
DRAFT VERSION

- 1 -

Persistent Object State Management in Legion

Draft - March, 1997
legion@virginia.edu

Abstract
The persistence model for the Legion object-oriented wide-area metasys-
tem is described. This model defines the protocols and mechanisms that
are used to deactivate, reactivate, and migrate persistent objects within
Legion. The persistence model requires the cooperation of three key enti-
ties: the persistent object itself, which is responsible for saving and
restoring its volatile state on deactivation and reactivation, respectively,
Vault Objects, special Legion Core Objects that manage the persistent
states of inactive objects, and Legion Class Objects which manage the
association between their persistent instances and Vault objects.

1 Introduction
The basic goal of the Legion project[3] is to construct a wide-area, high-performance metasystem[2]

capable of providing a usable programmer interface to the increasingly complex nation-wide computing
and communications infrastructure. The basic unit of program composition and scheduling in Legion is the
active object, and the programming interfaces supported by Legion are object-oriented. Objects in Legion
are logically address-space disjoint, and reside in a single unified name-space managed by a set of Legion
Core Objects. The primary mode of object interaction is method invocation.

Legion objects may be persistent in nature, retaining state and responding to methods indefinitely
beyond the lifetime of the object that created them. ThePersistent Stateof a running Legion object can
consist of data in memory, pending results of member function invocations on other objects, unserviced
member function invocations from other objects, mass storage resources (e.g. open files), graphical display
resources (e.g. terminal windows), as well as many other operating system and hardware platform depen-
dent resources. Since Legion objects are active, the state of an object may also include run-time data such
as the call stack and register values of the objects threads of control.Persistent Object State Management
in the context of Legion is defined to be the ability to capture the state of a Legion object into a linearized,
transportable, and possibly architecture independent form, and conversely to reconstruct the state of a run-
ning object based on a previously captured state.

A general purpose protocol for persistent object state management is central to a number of basic
Legion attributes and services. First, the number of persistent objects in the Legion system at any point in
time will certainly exceed the number of running objects which could be efficiently supported by the hard-
ware infrastructure available to the system. The ability to move objects fromActive to Inert states will be
central to the scalability of Legion object scheduling services. Beyond this basic issue of scalability, a
number of important Legion services could utilize object state management facilities. For example, some
fault tolerance schemes are based on the ability to checkpoint the state of a running application and later
restart needed program elements in case of failure. Another example is dynamic load balancing through
object migration, which addresses the issue of achieving good application performance in the face of
shared-resource environments.

This document describes the design of the fundamental protocols and mechanisms used within Legion
for persistent object state management. In Section 2 we provide a general overview of the Legion persis-
tence model and introduce the key terms and object classes. In Section 3 we examine the role that object’s

DRAFT VERSION

- 2 -

play in managing their own persistent state. In Section 4 we describe the Legion Core Objects known as
Legion Vaults and discuss their role in the persistence model. In Section 5 we describe the role that Class
Objects play in the persistence model. In Section 6 we examine implementation issues including the design
of key Legion library classes that are used to code persistent objects, and the design of Legion Vaults for
different environments. Section 7 contains concluding remarks.

We should note that this document assumes familiarity with the basic Legion system design as
described in [4]. Also, we will refer the reader to the Legion library implementation report [1] for low-level
Legion interface details where appropriate.

2 Overview
At the most abstract level, the Legion persistence model is straightforward. A persistent Legion object

can be in one of two different states,Active or Inert. When an object is Active, it is logically running as a
process on a Legion Core Object known as aLegion Host, and it can be accessed directly via method calls.
When an object is Inert, it is logically stored as a persistent string of data on a Legion Core Object known
as aLegion Vault. Thus, Legion Hosts are simply objects that provide an abstract interface to processors
(for the purpose of supporting active objects), and Legion Vaults are Legion objects that provide an
abstract interface to storage (for the purpose of storing inactive objects).

 When an object is Inert, its state is stored in persistent storage that is managed by a Legion Vault.
This stored state for an object is referred to as itsObject Persistent Representation (OPR). The mechanism
for creating an OPR based on an active, running object is encoded in the object itself in the form of an
object mandatory method calledSaveState() . In response to aSaveState() method invocation, an
active object will typically examine its active dynamic state and write any necessary state information to its
own OPR. Similarly, the ability to recover an active object’s state from an existing OPR is encoded in the
object implementation in the form of an object mandatory method calledRestoreState() . In response
to aRestoreState() invocation an object typically reads its state from its own OPR and thus recovers
any relevant active state.

