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Abstract

Future fetch engines need to be energy-efficient. Therefore, a thorough evaluation and
comparison of fetch engine design is necessary for futuristic processors.

Our work compares the energy-efficiency of concurrent trace caches (CTCs), sequential
trace caches (STCs), block-based trace caches (BBTCs), and instruction caches (ICs). We
compare: CTCs and STCs with path-based next trace predictor (NTP), ICs with branch pre-
dictor (IC-BPRED), and BBTCs with trace table (BBTC-TT). To separate out predictor organi-
zation and prediction effects we also evaluate ICs with NTP (IC-NTP) and BBTCs with NTP
(BBTC-NTP). In our experiments, we first evaluate the fetch engines with no area budget re-
strictions. Then, to consider higher clock rates we evaluate the fetch engines when restricting
the area budget for each component. To consider future process technologies, we also evaluate
the effect of increased leakage.

We find that branch prediction (whether explicit or implicit) is a key component in the
energy-efficiency of the fetch engine designs evaluated. Branch prediction effects are elim-
inated by artificially equalizing the effective branch prediction accuracy for the fetch engine
designs and the results are evaluated.

We find that access delay limits the theoretical performance of the fetch engines evaluated.
We propose a novel ahead pipelined NTP that performs nearly as well as the single-cycle
access NTP.

1 Introduction
Energy-efficiency has become important for almost all new chip designs. For high-end pro-

cessors, power density is a problem. Today’s desktop CPUs become tomorrow’s laptop CPUs
so evaluating the energy-efficiency of microarchitectural designs is important. Furthermore,
energy-efficiency is also important for wall-powered systems such as server racks in data cen-
ters where electricity and air conditioning are major costs. The fetch unit contributes a large
portion of total power consumption in a microprocessor. For example, Montanaro et al. [16]
measure the StrongARM’s fetch engine power consumption at 27% of total chip power. Trends
in branch prediction research also point toward larger and more aggressive fetch engine orga-
nizations [11, 20]. Understanding how fetch organization affects processor energy-efficiency
is important to processor design.

The fetch unit’s role is to feed the dynamic instruction stream to the execution unit. In-
struction caches store instructions in static program order. Due to the presence of taken con-
trol flow instructions, some of the instructions fetched from the instruction cache are unused.



Trace caches store instructions in dynamic program order. Most trace cache implementa-
tions [14, 19, 22, 24] do not suffer from the problems of requiring additional levels of in-
direction or the need for interleaving or complex alignment networks and thus are options to
be considered in fetch engine design. We are not aware of any work analyzing the energy-
efficiency of trace caches compared to conventional fetch organizations. Our work models
several types of trace caches: the conventional or concurrent trace cache (CTC) in which trace
cache and instruction cache are probed in parallel, the sequential trace cache (STC) described
by Rotenberg et al. [22, 24] and the block-based trace cache (BBTC) described by Black et
al. [2]. We present four sets of experimental results.

First, we compare the following fetch engine organizations with and without area restric-
tions: CTC with NTP, STC with NTP, IC with hybrid branch predictor, BBTC with trace table
trace prediction, and to separate trace prediction effects, IC with NTP and BBTC with NTP. In
the first experiment, the fetch engine components have no restricted area budget. In the second
experiment, to account for the trend of decreasing access times, each component in each fetch
engine organization is limited to a restricted area budget. Second, to eliminate branch pre-
diction effects we artificially equalize the branch prediction accuracy for all the fetch engine
designs. Third, we examine the effect of increasing leakage on the fetch engine organizations.
Finally, we introduce and evaluate an ahead pipelined NTP to address decreasing cycle times.

Each comparison is made with respect to two parameters: performance (IPC) and energy-
delay-squared (ED2).

The rest of the paper is organized as follows: Section 2, presents related work, Sections 3
and 4 present experimental methodology, Sections 5 through 6 present experimental results
and Section 8 presents conclusions and directions for future work.

2 Related Work
Friendly, Patel, and Patt [7] and Rotenberg, Bennett, and Smith [22, 24, 23] performed

comprehensive studies of the trace cache design space with respect to performance. We per-
form a similar design space study to evaluate power, energy, and performance tradeoffs on a
more current processor pipeline.

