.Ltag &« UNCHANGED

81 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6,14 op = lorC

Cycie 1:Viin {0,1,..N - 1}
Z1l.ivalue « Ri.ivalue || R2.ivalue

Cyecle 2: ¥ iin {0,1,..N - 1}
if R3.i.value = FALSE then RoO.ivalue, tag « Z1.ivalue, CHANGED
else RO.i.tag & UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

82

Vector Instructions: Integer, Logical and Floating Point

5.6.15 op = ieqvC

Cycle 1:¥iin {0,1,..N - 1}
Z1ivalue « Ri.Lvalue EQV R2.i.value

Cycle 2: ¥ iin {0,1,..N - 1}
if R3.i.value = FALSE then RO.i.value, tag « Z1.ivalue, CHANGED
eise RO.l.tag « UNCHANGED

83 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Peint

5.6.16 op = IsubC

Cyele 1:¥ iin {0,1,..N - 1}
Zi.ivalue « Ri.Lvalue - R2.i.value
if underflow then PSW:14 ¢ 1

Cycle 2: vV iin {0,1,...N - 1}
it R3.i.value = FALSE then RO.lvalue, tag « Z1.ivalue, CHANGED
else Rl.i.tag &« UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

84

Vector Instructions: Integer, Loglcal and Floating Point

5.6.17 op = ImulC

Cycle 1:viin {0,1,..N - 1}
Zlivalue « Ri.ivalue * R2.lvalue
if overflow then PSW:14 « 1

Cycle 2: Viin {0,1,..N - 1}
H R3.ivalue = FALSE then RoO.i.value, tag « Z1.ivalue, CHANGED
else RO.Ltag <« UNCHANGED

85 WM Computer Architectures : Military Standard Manual 8/90

Vectior Instructions: Integer, Logical and Floating Point

5.6.18 op = IdivC

Cycle 1:viin {0,1,.N - 1}
if Re.ivalue = 0 then PSW:14 « 1 else
Z1.ivalue « Rt.Lvalue / R2.ivalue
if underflow then PSW:14 « 1

Cycle 2: vV iin {0,1,...N - 1}
if R3.i.value » FALSE then Ro.ivalue, tag « Z1.l.value, CHANGED
else RO.i.tag « UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

86

Vector Instructions: Integer, Logical and Fioating Point

5.6.19 op = laslIC

Cycle 1:Viin {0,1,..N - 1}
Zi.ivalue « Rl.lvalue asl R2.Lvalue

Cycle 2: Viin {0,1,..N - 1}
¥ R3..value = FALSE then R0.ivalue, tag « Z1.Lvalue, CHANGED
else RO.Llag & UNCHANGED

87 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Loglcal and Floating Polnt
5.6.20 op = leqiC
Cycie 1:Viin {0,1,..N - 1}
if R1.i.value = R2.Lvalue then Zi.ivalue « TRUE eise Z1.ivalue « FALSE

Cyecle 2: ¥ iin {0,1,..N - 1}

if R3.i.value # FALSE then RoO.i.value, tag « Z1.ivalue, CHANGED
else RO.i.tag & UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

88

Vector Instructions: Integer, Logieal and Floating Peint

5.6.21 op = ineqC

Cycle 1:v1iin {0,1,..N - 1}
if R1.i.value # R2.ivalue then Zi.ivalue « TRUE else Z1.ivalue « FALSE

Cycle 2: Yiin {0,1,..N - 1}

if R3.i.value = FALSE then RO.i.value, tag « Z1.i.value, CHANGED
else RO.L.tag & UNCHANGED

89 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point
5.6.22 op = igtrC
Cyele 1:v i in {0,1,..N - 1}
if Ri.i.value > R2.Lvalue then Z1i.ivalue « TRUE else Z1.i.value « FALSE

Cycle 2: ¥V iin {0,1,.N - 1}

¥ R3.i.value = FALSE then RO.ivalue, tag « Z1.lvalue, CHANGED
else RO.itlag « UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

g0

Vector Instructions: Integer, Logleal and Floating Polnt

6.6.23 op = IgeqgC

Cyecle 1:Vviin {0,1,.N - 1}
if Ri.lvalue = R2.ivalue then Zi.ivalue « TRUE else Z1.ivalue ¢« FALSE

Cycle 2: Viin {0,1,..N - 1}

if R3.i.value » FALSE then RO.Lvalue, 1ag « Z1.Lvalue, CHANGED
else RO.ltag & UNCHANGED

91 WM Computer Architectures : Military Standard Manual 8/¢0

Vector Instructions: Integer, lLogical and Floating Point

5.6.24 op = lissC
Cycle 1:¥ i in {0,1,..N - 1}
If Rl.i.value < R2.i.value then Z1.i.value « TRUE else Z1.ivalue « FALSE

Cycle 2: Viin {01, N - 1}

¥ R3.i.value » FALSE then R0.lvalue, tag « Z1.i.value, CHANGED
else RO.i.tag <= UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

92

Vector Instructions: Integer, Loglcal and Floating Point

5.6.256 op = lleqC

Cycle t:v iin {0,1,..N - 1}
if R1.i.value £ R2.ivalue then Z1.ivalue « TRUE else Z1.lLvalue « FALSE

Cyecle 2: viin {0,i,...N - 1}

if R3.i.value = FALSE then RO.i.value, tag « Z1.i.value, CHANGED
else RO.i.tag « UNCHANGED

93 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.26 op = faddC

Cycle 1:Viin {0,1,..N - 1}
Z1.ivalue ¢ Ri.ivalue + R2.ivalue
if overfiow as defined by IEEE Std. 754 then PSW:14 « 1

Cycle 2: Viin {01,..N - 1}

if R3.ivalue = 0 then RO.ivalue, tag « Z1.ivalue, CHANGED
else RO.Llag <= UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

94

Vector Instructions: Integer, lLogical and Floating Point

5.6.27 op = fsubC

Cyele 1:Vviin {0,1,.N - 1}
Z1.ivalue « Ril.ivalue - R2.ivalue
if underflow as defined by IEEE Std. 754 then PSW:i14 « 1

Cycle 2: Viin {0,1,..N - 1}

if R3.i.value # 0 then RO.Lvalue, tag « Z1.ivalue, CHANGED
else RO.i.tag & UNCHANGED

95 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.28 op = fmuil

Cycle 1: v iin {0,1,.N - 1}
Zi.ivalue « Ri.ivalue* R2.i.value
If overflow as defined by IEEE Std. 754 then PSW:14 « 1