The location of an inactive object’s OPR is described by anObject Persistent Address (OPA). Just as
an active object’s address is assigned to it by a Legion Host when the object’s active representation is
moved to that Host, an object’s OPA is assigned to it by a Legion Vault when the object’s persistent repre-
sentation (OPR) is moved to that Vault. Just as Legion Hosts control the amount and type of processing
power that an object may use, Legion Vaults manage the amount and type of persistent storage that an
object may use. Thus, the job of the Vault is to act as an inert object manager, much in the same way that a
Host acts as an active object manager.

The natural parallel between Hosts and Vaults extends beyond their functionality and into their rela-
tionship to Class Objects. In the case of an object instance that is active, the Class object is responsible for
selecting and remembering the Host object that manages the instance. Similarly, in the case of an object
instance that is inactive, the Class object is responsible for selecting and remembering the Vault object that
manages the instance.

From the above high-level description of the Legion persistence model, we can discern three distinct
cooperating entities with distinct roles to play: the persistent object itself (i.e. the object whose persistence
is being managed), the Vault object, and the Class of the persistent object. In the following sections we
examine the roles and interrelationships of each of these entities in greater detail.

3 The Persistent Object Perspective
The most central entity in the Legion persistence model is the persistent object instance itself. As

described in Section 2, object instances are responsible for providing methods to save and restore their per-
sistent state. In this section, we examine the role of the persistent object in the Legion persistence model. In
particular, we examine the interface of and implementation issues related to the object mandatory

DRAFT VERSION

- 3 -

SaveState() andRestoreState() methods.

3.1 The SaveState Method
Every object in Legion must support some (possibly trivial) implementation of the object mandatory

methodSaveState() . As we have already alluded, the job ofSaveState() is to examine the volatile
state of an active object and save a record of that volatile state to persistent storage.

The record of an object’s dynamic state produced by aSaveState() implementation should be
written in a self-contained form that can later be used to restore the object to the exact state it was in at the
time of capture. Any information in the object’s dynamic state necessary for a complete restart should be
explicitly saved bySaveState() . For very generalSaveState() implementations, this may be quite
complex to program. For example, if an object permittedSaveState() invocations to be accepted
before completing already running invocations of other methods, theSaveState() implementation
would need to save a record of how much progress had been made on the running methods, and to whom
the results must be returned on completion. ASaveState() implementation such as this might be quite
complex, requiring that call stacks used by the active object be linearized and stored in addition to member
variables, records of not-yet-executed method requests, etc. Of course, more simple (but less general)
SaveState() implementations are also possible. For example, consider aSaveState() implementa-
tion that is usable only while no other methods are being serviced. In this version ofSaveState() , only
the object’s member variables and a record of not-yet-executed method invocations generally needs to be
saved. Thus, theSaveState() implementation problem in this case is greatly simplified.

The general observation that we make about
the SaveState() implementation problem is
that the complexity ofSaveState() can be
reduced, but this will typically require that the
object wait until its dynamic state reaches some
well known simple point in execution before it ser-
vices theSaveState() invocation. Of course,
from the SaveState() caller’s perspective, it
would be best if the method were serviced as soon
as possible. Consider a typical usage of
SaveState() : the object is about to be deacti-
vated, and thus a request is being made that it save
its state before going to sleep. Ideally, such a
request should be serviced as soon as possible.

In order to accommodate the somewhat con-
flicting requirements of theSaveState() implementor and theSaveState() caller, the interface to
SaveState() permits a protocol to be run between a persistent object and itsSaveState() caller. A
call to SaveState() must provide a parameter of the typeSaveStateRequest (see Figure 1) that
indicates an urgency type and a time-out value. The urgency type can currently be one of three values:

• SaveState_Normal - TheSaveState() call is not urgent. It should be serviced when-
ever possible.

• SaveState_AndDie - TheSaveState() call is not urgent, but it is being called in order
to perform an object deactivation. After servicing theSaveState() call (whenever possi-
ble), the object should deactivate itself.

• SaveState_DeathImmanent - TheSaveState() call is urgent, and is requested to be
performed within the time-out value indicated, after which time the object may be involun-
tarily deactivated.

The final request type (SaveState_DeathImmanent) can be used to indicate an urgent
SaveState() request. For example, perhaps the host on which the object is active plans to shut down

class SaveStateRequest {
public:

char urgency;
long timeSecs;
long timeUSecs;

};

class SaveStateReply {
public:

char status;
long timeSecs;
long timeUSecs;

};

Figure 1. SaveState parameter and return types.

