
 Software Security using Software Dynamic Translation
Kevin Scott and Jack W. Davidson

Department of Computer Science
University of Virginia

Charlottesville, Virginia 22904
{kscott,jwd}@cs.virginia.edu
ABSTRACT
Software dynamic translation (SDT) is a technology that
allows programs to be modified as they are running.
Researchers have used SDT with good success to build a
variety of useful software tools (e.g., binary translators,
operating system simulators, low-overhead profilers, and
dynamic optimizers). In this paper, we describe how SDT
can be used to address the critical problem of providing
software security. The paper shows how SDT can simply
and effectively implement arbitrary user-specified software
safety policies. Unlike static analysis techniques which typ-
ically process source code, SDT is applied to binary code.
Consequently, SDT can handle untrusted binaries and
unsecured libraries from any source. To demonstrate and
validate that SDT provides additional security, we have
implemented a software security API for Strata, our soft-
ware dynamic translation infrastructure. The API, while
simple, allows clients to implement powerful policies to
prevent potential security violations. To illustrate the use
of Strata and the security API, the paper provides imple-
mentations of several interesting and useful security poli-
cies.

1 INTRODUCTION
One of the most pressing problems for software developers
is delivering secure software. Software security is vital
given our dependence on software running and managing
critical infrastructure. The cost of deploying insecure soft-
ware is high. Estimates of the economic impact of the past
few Internet viruses are in the billions: Code Red cost $1.2
billion; Melissa cleanup was $1 billion; and the Love Bug
virus is estimated to have cost $8.7 billion [24]. Even if
these estimates are off by a factor of ten, the total cost of
dealing with just Internet viruses is extremely high.

Building software that works and that is delivered on time
and within budget is difficult enough. Building software
that is also secure adds yet another complication. This dif-
ficulty is evidenced by the large number of vulnerabilities
discovered in our computer systems. For example, one
security Web site lists over 100 known vulnerabilities to
several commercial and open source operating systems
[14]. Given its importance and the large costs when inse-
cure software is deployed, it is not surprising that software
security is being addressed on a number of fronts. Lan-
guage designers are working to develop languages where
security is a primary design goal [17]. Specialized compilers
that produce code that thwart certain classes of exploits
are being developed [7]. Static analysis techniques are
being applied to catch vulnerabilities before software is
deployed [27]. Research on embedding proofs in an applica-
tion and verifying the proof before running the application
is another promising approach [18, 20]. While progress is
being made and the issues are being brought to the fore-
front [25], building and deploying secure software remains
elusive.

In this paper, we describe a simple, yet powerful approach
for helping provide software security. By software security,
we mean the ability to enforce a policy that specifies how
resources may be used [25]. A simple software security pol-
icy might be that a program may not read a particular file
(e.g., /etc/passwd or registry.dat). More complicated
policies may specify limits on the use of some resource. For
example, we may wish to limit the rate at which an
untrusted application can send packets over the Internet.
This could be useful in slowing the spread of viruses or
preventing denial of service attacks.

Our approach is to use software dynamic translation
(SDT) to modify a running application so that a user-spec-
ified security policy is enforced. System managers and
users write security policies using a simple software secu-
rity API that was designed to work with Strata, our retar-
getable, extensible software dynamic translator. Strata
modifies the running application so that the security pol-
icy is invoked when appropriate. Our approach has many
advantageous features. Foremost, our approach can handle
untrusted binaries. Source code is not required. This
makes our approach particularly attractive for handling
mobile code received from any source (including e-mail
attachments). Second, because SDT deals with binary
code, our approach is language and compiler independent.
Third, our simple API can be used in conjunction with any
programming language. This makes our approach accessi-
ble to a wide range of users. Finally because our approach

Figure 1: Strata Architecture

Application

Host CPU

Target Specific Functions

Strata Virtual CPU

Context Management

Memory Management

Cache Management

St
ra

ta
 V

irt
ua

l
M

ac
hi

ne

Target Interface

Linker

Context
Switch

Fetch

Decode

Translate

New
PC

Host CPU (Executing Translated Code from Cache)

Finished?

No

Strata Virtual Machine

Yes

Context
Capture

Cached?

Yes

New
Fragment

Next PC

(a) (b)
operates at run time, we can define and enforce security
policies that are not possible with static analysis
approaches.

This paper has the following organization. Section 2 briefly
describes Strata, our SDT infrastructure. Section 3
describes Strata’s security API and describes how Strata
modifies a running application and enforces user-specified
software security policies. In Section 4, we present several
security policies to demonstrate both the power and sim-
plicity of enforcing policies using Strata. Section 5 discusses
the limitations of our approach. The final two sections dis-
cuss related work and provide a summary, respectively.

2 STRATA
Inspired by the success of Dynamo [3, 2], DAISY [10],
UQDBT [23], and others [15, 26], we have constructed an
infrastructure, called Strata, for exploring applications of
software dynamic translation (SDT). To this end, Strata
was designed with portability and extensibility in mind.
Portability allows Strata to be moved to new machines eas-
ily. Thus researchers can explore architectural trade offs
associated with the efficient implementation of SDT.
Extensibility allows Strata to be used for a variety of differ-
ent purposes; researchers can use Strata to build dynamic
optimizers, dynamic binary translators, fast architecture
emulators, etc. This paper describes how we extended
Strata to build a system that enforces user-specified secu-
rity policies.