Cyele 2: Viin {0,1,..N - 1}

it R3.ivalue= 0 then RO.i.value, tag « Z1.ivalue, CHANGED
eise RO.i.tag «~ UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

96

Vector Instructions: Integer, Logical and Floating Point

5.8.29 op = fdivC

Cycle 1:viin {0,1,..N - 1}
If R2.i.value = O then PSW:14 « 1 else
Zi.ivalue « Rt.ivalue/ R2.ivalue
It undetilow as defined by IEEE Std. 754 then PSW:14 1

Cycle 2: Viin {0,1,..N - 1}
it R3.i.value = 0 then R0.ivalue, lag « Z1.i.value, CHANGED
else RO.i.tag &« UNCHANGED

97 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.30 op = fleqC

Cycle 1: ¥ iin {0,1,..N - 1}

if R1.i.values R2.Lvaluethen Z1.ivalue « TRUE
else Z1.ivalue « FALSE

Cycle 2: Viin {0,1,...N - 1}

if R3.i.value = 0 then RO.Lvalue, lag « Z1.ivalue, CHANGED
else RO.iLiag &« UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

98

Vector Instructions: Integer, Logical and Floating Point

5.6.31 op = flssC

Cycle 1:Viin {0,1,..N - 1}

if R1.ivalue < R2.lvalue then Z1.ivalue « TRUE
else 71.ivalue « FALSE

Cycle 2: ¥V iin {0,1,...N - 1}

If R3.i.value # 0 then RO.i.value, tag « Zi.ivalue, CHANGED
else RO.i.tag <= UNCHANGED

99 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.32 op = fgeqC

Cycte 1:V i in {0,1,..N - 1}

if Ri.lvaiue = R2.ivalue then Zl.ivalue « TRUE
else 7Z1i.i.value « FALSE

Cycle 2: Viin {0,1,..N - 1}

if R3.i.value = 0 then RO.ivalue, tag « Zl.ivalue, CHANGED
else RoO.i.tag &« UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

100

Vector insiructions: Integer, lLogical and Floating Peint

5.6.33 op = fgtrC

Cycle 1:¥ i in {0,1,..N - 1}

If R1.Lvalue > R2.ivalue then Zi.ivalue « TRUE
else 7Z1.lvalue « FALSE

Cycle 2: Viin {0,1,..N - 1}

if R3.i.value = 0 then RO.i.value, tag « Z1.ivalue, CHANGED
else RO.i.iag < UNCHANGED

101 WM Computer Architectures : Military Standard Manual

8/90

Vector Instructions: Integer, Logical and Floating Polint

5.6.34 op = fneqC

Cycle 1: ¥ i in {0,1,...N - 1}

i Ri.ivalue = R2.ivalue then Z1.ivalue « TRUE
else Z1.ivalue « FALSE

Cycle 2: ¥ 1in {0,1,..N - 1}

if RA3.i.value » 0 then RO.ivalue, tag « Z1.ivalue, CHANGED
else RO.i.tag &= UNCHANGED

8/90 WM Computer Architectures : Military Standard Manual

102

Vector Instructlons: Integer, Loglcal and Floating Polnt

568,35 op = feqlC

Cycle 1:¥iin {6,1,..N - 1}

if R1.i.value = R2.i.value then Z1.ivalue « TRUE
else Z1.i.value « FALSE

Cycie 2: viin {0,1..N - 1}

if R3.i.value = 0 then RO.ivalue, tag « Z1.ivalue, CHANGED
else RO.itag &« UNCHANGED

103 WM Computer Architectures : Military Standard Manual

8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.36 op = tfadd

Cyecle 1. Viin {0,1,..N - 1}
Z1.ivalue « Ri.ivalue + R2.i.value
if ovetflow as defined by IEEE Std. 754 then PSW:14 < 1

Cyecle 2: Viin {0,1,.N - 1}
Ro.i.value, tag ¢ Z1.i.value, CHANGED

8/80 WM Computer Architectures : Military Standard Manual 104

Vector Instructions: Integer, Logical and Floating Point

5.6.37 op = fsub

Cycle 1: Viin {0,1,..N - 1}
Zi.lvalue « Ri.ivalue - R2.ivalue
if underflow as defined by IEEE Sid. 754 then PSW:14 « 1

Cyecle 2: Viin [0,1,.N - 1}
Ro.i.value, tag « Z1.i.value, CHANGED

105 WM Computer Architectures : Military Standard Manual 8/¢0

Vector Instructions: Integer, Logical and Floating Point

5.6.38 op = fmui

Cycele 1: Vv 1in {0,1,...N - 1}
Z1.ivalue ¢ Rt.ivalue * R2.ivalue
if overflow as defined by IEEE Std. 754 then PSW:14 « 1

Cycle 2: Vi in {0,1,..N - 1}
RO.i.value, tag « Z1.ivaiue, CHANGED

8/90 WM Computer Architectures : Military Standard Manual 106

Vector Instructions: Integer, Logical and Floating Point

5.6.39 op = fdiv

Cycle 1: ¥viin {0,1,..N - 1}
If R2.ivalue = 0 then PSW:14 « 1 eise
Z1.ivalue « Rl..value / R2.i.value
it underflow as defined by IEEE Std. 754 then PSW:14 « 1

Cycle 2: Viin {0,1,..N - 1}
RO.ivalue, tag « Zl.ivalue, CHANGED

107 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.40 op = feql

Cycle 1: ¥ i in {0,1,...N - 1}
if R1.i.value = R2.i.value then Zl.ivalue « TRUE
else Z1.ivalue « FALSE

Cycle 2: Vv 1in {0,1,...N - 1}
RO.i.value, tag « Z1..value, CHANGED

8/90 WM Computer Architectures : Military Standard Manual 108

Vector instructions: Integer, Logical and Fioating Point

5.6.41 op = fneq

Cyecle 1: Viin {0,1,...N - 1}
if R1.i.value # R2.iLvalue then Z1.ivalue « TRUE
else Ziivalue « FALSE

Cycle 2: ¥ iin {0,1,..N - 1}
Ro.Lvalue, tag « Z1.ivalue, CHANGED

109 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.42 aop = fgir

Cycle 1: viin {0,1,..N - 1}
if R1.j.value > R2.i.value then Zi.i.value «- TRUE
gise Z1.ivalue « FALSE

Cycle 2: Viin {0,1,.N - 1}
Ro.i.value, tag « Z1.ivalus, CHANGED

8/90 WM Computer Architectures : Military Standard Manual

110

Vector iInsiructions: Integer, Logical and Floating Polnt

5.6.43 op = fgeq

Cycle 1: Vi in {0,1,.N - 1}
If R1.value = R2.ivalue then Zi.ivalue « TRUE
else 71.i.value « FALSE