Research has explored ways to reduce the power dissipation of trace caches. Hu et al. [9]
showed that sequentially accessing the trace cache and instruction cache has significant power
savings over accessing the two structures simultaneously. In subsequent work, Hu et al. [8]
also compared the conventional trace cache (CTC), sequential trace cache (STC), and a new
design, the dynamic direction prediction based trace cache (DPTC) for power efficiency and
performance. They found that DPTC exhibits less performance loss than the STC but with
similar power consumption. Our work compares fetch units containing either STCs or BBTCs
to fetch units containing only an instruction cache and evaluates the effect of additional param-
eters such as leakage and delay.

Bahar [1], Kim [15], and Zhang [35] have done work to improve traditional instruction
cache energy consumption without adversely affecting processor performance or on-chip en-
ergy consumption. Our work focuses on evaluating high fetch bandwidth fetch organizations
as opposed to techniques to improve traditional instruction cache energy-efficiency.

Solomon et al. [30] introduced the micro-operation cache (UC) as an alternative frontend
for the Intel P6 processor family. The UC stores basic blocks in decoded µop form and pro-
vides similar fetch bandwidth at lower power consumption. Their goal was not to increase
fetch bandwidth but rather to find a more energy-efficient fetch engine design with comparable
performance. Our work focuses on evaluating the energy-efficiency of fetch engine designs
which seek to increase fetch bandwidth. Therefore, the UC is not included in this work.
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Parikh et al. [18] explored the role of branch predictor organization on power, energy, and
performance tradeoffs for fetch engine design. They found that although extra power may need
to be expended for the branch predictor, overall processor power and energy dissipation can be
reduced. Our work focuses on the cache and prediction mechanisms in various fetch engine
organizations.

Ramirez et al. [21] introduce instruction stream fetch engine as a high-performance fetch
mechanism. An instruction stream is a sequence of instructions which may contain only not-
taken branches. This fetch unit takes advantage of code layout optimizations. We believe
that instruction streams are a special definition of trace that falls somewhere in the spectrum
between instruction cache lines (program ordered instruction blocks) and instruction traces
(dynamic instruction sequences) and that some useful insights can be drawn without evaluating
fetching instruction streams. Since we do not consider code layout optimizations for the fetch
engines we evaluate, we do not evaluate fetching instruction streams because the limitation
might unfairly penalize that approach. Therefore, the stream fetch engine is outside the scope
of this work but could be the subject of future work.

Oberoi et al. [17] proposed parallelism in the front-end in which several instruction se-
quence fragments are fetched and renamed in parallel from a banked instruction cache. The
focus of our work is to understand the energy-efficiency implications of sequential fetch or-
ganizations such as instruction cache and trace cache. Our work evaluates the IC with NTP
fetch organization which is a simplified, sequential version of the Oberoi work. Our IC with
NTP is evaluated to isolate the effects of implicit branch prediction of traces. Parallelized trace
construction fetch organizations are beyond the scope of this work but are planned for future
evaluation.

Several high fetch bandwidth mechanisms such as branch address cache [34], subgraph
predictor [6], collapsing buffer [5], multiple-block ahead predictor [26], block-based trace
cache [2] and trace cache [14, 19, 22, 24] have been proposed. Many of these mechanisms
have drawbacks in terms of complexity. Therefore, for this work we only consider the trace
cache described by Rotenberg [24] and the block-based trace cache described by Black et
al. [2].

We are not aware of any further research which has examined the relative power-energy-
performance tradeoff between fetch organizations which have only instruction caches and fetch
organizations which have a combination of instruction cache and trace cache.

3 Simulation Techniques
All experiments in this work use SimpleScalar [4] and a modified Wattch [3] infrastructure

with a power model based on the Alpha 21364 [29]. The base out-of-order simulator was
extended to include CTC, STC, BBTC, and path-based next trace predictor (NTP) models.
The microarchitecture model is summarized in Table 1.

To more closely study the efficiency of the fetch engines, we chose a highly parallelizing
execution core. We altered the base microarchitecture to have 128 fetch queue entries, 128
register rename entries, and 128 load/store queue entries. In addition, we altered the base
architecture so that as many as 16 instructions can be issued, executed, and committed in one
cycle. Thus, a maximum of 16 IPC is possible with a perfect fetch engine and perfectly parallel
code.