Figure 1a illustrates how Strata controls and mediates the
execution of an application binary. To run an application
binary under Strata control, the binary is rewritten to
replace the call to the program’s entry point with a call to
the Strata entry point. For C and C++ applications, the
call to main() is replaced with a call to Strata’s entry
point. When this call is executed, Strata is dynamically

linked with the application and Strata is invoked. Strata
then saves the application state (context capture) and
invokes the Strata component known as the fragment
builder.

Strata’s fragment builder takes the PC of the next instruc-
tion that the application binary needs to execute, and if the
instruction at that PC has not been cached, the fragment
builder begins to form a fragment. A fragment is a
sequence of code in which branches may appear only at the
end. Strata populates fragments by fetching, decoding, and
translating application instructions until an end-of-frag-
ment condition is met. When an end-of-fragment condition
is met, Strata replaces the control transfer instruction with
trampoline code, that when executed, returns control back
to Strata. For the Strata-based security tools described in
this paper, the end-of-fragment condition is met when a
conditional or indirect control transfer instruction is
fetched.

Once a fragment is fully formed, it is placed in the frag-
ment cache and Strata performs a context switch that
begins execution of the fragment. At the end of the frag-
ment, the trampoline code causes a context switch back to
Strata and the process of building the next fragment
begins. As execution proceeds, the working set of the appli-
cation materializes in the fragment cache and less and less
work is done by Strata.

Figure 1b shows the high-level architecture of Strata. As
the figure indicates, Strata is a software layer that sepa-
rates the application from the host CPU and operating sys-
tem. Strata’s basic services implement a very simple
dynamic translator that mediates execution of native appli-
cation binaries with no visible changes to application
semantics. The basic services include memory management,
fragment cache management, application context manage-
ment, a dynamic linker, and a fetch/decode/translate
2

engine. The basic services also include a few fundamental
optimizations to ensure that the overhead of running an
application under the control of Strata is minimal. These
optimizations include partial inlining, fragment linking, hot
path layout, and handling indirect branches efficiently.

Strata consists of 8000 lines of C code, roughly 30% of
which is target-specific. It currently runs on both the
SPARC and MIPS platforms (running Solaris and IRIX
operating systems, respectively). A port for the IA-32
architecture for Linux and Windows is in development.

3 SOFTWARE SECURITY WITH
SDT

SDT’s ability to control and dynamically modify a running
program provides the mechanism to enforce user-specified
security policies on untrusted binaries. The basic idea is
that the untrusted binary is enveloped by a Strata security
layer. As the application is virtualized by Strata, code is
dynamically inserted to enforce the user-specified security
policy. Thus, access to host CPU and operating system
resources and services is controlled by Strata (see Figure
2).

In this paper, we will use terms and phrases that are typi-
cally employed when discussing the Unix operating system
(e.g., “becoming root”, “exec’ing a shell”, “performing a set-
uid(0)”, etc.). The actions indicated by these terms have
analogs in other major operating systems (e.g., Windows
NT, Windows 2000, Window XP, VxWorks, and PSOSys-
tem) and the approaches we describe would apply equally
well to applications running on these systems.

A simple, but realistic example illustrates our approach.
Suppose a user wishes to enforce a policy that prohibits
untrusted applications from reading a file that the user nor-
mally has permission to read. Let’s call this file /etc/
passwd (registry.dat, SAM, or system might be equally
good choices). Now assume the user receives an untrusted

binary called funny and wishes to run it. The user invokes
funny using the Strata security loader. The Strata security
loader locates the entry point of the application and inserts
a call to the Strata startup routine. When the loader begins
execution of the application, the call to the Strata startup
routine causes Strata to be dynamically loaded and
invoked.

As Strata processes funny’s text segment and builds frag-
ments to be executed, it locates open system calls and
replaces them with code that invokes the security policy
code. When the fragment code is executed, all open system
calls are diverted to the policy code. It is the policy code’s
job to examine the arguments to the original open system
call. If the untrusted binary is attempting to open /etc/
passwd, an error message is issued and execution of the
binary is terminated. If the file being opened is not /etc/
passwd, the security policy code performs the open request
and returns the result and execution continues normally
(albeit under the control of Strata).

As we shall show in the following sections, our approach to
using SDT to enforce security is simple, yet extremely pow-
erful. Using Strata’s security API users can implement
powerful security policies that are not possible with static
approaches.

3.1 Strata Security API
Our initial idea was to design a domain-specific language
for expressing the security policies to enforce at runtime.
These policies would be compiled into code that would be
injected into the application by Strata. Our rationale was
that a domain-specific language would more likely yield
short, easy to write, and easy to read security policies.

Pursuing this approach, we completed a preliminary lan-
guage design and wrote several sample security policies to
evaluate our design. As a result of this evaluation, we real-
ized several things. First, designing a new language is hard.
The resulting language often looks a lot like other lan-
guages, but is just different enough to confuse people. Sec-
ond, the real issue was not the language syntax, but
providing the right set of primitives. Third, we would need
to write a policy compiler that generated very high-quality
code for the policies. Furthermore, the policy compiler
would need to be retargetable so it could be used in con-
junction with Strata on different platforms. Our conclusion
was that it would be a lot of work to invent a new language
and accompanying compilers, and we were not likely gain
much by doing so.