Cycle 2;: ¥Yiin {0,1,..N - 1}
RO.i.value, tag « Z1.i.value, CHANGED

111 WM Computer Architectures : Military Standard Manual 8/90

Vector Instructions: Integer, Logical and Floating Point

5.6.44 op = fiss

Cycle 1: V¥ iin {0,1,.N - 1}
it R1.lL.value< RZ2.i.vaive then Zti.ivalue « TRUE
else 71.ivalue « FALSE

Cycle 2: Viin {0,1,..N - 1}
Ro.i.value, tag « Z1.ivalue, CHANGED

8/90 WM Computer Architectures : Military Standard Manual 112

Vector Instructions: Integer, Logical and Filoating Point

5.6.45 op = fieq

Cycle 1: v iin {0,1,..N - 1}
if R1.i.valie < R2.iLvalue then Zl.ivalue « TRUE
else 71.i.value « FALSE

Cycle 2: Viin {0,1,..N - 1}
RO.i.value, tag « Z1.i.value, CHANGED

113 WM Computer Architectures : Military Standard Manual 8/90

8.7 Load and Store Instructions

Mpemonic: LSOP RO = (Rt op1 RL2) op2 RL3

EOI[[]QE:
0 12 34 7 8 1112 1617 21 22 2627 31
10| RL| LSOP | OP1 OP2 RO R1 RL2 RL3
Description: The LOAD and STORE instructions specify : (1) the address of the data to be read

or written, and (2) the sizedype of the data {e.g., bylte vs. halfword vs. double-precision
floating point). The type specified implicitly determines the execution unit involved.

{1} The address computation is identical to the integer/ftogical instructions.
{2) The type/size of the data to be read or written is specified by the LOAD or
STORE instruction.

Cycle Description:

Load Instructions

Cycle 1: Cycle 1 for opi

Cycle 2: Cycle 2 for op2

Memory Cycle: with input FIFO specified by LSOP do

if FIFO.consume_count = 0 then FIFO « sign_extend (M[X2, size))
else exceplion: Load while input streaming

Store Instructions
Cycle 1: Cycle 1 for opi
Cycle 2: Cycle 2 for op?2
Memory Cycle: with output FIFO specified by LSOP do
if FIFQ.consume_count = 0 then
it qualifier_type (FIFO) = DATA then M[X2, size] « FIFO

eise FiFQ.value, qualifier, size <= X2, ADDR, size
else exception:: Load while output streaming

8/90 WM Computer Architectures : Military Standard Manual 114

exec sign LSOP

1 80P EFO data size/type unit extension Encoding
Load
Lai r0.input 8-bit integer EU no 0000
L8ix 10.input 8-bit integer EU yes 0100
L16i t0.input 16-bit integer EU no 0001
L16ix ro.input 18-bit integer IEU yos o101
L32i r0.input 32-bit integer EU no 0010
L32ix t0.input 32-bit integer EU yos 0110
L84 r0.input 64-bit integer IEU n/a 0011
L32f fo.input 32-bit floating FEU n/a 0010
|.64f fo.input 84-bit floating 228 nfa 1101
Store
88i ro.ouiput 8-bit integer IEU nia 1000
S16i ro.output 16-bit integer IEU n/a 1001
83z2i ro.output 32-bit integer U n/a 1010
S564i ro.output 84-bit integer L) n/a 1011
S32f fo.output 32-bit floating FEU nfa 1110
Se4f fo.output 84-bit floating FELS n/a 1111

There are 15 LSOP operations; the other opcode is illegal and will produce an illegal
instruction trap if used.

115 WM Computer Architectures : Military Standard Manual 8/90

5.8 Control Flew Instructions

Mnemonic: JumpOP offset

Eormat:
0 12 34 1112 31
1T 1111 oP OFFSET

JurmpOP. oP Description
Jump 0000 0000: unconditional Jump
JumplTy 0000 1101: Jump if integer condition bit is True
JumplFy 0000 1100: Jump if integer condition bit is False
JumpFTy G000 1111: Jump if Floating condition bit is True
JumpFFy 0000 1110: Jump if Floating condition bit is False
JumpiTn 0000 1001: Jump if Integer condition bit is True
JumpiFn 0000 1000: Jump if Integer condition bit is False
JumpFTn 0000 1011: Jump if Floating condition bit is True
JumpFFn 0000 1010: Jump if Floating condition bit is False
JNI 10 0001 0000: Jump on stream count Not zero; Input FIFO 10
JNI 1 0001 0001: Jump on stream count Not zero; Input FIFO 1
JNO 10 0001 0010: Jump on stream count Not zero; Output FIFO 10
JNO 1 0001 0011: Jump on stream count Not zero; Output FIFO 1
JNI 10 0001 0100: Jump on stream count Not zero; Input FIFO 10
JNI 1 0001 0101: Jump on stream count Not zero; Input FIFO 1
JNO {0 0001 0110: Jump on stream count Not zero; Output FIFO 10
JNO f1 000t 0111: Jump on stream count Not zero; Output FIFO 1
JNE vO 0001 1000: Jump on stream count Not zero; input FIFO v0
JNI v 0001 1001: Jump on stream count Not zero; Input FIFO v1
JNO vO 0001 1010: Jump on stream count Not zero; Quiput FIFO vO
JNO v1 0001 1011: Jump on stream count Not zero; Quiput FIFO v1
Cali 0010 0000: subroutine Call
ECall 0010 0001: Entry Call

Description: These instructions replace the Program Counter with a new value, the target

address. In all but one case (Ecall), this is a PC-relative address, and is formed by
concatenating two zeros to the bottom of the sign-extended offset and adding this value to the
current Program Counter. Conditional Jumps "consume”™ a condition bit generated by a
relational operation. ECall is an implementation dependent instruction.

