Dynamically-Wiresized Elmore-Based
Routing Constructions®

Todd D. Hodes, Bernard A. McCoy and Gabriel Robins

Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442

Abstract

We analyze the impact of wiresizing on the performance of Elmore-based routing
constructions. Whereas previous wiresizing schemes are static (i.e., they wiresize an
existing topology), we introduce a new dynamic Elmore-based wiresizing technique, which
uses wiresizing considerations to drive the routing construction itself. Simulations show
that dynamic wiresizing affords superior performance over static wiresizing, and also
avoids topological degeneracies. Moreover, dynamically-wiresized Elmore-based routing
constructions significantly outperform all previous methods in term of maximum source-
sink signal delay, affording up to 77% SPICE delay improvement over traditional Steiner
routing.

1 Introduction

Interconnect delay has recently become a dominant concern in the design of complex, high-
performance circuits, due to the scaling of VLSI technology [9] [36]. Performance-driven
layout design has thus become an active area of research over the past several years, where
for a given signal net, the typical goal of performance-driven routing is to minimize average
or maximum source-sink delay [23]. Much early work implicitly equates optimal routing with
minimum-cost Steiner routing. For example, Dunlop et al. [10] use static timing analysis to
yield net priorities, so that the highest-priority nets may be routed by minimum Steiner trees,
leaving lower-priority nets to subsequently encounter blockages. Jackson, Kuh, and Marek-
Sadowska [21] and Prasitjutrakul and Kubitz [29] have given approaches which are tuned to

building-block layout and allow prescribed upper bounds on individual source-sink delays.

*Corresponding author is Professor Gabriel Robins, Department of Computer Science, Thornton Hall,
University of Virginia, Charlottesville, VA 22903-2442, Email: robins@cs.virginia.edu, phone: (804) 982-2207,
FAX: (804) 982-2214.

Recently it became increasingly apparent that for leading-edge technologies, delay mini-
mization and wirelength minimization are far from synonymous. For example, Cohoon and
Randall [6] proposed a heuristic which simultaneously considered both the cost (total edge
length) and the radius (longest source-sink path length) of the routing tree. A more general
formulation was given by Cong et al. [7], wherein a parameter ¢ guides the tradeoff between
cost and radius minimization in a “provably good” BRBC (bounded-radius, bounded-cost) al-
gorithm, which affords both cost and radius simultaneously within constant factors of optimal.
The cost-radius tradeoff may also be viewed as one between competing minimum spanning
tree (MST) (or minimum-cost Steiner tree) and shortest-path tree (SPT) constructions. Using
this perspective, Alpert et al. [1] recently proposed the AHHK algorithm, which achieves a
direct MST-SPT tradeoff. Finally, Cong et al. [8] have recently proposed the use of rectilinear
Steiner arborescences [31], or A-Trees, which are essentially minimum-cost SPTs with Steiner
points allowed. As noted in [8], wiresizing can significantly improve signal delay in a given

routing.

There are two common shortcomings to previous high-performance routing methods: (1)
their optimization criteria are primarily “geometric” in nature (as opposed to minimizing
physical delay), and (2) they are “oblivious” to particular technology parameters (i.e., they
produce the same routing construction for different values of wire resistance, capacitance,
ete.). To overcome these flaws, Boese et al. [5] have recently developed a construction which
greedily optimizes the Elmore delay formula directly to produce low-delay routing trees. Not
only are these constructions adaptable to the prevailing technology parameters, but they
were found to be near-optimal with respect to Elmore delay for a wide range of technology
parameters [3]. Moreover, it was shown that Elmore delay has high fidelity to physical (SPICE-
computed) delay over a range of IC technologies, i.e. near-optimal Elmore delay implies
near-optimal SPICE delay [4] and [3] [25]. One drwaback of the methods of [5] is that they

sometimes produce degenerate routings (i.e., star-like topologies).

In this paper, we analyze the impact of wiresizing on the performance of Elmore-based
routing constructions. Whereas previous wiresizing schemes are static (i.e., they take as input
a complete fixed routing topology and then find a good wiresizing for it), we introduce a new
practical Elmore-based wiresizing technique that is dynamic (i.e., we use wiresizing consid-
erations to drive the routing construction itself). Our empirical data shows that dynamic
wiresizing affords superior performance over static wiresizing, and also avoids degenerate
star-like topologies. Moreover, we show that dynamically-wiresized Elmore-based routing

constructions outperform all previous methods, yielding up to 77% reduction in SPICE delay

over traditional Steiner routing.