Since current CPU designs are increasingly using conditional clocking techniques to reduce
power consumption, we calculate the power and energy metrics using Wattch’s conditional
clocking method which scales power linearly with port or unit usage [3]. To model leakage,
when the port or unit is not in use, a fixed ratio of maximum power dissipation is charged:
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Processor Core
Active List 128 entries
Physical regis-
ters

80

LSQ 128 entries
Issue width 16 instructions per cycle
Functional
Units

16 IntALU,4 Int-
Mult/Div,
8 FPALU,4 FPMult/Div,
2 mem ports

Memory Hierarchy
L1 D-cache Size 64 KB, 2-way, LRU,

64 B blocks, writeback
L1 I-cache Size 64 KB, 2-way, LRU,

64 B blocks
both 2-cycle latency

L2 Unified, 4 MB, 8-way
LRU,
128B blocks, 12-cycle
latency, writeback

Memory 225 cycles (75ns)
TLB Size 128-entry, fully assoc.,

30-cycle miss penalty
Branch Predictor

Branch predic-
tor

Hybrid PAg/GAg

with GAg chooser
BTB 2 K-entry, 2-way
RAS 32-entry

Table 1: Simulated processor microarchitecture.

10% in most experiments. For the leakage experiments in Section 6, the leakage ratio is varied
from 10% to 50% of maximum power dissipation.

4 Experimental Methodology
We conducted experiments to evaluate CTC, STC, BBTC, and IC fetch organizations. First,

CTC, STC and BBTC fetch units were compared to IC with branch predictor (IC-Bpred) with
and without area budget restrictions for the fetch engine components. In order to eliminate
differences in trace prediction accuracy, IC with NTP (IC-NTP) and BBTC with NTP (BBTC-
NTP) were also evaluated. Next, to eliminate the potential effects of improved branch predic-
tion for some of the fetch organizations, we performed a set of experiments in which all fetch
units’ branch prediction accuracies were artificially equalized to that of the fetch engine with
the best branch prediction accuracy (STC).

We evaluate the impact of increasing static power dissipation on fetch engine energy-
efficiency by varying the leakage ratio from 10% to 50%.

We then present and evaluate a pipelined NTP to improve next trace prediction in the face
of decreasing access times and shrinking structure areas.
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4.1 CTC and STC Model
The STC modeled in the experiments is the one described by Rotenberg [23]. The sequen-

tial trace cache consists of an NTP [11] which predicts the next trace to be fetched, outstanding
trace buffers (OTB) to hold in-flight predicted traces, and the trace cache itself. We modeled
sequential trace cache access as described in the work of Hu et al. [9]. The instruction cache
is only probed on the next cycle after a trace cache miss. Figure 1 shows the STC model.
The sequential trace cache’s power was modeled as an array structure, similar to an instruction
cache, with one read and one write port. The conventional trace cache is basically the same
fetch organization as the STC except that the instruction cache and the trace cache are probed
in parallel. The power model for the CTC is adjusted to reflect the parallel trace cache and
instruction cache access.

Figure 1: STC model (Patterned after figure in [23]).

Traces may be defined in many ways. Since we use the NTP of Jacobson et al. [11], we
use the definition of trace used in their work for all CTC and STC simulations. A trace has a
maximum of 16 instructions and as many as 7 branches (6 internal branches, plus a possible
7th terminating branch). Indirect branches terminate a trace. The NTP [11] uses path history
information (recently committed traces) to make predictions much like a GAs or global history
branch predictor. This information is combined with trace history to index a table that makes
a prediction about the next trace to be fetched. In our experiments, 8 previous trace identifiers
are hashed together to get indexes into the 64K-entry correlating table, and into the 32K-entry
secondary table. A selector mechanism chooses the prediction from the more accurate table.

To model the power of the hybrid NTP [11], the correlating table, secondary table, return
history stack (RHS) and path history register are each modeled as array structures with one
read and one write port.

The outstanding trace buffer (OTB) maintains information about in-flight traces. When
an entire trace commits, the trace is written to the trace cache (if needed) and the OTB entry
is reclaimed. OTB entries also maintain information needed to recover from mispredicted
branches. The power for the OTB is modeled as an array structure with two read ports and one
write port. One read port is shared by fetch and mispredict recovery mechanisms and one read
port is devoted to the commit time mechanism. The single write port is shared between fetch
and mispredict recovery mechanisms. The experiments in Sections 5 and 5.2 use 128 OTB
entries, while the experiments in Section 6 use 16 OTB entries based on a sensitivity study
showing that an OTB with 16 entries does not incur significant performance loss.
4.2 BBTC Model

The BBTC described by Black et al. [2] modeled in our experiments consists of a trace
table which makes next trace predictions, a block cache which stores basic blocks for trace
construction, a rename table to maintain fetch address renaming and a fill unit which controls
the update of the other three components. The trace table predicts a series of blocks to fetch
using block-id execution history and branch history bits. These predicted blocks are fetched
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from the block cache and assembled to construct a trace. Blocks are allocated to the block
cache by the rename table which maintains a mapping of fetch addresses to block identifiers.
The fill unit controls the update of the trace table, block cache and rename table.