Based on this preliminary design exercise, we decided that
a better approach would be to develop a simple API and
accompanying libraries that could be accessed using exist-
ing programming languages and their compilers. There
were a couple of advantages of the API approach over the
domain-specific language approach. Potential users would
not have to learn a new language, and they could imple-
ment security policies using their favorite programming

Figure 2: Strata

Untrusted
Binary

Strata
Security Application

Host CPU and OS
Serv ices
3

language. A second benefit was that we would not have to
build a special compiler for the policy language. We could
use an existing mature compiler for the target source lan-
guage and machine as long as it generated very high-qual-
ity code. High-quality code is important as the overhead of
executing the dynamically injected policy code has to be
kept as low as possible.

Once we abandoned the distraction of trying to design a
new language and we focused on the real problem of defin-
ing the primitives needed to enforce software security our
job became much easier. Recall our definition of software
security. Software security is the ability to enforce a policy
that specifies how resources may be used. What are the
resources we need to manage? Most security vulnerabilities
involve misuse of resources managed by the operating sys-
tem.

For example, a hacker obtains root privileges by exec’ing a
shell while the application is running in super-user mode.
Both performing the exec and changing run-level privileges
involve operating system calls (i.e, exec and setuid). Sim-
ilarly, a hacker may read a file to gain information, or write
false information into a file that may assist future attempts
to compromise the system. Again, access to the file system
is via operating system calls (i.e., open, read, and write in
this example).

Thus to provide support for software security, Strata’s
security API should provide facilities for allowing users to
write policies that specify how operating systems resources
can be used. Fundamentally, Strata should provide a low-
cost method for invoking a security policy when a relevant
operating system call is made.

Our approach is to provide a simple, efficient facility that
allows the user to specify which operating system calls to
monitor and policy code to execute when the operating sys-
tem call is invoked. Strata’s security API consists of four
functions. They are:

void init_syscall();
watch_syscall(unsigned num, void *callback);
void strata_policy_begin(unsigned num);
void strata_policy_end(unsigned num);

The first function is called on the initial entry to Strata.
The implementation of this function will contain calls to
the second API function watch_syscall(). Function
watch_syscall() specifies an operating system call to
watch (i.e., num) and the security policy to execute when
that OS call is invoked (i.e., callback). The signature of
callback should match the signature of the operating sys-
tem call being watched. The final two API functions are
used to bracket security policy code. The need for these
two functions will be explained shortly when we describe
how Strata dynamically injects the security policy code
into the application.

To illustrate the implementation of Strata’s security API,
we show the Strata security policy for preventing an

untrusted application from reading /etc/passwd. Following
the style used on hacker websites to demonstrate exploita-
tion of security vulnerabilities, we give a small demonstra-
tion program that exercises the policy. The demonstration
code is given in Listing 1.

Before explaining how Strata injects this policy into an
untrusted binary, we review the code at a high level. Func-
tion init_syscall() at lines 17–20 specifies that
SYS_open calls should be monitored and that when a
SYS_open call is to be executed by the application, control
is transferred to the policy routine myopen().

Function myopen() (lines 10–25) implements the security
policy. As mentioned previously, invocations of
strata_policy_begin() and strata_policy_end() are
used to bracket the policy code and their purpose will be
explained shortly.

In function myopen(), the path to be opened is converted
to an absolute pathname by calling the utility function
makepath_absolute(). The path returned is compared to
the string /etc/passwd and if it matches, an error message
is issued and execution is terminated. If the file to be
opened is not /etc/passwd, then the policy code performs
the SYS_open system call and returns the result to the cli-
ent application as if the actual system call was executed.

We now describe the mechanisms that Strata uses to selec-
tively watch system calls and how it injects the policy code

1. #include <stdio.h>
2. #include <string.h>
3. #include <strata.h>
4. #include <sys/syscall.h>

5. int myopen (const char *path, int oflag) {
6. char absfilename[1024];
7. int fd;

8. strata_policy_begin(SYS_open);

9. makepath_absolute(absfilename,path,1024);
10. if (strcmp(absfilename,"/etc/passwd") == 0) {
11. strata_fatal("Naughty, naughty!");
12. }
13. fd = syscall(SYS_open, path, oflag);

14. strata_policy_end(SYS_open);

15. return fd;
16. }
17. void init_syscall() {
18. (*TI.watch_syscall)(SYS_open, myopen);
19. }
20.
21. int main(int argc, char *argv[]) {
22. FILE *f;

23. if (argc < 2 || (f = fopen(argv[1],"r")) == NULL) {
24. fprintf(stderr,"Can't open file.\n");
25. exit(1);
26. }

27. printf("File %s opened.\n",argv[1]);

28. return 0;
29. }

Listing 1: Security policy for preventing a file from being
opened.
4

into the running application. As shown in Figure 3, when
an untrusted binary is to be executed, the Strata security
loader modifies the application binary so that initial con-
trol is transferred to Strata’s initialization routines. This
routine dynamically loads and executes the
init_syscall() function that sets up a table of system
calls to watch and their corresponding callback functions.

After initialization is complete, Strata begins building the
initial application fragment by fetching, decoding and
translating instructions from the application text into the
fragment cache (see Figure 3). For the Strata-based secu-
rity applications discussed in this paper, the translate func-
tion examines the application code and locates operating
systems calls.