The remainder of this paper is organized as follows. Section 2 gives basic definitions,
formalizes the problem of constructing optimal-delay interconnection topologies, and discusses
the delay models. In Section 3 we review three of the best known routing constructions.
Section 4 discusses the static greedy wiresizing algorithm. In Section 5 we develop our new
heuristic which combines the low-delay routing and dynamic wiresizing methods. Section 6

presents experimental results, and we conclude in Section 7. This work is to appear in [17].

2 Problem Formulation

Our overall goal is as follows: given an arbitrary set of pins with a designated source, we
wish to electrically connect all the pins so that the maximum source-sink signal propagation
delay is minimized. Ideally, a routing algorithm will compute and optimize signal delays
according to a detailed circuit simulation, such as that provided by SPICE [28]. However,
the computation times required by SPICE are prohibitive for routing tree construction, and
therefore more efficient delay estimators are needed. As recently shown by Boese et al. [3]
both the fidelity and accuracy of Elmore’s distributed RC delay approximation is surprisingly
high with respect to more complex delay estimators, such as the “Two-Pole” distributed RCL
simulator of [38], as well as the SPICE circuit simulator [28]. We therefore use the Elmore

formula to compare our routing constructions to existing ones.

We begin with some definitions and notation. A signal net N = {ng,nq,...,n;} is a fixed
set of pins in the Manhattan plane to be connected by a routing graph G = (N, E), where
E C Nx N. Pin ng € N is a source (i.e., where the signal originates), and the remaining
pins are sinks (i.e., where the signal propagates to). Each edge ¢;; € E has an associated edge
cost, d;;, equal to the Manhattan distance between its two endpoints n; and n;; the cost of
G is the sum of its edge costs. We use #(n;) to denote the signal propagation delay from the
source to pin n;. Our goal is to construct a routing which spans the net and which minimizes

the maximum source-sink delay:

Optimal Steiner Routing Tree (OSRT) Problem: Given asignalnet N = {ng, n1, ..., n}
with source ng, find a set of points S and construct a routing tree T = (N U S, E), F C
NUS x NUS, such that ¢(T) = mfalx t(n;) is minimized.

Elmore delay [11] [34] is defined as follows. Given a routing tree T rooted at ng, let e;

denote the edge from n; to its parent. The resistance and capacitance of edge e; are denoted
by 7., and e.,, respectively. Let T; denote the subtree of T rooted at n;, and let ¢; denote
the sink capacitance of n;. We use C; to denote the tree capacitance of T;, namely the sum
of sink and edge capacitances in 7;. Using this notation, the Elmore delay along edge e; is
equal to r.,(ce,/2 + C;). Let 74 denote the output driver resistance at the net’s source. The

Elmore delay tpp(n;) at sink n; is:

tED(’IlZ') ITanD -+ Z Tej(cej/2+cj) (1)

ej€path(ng,n;)

Elmore delay has a compact definition and can be quickly evaluated at all sinks in O(k)
time [34]. The calculation uses two depth-first traversals: (1) to compute the delay along
each edge and (2) to sum up the delays along each source-sink path; this enables an efficient

implementation.

3 Three Routing Constructions

Before be present our new dynamically-wiresized Elmore-based routing construction, we first
review three of the best existing routing methods: (1) Tterated 1-Steiner, (2) Elmore Routing
Tree, and (3) A-Tree.

3.1 The Iterated 1-Steiner Construction

For a given set P of n points in the plane, an edge (i.e., wire) between two points € P and
y € P is denoted by (2,y). The cost of an edge is the Rectilinear (i.e., Manhattan) distance
between its endpoints. A spanning tree over P is a set T' of n — 1 edges with endpoints in
P such that the induced graph is connected. The cost of a tree T, denoted T, is the sum
of the costs of its edges. A minimum spanning tree (MST) is a spanning tree having least
cost. Thus we denote the minimum spanning tree itself by MST and the cost of the minimum
spanning tree by MST. A Steiner tree is a spanning tree over the original pointset P and a
(possibly empty) additional pointset S (i.e., the Steiner points). We are now ready to define

the minimum rectilinear Steiner tree problem:

The Minimum Rectilinear Steiner Tree (MRST) problem: Given a set P of n points
in the Manhattan plane, find a set .S of Steiner points such that the minimum spanning tree

(MST) over P U S has minimum cost.