DRAFT VERSION

- 4 -

shortly. Or perhaps the object has utilized more that its allotted processing time on a host. In either case
(and in many others), object deactivation is required within a given time frame.

Of course, an object may not be able to accept a SaveState() invocation within the time allotted by the
request. The reply type of SaveState is an object of the classSaveStateReply (see Figure 1) that indi-
cates whether or not theSaveState() request was serviced, and if not, an estimate of the time required
before a newSaveState() request could be serviced. This reply type allows the object to effectively
request more time so that it can reach a state at which theSaveState() can be performed.

The above protocol is quite flexible, both from the perspective of theSaveState() implementor
and theSaveState() caller. AmbitiousSaveState() implementors can code very accommodating
SaveState() implementations that always save state and return immediately. SimplerSaveState()
implementations can request more time until a consistent, simple state is reached. From the caller perspec-
tive, very generous Host providers may allowSaveState() requests to be serviced at at an object’s lei-
sure, while stricter Hosts may have varying degrees of tolerance for unresponsiveSaveState()
implementations.

3.2 The RestoreState Method
The RestoreState() method is the reverse of theSaveState() operation. This method is

responsible for reading the saved state of a persistent object from its OPR on stable storage. Based on the
OPR,RestoreState() reconstructs the appropriate dynamic state of the invoked object.

Typically, RestoreState() is invoked immediately after object activation. In such cases, the
RestoreState() call is performed by the object itself immediately after the Legion library is initial-
ized. Initialization of the Legion library make the object’s OPR available to it through the standard Legion
library interface. The object can thus on activation initialize the Legion library, restore its state from the
OPR, and only then begin to accept method calls.

The interface toRestoreState() does not require an invocation protocol like that of
SaveState() . Thus,RestoreState() requests take no parameters and return only a status character
indicating whether or not state was restored successfully.

3.3 Using Legion Object Persistent Representations
Thus far, we have described the interfaces toSaveState() andRestoreState() , and have

provided a general overview of their operation. In this section, we examine the key Legion mechanism
involved in implementingSaveState() andRestoreState() methods: the Object Persistent Rep-
resentation, or OPR.

Legion objects are endowed with an OPR in which they can store volatile state in the event that they
must be deactivated during the operation of the system. Objects may also use their OPR to store data struc-
tures that are too large to contain in volatile storage (e.g. a “file” object need not keep its entire state,
including the contents of the file, in memory - the file contents can be stored directly in the OPR). The per-
sistent representation of an object is referred to as a Legion Object Persistent Representation, or OPR.

The most basic interface to a Legion OPR is provided by theLegionOPR C++ object class.
Instances of the classLegionOPR are constructed based onLegionOprAddress C++ object class
instances, but this is generally taken care of internally by the Legion library implementation. At the time of
activation, objects are passed aLegionOprAddress (which can be thought of a description or pointer
to aLegionOPR) by the responsible Legion Host object so that they can locate and access their persistent
representation. When the Legion library is initialized, the OPR Address is automatically converted into a
LegionOPR instance usinggetLegionOPR() . The programmer can then access theLegionOPR
instance for a Legion object using theGetOPR() method of theLegionLibraryState object class.
For example:

UVaL_Reference<LegionOPR> myOPR;
myOPR = Legion.GetOPR();

DRAFT VERSION

- 5 -

The interface to the OPR supports accessing the object’s state in two basic forms:linearized and
inflated. For the purposes of object migration, the persistent representation of an object can be gathered
into a linearized form, suitable for transport. The linearized form of the OPR, which can be accessed via
thegetLinearized() method on theLegionOPR class, is typically not important from the persistent
object perspective, but is instead generally used by Vault objects. The more important form of the OPR
from the persistent object’s perspective is the directly manipulatable form, theinflated form. The inflated
form of aLegionOPR is encapsulated by theLegionPersistentBufferDir C++ object class. As
its name implies, theLegionPersistentBufferDir is a directory of PersistentLegionBuffer
objects. The inflated form of the OPR is accessed via thegetInflated() method on theLegionOPR
class. For example:

UVaL_Reference<LegionPersistentBufferDir> myState;
myState = myOPR.getInflated();

The LegionPersistentBufferDir class implements an association set that maps null termi-
nated character strings to objects of theLegionBuffer class and subdirectory objects of theLegion-
PersistentBufferDir class. Objects of this class can be thought of as directories in a file system that
contain string named files (persistentLegionBuffers) and subdirectories (LegionPersistent-
BufferDirs), although the implementation of these objects need not be based on a file system.