For each operating system call site, Strata tries to deter-
mine if the operating system call is one to be monitored. In
most cases, Strata can determine, at translation time, the
operating system call to be invoked. In this case, if the OS
call is one to be monitored, the code to invoke the operat-
ing system call is replaced with a call to the user-supplied
policy code. If the call is not one to be monitored, no trans-
lation action need be taken and the operating system call
code is copied unchanged to the fragment cache.

In some cases, the operating system call to be invoked can-
not be determined at translation time. This can occur with
indirect operating system calls (e.g., using syscall). In this
case, Strata must generate and insert code that, when the
fragment is executed, will test whether the OS call being
invoked is one to be monitored and if so, call the appropri-
ate user-supplied policy code; otherwise the OS call is exe-
cuted.

In the case where the OS call to be invoked can be deter-
mined at fragment creation time, Strata treats policy code
just like application code. As a result, calls to policy code
can often be partially inlined improving the efficiency of
the code. However, partially inlining policy code creates a
complication. Consider the myopen() policy code in Listing
1. When this code is inlined, the SYS_open OS call will be
generated. This OS call should not be replaced by a call-
back as it is the OS call to execute when the policy’s condi-
tions are satisfied. To avoid infinite recursion, policy code is
bracketed using the API calls strata_policy_begin() and
strata_policy_end(). Strata uses these “code markers” to
suspend translation of operating system calls. Thus, we are
assuming that the writer of policy code is not malicious.

There is one further complication. A malicious user with
knowledge of how Strata operates may try to circumvent
Strata by using calls to strata_policy_begin() and
strata_policy_end() to bracket application code that
attempts to violate the security policy. To prevent this ave-
nue of attack, Strata only permits strata_policy_begin()
and strata_policy_end() to execute from within security
policy code.

4 SECURITY POLICIES
To illustrate both the power and simplicity of our
approach, this section presents several other interesting
security policies.

A common security exploit is to arrange to exec a shell
while in root or super-user mode. This is most commonly
done using a buffer overrun attack that corrupts the run-
time stack. In an earlier paper we described how such an
attack can be stopped using Strata’s target-dependent
interfaces [21]. Other types of attacks are possible [25].
However, they all rely on exec’ing a program (usually a
shell) while in root or super-user mode. Using Strata’s
security API, it is very simple to write a policy that prohib-
its exec’ing a program when in super-user mode, yet allow
exec’s when not in super-user mode. Listing 2 contains the
demonstration program.

To implement this security policy, we must monitor two
system calls—setuid and execve. We must monitor set-
uid to keep track of the uid of the running application.
This information is stored in the state variable curuid. In
function myexecve(), if the program is running in root
mode (i.e., the uid of the process is 0) exec’s are disallowed,
otherwise they are allowed.

The second security policy presented implements a policy
that controls the rate that an application uses a resource.

1. #include <stdio.h>
2. #include <string.h>
3. #include <unistd.h>
4. #include <strata.h>
5. #include <sys/syscall.h>

6. static int curuid = -1;
7. int mysetuid (int uid) {
8. int retval;
9. strata_policy_begin(SYS_setuid);
10. curuid = syscall(SYS_setuid, uid);
11. strata_policy_end(SYS_setuid);
12. return retval;
13. }
14. int myexecve (const char *path, char *const argv[],
15. char *const envp[]) {
16. int retval;
17. strata_syscallback_begin(SYS_execve);
18. if (curuid == 0)
19. strata_fatal(“Naughty, naughty”);
20. retval = syscall(SYS_execve, path, argv, envp);
21. strata_syscallback_end(SYS_execve);
22. return retval;
23. }
24. void init_syscall() {
25. (*TI.watch_syscall)(SYS_execve, myexecve);
26. (*TI.watch_syscall)(SYS_setuid, mysetuid);
27. }
28. int main (int argc, char *argv[]) {
29. FILE *f;
30. char *args[2] = {“/bin/sh”,0};
31. setuid(0);
32. execv(“/bin/sh”, args);
33. return 0;
34. }

Listing 2: Security policy to prevent exec’s while root.
5

In this example, we will limit the rate at which an applica-
tion can transmit packets over a socket. This type of policy
could be useful for thwarting denial of service attacks
where zombie processes attempt to flood a server with
packets. Listing 3 gives the code for the demonstration
application.

Figure 3: Injecting user-policy code into an untrusted binary using software dynamic translation.

Context
Switch

Fetch

Decode

Translate

New
PC

Host CPU (Executing Translated Code from Cache)

Finished?

No

Strata Virtual Machine

Yes

Context
Capture

Cached?

Yes

New
Fragment

Next PC

Security
Loader

Untrusted
Binary

A
pp

lic
at

io
n

Te
xt

Policy Source
Code Compiler

W
at

ch
 L

is
t

C
od

e

Initialization

P
ol

ic
y

Te
xt

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <sys/types.h>
4. #include <sys/socket.h>
5. #include <netinet/in.h>
6. #include <netdb.h>
7. #include <time.h>
8. #include <string.h>
9. #include <strata.h>
10. #include <sys/syscall.h>
11. #define RATE 10000
12. #define TOPRATE 10000000
13. #define DISCARD_PORT 9999
14. #define PAYLOAD_SIZE 1024
15. void xmit (const char *host, int nbytes);
16. static int socket_fd = -1;
17. /* Compute the delay necessary to maintain */
18. /* the desired rate */
19. int limiting_delay (double rate, time_t tbeg,
20. time_t tend, int last_len, int len);

21. /* Callback for the so_socket call */
22. int my_so_socket (int a,int b,int c,char *d,int e) {
23. int fd;

24. strata_policy_begin(SYS_so_socket);

25. /* Make the system call and */
26. /* record the file descriptor */
27. socket_fd = syscall(SYS_so_socket,a,b,c,d,e);

28. strata_policy_end(SYS_so_socket);
29. return fd;
30. }
31. /* Callback for the write system call */
32. int my_send (int s, const void *msg, size_t len,
33. int flags) {

Listing 3: Security policy to limit the rate of transmission
over a socket.