Figure 1: A minimum spanning tree (left) and MRST (right) for a fixed net.

Figure 1 shows an MST and an MRST for a fixed pointset. As with the MST, we denote
the Steiner tree itself by MRST and the cost of this tree as MRST. Research on the MRST
problem has been guided by several fundamental results. First, Hanan [14] has shown that
there always exists an MRST with Steiner points chosen from the intersection of all the
horizontal and vertical lines passing through the points in P (see Figure 2); indeed this result
generalizes to all higher dimensions [35]. However, a second major result establishes that
despite this restriction on the solution space, the MRST problem remains NP-complete [12],

prompting a large number of heuristics, as surveyed in [20].

—O)

0
14
A4

o— —0—

Figure 2: Hanan’s theorem: there always exists an MRST with Steiner points chosen from
the intersection of all the horizontal and vertical lines passing through all the points.

In solving intractable problems, we often seek provably good heuristics having bounded
worst-case error from optimal. Thus, a third important result establishes that the rectilinear
MST is a fairly good approximation to the MRST, with a worst-case performance ratio of
MST/MRST < % [18]. This implies that any MST-based strategy which improves upon an
initial MST topology will also enjoy a performance ratio of at most %, which has prompted a
large number of Steiner tree heuristics that resemble classic MST construction methods [15]
[16] [19] [26] [27], all producing Steiner trees with average cost 7% to 9% smaller than MST
cost [32] [37].

Unfortunately, all MST-based MRST constructions were recently shown to have a worst-

case performance ratio of exactly % [24]. This negative result has motivated research into

alternate schemes for MRST approximation, with the best performing among these being the
Tterated 1-Steiner (11S) algorithm [23] [22]. T1S always performs strictly better than 2 times
optimal [33], and achieves almost 11% average improvement over MST cost. Tt was shown in
[2] that for typical nets, T1S has average performance of less than 0.25% from optimal and
produces optimal solutions up to 90% of the time. For two pointsets P and S, define the
MST savings of S with respect to P as:

AMST(P, §) = MST(P) — MST(P U S)

We use H(P) to denote the set of Hanan Steiner point candidates (i.e., the intersections
of all horizontal and vertical lines passing through points of P). For a pointset P, a 1-Steiner
point x € H(P) maximizes AMST(P, {z}) > 0. The I1S method repeatedly finds 1-Steiner
points and includes them into S. The cost of the MST over P U .S will decrease with each
added point, and the construction terminates when there is no z with AMST(PUS, {z}) > 0.
Although a Steiner tree may contain at most n — 2 Steiner points [13], I1S may add more
than n — 2 Steiner points; therefore, at each step we eliminate any extraneous Steiner points
having degree 2 or less in the MST. Figure 3 illustrates a sample execution of 11S, and Figure

4 describes the algorithm formally.

F O D\k (L (o, l S—L]w @—L!@

Figure 3: Execution of Tterated 1-Steiner (I1S) on a 4-point example. Note that in step (d) a
degree-2 Steiner point is formed and is thus eliminated from the topology (e).

3.2 The Elmore Routing Tree (ERT) Construction

While it is known that delay in a routing tree is a non-linear phenomenon [11], many previous
methods for routing tree construction have either implicitly or explicitly assumed that delay
is proportional to source-sink path length. Thus, such methods only attempt to heuristically
capture the goal of “high performance,” and it is therefore not surprising that when trees
produced by these methods were tested by simulation, their performance often proved dis-

appointing. The SERT construction avoids the level of abstraction inherent in such previous

The Iterated 1-Steiner (I1S) Algorithm

Input: A set P of n points

Qutput: A rectilinear Steiner tree which spans P

S=90

While T'= {z € H(P)|[AMST(PUS,{z}) > 0} #0 Do
Find z € T with maximum AMST(P U S, {z})
S=5SuU{s}
Remove from S points with degree < 2 in MST(P U S)

OQutput MST(P US)

Figure 4: Algorithm 11S: a near-optimal spanning tree.

objectives as “minmimum cost” or “bounded radius” and instead directly optimizes Elmore

delay in the tree construction.