Traces in the BBTC are defined to be a series of blocks with each block being defined as a
series of instructions terminated by a branch, or a user-defined maximum number of sequential
instructions. There are no other special trace termination conditions. To make the BBTC trace
definition more comparable to the STC trace definition, we alter the BBTC trace definition to
terminate traces on indirect branches as in the Rotenberg trace definition. Our experiments
show that this modification in the trace definition improves the performance of the BBTC. We
chose to model a replication of four and a maximum basic block size of six instruction to match
the published best-performing BBTC. Figure 2 shows the BBTC model.

For power modeling, the BBTC components are each modeled as array structures. Each
component of the BBTC has one read port and one write port.

Figure 2: BBTC model (from [2]).

4.3 Cache Parameters
The fetch engine experiments which contain either CTC, STC or BBTC also include a non-

interleaved instruction cache which serves as backup in the case of a trace cache miss. The
fetch engine components which were held constant are shown in Table 2.

Component Configuration
I-cache 512 set, 64B line, 2-way, LRU
Branch Hybrid: 4K-entry PAg,
predictor 4K-entry GAg (12-bit history)

4k-entry GAg chooser
2k-entry, 2-way set associa-
tive BTB
32-entry RAS

OTB 128 entries
NTP 64K-entry correlating table

32K-entry secondary table
128-entry RHS

Table 2: Parameters held constant for STC and BBTC experiments.
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4.3.1 CTC and STC Configurations

Since the number of components in the CTC, STC and BBTC designs differ from the number
of components in IC designs, an equal-area comparison is difficult. Therefore, we examine the
fetch engines over a range of different fetch engine areas. We first evaluate the fetch engines
when the area of individual fetch engine components is unrestricted. This allows us to examine
the theoretical potential of the various fetch engines. Then, to consider access time, we restrict
the area of each individual component of each fetch engine to areas of 2 KB through 512 KB
in successive simulations.

Associativities for the STC are varied in the experiments but the replacement policy is fixed
to LRU, and the line size is fixed at the length of one trace. Table 3 shows the fetch engine
areas used in the experiments of Section 5. These experiments use the ideal NTP and OTB
parameters specified by [11]. The area used for the CTC/STC alone is listed alongside the
total fetch engine area. The remaining fetch engine area is calculated by totaling the area of
the backing instruction cache, branch predictor (including BTB), OTB, and hybrid NTP.

In the first comparison, the area of the STC is varied while the areas of the other compo-
nents are held constant (See Table 2). In a second comparison, the areas of the STC, NTP, and
OTB are limited to 2 KB through 512 KB.

Fetch En-
gine Area

CTC/STC
Area

Fetch En-
gine Area

IC Area

980 KB 16 KB 100 KB 64 KB
996 KB 32 KB 164 KB 128 KB
1028 KB 64 KB 292 KB 256 KB
1092 KB 128 KB 548 KB 512 KB
1220 KB 256 KB 1060 KB 1024 KB
1476 KB 512 KB

Table 3: Fetch engine area and corresponding CTC/STC and IC areas used in experiments which
use default NTP and OTB components. Cache area is included in the fetch engine area total.

4.3.2 BBTC Configurations

Similarly, the associativities of the BBTC are varied. Fetch engine and component areas for
BBTC with trace table and BBTC with NTP are summarized in Tables 4 and 5.

Fetch En-
gine Area

Trace
Table Area

Rename
Table Area

Block
Cache
Area

268 KB 32 KB 8 KB 128 KB
436 KB 64 KB 16 KB 256 KB
772 KB 128 KB 32 KB 512 KB
1444 KB 256 KB 64 KB 1024 KB

Table 4: Fetch engine area and corresponding BBTC component areas used in BBTC with trace
table experiments.