34. int result;
35. time_t now;
36. static int last_len = 0;
37. static time_t last_time = 0;

38. strata_policy_begin(SYS_send);

39. /* Only look at writes to socket_fd */
/* and only rewrite HTTP headers */

40. if (s == socket_fd) {
41. now = time(NULL);
42. sleep(limiting_delay(RATE,last_time, now
43. len,last_len));

44. last_len = len;
45. last_time = now;
46. }
47. result = syscall(SYS_send,s,msg,len,flags);

48. strata_policy_end(SYS_send);
49. return result;
50. }
51. void init_syscall() {
52. (*TI.watch_syscall)(SYS_so_socket,my_so_socket);
53. (*TI.watch_syscall)(SYS_send,my_send);
54. }
55. main(int argc, char *argv[]) {
56. if (argc == 3)
57. xmit(argv[1],atoi(argv[2]));
58. else
59. fprintf(stderr,
60. ”Usage: %s host nbytes\n”,argv[0]);
61. }
62. /* Transmit nbytes to discard port (9) on host */
63. void xmit (const char *host, int nbytes) {
64. int sd, bytes_sent;
65. struct sockaddr_in sin;
66. struct sockaddr_in pin;
67. struct hostent *hp;
68. char *payload[PAYLOAD_SIZE];
69. time_t begin, elapsed;
70. double rate;

71. /* go find out about the desired host machine */
72. if ((hp = gethostbyname(host)) == 0) {
73. perror(“gethostbyname”);

Listing 3: (Continued) Security policy to limit the rate of
transmission over a socket.
6

To implement this policy, SYS_so_socket and SYS_send
system calls must be monitored. Callbacks SYS_so_socket
(my_so_socket) and SYS_send (and my_send) are estab-
lished (lines 49–52). The policy code for monitoring the
socket call simply records the file descriptor for the socket.
The recorded file descriptor will be used by my_send() to
limit the rate only on this connection. In function
my_send(), if the transmission is to the monitored connec-
tion (i.e., socket_fd), then a delay is introduced if neces-
sary (see line 42 of Listing 3).

Listing 4 contains our third and final Strata security dem-
onstration program. The security policy prevents cookies
from being transmitted to web servers. In this example, the
two system calls to be monitored are SYS_so_socket and
SYS_write. Like the previous example, the callback
my_so_socket() simply remembers the socket being
opened. In callback my_write(), writes to the socket are
detected and the buffer is preprocessed by
remove_cookies() before writing it (Listing 4 lines 30–34).

5 DISCUSSION
As the previous section has shown, writing powerful soft-
ware security policies using Strata’s security API is simple.
While it is somewhat ironic that we wrote our sample secu-
rity policies using C which is a cause of many of the secu-
rity vulnerabilities, we did so to make the techniques and
policies accessible to the largest audience. The policies pre-
sented could have been written in any language. The only
requirements are that bindings of Strata’s security API
must implementable in the new target language and that a
compiler for the target language must be available that
emits object code. Providing a new language implementa-
tion of Strata’s security API is simple since the API con-
sists of four simple functions.

Airtight security is extremely difficult to provide. Code
claimed to be secure is often compromised. We do not

74. exit(1);
75. }

76. /* fill in the socket structure with host info */
77. memset(&pin, 0, sizeof(pin));
78. pin.sin_family = AF_INET;
79. pin.sin_addr.s_addr = ((struct in_addr *)
80. (hp->h_addr))->s_addr;
81. pin.sin_port = htons(DISCARD_PORT);

82. /* grab an Internet domain socket */
83. if ((sd = socket(AF_INET,SOCK_STREAM, 0)) == -1) {
84. perror(“socket”);
85. exit(1);
86. }

87. /* connect to PORT on HOST */
88. if (connect(sd, (struct sockaddr *) &pin,
89. sizeof(pin)) == -1) {
90. perror(“connect”);
91. exit(1);
92. }

93. begin = time(0);
94. bytes_sent = 0;
95. while(bytes_sent < nbytes) {
96. /* send a message to the server PORT */
97. /* on machine HOST */
98. if (send(sd,payload,sizeof(payload),0) == -1) {
99. perror(“send”);
100. exit(1);
101. }
102. bytes_sent += sizeof(payload);
103. printf(“.”);
104. fflush(stdout);
105. }
106. elapsed = time(0) - begin;
107. rate = bytes_sent / elapsed;

108. printf(“\nRate = %8.3f bytes per second.\n”,rate);

109. close(sd);
110.}

Listing 3: (Continued) Security policy to limit the rate of
transmission over a socket.