Sample usage of
key elements of the
LegionPersis-
tentBufferDir
interface is depicted in
Figure 2. This inter-
face contains methods
to determine the num-
ber of contained buff-
ers and subdirectories,
to determine if a given
string maps to a con-
tained buffer or subdi-
rectory, to access, add
to, or delete from the
contained buffers and
subdirectories by name, and to iterate over the contained buffers and subdirectories.

The LegionBuffers contained inLegionPersistentBufferDir objects are persistent in nature.
That is, these buffers are based on storage that is contained in the object’s persistent representation and will
thus persist after the object is deactivated. Thus, in manipulating these buffers, the object is directly manip-
ulating its persistent state. This means that an object’s OPR is accessed at the most basic level using the
familiar LegionBuffer interface (see [1] for more information about LegionBuffers and packable data
structures). Data structures that were rendered packable for the purposes of transport in Legion Messages
are equally packable into the LegionBuffers obtained as part of the object’s OPR. This leads to a situation
where the implementation of an object’sSaveState() method is typically a sequence of pack opera-
tions on the data structures that make up the object’s state, many of which already needed to be packable
(or made up of packable constituents) for the sake of method service and invocation.

During the operation of a Legion object’sSaveState() method, or for the purposes of taking
checkpoints, the programmer may need to capture the state of the Legion library. This functionality is pro-
vided through thesaveState() method on theLegionLibraryState class. To save the state of the
Legion library, the programmer simply writes:

UVaL_Reference<LegionPersistentBufferDir> myState;
myState = myOPR.getInflated()

// Check the contents of a directory
if (myState.NumSubdirs() == 0) return -1;
if (! myState.IsContainedSubdir(“State”)) return -2;

// Access a subdirectory
UVaL_Reference<LegionPersistentBufferDir> subDir;
subDir = myState.GetSubdir(“State”);

// Access a contained buffer
UVaL_Reference<LegionBuffer> myData;
myData = subDir.GetBuffer(“My Data”);

Figure 2. Sample invocations on an object of class LegionPersistentBufferDir.

DRAFT VERSION

- 6 -

LegionLibrary.saveState();

To recover the state from the persistent representation, a complementaryrestoreState() opera-
tion is provided, e.g.:

LegionLibrary.restoreState();

These methods save and recover (among other data structures) information about method requests received
by the object but not yet serviced by the user code associated with the object. Generally, all implementa-
tions of SaveState() and RestoreState() should call onLegionLibrary.saveState()
andLegionLibrary.restoreState() to save and restore the Legion library state, respectively.

4 The Vault Perspective
We have described how an object manipulates its persistent representation in the form of an OPR, but

we have not yet described how OPRs in the Legion system are obtained, managed, or migrated. Legion
Vaults are the Legion Core Objects that are responsible for managing the OPRs of other Legion objects. A
Vault has direct access to the OPRs it holds via persistent store mechanisms outside of Legion (e.g., a Unix
file or directory). It administers the creation of and access to the OPRs of a set of objects that it is charged
with managing.

Vaults have a number of roles throughout the lifetime of an object. For example, when an object is
created, a Vault for the object is chosen by the object’s Class (see [4] for a complete discussion of active
Class objects). The selected Vault creates a new empty OPR for the object, and supplies to the object an
OPR address that refers to this new OPR. Another example of the Vault’s roles in the system is object
migration. If the object’s class (or a Placement Mapper on behalf of that class) decides to migrate the
object to another Legion Host, the migration may require moving the OPR to a new Vault whose persistent
storage is accessible by objects on the new host. In such a case, the class (or Placement Mapper) selects a
new Vault, and the OPR is transferred between the Vaults.

The above Vault activities
are supported by the basic
LegionVault abstract interface
depicted in Figure 3. For the pur-
poses of object creation, the
Vault provides acreateOPR()
method. This method constructs
a new empty object persistent
representation, associates this
OPR with the given LOID, and
returns the address of the new
OPR for use by the newly created
object. For the purposes of object activation and deactivation, the Vault provides agetOPRAddress()
method to determine the location of the OPR associated with any of its managed objects. For performing
object migration, Vaults supportgiveOPR() and getOPR() methods that transfer a linearized (i.e.
transportable) OPR to and from Vaults, respectively. ThedeleteOPR() can be used to terminate a given
Vault’s management of an object’s persistent representation. TheisManaged() method can be used to
determine if a Vault manages a given object. Finally,markActive() andmarkInactive() methods
are provided so that the Vault can be notified when an object is active or inactive, respectively. This knowl-
edge allows the Vault to store the OPRs of inactive objects in compressed or encrypted forms for efficiency
and security purposes, respectively.