The SERT algorithm is analogous to Prim’s minimum spanning tree construction [30], and
works as follows. Starting with the trivial tree consisting initially of only the source pin, we
grow the tree at each step by finding a new pin to connect to the tree, so that the maximum
Elmore delay to any leaf is minimized; but rather than restricting the new pin to connect
directly to a pin already in the tree, we allow the new pin to connect to some tree edge, thus
inducing a Steiner point. Tn other words, given a tree T' = (V, F), we iteratively find u ¢ V|
(v,v') € E, and a new point w on edge (v,v’) to minimize the maximum source-sink Elmore
delay in the tree (VU{u, w}, (F—{(v,v")})U{(v, w), (w,v"), (u,w)}). We then add u and w to
V, and replace F by (F —{(v,v")})U{(v, w), (w,v"), (u,w)}. Again, the algorithm terminates
when the resulting Steiner tree spans the entire net. A formal description of the algorithm,

called the Steiner Elmore routing tree (SERT) construction, is given in Figure 5.

The Steiner Elmore Routing Tree (SERT) Algorithm
Input: A signal net N with a source ng €
Output: A low-delay Steiner tree which spans N
T=(V,E) ={no},0)
M = — 1o
While M # @ do
Find v € M, (v,v") € E, and a new point w which minimizes the maximum Elmore delay
from no to any leaf in the tree (V U {u, w}, (E — {(v,v")}) U {(v, w), (w,v")})
V=V U{u,w}
E = (E—{{0,0)}) U {(o,)} U {(w,0")})
M =M — {u}

Qutput resulting Steiner tree T' = (V, F)

Figure 5: Algorithm SERT: constructing a low-delay Steiner Elmore routing tree for a given
net.

3.3 The A-Tree Construction

The A-Tree has been used by [8] as the preferred interconnect topology because it minimizes
the wirelength while maintaining shortest paths between the source and every sink. An A-Tree
can be generated using the generalized rectilinear Steiner arborescence [31]. The algorithm
begins with a forest of n single-node arborescences and proceeds by applying a sequence of
either “optimal” or “heuristic” moves that extends an existing arborescence or combines two
arborescences; the process terminates when only one arborescence remains (see [8] for more

details). The A-Tree algorithm is formalized in Figure 6.

The A-Tree Algorithm
Input: A signal net N with source ng € N
Output: A routing tree T which spans NV
T= SV E) = ({no},0)
While there is more than one arborescence Do
If 3 optimal moves Then perform an optimal move
Else perform a heuristic move
Qutput resulting Steiner tree T = (V, F)

Figure 6: Algorithm A-Tree: a generalization of the rectilinear Steiner arborescence.

4 Static Wiresizing

Wiresizing (i.e., increasing the widths of certain wires) can improve signal propagation delay
by trading-off capacitance for resistance: when a wire width is increased, additional capaci-
tance 1s induced, but overall source-sink resistance may decrease. The idea behind wiresizing
is to find wire segments in the routing where an increase in capacitance is more than compen-
sated for by the corresponding decrease in resistance, thus improving the maximum source-sink
routing signal delay. Given a fixed tree T, let w(e;) denote the width assignment of edge e;
and for simplicity we let w(e;) range over a discreet set of values {wy, wa, ..., wg}. We are now

ready to extend our problem of OSRT to include wiresizing:

Optimal Wiresized Steiner Routing Tree (OWSRT) Problem: Given a signal net
N = {nq,n9,...,n;} with source ng and a set of widths W = {wq, w1, ..., w;} where wy <
wy < -+ < wj, find a set of points S and construct a routing graph 7' = (N U S, E),
E C NUS x NUS, such that for each e € E with w(e) € W, ¢(T) = rglfalx t(n;) is minimized.

Given a fixed topology, the greedy wiresizing scheme of [8] recursively wiresizes each
subtree of the source; as long as overall maximum tree delay improvement is possible; each
edge connecting the root to a subtree is widened. This static greedy wiresizing (SGW) scheme
is formalized in Figure 7; it generalizes the greedy wiresizing scheme of [8], in that it allows for
an arbitrary delay calculation to be used. Note that this method is static, meaning that the
topology of the tree is determined before wiresizing commences and does not change during

the wiresizing process.