In experiments which model an IC-only fetch engine, we use a 2-way set associative, 2-
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Fetch En-
gine Area

Rename
Table Area

Block
Cache
Area

NTP Area

1746 KB 8 KB 128 KB 1510 KB
1930 KB 16 KB 256 KB 1558 KB
2250 KB 32 KB 512 KB 1606 KB
2842 KB 64 KB 1024 KB 1654 KB

Table 5: Fetch engine area and corresponding BBTC component and NTP areas used in experi-
ments which use default NTP and OTB components. Note that NTP area varies as size of block
cache index/area varies and that no trace table is included.

way interleaved instruction cache with 64 byte lines, and LRU replacement. For the IC-Bpred
unrestricted component area experiments, the fetch engine area is comprised of the area for
the IC and the branch predictor, with the branch predictor area held constant. For the IC-NTP
experiments, a fixed-area NTP with a 2K-entry, 2-way set associative BTB is used without a
backing branch predictor. Therefore the IC-NTP fetch engine area is comprised of the areas
of the correlating table, secondary table, RHS, BTB, and IC. These parameters are listed in
Table 2. The IC areas and the area of the entire fetch engine are listed in Table 3.
4.4 Benchmarks

We evaluate our results using benchmarks from the SPEC CPU2000 suite. The bench-
marks are compiled and statically linked for the Alpha instruction set using the Compaq Alpha
compiler with SPEC peak settings and include all linked libraries but no operating-system or
multiprogrammed behavior. Seven integer benchmarks (gzip, gcc, crafty, parser, eon, perlbmk,
and vortex) and five floating point benchmarks (wupwise, mesa, art, facerec, and ammp) were
used in the experiments.

Our initial experiments demonstrated little performance benefit from larger fetch engines
on the floating point benchmarks. We suspect that this is because they have a small text size
and are highly predictable. Thus, results for floating point benchmarks are not shown and can
be found in [33].

Benchmark Input Fastforward
(insts)

164.gzip ref graphic 77.3 B
176.gcc ref expr 1.3 B
186.crafty ref 72.8 B
197.parser ref 183.8 B
252.eon ref rushmeier 36.3 B
253.perlbmk ref diffmail 13.3 B
255.vortex ref lendian3 28.3 B

Table 6: Fastforward numbers for benchmarks. Benchmarks are fastforwarded and then warmed
up for 300 M instructions before statistics gathering.

Simulations are fast-forwarded according to the numbers in Table 6 [27], then run in full-
detail cycle-accurate mode (without statistics-gathering) for 300 million instructions to train
the caches—including the L2 cache—and the branch predictor before statistics gathering is
started. This interval was found to be sufficient to yield representative results [10].
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The individual results for each benchmark exhibited similar trends, therefore our results
are presented as the average of the benchmarks.

5 Fetch Engine Area Exploration
We performed a comparison of the following fetch engine designs: CTC with NTP (CTC-

NTP), STC with NTP (STC-NTP) [11], BBTC with trace table (BBTC-TT), and IC with branch
predictor (IC-Bpred). To eliminate the effects of enhanced next trace prediction, IC with NTP
(IC-NTP) and BBTC with NTP (BBTC-NTP) are also evaluated. The areas listed in Tables 3,
4, and 5 were used. STC and BBTC associativity and area were varied and the IPC and
energy-delay-squared (ED2) were analyzed. We choose to examine ED2 as a metric because it
considers both power dissipation and performance and is voltage independent.

Increased associativity improved the IPC for CTC, STC, and BBTC, but showed only mod-
est improvement in ED2. We present direct-mapped results for the fetch engines because it
represents the worst performing associativity and ED2.
5.1 Unrestricted Component Area

When fetch engine components were not restricted to a specific area budget, we found
that for approximately equal fetch engine area, an STC design has better performance and
comparable ED2 relative to IC-Bpred and IC-NTP. This is shown in Figure 4(a). The STC
configurations outperform (in terms of IPC) the best-performing IC-Bpred and IC-NTP con-
figurations by a maximum of 11.3% and 5.3% respectively. The results also show that an
STC fetch engine generally has better energy-efficiency with the exception of the 100 KB and
164 KB IC-Bpred areas. A 231KB STC fetch unit has 9.0% lower ED2 than a 292 KB IC-
Bpred fetch engine and 0.4% higher ED2 than a 164 KB IC-Bpred configuration. A 231 KB
STC fetch engine contains a 16 KB STC and a 64 KB instruction cache. The smaller STC
is accessed roughly two-thirds of the execution time and the larger area instruction cache is
accessed the remaining time. Accessing a smaller area saves energy due to smaller row and
column decoders. This differs from the IC-Bpred and IC-NTP fetch units which must rely
solely on the instruction cache. Another reason that might explain the better performance of
the STC is improved branch prediction from the NTP. This is explored in the Section 5.2.