8/90 WM Computer Architectures : Military Standard Manual 116

Cycle Description:

Cycle 1: JC « FALSE
case JumpOP =

Jump: JC « TRUE

Jumpltn, JumplTy: if CCi then JC « TRUE

JumpliFn, JumpiFy: i not CCi then JC « TRUE
JumpFTn, JumpFTy: if CCf then JC « TRUE

JumpFFn, JumpFFy: if not CCT then JC « TRUE

JNI rO:if r0.input.consume_count # 0 then JC « TRUE
JNI ri:if riinput.consume_count # 0 then JC « TRUE
JNO r0:if r0.output.consume_count = 0 then JC « TRUE
JNQ ri:if r1.output.consume_count = 0 then JC « TRUE
JNI f0:if 10.input.consume_count = O then JC « TRUE
JNI 11 fllinput.consume_count # 0 then JC « TRUE
JNO fouif f0.output.consume_count = 0 then JC « TRUE
JNO 11 1. output.consume_count = 0 then JC « TRUE
JNIE vO:if v0.input.consume_count # 0 then JC « TRUE
JNI vi:lf vi.input.consume_count = 0 then JC « TRUE
JNO vO:if v0.output.consume_count = 0 then JC « TRUE
JNO vi:if vi.output.consume_count # 0 then JC « TRUE

Call :rd « PC
JC « TRUE

E£Call 1 <Protected Stack Area> « PTP
<Protected Stack Area> « PC
PTP « <Entry Page PTP Value>
JC « TRUE

end case
if JC then PC « PC + sign_extend (offset) Isl 2

117 WM Computer Architectures : Military Standard Manual

8/90

5.9 Special Instructlons

5.9.1 Jumpi

Mnremonic: Jumpl R1

Description: This instruction is an unconditional jump to a target address designated by the
register named in the R1 field.

Cycle Description:

Cycle 1. PC « R1

8/90 WM Computer Architectures : Military Standard Manual 118

Speclal Instructions

5.9.2 Calll

Mnemenic: Calll R1

1112 18 17 2122 286 27 31

Description: Call Indirect stores the current PC In register 4 and sets the PC to the target
address from the register named in the R1 field

Cycle Description:
Cycle 1. 14 « PC

PC « R1

119 WM Computer Architectures : Military Standard Manual 8/90

Speclal Instructions

5.9.3 EReturn

Mnemonic: EReturn

1112 16 17 2122 26 27 31

Description: EReturn (Entry Return) is the complementary instruction to ECall; it restores the
protection table pointer and PC from the protected stack.

Cvcle Description:

Cycle 1: PC « <Protected Stack Area>
PTP « <Protecied Stack Area-

8/90 WM Computer Architectures : Military Standard Manual 120

Speciai Instructions

5.9.4 Streaming to and from the IEU and FEU

Mremonic: SOP R0, R1, RL2, RL3

Format:

0 12 34 1112 18617 21 22 2627 31
10| R SOpP RO H1 RL2 RL3

Description: Stream instructions read/write from/to FIFOs. They specify data as integer or
floating point and size of the data items. The operands of streaming operations specify a base
address (R1), a count (RL2), a stride (RL3), and which FIFO to use (0 or 1); this last parameter
is taken as the least significant bit of the RO field.

There are five insiructions to stop input or output streaming and flush the relevant
FIFOs.

Cycle Description:

Stream in:
Cycle 1: with input FIFO specified by RO do
if FIFO.consume_count = 0 then

initiate stream operation 1 RO, R1, RL2, RL3, stream_in
else exception:: Double Stream

Stream outl:
Cycle 1: with output FIFO specified by RO do
if FIFO.consume_count = 0 then
initiate stream operation :: RO, R1, RL2, RL3, stream_out
else exceptlon:: Double Stream

Stop Streaming:

Cycle 1: initiate stream operation :: ¢, ¢, ¢, ¢, stop_streaming

121 WM Computer Architectures : Military Standard Manual 8/90

Stream Operatlons

initiate stream operation :x RO, R1, RL2, RL3, stream_in

Memory Cyele:
with input FIFO specified by RO do
FIFQ.consume_count « RL2
SM « R1
Scount « RL2
If Scount » 0 then SDec « TRUE else SDec « FALSE
while Scount # 0
FIFO « sign_extend (M[SM, size])
5M « SM + RL3
it SDec then Scount « Scount - 1

initiate stream operation :: RO, R1, RL2, RL3, stream_out

Memory Cycle:
with output FIFO specified by RO do

FIFO.consume_count « RL2

SMe- R1

Scount « RL2

if Scount > 0 then SDec « TRUE else SDec « FALSE

while Scount =0
It qualifier_type (FIFO) = DATA then M[SM, size] « FIFO
else FIFO.value, qualifier, size & SM, ADDR, size
8M e« SM +RL3
if SDac then Scount « Scount - 1

Initiate stream operation :: ¢, ¢, ¢, ¢, stop_streaming

Memory Cycle;
case op =
StopAll:
with each input FIFO do
FIFQ.consume_count « 0
flush FIFO
with each oufput FIFO deo
complete pending memory writes
FIFO.consume_count « ©
Stopll, StopFi:
with input FIFO specified by RO do
FIFO.consume_count ¢ 0
flush FIFO
StoplOQ, StopFO:
with output FIFO specified by RO do
Complete pending memory writes
FIFO.consume_count « O

8/90 WM Computer Architectures : Military Standard Manual 122

SOP

Stream In
Sin8i
Sin8ix
Sin1si
Sin16ix
8in32i
Sin32ix
SinB4i
Sin32f
Sing4f

Stream out
Sout8i
SouttBi
Soutdzi
Souts4i
Sout32!
Souts4f

operation

load
load
load
load
load
load
load
load
load

store
store
store
store
store
store

Stop streaming
Stop all Streaming operations

StopAll
Stopll
StoplO
StopFi
StopFO

Stop integer Input Streaming operations on FIFO specified by RO
Stop Integer Output Sireaming operations on FIFO specified by RO
Stop Floating Input Streaming operations on FIFO specified by RO
Stop Floating Output Streaming operations on FIFO specified by RO

FIFO selection
If data type = integer then

123

if RO = 1 then FIFO = r0 else FIFO = 11
eise If RO = 1 then FIFO = {0 else FIFO = {1

gatg lype

8-bit integer
8-bit integer
16-bit integer
16-bit integer
32-bit integer
32-bit integer
64-bit integer
32-bit floating
84-bit floating

8-bit integer
18-bit integer
32-bit integer
64-bit integer
32-bit fioating
64-bit floating

BV
eV
U
(=1

sign
extension

ng
yes
no
yas
no
yes
nfa
nfa
nfa

n/a
nfa
n/a
n/a
n/a
n/a

WM Computer Architectures : Military Standard Manual

SOpP
Encoding

00000000
01000000
00010000
1010000
00100000
01100000
00110000
11000000
11010000

10000000
10010000
10100000
16110000
11100000
11110000

01110010
00000010
00010010
00100010
00110010

8/90

Speclal Instructions

5.9.5 Streaming to and from the VEU

Mnemenic: VSOP Ro, R1, RL2, RL3

Eormat:

0 12 34 1112 1817 21 22 2627 31
10 R VSOP RO R1 RL2 RL3

Description: Stream instructions read/write from/to FIFOs. They specify data as integer or
floating point and size of the data items, The operands of streaming operations specify a base
address (R1), a count (RL2), a stride (RL3), and the target FIFO. The FIFQO is determined by the
least significant bit of the RO field.