The Static Greedy Wiresizing (SGW) Algorithm
Input: A tree T = (V, E) with source ng € N and a set W of edge widths
QOutput: A wiresized tree T, which spans N
For each node n; € V such that e = (ng, n;) € £ Do
Call SGW on the subtree routed at n;
Repeat
delayoiq = (T
Increase w, to wy41 of edge e
Until delayoq < ¢(T)

Decrease w, to wy—1 of edge e

Figure 7: Algorithm SGW: the static greedy wiresizing algorithm.

5 A New Dynamic Wiresizing Construction

While static greedy wiresizing provides a near-optimal wiresizing for a given topology [8], the
wiresizing process 1s largely constrained by that fixed input topology. Ideally we would like
to compute the optimal combination of routing topology and wiresizing; unfortunately, this
i1s not computationally feasible. On the other hand, we do not want to completely dissociate
the topology construction from the wiresizing issues (as was done in [8]), since such a strategy

will not benefit from a possible synergy between these two issues.

With this in mind, we have developed a dynamic wiresizing algorithm that hybridizes the
routing topology construction with the wiresizing process. Our new construction combines the
Elmore routing tree method of Section 3.2 with the greedy wiresizing of Section 4. The overall
structure of the dynamically wiresized Steiner Elmore routing tree (DWSERT) construction is
similar to that of SERT, except that when we select a new edge to add to the growing topology,
instead of minimizing the Elmore delay in the resulting topology, we seek to minimize the
Elmore delay in the wiresized current topology; in other words, in each step of the SERT
construction we invoke the SGW routine once for each candidate edge and add the edge that

yields the best wiresized tree.

Note however, that during the execution of DWSERT, a partial topology is not actually
wiresized, but instead its edges are left having the minimum width; rather, wiresizing consid-
erations are used as a guide to drive the edge-selection process. When the topology spans all
the net pins, we invoke the static wiresizing algorithm one final time and return the resulting

wiresized tree. The DWSERT algorithm is formalized in Figure 8.

The Dynamically Wiresized Steiner Elmore Routing Tree (DWSERT) Algorithm

Input: A signal net N with source no € N
Output: A wiresized low-delay Steiner tree which spans N

T=(V,E)=({no},0)
M = — 10
While M # 0 do
Find v € M, (¢,¢') € F, and a new point p which minimizes the maximum Elmore delay
from no to any leaf in the wiresized tree SGW(V U {u,p}, (E — {(¢,¢")}) U {(q,p), (p, ")}
V=V U{u,w}
E=(E—{(¢,d")})U{(a.p)} U{(p,q)})
M=M-—A{u

Output SGW(T = (V, E))

Figure 8: Algorithm DWSERT: constructing a dynamically wiresized low-delay Steiner tree
for a given net.

6 Experimental Results

We have implemented the 11S, SERT, and the A-Tree algorithms, their statically wiresized
versions (WI1S, WSERT, and WA-Tree, respectively), and DWSERT, the dynamically wire-
sized version of SERT, using C in the UNIX Sun environment. The code is available upon
request. We tested these algorithms on random nets of 5, 10, 15, 20, 25, and 30 pins, uni-
formly distributed in the 100000g x 100000 grid, with the source being one of the pins
chosen at random. Our technology parameters correspond to a typical MCM technology, and

are summarized in Table 1.

Table 2 gives the average percent improvement in maximum source-sink delay as a per-
centage over the corresponding I1S values. In other words, each entry in the table represents
the percentage improvement of the maximum delay as compared to the maximum delay for
the T1S routing over the same net. The results are averaged over 50 random pointsets. We
see from Table 2 that static wiresizing decreases average maximum delay dramatically when
it 1s applied to either an I1S tree or an A-Tree: WILS has a maximum delay as much as
38% less than T1S, while WA-Tree exhibits a delay improvement of as much as 15% less than

T1S. We also see that the benefit of dynamic wiresizing increases with the net size. Figure 9

10

Parameter Value
driver resistance 25 Q
wire resistance 0.008 Q/pm
wire capacitance 0.060 fF/um
wire inductance 380 fH/um
sink loading capacitance 1000 fF
layout area 10* mm?