CTC performs approximately the same as STC but with higher ED2 due to the parallel IC
and trace cache access.

The BBTC-TT configurations have the lowest IPC (on average 16% lower compared to
STC) and highest ED2 (on average 27% higher compared to STC) of the fetch engine designs.
We believe that the low IPC is a result of poor next trace prediction from the trace table. This
does not conflict with the Black’s [2] results whose work simulates perfect trace prediction
to explore the performance potential of the BBTC. The results for BBTC-NTP, which has
improved branch prediction accuracy, exhibit IPCs close to the STC configurations (within
18%) but with higher ED2 (on average 17% higher) due to its greater area. For the remainder
of this paper, we exclude BBTC-TT results due to its poor performance due to poor next trace
prediction.
5.2 Eliminating Branch Prediction Effects

The STC’s better performance in the initial experiments could be a result of the improve-
ment in branch prediction accuracy provided by the NTP. We explored this possibility by per-
forming two additional sets of experiments. In one set of experiments, we artificially equalized
the branch prediction accuracy (per benchmark) of all the configurations to that of the average
best performing STC configuration (best, 343KB, 4-way). In the second set of experiments, we
equalized the branch prediction accuracy (per benchmark) to that of the worst performing STC
configuration (worst, 231KB, 1-way). The results of these two sets of experiments showed that
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equalizing branch prediction accuracy to best or worst did not affect the relationship between
the various fetch engine designs, so only the results for best are shown in Figure 4.

The IPC of the IC-Bpred fetch engines improved 3.3% on average compared to the initial
experiments. Its ED2 was roughly 10.1% lower than without branch prediction equalization.
This shows that IC-Bpred designs can benefit significantly from the artificial branch prediction
equalization. The performance of the STC fetch engines is decreased in worst because the
branch prediction equalization process artificially forces more branch mispredictions than the
STC fetch engine would normally make. This results in an ED2 increase due to extra cycles
spent recovering from additional mispredictions. Conversely, IC-Bpred and IC-NTP designs
exhibit an improvement in IPC and a decrease in ED2 because their branch prediction accuracy
is artifically improved by the branch prediction equalization technique.

Figure 3: Percentage of average fetch power consumed by fetch engine components (results for
equalization to worst trace cache configuration)

With branch prediction equalization, IC-NTP achieves IPC similar to that of STC fetch
engines (within 0.8%) and similar ED2 to STC. Its ED2 slope is very similar to that of IC-
Bpred but slightly higher due to the increased power consumption from accessing the large
NTP and OTB components (Figure 3). These results indicate that an IC fetch engine design
cannot attain the IPC and energy-efficiency of STC designs by simply replacing the branch
predictor with an NTP. A fetch unit consisting of an IC, and NTP backed by a branch predictor
might attain similar performance to STC fetch engines, but likely with increased area and fetch
power.
5.3 Summary Results

These experiments show that without considering the effects of improved branch predic-
tion, STC fetch engine designs can achieve a significant performance improvement (5.3%) at
an ED2 similar to IC-Bpred fetch engines. When artificially equalizing for branch prediction
effects, STC fetch engines have 1.6% lower IPC and 18.9% higher ED2 (279KB 4-way STC
vs. 164 KB IC). We also see that for equal area components IC-NTP is very comparable to
STC. However, for IC-Bpred fetch engines to attain this degree of ED2 improvement, improved
branch prediction mechanisms must be found. These experiments are only intended to isolate
the contribution of branch prediction from instruction storage.

5.4 Restricted Component Area
Clock rates in modern processors are increasing rapidly. As a result, the time delay to

access structures is more important than ever. To account for access time considerations, we
performed an experiment where the area of each component of each fetch engine was limited
to a fixed area budgets ranging from 2 KB to 512 KB. We perform this experiment with all
fetch engines having direct-mapped structures where applicable. For example, for BBTC sim-
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(a) (b)

Figure 4: IPC and ED2 when branch prediction rates are (a) unadjusted and (b) equalized to best performing
STC configuration (Area of components unrestricted)

ulations, the area of each of the BBTC components (trace table, rename table, block cache),
backing instruction cache and branch predictor was limited to a fixed area. We also examined
the effect of increasing leakage. Results are shown in Figure 5.