1. #include <stdio.h>
2. #include <string.h>
3. #include <strata.h>
4. #include <sys/syscall.h>
5. #include “snarf.h”
6.
7. static int socket_fd = -1;
8.
9. /* Copy src buffer to dst removing cookies*/
10. int remove_cookies(char *dst, const void *src,
11. int size);

12. /* Callback for the so_socket system call. */
13. int my_so_socket (int a, int b, int c, char *d,
14. int e) {
15. int fd;

16. strata_policy_begin(SYS_so_socket);

17. /* Make the system call and record the */
18. /* file descriptor */
19. socket_fd = syscall(SYS_so_socket,a,b,c,d,e);

20. strata_policy_end(SYS_so_socket);
21. return socket_fd;
22. }
23. /* Callback for the write system call */
24. int my_write (int fd, void *buf, int size) {
25. char new_buf[1024];
26. int s, new_size;

27. strata_policy_begin(SYS_write);

28. /* Only look at writes to socket_fd
29. /* and only rewrite HTTP headers. */

30. if (fd == socket_fd &&
31. (new_size = remove_cookies(new_buf,buf,size)))
32. s = syscall(SYS_write,fd,new_buf,new_size);
33. else
34. s = syscall(SYS_write,fd,buf,size);

35. strata_policy_end(SYS_write);
36. return s;
37. }
38. void init_syscall() {
39. (*TI.watch_syscall)(SYS_so_socket,my_so_socket);
40. (*TI.watch_syscall)(SYS_write,my_write);
41. }
42. int main(int argc, char *argv[]) {
43. snarf_main(argc, argv);
44. }

Listing 4: Security policy to remove cookies.
7

claim that Strata’s security API can foil all possible
attacks. However, it does provide some additional level of
protection. Furthermore, it allows easy implementation of
policies that are beyond static approaches. Indeed, all three
policies shown in Section 4 could not be enforced using
static approaches as they require state information that can
only be determined dynamically (e.g., the user id when an
exec is performed).

Our current implementation does have some limitations on
the types of security policies that can be enforced. For
instance, Strata does not currently handle multi-threaded
code. There are clever attacks that exploit timing vulnera-
bilities in threaded code. We are currently extending Strata
to handle threaded code and we plan to investigate devel-
oping policies to prevent this type of attack. Nonetheless,
we feel that our approach provides a useful and comple-
mentary approach to helping provide software security.

Another important issue to consider is the overhead of
using SDT for secure software. Noticeable or significantly
high overheads will limit the applicability of using SDT to
address software security. In a previous paper, we discussed
techniques for reducing overhead and showed that SDT was
competitive with previously developed techniques for pre-
venting certain classes of security breaches [22]. Currently,
the slowdown of running an application under Strata varies
but can be as much as 1.32X. For many types of applica-
tions, 30 percent overhead is acceptable. Examples include
executing an e-mail attachment that includes a self-extract-
ing archive, opening a foreign document that contains mal-
acious macros that destroy valuable information, and many
set-user-id programs that perform simple administrative
functions. For these situations, a slowdown of 20 to 30 per-
cent would not be noticeable to the user.

For some applications such as web servers, web browsers,
and databases, an overhead of 30 percent might not be
acceptable. Indeed for these types of applications any over-
head is unlikely to be acceptable. Fortunately, previous
research on dynamic optimization has shown that it is pos-
sible to achieve substantial speedups in long running appli-
cations [4, 2, 15]. Thus we believe that by combining a
dynamic security checker with a dynamic optimizer CPU-
intensive applications can be run securely without over-
head. To this end, we are working to incorporate additional
optimizations within Strata’s framework. If successful, our
approach to software security would be pplicable to an even
wider range of applications.

6 RELATED WORK
Enforcing security policies through software has been the
focus of much recent research. Approaches vary from static,
source code analysis, to dynamic approaches such as sand-
boxing and execution monitoring. The different approaches
vary in flexibility and their ability, or lack thereof, to
enforce certain types of security policies.

Static, source-code analysis can be used to enforce a secu-
rity policy by identifying, at compile time, those programs
that could violate the policy. The obvious advantages of
this approach are early identification of security policy vio-
lations, and little or no run-time overhead. Early identifica-
tion allows potential security problems to be corrected
before applications are “shipped.” A number of static secu-
rity policy enforcement mechanisms have been proposed in
the research literature, and some have even found their way
into wide use.

Perhaps the most familiar of the static security policy
enforcment mechanisms is type checking [6]. In compilers
for typed languages, the type checker statically rejects
those programs that could cause execution errors through
misuse of resources, e.g., improperly referencing a memory
location. The security policies enforceable through type
checking are limited by the language’s type system. For
example, it may be impossible to prevent an application
from consuming too many CPU cycles through type check-
ing alone. However, type checking in strongly typed lan-
guages can enforce a number of important and useful
security policies, e.g., “buffer overflows are not permitted.”

Another class of static security policy enforcement mecha-
nisms performs source code analysis, but does not rely
exclusively on the programming language’s type system.
The annotation-assisted static checking system of Evans
and Larochelle uses programmer supplied annotations to
detect possible buffer overflow vulnerabilities in C pro-
grams [16]. Their system is specialized to one specific,
albeit extremely important, security policy for one specific
language. Further their system requires the programmer to
supply special annotations in order to improve accuracy.