A critical detail to note about the Vault interface is its usage of OPR Addresses to provide access to
object persistent representations. When an object wants to access its OPR, it can learn the address of its

class LegionVault {
 LegionOprAddress createOPR(LegionLOID);
 LegionOprAddress getOPRAddress(LegionLOID);
 LegionLinearizedOpr getOPR(LegionLOID);
 void giveOPR(LegionLOID, LegionLinearizedOpr);
 void deleteOPR(LegionLOID);
 int isManaged(LegionLOID);
 void markActive(LegionLOID);
 void markInactive(LegionLOID);
};

Figure 3. The LegionVault interface.

DRAFT VERSION

- 7 -

OPR from its Vault. The Vault must provide an address that contains enough information embedded in it to
not only find, but access the OPR. For example, consider an implementation of Vaults and OPRs that is
based on the Unix file system. In such an environment, an OPR might be implemented as Unix directory,
and an OPR address might contain a Unix path name corresponding to a Unix directory. In this case, the
OPR addresses, besides containing the path name needed to locate the OPR, would also need to contain an
type indicator that lets the object know that it should access the OPR in the form of a Unix subdirectory. In
a sense, the OPR address constitutes an agreement between a Vault and a managed object about what kind
of OPR will be used for the object. After this agreement is established, the object can access its OPR
directly without consulting the Vault.

5 The Class Object Perspective
As is clear from the roles of persistent objects and Vaults in the persistence model, the pairing of

Vaults and persistent objects is an application dependent function. Some objects may not be interoperable
with some Vaults. Certain classes may not accept the security policies employed by a given type of Vault.
The natural place for Vault/object matching in Legion is in the Legion class system. Class objects perform
a similar matching process to decide which Host objects can manage the active representations of of their
instances. For example, a certain class may not be interoperable with Host objects of a given architecture,
and may require special security attributes from Hosts. The situation with Vault matching is fundamentally
the same.

To perform the functions for which it is responsible (including Vault/instance matching), each class
object logically maintains a table whose entries contain fields specifying certain attributes of object
instances (identified by LOIDs). For example, the logical table must store the Object Address for the
instance if it is active, the Placement Mapper for the instance if one is employed, and so on. For the pur-
poses of object persistence, the Class object must maintain for each instance aCurrent Vault Set and aCan-
didate Vault Set. The Current Vault Set contains a list of Vaults that currently have Object Persistent
Representation for an object. Typically, only one Legion Vault will have a copy of the Object Persistent
Representation of an object, but more complex schemes are possible. For example, the class may elect to
replicate an object’s OPR to increase availability or performance. The Candidate Vault Set field indicates
the Vaults that may be given responsibility for the object. This field can be implemented as a simple list,
but typically it needs to encapsulate more sophisticated information, such as “no restriction” or “all Vaults
with a given security policy.”

In practice, the class object may employ other Legion objects, such as database servers, to maintain
some or all of the information that class objects are required to maintain in what we refer to as the “logical
table.” Objects may be given the opportunity by their class to directly manipulate the table fields in a man-
ner reminiscent of reflective architectures.

6 Implementation Issues
Given the above general model for object persistence in Legion, we are still left with a number of

basic implementation issues. Of particular interest are the details involved in constructing a new kind of
Legion Vault based on a given type of persistent storage, and then incorporating the needed functionality
into Legion objects to allow them to interoperate with the new Vault. This process involves the following
two key steps:

1. The C++ classes needed to support the Legion library interface to an OPR (as described in Sec-
tion 3, and in greater detail in [1]) must be implemented. The key classes that must be derived
from (i.e. implementations of which must be provided) are:

• LegionStorage - This class is the Legion library C++ abstract interface to storage
(e.g. memory, file storage, etc.) and is used as one of the fundamental building blocks
of LegionBuffers (see [1] for more details about LegionBuffers). In order for Legion

DRAFT VERSION

- 8 -

SaveState() and RestoreState() implementations to use the standard
LegionBuffer interface, a version of the LegionStorage class must be implemented
over the persistent storage in question. The interface to a LegionStorage is similar to
the interface to a Unix file - the file can be logically considered a linear string of bytes
that can be read from or written to.