There are three instructions to stop Input or ocutput sireaming and flush the relevant
FIFOs.

c escripti
Stream In:
Cycle 1; with input FIFO specified by RO do
if FIFO.consume_count = 0 then
initiate vector stream operation 1 R0, R1, RL2, RL3, stream_in
else exception:: Double Stream
Stream out:
Cycie 1: with output FIFO specified by RO do
if FIFO.consume_count = 0 then
initiate vector stream operation 1 RO, R1, RL2, RL3, stream_out
else exception:: Double Stream

Stop Streaming:

Cycle 1: initiate vector stream operation 2 ¢, ¢, ¢, ¢, stop_streaming

8/80 WM Computer Architectures : Military Standard Manual 124

Vector Stream Operations

initiate vector stream operation:: R0, R1, RL2, RL3, stream_in

Memory Cycle:
with input FIFO specified by RO do
FIFQ.consume_count «- RL2
5M « R1
Scount « RL2
if Scount » 0 then SDec « TRUE eise SDec « FALSE
whlile Scount 20
FIFO «- sign_extend (M[SM, size])
5M « SM + RL3
if SDec then Scount « Scount - 1

initiate vector stream operation:: RO, R1, RL2, RL3, stream_out

Memory Cycle:
with output FIFO specified by RO da
FIFO.consume_count « RL2
SM « R
Scount « RL2
If Scount > 0 then SDec — TRUE else SDec « FALSE
while Scount =0
if qualifer_type (FIFO) = DATA then
SMV & FIFO
if SMV.tag = CHANGED then M[SM, size] «- SMV.value
else FIFO.value, qualifier, size « SM, ADDR, size
SM « SM + RL3
if SDec then Scount « Scount - 1

Initlate vector stream operation :: ¢, ¢, ¢, ¢, stop_streaming

Memory Cycle:
case op =
StopAil:
with each input FIFO do
FIFO.consume_count «- 0
flush FIFO
with each output FIFO do
complete pending memory writes
FIFO.consume_count < 0
StopVi:
with input FIFO specified by R0 do
FIFO.cansume_count « ¢
flush input FIFO
StopVO:
with output FIFO specified by R0 do
Complete pending memory writes
FIFQ.consume_count ¢ 0

125 WM Computer Architectures : Military Standard Manuai

8/90

ysopP

Stream In
VSin8i
V8in8ix
VS8ini6i
V5in18ix
VSin32i
VS8in32ix
V8in64i
V8in32f
V8in64f
VSintb

Stream out
V8outsi
VSouti 6i
VS8out32i
VSoutd4i
VSout32{
VSoutb4f

Stop streaming

operation

load
load
load
ipad
load
joad
load
load
load
load

store
store
store
store
siore
siore

dala type

8-bit integer
8-bit integer

16-hit
16-bit
32-bit
32-bit
64-bit
32-bit
84-bit

integer
integer
integer
integer
integer
floating
floating

1-bit boolean

8-bit integer

18-bit
32-bit
64-bit
32-bit
84-bit

integer
integer
integer
floating
floating

StopAll Stop all Streaming operations

StopVi Stop Vector Input Streaming aperations on FIFO specified by RO
StopVQO Stop Vector Output Streaming operations on FIFO specified by RO

axeac

unit

VEU
VEU

VEU
VEU
VEU
VEU
VEU
Vel

VEU
VEU

VEU
VEU

sign
extension

no
yas
no
yes
no
yes
nfa
na
n/a
n/a

n/a
n/a
n/a
n/a
n/a
nfa

8/90 WM Computer Architectures : Military Standard Manual

80P

Encoding

00000001
01000001
00010001
01010001
00100001
01100001
00110001
11000001
11010001
00010001

10000000
100106000
10100000
10110000
11100000
11110000

01110010
01000010
01010010

126

Speclal Instructions

5.9.6 ASSERT

Mnpemonic: ASSERT (R1 2 RL2) < RL3

Eormat:
0 12 34 1112 16 17 2122 26 27 31

i 0] R 10000100 R1 RL2 RL3

Description: The ASSERT instruction determines whether the value in integer register R1 is
within the beounds specified by RL2 and RL3. If it is not, a hardware Assert Fault is generated.

Cycle Description:

Cycle 1: i not R1 = RLZ then exception:: Assert Fault

Cycle 2: i not R1 < RL3 then exception:: Assert Faull

127 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.7 FASSERT

Mnemonic: FASSERT (R1 = R2) < R3

ormalt:
0 12 34 1112 16 17 2122 26 27 31
1 07 R 10010100 R1 R2 R3
Descrintion: The FASSERT instruction determines whether the value in floating point register

R1 is within the bounds specified by RL2 and RL3. If it is not, a hardware Assert Fault is
generated,

Cycle Description:

Cycie 1:1f not R1 = R2 then exception:: Assert Fault

Cycie 2:if not R1 £ R3 then exception:: Assert Fault

8/90 WM Computer Architectures : Military Standard Manual 128

Special

5.9.8 FLDMOV

Instructions

Mnemonic: FLDMOV RO = R1, RL2, RL.3

Eormal:

0

12 34

1112

1617 21 22

26 27

31

10

AL

11000100

Ro

R

RL2

RL3

BDescription: The contents of the register specified by R1 is logically shifted left by RL2 bits,
then logically shifted right by RL3 bits and the resulting value is assigned to the register
specified by RO,

G es:

i

Cycle 1: X1 « R1 Isl RL2

Cycle 2: RO « X1 Isr RL3

129

WM Computer Architectures : Military Standard Manual

8/90

Special Instructions

5.9.9 FLDMOVX

Mnemenic: FLDMOVX RO := Rt, RL2, RL3

Eormat:
D 12 34 1112 1817 21 22 2627 31
10l R}] 11010100 Ro R1 RL2 RL3

Description: The contents of the register specified by R1 is logically shifted left by RL2 bits,
then arithmetically shifted right by RL3 bits and the resulting value is assigned to the register
specified by RO.