Proof carrying code is a bit more flexible, in the sense that
a wider variety of security policies can be enforced [18, 20,
19, 1]. The proof carrying code producer, often in conjunc-
tion with the language type system, generates a proof that
a particular program adheres to a consumer’s security pol-
icy. If the consumer is able to verify the proof, it is assured
that the program will not violate the security policy. Even
though proof carrying code is rather flexible, there are lim-
its to its abilities. Proof carrying code relies either on pro-
grammer annotations or type information from the
underlying programming language in order to generate
proofs. Further, proof carrying code cannot be used to
enforce some security policies, e.g., those that involve tem-
poral assertions.

Recently, many static source code analysis tools have been
proposed, each of which is designed to detect programming
mistakes. In some sense, execution errors due to program-
ming mistakes may be viewed as violations of a security
policy. Meta-level compilation has been successfully used to
statically detect errors such as “pointer dereferenced before
checked for NULL” [11]. The Vault system allows the pro-
grammer to specify interactions between programming
modules [9]; the compiler is then able to statically verify
that the program adheres to the specification. The RATS
8

source code auditing tool detects bad programming prac-
tices that may lead to a variety of security violations such
as buffer overflows and illegal use of APIs [25].

Even though static approaches to security policy enforce-
ment are popular, they have their limitations. As we have
noted above, these limitations include restrictions on the
types of security policies that are enforceable, and language
dependences. Dynamic security policy enforcement tools
address some of these concerns.

There are a variety of tools which dynamically prevent
buffer overflow attacks. The StackGuard system is a special
C compiler that generates special code to dynamically
detect and prevent the occurrence of most stack buffer
overflows, i.e., a “stack-smashing” attack [8]. The libverify
tool uses a combination of late program modification and
techniques borrowed from StackGuard to prevent buffer
overflows, but without requiring a special compiler or
access to source code [5]. While both of these tools are very
useful, they are restricted to one specific security policy,
one programming language, and in the case of StackGuard,
require a special compiler.

Perhaps the most popular of the dynamic security policy
enforcement techniques is software fault isolation, or sand-
boxing. Software fault isolation uses SDT to allow fast, safe
RPC between isolated software modules [28]. In essence,
each untrusted module is sandboxed, as if in it’s own
address space. This approach reduces the likelihood that an
untrusted module can corrupt data in other modules. It is
easy to see this as a security enforcement mechanism if we
accept that isolation is a valid security policy. Sandboxing
is also employed in the Java Virtual Machine to enforce an
even wider variety of security policies [17]. For example,
applets downloaded and run on a Web browser’s JVM may
be restricted from accessing data stored on the local disk.

The last of dynamic security policy enforcement approaches
is execution monitoring. The Janus system monitors system
calls executed by a program in order to determine whether
or not a security policy has been violated [13]. Janus uses
the operating system ptrace facility to register callbacks to
policy enforcement code. Not all operating systems have
such a facility, precluding Janus’s use on those platforms.
Janus also refrains from monitoring frequently executed
system calls, e.g., write(), in order to keep overhead low.
The SASI system, like Janus, also performs execution mon-
itoring [12]. Rather than relying on an operating system
facility, or restricting itself to monitoring only system calls,
SASI inserts monitoring code required by the security pol-
icy directly into the program binary before execution. Con-
sequently SASI cannot enforce the security policy on self-
modifying code, or dynamically generated code.

Of all related systems, Janus appears most similar to the
software security approach advocated by this paper. In
both Janus and our Strata applications, security enforce-
ment is accomplished by monitoring system calls. This is
where the similarities end. We have already seen that the

two systems monitor system calls using different mecha-
nisms, and have pointed out that Janus is unable to effi-
ciently handle certain types of system calls. However, the
most important difference between Strata and Janus is that
Janus cannot effect the actual execution behavior of the
program, outside of aborting execution or providing notifi-
cation. Strata on the other hand can arbitrarily alter sys-
tem call semantics to meet the security policy enforcement
needs of the user. We have seen this already in the snarf
example, where Strata rewrites HTTP requests to remove
cookies. In this sense Strata is a good deal more flexible,
and powerful than Janus.

7 SUMMARY
One of the most pressing and important problems faced by
software developers today is how to deliver secure software.
Addressing this problem effectively is vital given the inter-
connectedness of the global computing infrastructure. Fail-
ure to provide secure software can cost billions. In this
paper, we have presented a powerful approach to software
security. Using a simple security API, users and adminis-
trators can write powerful, arbitrary security policies.
Using software dynamic translation, these policies are
injected into a running program. The SDT approach is
attractive for several reasons. Foremost, the approach can
handle untrusted binaries. Source code is not required. This
makes our approach particularly attractive for handling
mobile code received from any source (including e-mail
attachments). Second, because SDT deals with binary
code, our approach is language and compiler independent.
Third, our simple API can be used in conjunction with any
programming language. This makes our approach accessible
to a wide range of users. Finally because our approach
operates at run time, we can define and enforce security
policies that are not possible with static analysis
approaches.

8 REFERENCES
1] Andrew W. Appel and Amy P. Felty. A semantic

model of types and machine instuctions for proof-car-
rying code. In Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POLP-00), pages 243–253, N.Y., January
19–21 2000. ACM Press.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Transparent
dynamic optimization: The design and implementation
of dynamo. Technical report, Hewlett-Packard Labora-
tories, June 1999.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Ban-
erjia. Dynamo: A transparent dynamic optimization
system. In SIGPLAN ’00 Conference on Programming
Language Design and Implementation, pages 1–12,
2000.
9

[4] Bala, V., Duesterwald, E., and Banerjia, S. Dynamo:
A Transparent Dynamic Optimization System. In Pro-
ceedings ACM SIGPLAN’2000 Conf. on Programming
Languages Design and Implementation, pages 1–12,
June 2000.