STC gets higher IPC than the other fetch engines starting at 32 KB component areas,
followed closely by IC-NTP, IC-Bpred, and BBTC-NTP. Figure 6 shows that STC does better
than IC-Bpred in terms of IPC even at smaller areas. However, STC does not show an ED2

improvement over IC-Bpred until 16 KB where the overhead of the extra area of the STC
begins to pay off.

When the components of each fetch engine are restricted to a specific area budget the effect
of leakage is decreased (not a significant effect) compared to the results when fetch engine area
budget is unrestricted. Each component in each fetch engine is no larger than a fixed area, so
naturally the effect of leakage for each fetch engine is reduced, but the performance of certain
structures might be limited by the area restrictions.

For the BBTC the published best configuration has an 8k-entry trace table (128KB) and
4k-entry block cache (512 KB). The block cache (the main component of the BBTC) may be
penalized under the area restriction. This explains why the BBTC does not fare as well for the
restricted component area experiments.
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(a) (b)

Figure 5: Equal area fetch components when branch prediction rates are unadjusted: (a) by maximum
component area and (b) by total fetch engine area

(a) (b)

Figure 6: Percent difference of (a) IPC and (b) ED2 relative to IC-Bpred
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6 Leakage Current Sensitivity
Total power dissipation due to chip leakage is projected to exceed total dynamic power as

feature sizes reach 65 nm [28]. To ensure that we consider the energy-efficiency of CTCs,
STCs, and ICs both now, and in future process technologies, we examine the results of varying
the leakage ratio from 10% to 50% of maximum power dissipation (Figure 7).

We find that when component areas are restricted to account for access delay, increased
leakage ratio has little effect. This is due to the fact that the components for the respective
fetch organizations are relatively equal in size. 1

Figure 7: ED2 at leakage ratios: (a) 10% and (b) 50% (top row plotted by maximum component area,
bottom row plotted by total fetch engine area)

7 Ahead Pipelining the NTP
Faster clock rates leads to shorter cycle times. Shorter cycle times makes accessing larger

structures more challenging. Our experimental results show that branch prediction accuracy is
an important factor in fetch engine performance. Our results show that the NTP provides better
branch prediction accuracy than a hybrid branch predictor. However, at very small component
areas, the NTP performs poorly. Ahead-pipelining is one technique to enable a structure to be
larger and still be able to produce output each cycle.

1We do not present separate IPC graphs in this experiment because the leakage ratio has no effect on
IPC. Refer to Figure 4 for IPC results.
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Figure 8: NTP correct trace prediction accuracy as affected by pipeline depth and number of entries selected
for final prediction.

Figure 9: Improvement of NTP correct trace prediction accuracy as NTP table areas increase. (D = NTP
pipeline depth, S = number of entries selected for consideration in final trace prediction)

Ahead pipelining initiates a prediction many cycles in advance of when it is needed to
hide access latencies. To do so, older information must be used to generate a set of the pre-
dictions for selection and at the last moment the most current information is used to select
the final prediction. Patt [34] evaluates pipelined access to a branch address cache to per-
form multiple branch prediction. Jimenez [12], Seznec [26, 25] and Tarjan et al. [32] evaluate
ahead-pipelining single-branch predictors in order to get better prediction accuracy (enable
larger branch predictor structures) while considering the impact of delay. We apply the ahead-
pipelining concept to the NTP trace prediction mechanism and perform a set of experiments in
which we compare the performance and energy-efficiency of fetch engines with the pipelined
NTP.

Ahead-pipelining the NTP is a way to reduce some of the performance loss from reduced
area due to cycle time restrictions. It allows us to plan structures larger than can be accessed
within a single cycle, and yet still produce accurate output each cycle.

Roughly 1KB can be accessed within a single cycle [13]. If a structure can be pipelined to
2 stages, the structure could be made as large as 4 KB. As the depth of the pipeline increases,
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the area for a particular structure that can be accessed roughly quadruples [12].
We pipeline the NTP by using incomplete trace history to select a range in the NTP tables

and in the cycle before the prediction is needed, use the most current trace history to select
the actual prediction to be made. This technique is similar to the technique used by Patt [34]
and Jimenez [12] except that we apply it to next trace prediction which is a form of implicit
multiple branch prediction. Trace misprediction latency is modeled as the depth of the NTP
pipelining (flushing the NTP pipeline).