Cvcle Deascription:

Cycle 1: X1 « R1 Isl RL2

Cycle 2: RO « X1 asr RL3

8/90 WM Computer Architectures : Military Standard Manual 130

Speelal Instructlons

5.9.10 FFB

Mnemonic: FFB R0 = R1

Format :
0 12 34 1112 18 17 2122 26 27 31

111001060 RO Ri

Description : FFB finds the first bit that is different from the sign bit in the R1 value, starting
from the left. 1t stores into RO the bit number of the bit found. [all the bits in the word are
the same, the value 0 is stored.

e Descri
Cycie 1: X1 « 0
e 1
while i < sizeof(R1) - 1 and X1 = 0

if B1:f = R1:0 then X1 <}
S

Cyele 2: RO « Xi

131 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.11 CVTIF

Mpemonlg: CVTIF RO = R1

Eormat:
0 iti2 16 17 2122 26 27 31
1 CCc000100 RO R1
Description: The CVTH insiruction ConVerTs from integer to Floating. Data conversion is

performed; an integer is converted to floating point representation.
Ro specifies a FEU register and R1 specifies an IEU register.

Cycle Description:

Synch Cycle:
Synchronize the IFU, the IEU, the FEU and the VEU. i.e. further execution of this instruction is
delayed uniil all the instructions prior 1o the CVTIF instruction have been executed.

Cyele 1:
RO « int_to_float (R1)

8/90 WM Computer Architectures : Military Standard Manual 132

Speclal Instructions

5.8.12 CVTFI

Mnemeonic: CVTFI RO = R1

Format:
0 12 34 1112 18 17 2122 26 27 31
1 po010100 RO R1
Description: The CVTFI instruction ConVerTs from Fioating to Integer. Data conversion is

performed; a floating point representation is converted to an integer.
RO specifies an IEU register and R1 specifies a FEU register.

Cycle Description:

Synch Cycle:
Synchronize the IFY, the IEU, the FEU and the VEU. Le. further execution of this instruction is
delayed until ali the instructions prior to the CVTFI instruction have been executed.

Cycle 1;
RO « fleat_to_int (R1)

133 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.13 TIF

Mnemonic: TiF RO = Rt

Eormat:
o 12 34 1112 16 17 2122 26 27 &
1 01000100 RO Ri
DRescription: TIF transfers an integer from the IEU to the FEU. TiF is a "bit copy” instruction, no

data conversion is performed except as necessary to expand/contract the representation.
R1 specifies an IEU register and RO specifies a FEU register.

Cvcle Description:
Synch Cycle:

Synchronize the IFU, the IEU, the FEU and the VEU. ie. further execution of this instruction is
delayed until all the instructions prior to the TIF instruction have been executed.

Cycle 1: RO « R1

8/90 WM Computer Architectures : Military Standard Manual 134

Speclal Instructions

5.9.14 TF}

Mnemonic: TFi RO = R1

Eormat:
0 12 34 i112 18 17 2122 26 27 31

00100100 Ro R

Description: TFI transfers a floating point representation from the FEU to the IEU. TF1 is a "bit
copy" instruction, no data conversion is performed except as necessary to expand/coniract the
representation.

RO specifies an IEU register and R1 specifies a FEU register.

Cycle_D ition:
Synch Cycle:

Synchronize the IFU, the IEU, the FEU and the VEU. i.e. further execution of this instruction is
delayed until all the instructions prior to the TFI instruction have been executed.

Cycle 1: RO « R1

135 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.15 TIV

Mnemonic: TIV RO := RL3

Egrmat:
0 12 34 1112 18 17 2122 28 27 31

10| A& 01010100 RO

Description: TIV transfers an integer from the IEU to the VEU. TIV is a "bit copy” instruction,
no data conversion is performed except as necessary to expand/contract the representation.
TIV zero extends as necessary.

RO specifies an VEU register and RL3 specifies an IEU register. The instruction
transfers N coples of the contents of the integer register specified by RL3.

Cycle Description:
Synch Cycle:
Synchronize the IFU, the IEU, the FEU and the VEU. i.e. further execution of this instruction is

delayed until all the instructions prior to the TIV instruction have been executed.

Cyele 1: Viin {0,1,.N - 1}
Ro.i.value, tag « RL3, CHANGED

8/90 WM Computer Architectures : Military Standard Manual 136

Special Instructions

5.8.16 TiVx

Mnemonic: TIVx RO = RL3

Eormat:
0 12 34 1112 16 17 2122 26 27 31

10| RL 01100100 Ro

Description: TiVx transfers an integer from the IEU 1o the VEU. TiV is a "bit copy” instruction,
no data conversion is performed except as necessary to expand/contract the representation.
TIVx performs sign extension,

RO specifies an VEU register and RL3 specifies an |EU register. The instruction
transfers N copies of the contents of the integer register specified by RL3.

Cycle Description:
Synch Cyele:
Synchronize the IFU, the IEU, the FEU and the VEU. i.e. further exacution of this instruction is

delayed until all the instructions prior to the TIVx instruction have been executed.

Cycle 1: Viin {0,1,..N - 1}
Ro.Lvalue, tag « sign_extend (RL3), CHANGED

137 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.17 TFV

Mnemeonic: TFV RO = RL3

Eormat:
0 12 34 1112 16 17 2122 28 27 31
1 0] R 00110100 Ro
Description: TFV transfers an intéger from the FEU to the VEU. TFV is a "bit copy" instruction,

no data conversion is performed except as necessary to expand/contract the representation.
RO specifies an VEU register and RL3 specifies a FEU register. The instruction transfers
N copies of the contents of the floating point register specified by RL3.

Cycle Description:
Synch Cycle:
Synchronize the IFU, the IEU, the FEU and the VEU, i.e. further execution of this instruction is

delayed until all the instructions prior to the TFV instruction have been executed.

Cycle 1: ¥ iin {0,1,.N - 1}
Ro.i.value, tag « RL3, CHANGED

8/90 WM Computer Architectures : Military Standard Manual 138

Special Instructions

5.9.18 LLH

Mnemonic: LEH RO = 16_bit_constant

Format:
0 112 16 17 2122 26 27 31
A I i L R A R AT S AT i
R R AR LA A
S Y e ey A
‘E 0 0 1 1 0 1 0 0 RO AL R EEL AL AP LRSS RS L AL P L LER LSS
R A L AR AR AR
L L L SRR LA A

T ;
soiieraesnessl = 18 bit constant
RARACRARARARAA

Description: LLH assigns the specified 16 bit constant to the destination register
constant is formed by concatenating bit 2 with the R1, RL2 and RL3 fields.