Table 1: These multichip module interconnect parameters were provided by the AT&T
Microelectronics Division.

summarizes the data pictorially.

DWSERT
S WSERT
= 1 SERT
5
e WATree
X 60
E ATree
‘D i
& 7
25
=3 40 - o WI1S
0 =
.Eé -
RS
= 9
S 20-
E
"8' _
(&)
E 0 = - - . = a 1S
R L R e e
5 10 15 20 25 30
Net Size

Figure 9: SPICE simulation results comparing the Tterated 1-Steiner, SERT, and A-Tree con-
structions, as well as their wiresized versions. Results are normalized to 1-Steiner. Simulations
are over the MCM technology for 50 randomly distributed nets with uniform distribution.

In contrast, very little improvement occurs when an SERT is statically wiresized. This is
because near-optimal MCM SERT topologies are star-like, each sink being directly connected
to the source and having a relatively large loading capacitance; thus the lower resistance of a

wider edge can not overcome the higher overall capacitance. On the other hand, DWSERT

11

does not yield such degenerate topologies, which is another advantage of the dynamic wire-
sizing method. We also see that both the WILS tree and WA-Tree still perform worse on
average than a non-wiresized SERT. DWSERT improves over WA-Tree by up to 10%, and is
thus the clear winner among the various methods. Figure 10 depicts the wiresized Tterated

1-Steiner, A-Tree, and SERT constructions for the same random 20-pin net.

Flmore Delay
[N[=5 [[N[=10 [[N[=15 [[N][=20 [[N[=25 [[N[=30
0.0

T1S 0.0 0.0 0.0 0.0 0.0
WI1S 42.1 51.9 55.1 58.0 55.9 56.9
SERT 33.8 53.8 62.8 68.0 67.8 71.0
WSERT 39.2 56.3 64.2 69.2 69.3 71.8
DWSERT 46.8 61.3 67.5 71.8 71.8 73.9

ATree 17.6 34.0 44.4 48.5 46.3 50.2
WA-Tree 40.6 58.6 63.9 63.9 67.9 68.7

SPICE Delay

[N[=5 [[N[=10 [[N[=15 [[N[=20 [[N[=25 [[N[=30
115 0.0 0.0 0.0 0.0 0.0 0.0
T1SWS 28.6 34.4 38.2 35.4 39.5 40.0
SERT 27.2 52.2 61.9 65.0 74.3 74.4
WSERT 31.6 54.4 63.7 66.2 74.9 75.2
DWSERT 32.2 56.2 65.9 69.0 77.5 77.4
ATree 17.5 33.1 42.6 43.9 56.0 55.1
WA-Tree 32.4 49.6 57.9 58.7 68.5 66.7

Table 2: Elmore and SPICE simulation results comparing the Tterated 1-Steiner, SERT, and
A-Tree constructions, as well as their wiresized versions. Each entry corresponds to an average
percent improvement over Iterated 1-Steiner delay. 50 random (uniformly distributed) nets
were used per each net size. Both Elmore (top) and SPICE (bottom) were used to compute
signal delays.

7 Conclusions

We have analyzed the impact of wiresizing on the performance of Elmore-based routing con-
structions. Previous wiresizing schemes are static (i.e., they wiresize a fixed existing topology);
in contrast, we introduced a new dynamic Elmore-based wiresizing technique, using wiresiz-
ing considerations to drive the routing construction itself. Simulations indicate that dynamic
wiresizing affords improved performance over static wiresizing, and yield more favorable (i.e.,
non-star) topologies. Moreover, dynamically-wiresized ELmore-based constructions seem to
significantly outperform all previous methods in term of maximum source-sink SPICE de-

lay, affording up to 77% delay improvement over traditional Steiner routing, as measured by

SPICE.