We compare 1KB - 32KB component areas, assuming that the NTP pipeline depth must
increase as we increase the area. We vary the pipeline depth from 1 (non-pipelined) to 6 and
vary the range of entries chosen by the incomplete history from 1,2,4,8. (See Table 7)

Component
Area

Pipeline
Depth

1 KB 1
2 KB 2
4 KB 3
8 KB 4
16 KB 5
32 KB 6

Table 7: NTP component areas and corresponding NTP pipeline depth. Number of entries selected
in advance is varied at values 1,2,4, and 8.

Figure 8 shows the NTP correct trace prediction accuracy of the NTP for varying
pipeline depths and selection ranges for the 16 KB component area. (All structures in
the NTP can be no larger than 16 KB). We choose to show the NTP trace prediction
accuracy in order to demonstrate the potential for pipelining the NTP. The bar labeled
Depth1 represents the maximum attainable NTP prediction accuracy since it is the
single-cycle trace prediction accuracy. As the depth of the pipeline increases, if only
a single entry is selected in the early stages, the trace prediction accuracy rapidly
decreases. This is due to the use of only older history and no newer history to make the
next trace prediction. Increasing the range of entries to select from at prediction time
improves the prediction accuracy. As the number of entries selected is increased to 8,
the difference in trace prediction accuracy from non-pipelined NTP rapidly decreases.
As the depth of the pipeline increases, the trace prediction declines due to the use of
more and more old history and less new history to make the trace prediction.

Figure 9 compares the NTP trace prediction accuracy of comparable pipelined NTP
design points. A non-pipelined 1KB area NTP can be compared to a progressively
larger, more deeply pipelined NTP. The dark colored section of the bar represents the
trace prediction accuracy when pipelined, while the shaded area of the bar represents
the trace prediction accuracy if the same area structure were to be accessible within a
single cycle. These results show that the trace prediction accuracy does not suffer too
much of a penalty from being pipelined.

Figure 6 shows that a 16KB STC accessible in a single cycle shows significant ED2

improvement over IC-Bpred. Since this is not accessible in a single cycle, we compare
the performance of our 16KB 2-deep pipelined STC-NTP with a 2 KB non-pipelined
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STC-NTP and find that we get a 26.7% improvement in IPC and 25.8% reduction in
ED2. This suggests that with ahead pipelining, STCs can provide significant perfor-
mance benefits and increased energy-efficiency.

8 Conclusions
We implement and verify the performance of the STC model proposed by Roten-

berg [24] and the BBTC model proposed by Black [2] and augment both models to
include power and energy modeling. Our experiments show that when fetch compo-
nents are not constrained by access time, fetch engines which include STCs are more
energy-efficient while providing a significant performance improvement over IC-only
fetch engine organizations. Even when branch prediction accuracy is artificially equal-
ized, STC fetch engines are still as energy-efficient as ICs. The ED2 results show that
although an STC and its supporting components may take up more chip area than an
IC-only fetch engine, it yields better energy-efficiency overall (without branch predic-
tion equalization) due to better opportunities for accessing smaller area fetch engine
components. These results represent the theoretical benefit of trace caches, which
stem partly from the implicit multiple branch prediction of the NTP and partly from
the benefit of storing instructions as traces as opposed to static program blocks.

We then consider the trend of increasing access delay due to higher clock speeds
by limiting the area of the fetch engine structures and consider the effect of increasing
leakage ratio. We find that the benefit of STC fetch engines compared to IC fetch en-
gines in the face of increasing delay is more modest than when delay is not considered.

We introduce and evaluate an ahead pipelined NTP to address the trend of increas-
ing access delay. We find that there is a modest decrease in STC-NTP performance
over the non-pipelined area equivalent. When comparing to a single-cycle accessible
non-pipelined 2 KB STC-NTP, a 2-deep pipelined 16 KB STC-NTP (3 selection bits)
can provide a 26.7% IPC improvement and 25.8% ED2 improvement.

Future directions for this work include exploring the energy-efficiency of other
fetch engine designs including instruction streams [21], dynamic prediction directed
trace cache [8], the filter trace cache [31], and parallel fetch designs [17].
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