Cycle Description:

Cycle 1; RO «16_bit_constant

139 WM Computer Architectures : Military Standard Manual

. The 16 bit

8/90

Special Instructions

5.9.19 SLL

Mnemonic: SLL RO = 16_bit_constant

Format:

bR R
DWWy

A

,,,,,,,

RN

—

L]
TETT
RN

;;;;;;

= 16 bit constant

Description: SLL logically shifts the destination register left by 16 bits and then assigns the 16
bit constant from the instruction to the low order 16 bits of the destination register. The 16 bit
constant is formed by concatenating bit 2 with the R1, RL2 and RL3 fields,

Cycle Description:

Cycle 1: X1 « RO Ist 186
X1:16-31 « 16_bit_constant

Cycle 2: RO « X1

8/90 WM Computer Architectures : Military Standard Manual 140

Special Instructions

5.9.20 ReadPCW

Mnemonic: ReadPCW RO

Format:
0o 12 34 1112 18 17 2122 26 27 31
110600101 Ro
Description: The contents of PCW are copied to the specified IEU register.
cycle D intion:

Cycie 1; RO « PCW

141 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.21 WritePCW

Mnemonic: WritePCW R1

1112 18 17 2122 26 27 3t

11010101

Description: The contents of the specified IEU register R1 are copied to PCW.

Cycle Description:

Cycle 1: PCW « Ri

8/90 WM Computer Architectures : Military Standard Manual 142

Special Instructions

5,8.22 Consumel

Mnemponig: Consumel

Eormat:
g0 12 34 112 16 17 2122 26 27 31
1 010101601
Description: This instruction consumes one integer condition code. The value of the condition

consumed is immaterial.

Cycle iption:

Cyele 1: CC1l1 « CGi

143 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.23 ConsumeF

Mnemonic: ConsumeF

Formai:
o 12 34 1112 16 17 2122 268 27 3

11100101

Description: This instruction consumes one floating point condition code. The value of the
condition consumed is immaterial.

Cycle Description:

Cycle 1: CC1 « CCf

8/90 WM Computer Architectures : Military Standard Manual 144

Special Instructions

5.8.24 SYNCH

Mnemeonic: SYNCH
ormat:

1112 16 17 2122 26 27 31

01000101

Description: The SYNCH instruction causes the processor to synchronize the IFU, IEU, FEU and
VEU. In effect, it inhibits instruction dispatch until a consistent, "as though the instructions
were really executed sequentially” state is reached,

An implementation may optimise the way this instruction is executed, but the
semantics are as described here.

Cyele Description:

Synch Cycle: The execution of this instruction is delayed until all the instructions before the
SYNCH instruction have been executed.

! 145 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.25 LoadM

Mnemonic: LoadM R1, L2, L3

1112 16 17 2122 26 27 31

R1 L2 L3

Description: LoadM loads a series of IEU registers, from register number L2 to register number
L3, with L3 guaranteed by software to be a greater register number than L2. RL2 and RL3
always specify literals. The storage location Is specified by the contents of the register
specified by R1. 1 < L2 s 1.3 < 31.

Cvycle Description:

Memory Cycle: The IEU registers from L2 through L3 are assigned the contents of
successive memory locations stariing from the location specified by the contents of the
register denoted by R1. [The locations are R1, R1 + ¥8, ..., R1 + (L3 - L2)i/8, where i is the
size of the IEU registers in bits.]

8/90 WM Computer Architectures : Military Standard Manual 146

Special Instructions

5.9.26 FlLoadM

Mnemonic: FLoadM R1, L2, L3
Format:
1112 1617 21 22 28627 N
R L2 L3
Description: FLoadM loads a series of FEU registers, from register number L2 to register

number L3, with L3 guaranieed by software to be a greater register number than L2. RL2 and
RL3 always specify literals. The storage location is specified by the contents of the register
specified by R1. 1 < 12 L3 531,

Cycle Description:
Memory Cycle: The FEU registers from L2 through L3 are assigned the contents of
successive memory locations starting from the location specified by the contents of the

register dencted by Ri. [The locations are R1, R1 + #/8, ..., R1 + (L3 - L2){/8, where { is the
size of the FEU registers in bits.]

147 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.27 VLioadM

Mnemonic: VioadM R1, L2, L3

Format:
1112 1617 21 22 2627 31

R1 L2 L3

Description: VioadM loads a series of VEU registers, from register number L2 1o register
number L3, with L3 guaranteed by software to be a greater register number than L2. RL2 and
RL3 always specify literals. The storage location is specified by the contents of the register
specified by R1. 1 < L2 513 £31.

Cycle Description:

Memory Cycle: The VEU registers from L2 through L3 are assigned the contents of
successive mamory locations starting from the location specified by the contents of the
register denoted by R1. [The locations are R1, Rt + Nv/8, .., R1 + (L3 - L2)Nv/8, where v is
the size of the VEU registers in bits and N is the implementation defined depth of the VEU
registers.]

8/90 WM Computer Architectures : Military Standard Manual 148

Speclal Instructions

5.0.28 StoreM

Mnemonig: StoreM R1, L2, L3

Format:
1112 1617 21 22 2627 31

10010010 R1i L2 L3

Description: StoreM stores a series of IEU registers, from register number L2 to register
number L3, with L3 guaranteed by software to be a greater register number than L2. RL2 and
RL3 always specify literals. The storage location is specified by the contents of the register
specified by R1. 1 < L2 L3 < 31.

Cycle Description:

Memory Cycle: The contents of IEU registers from L2 through L3 are written to successive
memory locations starting from the location specified by the contents of the register denoted
by R1. [The locations are Rt, R1 + i/8, ..., B1 + (L3 - L2)i/8, where i is the size of the IEU
registers in bis.}

149 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.29 FStoreM

Mnemonic: FStoreM R1, L2, L3

1112 1617 21 22 2827 31

R1 L2 L3

Description: FStoreM stores a series of FEU registers, from register number L2 to register
number L3, with L3 guaranteed by software to be a greater register number than L2. RL2 and
RL3 always specify literals. The storage location is specified by the contents of the register
specified by R1. 1 <« L2 <13 <31,

Cycle Description:

Memory Cycle: The contents of FEU registers from L2 through L3 are written 1o successive
memory locations starting from the location specified by the contents of the register denoted
by Ri. [The locations are R1, R1 + 8, ..., Rl + (L3 - L2){/8, where f is the size of the FEU
registers in bits.]