12

ﬁ Q
(b) (¢)

Figure 10: A comparison of the different constructions for a random 20-pin net: (a) the
statically Wiresized A-Tree has maximum source-sink delay of 10.16ns (the non-wiresized A-
Tree has a delay of 10.42ns; (b) the (statically) wiresized Iterated 1-Steiner tree has delay of
9.53 ns (the non-wiresized Tterated 1-Steiner tree has delay of 22.06ns); (c) the dynamically
Wiresized SERT has a delay of 6.95ns, a 31.6% improvement over statically-wiresized A-Tree.
The SERT construction for this net has a “star” topology (i.e., direct wires from the source to

all of the sinks).

(a)

References

[1] C. J. ArperT, T. C. Hu, J. H. HuaNnG, AND A. B. KAHNG, A Direct Combination of
the Prim and Duykstra Constructions for Improved Performance-Driven Global Routing,

Tech. Rep. CSD-TR-920051, Computer Science Department, UCLA, 1992.

[2] T. BARRERA, J. GRIFFITH, G. ROBINS, AND T. ZHANG, Narrowing the Gap: Near-
Optimal Steiner Trees in Polynomial Time, in Proc. IEEE Intl. ASIC Conf., Rochester,
NY, September 1993, pp. 87-90.

[3] K. D. BoEse, A. B. Kauna, B. A. McCoy, aNnD G. RoBINS, Fidelity and Near-
Optimality of Elmore-Based Routing Constructions, in Proc. IEEE Intl. Conf. Computer
Design, Cambridge, MA,| October 1993, pp. 81-84.

[4] ——, Towards Optimal Routing Trees, in Proc. ACM/SIGDA Physical Design Workshop,
Lake Arrowhead, CA, April 1993, pp. 44-51.

[5] K. D. BoEse, A. B. KAHNG, AND G. ROBINS, High-Performance Routing Trees With
Identified Critical Sinks, in Proc. ACM/IEEE Design Automation Conf., Dallas, June
1993, pp. 182-187.

13

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J. CoHOON AND J. RANDALL, Critical Net Routing, in Proc. IEEE Intl. Conf. Computer
Design, Cambridge, MA| October 1991, pp. 174-177.

J. ConG, A. B. KauNnG, G. RoBINS, M. SARRAFZADEH, AND C. K. WonaG, Prov-
ably Good Performance-Driven Global Routing, IEEE Trans. Computer-Aided Design, 11
(1992), pp. 739-752.

J. Cona, K. S. LEUNG, AND D. ZHoU, Performance-Driven Interconnect Design Based
on Distributed RC Delay Model, in Proc. ACM/TEEE Design Automation Conf., Dallas,
June 1993, pp. 606-611.

W. E. DonaTH, R. J. NormaN, B. K. AcrawaL, S. E. BELLo, S. Y. Han, J. M.
KURrRTZBERG, P. Lowy, AND R. I. MCMILLAN, Timing Driven Placement Using Com-
plete Path Delays, in Proc. ACM/IEEE Design Automation Conf., 1990, pp. 84-89.

A. E. Dunropr, V. D. AgrawaL, D. DreuTscH, M. F. JukL, P. KOzZAK, AND
M. WigskeL, Chip Layout Optimization Using Critical Path Weighting, in Proc.
ACM/IEEE Design Automation Conf., 1984, pp. 133-136.

W. C. ELMORE, The Transient Response of Damped Linear Networks with Particular
Regard to Wide-Band Amplifiers, J. Appl. Phys., 19 (1948), pp. 55-63.

M. GAREY AND D. S. JoHNSON, The Rectilinear Steiner Problem is NP-Complete,
STAM J. Applied Math., 32 (1977), pp. 826-834.

E. N. GILBERT AND H. O. PorLAK, Stemner Minimal Trees, SIAM J. Applied Math.,
16 (1968), pp. 1-29.

M. HANAN, On Steiner’s Problem With Rectilinear Distance, STAM J. Applied Math.,
14 (1966), pp. 255-265.

N. HasaN, G. Visayan, anD C. K. WonNG, A Neighborhood Improvement Algorithm for

Rectilinear Steiner Trees, in Proc. IEEE Intl. Symp. Circuits and Systems, New Orleans,
LA, 1990.

J.-M. Ho, G. Vijavan, anD C. K. WonNaG, New Algorithms for the Rectilinear Steiner
Tree Problem, TEEE Trans. Computer-Aided Design, 9 (1990), pp. 185-193.