[5] Arash Baratloo, Navjot Singh, and Timothy Tsai.
Transparent run-time defense against stack-smashing
attacks. In Proceedings of the 2000 USENIX Annual
Technical Conference (USENIX-00), pages 251–262,
Berkeley, CA, June 18–23 2000. USENIX Ass.

[6] Luca Cardelli. Type systems. In Allen B. Tucker, edi-
tor, The Computer Science and Engineering Handbook,
chapter 103, pages 2208–2236. CRC Press, Boca
Raton, FL, 1997.

[7] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of the 7th
USENIX Security Symposium (SECURITY-98), pages
63–78, Berkeley, January 26–29 1998. Usenix Associa-
tion.

[8] Crispin Cowan, Calton Pu, Dave Maier, Heather Hin-
ton, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, , and Qian Zhang. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 1998 USENIX Security
Symposium, 1998.

[9] Robert DeLine and Manuel Fähndrich. Enforcing
High-Level protocols in Low-Level software. In Cindy
Norris and Jr. James B. Fenwick, editors, Proceedings
of the ACM SIGPLAN ’01 Conference on Programming
Language Design and Implementation (PLDI-01), vol-
ume 36.5 of ACM SIGPLAN Notices, pages 59–69,
N.Y., June 20–22 2001. ACMPress.

[10] Kemal Ebcioglu and Erik Altman. DAISY: Dynamic
compilation for 100% architectural compatibility. In
24th Annual International Symposium on Computer
Architecture, pages 26–37, 1997.

[11] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. In Sympo-
sium on Operating Systems Design and Implementation
(OSDI 2000), San Diego, CA, 23–25 October 2000.

[12] Úlfar Erlingsson and Fred B. Schneider. SASI enforce-
ment of security policies: A retrospective. In New Secu-
rity Paradigms Workshop, pages 87–95, Caledon Hills,
Ontario, Canada, September 1999. ACM SIGSAC,
ACM Press.

[13] Ian Goldberg, David Wagner, Randi Thomas, and Eric
Brewer. A secure environment for untrusted helper
applications: Confining the wily hacker. In Proceedings
of the 1996 USENIX Security Symposium, 1996.

[14] HoobieNet. Security exploits. http://www.hoobie.net/
security/exploits/, 2001.

[15] Thomas Kistler and Michael Franz. Continuous pro-
gram optimization: Design and evaluation. IEEE
Transactions on Computers, 50(6):549–566, June 2001.

[16] David Larochelle and David Evans. Statically detect-
ing likely buffer overflow vulnerabilities. In Proceed-
ings of the 2001 USENIX Security Symposium, 2001.

[17] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley, Reading, USA,
1997.

[18] G. C. Necula and P. Lee. Safe, untrusted agents using
proof-carrying code. In G. Vigna, editor, Safe,
Untrusted Agents using Proof-Carrying Code, volume
1419 of Lecture Notes in Computer Science, pages 61–
91. Springer-Verlag, Berlin Germany, 1998.

[19] George C. Necula. Proof-carrying code. In Proceedings
of the 24th ACM Symposium on Principles of Program-
ming Languages, Paris, France, January 1997.

[20] George C. Necula and Peter Lee. The design and
implementation of a certifying compiler. In Proceed-
ings of the ACM SIGPLAN’98 Conference on Program-
ming Language Design and Implementation (PLDI),
pages 333–344, Montreal, Canada, 17–19 June 1998.

[21] Kevin Scott and Jack Davidson. Strata: A software
dynamic translation infrastructure. In Proceedings of
the 2001 IEEE Workshop on Binary Translation
(WBT), 2001.

[22] Kevin Scott, Jack Davidson, and Kevin Skadron. Low-
overhead software dynamic translation. Technical
Report CS-2001-18, University of Virginia, July 2001.

[23] David Ung and Cristina Cifuentes. Machine-adaptable
dynamic binary translation. In Proceedings of the
ACM Workshop on Dynamic Optimization Dynamo ’00,
2000.

[24] USA Today. The cost of code red: $1.2 billion. http://
www.usatoday.com/life/cyber/tech/2001-08-01-code-
red-costs.htm, 2001.

[25] John Viega and Gary McGraw. Building Secure Soft-
ware: How to Avoid Security Problems the Right Way.
Addison-Wesley, Reading, USA, 2001.

[26] Michael Voss and Rudolf Eigenmann. A framework for
remote dynamic program optimization. In Proceedings
of the ACM Workshop on Dynamic Optimization
Dynamo ’00, 2000.

[27] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and
Alexander Aiken. A first step towards automated
detection of buffer overrun vulnerabilities. In Proceed-
ings of the Symposium on Network and Distributed Sys-
tems Security (NDSS ’00), pages 3–17, San Diego, CA,
February 2000. Internet Society.

[28] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Gra-
ham. Efficient software-based fault isolation. In 14th
ACM Symposium on Operating Systems Principles,
pages 203–216, Asheville, NC, 1993.
10