8/90 WM Computer Architectures : Military Standard Manual 150

Speciat Instructions

5.9.30 VStoreM

Mnemonic: VSioreM R1, L2, L3

1112 1817 21 22 2627 31

R1 L2 L3

Description: VStoreM stores a series of VEU registers, from register number L2 fo register
number L3, with L3 guaranteed by software to be a greater register number than L2. RL.2 and
RL3 always specify literals. The storage location is specified by the contents of the register
specified by R1. 1 < 12 <13 <31,

Cycle Description:

Memory Cycle: The contents of VEU registers from L2 through L3 are written o successive
memory locations starting from the location specified by the contents of the register denoted
by R1. [The locations are R1, R1 + Nw/8, ..., R1 + {L3 - L2)Nv/8, where v is the size of the
VEU registers in bits and N is the implementation defined depth of the VEU registers.}

151 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.31 LoadFifoll, LoadFifoFl, LoadFifeVl

Mnemonic: LoadFifoll RO, R1
LoadFifoF] RO, R1
LoadFifoVl RO, R1

1112 1617 21 22 2827 &

OPCODE RO R1
OPCODE Instruction
00000011 LoadFifoli
00100011 LoadFifoF|
01000011 LoadFifoVl

Description: These instructions load the specified FIFO state from the address specified in R1.
The amount and format of this information is implementation dependent.

o scripti

Memory Cycle: The !EWFEWVEU input FIFO specified by RO is loaded with the contents of
successive mamory locations starling from the location specified in denoted by Ri. The number
of values loaded is Implementation dependent; however, a StoreFifo, LoadFifo pair that
specifies the same FIFO and memory location results in leaving the FIFO in the state it was in
before the pair of instructions was exsecuted.

8/90 WM Computer Architectures : Military Standard Manual 152

Special Instructions

5.9.32 LoadFifolQ, LoadFifoF0Q, LoadFifoVO

Mnemonic: LoadFifolO RO, R1
LoadFifoFO RO, R1
LoadFitoVO RO, Rt

Format:
o 1112 1617 21 22 2827 3
1 OPCCDE RO R1
QPCODE sir
00010011 LoadFifelO
00110011 L oadFifoFO
01010011 LoadFifoVO
Description: These instructions load the specified FIFO state from the address specified in R1.

The amount and format of this information is implementation dependent.

c ascrivtion:

Memory Cycle: The output FIFO specified by RO is loaded with the contents of successive
memory locations starting from the location specified by the contents of the register denoted
by R1. The number and format of values loaded is implementation dependent; however, a
StoreFifo, LoadFifo pair that specifies the same FIFO and memory location results in leaving the
FIFO in the state it was in before the pair of instructions was executed.

153 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.33 StoreFifoll, StoreFifoFl, StoreFlfoVi

Mnemonic: StoreFifoll RO, R1
StoreFifoFl RO, R1
StoreFifoVl RQ, R1

ormat:
] 1112 1617 21 22 2627 3
1 Ro Rt
Instruction
10000011 StoreFifoli
10100011 StoreFifoFi
11000011 StoreFifoVi

Description: These instructions store the specified FIFO state to the address specified by R1.
The amount and format of this information is implementation dependent,

) cription:

Memory Cyele: The contenis of the input FIFO specified by RO are stored to successive
memory locations starting from the location specified by the contents of the register denocied
by R1. The format in which the contents are stored is implementation dependent; however, a
StoreFifo, LoadFifo pair that specifies the same FIFO and memory location results in leaving the
FIFO in the state it was in before the pair of instructions was executed.

8/90 WM Computer Architectures : Military Standard Manual 154

Special Instructions

5.9.34 StoreFifolO, StoreFifoFC, StoreFifoVO

Mnemonic: StoreFifoi0 RO, Rt
StoreFifoFO RO, R1
StoreFifoVO RO, R1

Eormat:
0 12 34 1112 1617 21 22 2627 3t
1 OPCODE RO Rt
CPCODE Instruction
10010011 StoreFifolO
10110011 StoreFifoFO
11010011 StoreFifoVO

Description: These instructions store the specified output FIFO stale to the address specified by
R1. The amount and format of this information is implementation dependent.

Cycle Descriplion:

Memory Cycle: The contents of the output FIFO specified by RO are stored to successive
memory locations starting from the location specified by the contents of the register denoted
by R1. The format in which the contents are stored is implementation dependent; however, a
StoreFIFQ, LoadFifo pair that specifies the same FIFO and memory location results in leaving the
FIFO in the state it was in before the pair of instructions was executed.

155 WM Computer Architectures : Military Standard Manual 8/90

Speclal Instructions

5.9.35 LoadCTX

Mnemonic: LoadCTX R1

1112 1617 21 22 2627 34

10000101

Description: 1oadCTX restores context from a block of siorage whose address is specified in
R1.

Cvcle iption:

Memory Cycle: The set of general registers and special registers are loaded from
successive memory locations, starting at the location specified in Ri. The number and format
of values loaded is implementation dependent.

8/90 WM Computer Architectures : Military Standard Manual 156

Special Instructions

5.8.36 StoreCTX

Mnemonic: StoreCTX

Format:

o] 1112 1617 21 22 28627 31

1
Description: StoreCTX stores the current context to a known location for the current task.
Cycle Description:

Memory Cycle: The contents of the set of general registers and special registers are stored
{o successive memory locations, starting at the a known location for the current task. The
format of values stored is implementation dependent.

157 WM Computer Architectures : Military Standard Manual 8/90

Special Instructions

5.9.37 SwapCTX

Mnemgnic: SwapCTX R1

1112 1617 21 22 2627 3

10100101

W SwapCTX swaps the current context with the context block at memory location
specified in R1. SwapCTX combines the LoadCTX and the StoreCTX instructions.

Cycle Description:

Memory Cycle: The contenis of the set of general registers and special registers are stored
io successive memory locations, starting at the a known location for the current task. These
ragisters are loadsd from successive memory locations, starting at the location specified in
R1. The number and format of values siored and loaded is implementation dependent,

8/80 WM Computer Architectures : Military Standard Manual 158

Special Instructions

5.9.38 SwaplLT

Mnemonic: SwapL.T

1112 1617 21 22 2627 31

10110101

Description: Swapl.T is identical to SwapCTX except that it swaps the current context with the
context of the last fask.

Cycle Description:

Memoary Cycle: The contenis of the set of general registers and special registers are stored
to successive memory locations, starting at the a known location for the current task. These
registers are loaded from successive memory locations, starting at the location specified in the
last TCB pointer (LTP). The number and format of values stored and loaded is implemantation
dependent.

159 WM Computer Architectures : Military Standard Manual 8/¢0