T. D. Hopes, B. A. McCov, aND G. RoBINS, Dynamically-Wiresized Elmore-Based
Routing Constructions, in Proc. TEEE Intl. Symp. Circuits and Systems (to appear),
London, England, May 1994.

14

[18] F. K. HwWANG, On Steiner Minimal Trees with Rectilinear Distance, STAM J. Applied
Math., 30 (1976), pp. 104-114.

[19] ——, An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees, J. ACM, 26
(1979), pp. 177-182.

[20] F. K. Hwang, D. S. RicHARDS, AND P. WINTER, The Steiner Tree Problem, North-
Holland, 1992.

[21] M. A. B. Jackson, E. S. KuH, AND M. MAREK-SADOWSKA, Timing-Driven Routing
for Building Block Layout, in Proc. IEEFE Intl. Symp. Circuits and Systems, 1987, pp. 518-
519.

[22] A. B. KauNg aAND G. RoBINS, A New Family of Steiner Tree Heuristics With Good
Performance: The Iterated 1-Steiner Approach, in Proc. IEEE Intl. Conf. Computer-
Aided Design, Santa Clara, CA, November 1990, pp. 428-431.

[23] ——, A New Class of Iterative Steiner Tree Heuristics With Good Performance, IEEE
Trans. Computer-Aided Design, 11 (1992), pp. 893-902.

[24] ——, On Performance Bounds for a Class of Rectilinear Steiner Tree Heuristics in

Arbitrary Dimension, IEEE Trans. Computer-Aided Design, 11 (1992), pp. 1462-1465.

[25] S. Kim, R. M. OwENS, AND M. J. IRWIN, Ezperiments with a Performance Driven
Module Generator, in Proc. ACM/TEEE Design Automation Conf., June 1992, pp. 687—
690.

[26] J. H. LEE, N. K. Bosg, aND F. K. HwWaANG, Use of Steiner’s Problem in Sub-Optimal
Routing in Rectilinear Metric, TEEE Trans. Circuits and Systems, 23 (1976), pp. 470-476.

[27] K. W. LEE AND C. SECHEN, A New Global Router for Row-Based Layoul, in Proc. IEEE
Intl. Conf. Computer-Aided Design, Santa Clara, CA, November 1990, pp. 180-183.

[28] L. NAGEL, SPICE2: A Computer Program to Simulate Semiconductor Circuits, May
1975.

[29] S. PRASITIUTRAKUL AND W. J. KuBIiTz, A Timing-Driven Global Router for Cus-
tom Chip Design, in Proc. IEEE Intl. Conf. Computer-Aided Design, Santa Clara, CA,
November 1990, pp. 48-51.

[30] A. PriM, Shortest Connecting Networks and Some Generalizations, Bell Syst. Tech J.,
36 (1957), pp. 1389-1401.

15

[31] S. K. Rao, P. SapavappaN, F. K. HwaNG, AND P. W. SHOR, The Rectilinear Steiner
Arborescence Problem, Algorithmica, (1992), pp. 277-288.

[32] D. RicHARDS, Fast Heuristic Algorithms for Rectilinear Steiner Trees, Algorithmica, 4
(1989), pp. 191-207.

[33] G. RoBINS, On Optimal Interconnections, Ph.D. Dissertation, CSD-TR-920024, Depart-
ment of Computer Science, UCLA, 1992.

[34] J. RUBINSTEIN, P. PENFIELD, AND M. A. HoRowWITZ, Signal Delay in RC Tree Nel-
works, IEEE Trans. Computer-Aided Design, 2 (1983), pp. 202-211.

[35] T. L. SNYDER, On the Ezact Localion of Steiner Points in General Dimension, STAM
J. Comput., 21 (1992), pp. 163-180.

[36] S. SUTANTHAVIBUL AND E. SHRAGOWITZ, An Adaptive Timing-Driven Layout for High
Speed VLSI, in Proc. ACM/IEEE Design Automation Conf., 1990, pp. 90-95.

[37] P. WINTER, Steiner Problem in Networks: A Survey, Networks, 17 (1987), pp. 129-167.

[38] D. Zuou, S. Su, F. Tsut, D. S. Gao, AND J. CoNG, Analysis of Trees of Transmission
Lines, Tech. Rep. CSD-TR-920010, Computer Science Department, UCLA, 1992.

16