• LegionPersistentBufferDir - Recall from Section 3 that the interface to an
object’s OPR is based on a directory of buffers abstraction to allow different modules
in the object to conveniently save their state without overwriting separate data struc-
tures. Thus, to support a new persistent storage type as a Legion OPR format, the
LegionPersistentBufferDir interface must be implemented using the persis-
tent store. TheLegionPersistentBufferDir interface provides a Unix-like
directory service, where directories map string names to LegionBuffers and contained
subdirectories. If the persistent storage in question already supports a directory
abstraction (e.g. as in the case of most file systems), theLegionPersistent-
BufferDir can typically be a thin wrapper around the existing directory implemen-
tation.

• LegionOprAddress - While the above classes provide the programmer interface
to an object’s OPR, initial access to the OPR is encapsulated within theLegionO-
prAddress class. An implementation of theLegionOprAddress interface must
be provided that implements theGetOPR() method. This method encapsulates the
task of examining the data contained within the OPR address (e.g. a directory path
name), using that data to construct an appropriateLegionPersistentBuffer-
Dir instance, and returning the resulting OPR handle.

2. The above classes give a Legion object the ability to utilize a given form of OPR. We must next
construct a Vault to create and manage OPRs of the new form. As described in Section 4, the
Vault must be able to construct new empty OPRs for newly created objects. For example, in the
case of a Vault implemented over the Unix file system, the Vault would simply create a new
empty subdirectory to make a new empty OPR. The Vault must generate and keep track of the
OPR addresses associated with managed objects. For example, if the OPR associated with a given
object is migrated to the Vault, the Vault must store that OPR at a newly generated OPR address,
and maintain the association between the new managed object and this OPR address. Continuing
the example of a Unix file system based Vault, in order to generate new OPR addresses, this Vault
might simply generate path names by incrementing a counter and appending its value to a base
string path name.

These two key implementation steps (i.e. the implementation of the Legion library OPR interface and the
implementation of the Vault) allow a new form of persistent storage to be used by persistent Legion
objects. Note, the implementation of persistent Legion objects (in particular, the implementation of their
SaveState() andRestoreState() methods) is not affected. Furthermore, the implementation of
Class objects need not be affected - a class must maintain information about which Vault types are accept-
able for its instances, but the implementation of this feature is independent of the implementation of Vaults
and OPRs.

7 Conclusion
In this paper, we have described the general design of and the most basic implementation details asso-

ciated with the Legion persistence model. This model allows Legion objects to persist indefinitely over
time and migrate between locations in the system. The critical parts of the model are:

• Object self-management of persistent representations - Objects are responsible for managing
their own persistent representations through the implementation ofSaveState() and
RestoreState() methods. These methods are implemented using an abstract interface

DRAFT VERSION

- 9 -

that hides the implementation details of actual persistent storage medium used by the object to
hold its persistent representation.

• Legion Vaults - These Legion Core objects manage the association between objects and object
persistent representations. In the same way that a Legion Host object abstracts processing
power (so, for example, Class objects need not be aware of how to activate objects on every
kind of host), Legion Vaults abstract persistent storage (so, for example, Class objects need not
be aware of all of the types and instances of persistent storage available in the system).

• Class Object pairing of Vaults and instances - The use of a given Vault by an object instance is
a policy decision in many dimensions (for example, performance, security, and so on). In
Legion, the Vault/instance pairing policy is located within Class objects.

References
[1] A.J. Ferrari, M.J. Lewis, C.L. Viles, A. Nguyen-Tuong, A.S. Grimshaw “Implementation of the

Legion Runtime Library,”University of Virginia CS Technical Report CS-96-16, November, 1996.
[2] A.S. Grimshaw, J.B.Weissman, E.A. West, and E. Loyot, “Meta Systems: An Approach Combin-

ing Parallel Processing And Heterogeneous Distributed Computing Systems,”Journal of Parallel
and Distributed Computing, pp. 257-270, Vol. 21, No. 3, June 1994.

[3] A.S. Grimshaw, W.A. Wulf, J.C. French, A.C. Weaver, and P.F. Reynolds Jr. “Legion: The Next
Logical Step Toward a Nationwide Virtual Computer”,University of Virginia CS Technical Report
CS-94-21, June 8, 1994.

[4] M.J. Lewis, A.S. Grimshaw, “The Core Legion Object Model,”Proceedings of IEEE High Perfor-
mance Distributed Computing 5, pp. 551-561 Syracuse, NY, August 6-9, 1996.

