Design and Analysis of a Transport Layer Reliable Muiticast

A Thesis
Presented to

the Faculty of the School of Engineering and Applied Séience

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science (Computer Science)

by

Bert J. Dempsey

January 1991

ABSTRACT

Multicasting denotes a facility in a communications system for providing efficient
delivery from a message’s source to some well-defined set of locations using a single
logical address. While modern network hardware supports multidestination delivery,

first generation Transport Layer' protocols (e.g. the DoD Transmission Control Protocol
(TCP) [14] and ISO TP-4 [54]) did not anticipate the changes over the past decade in
underlying network hardware, transmission speeds, and communication patterns that
have enabled and driven the interest in reliable multicast. Much recent research has
focused on integrating the underlying hardware multicast capability with the reliable
services of Transport Layer protocols.

This thesis explores approaches and solutions from the literature to the
communication issues surrounding the design of a reliable multicast mechanism. Four
experimental Transport Layer protocols that incorporate some form of reliable multicast
are examined. The need for multicast group management services to augment Transport
Layer multicast algorithms is identified, and such services are incorporated into a reliable
multicast service designed as a part of the University of Virginia Computer Networks
Laboratory software implementation of the Xpress Transfer Protocol. Performance
measurements for the resulting reliable multicast facility are presented using a single-
segment network.

! The Transport Layer is layer four in the Intemational Standards Organization Open Systems Interconnect (150 OS) Reference
Modet ([34]).

it

ACKNOWLEDGEMENTS

I would like to express heartfelt thanks to my advisor, Dr. Alfred C. Weaver, for his
guidance and patience in nurturing this work. Special thanks go to my colleagues in the
Computer Networks Laboratory: especially Alex Colvin and Robert Simoncic, who
contributed greatly to my understanding of XTP, and John Fenton who brought the
Multidriver to life, among other things. I would also like to thank Dave Marlow of the
Naval Surface Warfare Center and Larry Green of Protocol Engines, Inc. for their roles
in funding this effort. Finally, I would like to thank my wife, Molly, for her

understanding and support throughout all.

i

TABLE OF CONTENTS

Chapter 1 Overview of Multicast Issues e
1.1 Inroduction ...ccceveevvcrieneevenerncnsesessnnssnas B FOUP PSRRI

1.2 Environments for Multicast ... cerbeeerreereesanrsstistesteaas

1.3 Multicast Applicationsccceververennen eesteeresaaseserresenere st e Es e e Resn R R R e ey

1.4 Organization e eeseore reeriresbeenneeneeatteatreeaneaaasiRE e sn st s r e bean
Chapter 2 Multicast Issues at the Data Link and Network Layers
2.1 MAC Sublayer Addressing and Packet Filteringcccocevnnnniinininnns "

2.2 ROULIE coevtvverinmirncsiniiiisiis i seisse s b ssass st s sssesesesansntasshsasansssssnsases
2.2.1 Network LAYET ..ottt ssassssssnasssssnens

2.2.2 Data Link Layerc.ovcninieninnnnnn resrerrer e s e sanebesne s reevssrerssanias
Chapter 3 Transport Layer Multicast ...,

3.1 Four Transport Layer Reliable Multicast Mechanismscvninns

3.1.2 Versatile Message Transaction Protocol ...,
3.1.3 Xpress Transfer Protocol crreeeeneerse s aba s b eraan vevereanenerneas
314 NAPP ccoiererenrcnnesis st ess s ssansssennas cerererrenresnnintrassranns
3.2 Flow CONtrol .v.eeueceeumeesnness eerrsssssssseneens ettt
3.3 Collection of Control Packetsooeeeciinsennas crbeerereseenresaeentsserberaies
3.3.1 Simple Reporting: CP rereeentresas e b snaranees e RPN

3.3.2 User-Level Responses: VMTP ...ooonniinnnns reetessesbeseassarens

11
12
13
17
19
19
20
20
21
22
23
23

23

iv

3.3.3 Adaptive Timers and Slotted Damping: XTPcooeivirimnnnnininanns
3.3.4 Polling: NAPP ... ceterserssenesbessane s teasanns ceererersnasessesareses
3.4 Error Controlcccceuneee eteereeerrsin st sa s ananen creesarerenrasennres crvsesreesaneeaaes
Chapter 4 Multicast Group Management cevsrersseasanan v
4.1 Introduction ... ceererreateae ettt e e s R s s b e a e e
4.2 MGM Possibilities ..oeiiiicnrnnne reebereebeieaaeeesei it bbb Rk ae s e s ar e e seas
4.3 Anatomy of MGM ...oovninniiinenae. creraeeaeasesnens crerreeretensreersesanns
4.4 Placement of Group Management in the OSI Reference Model
4.5 XGM ..onveicrnennes creresrerrraenerenesaens eeeteteeraese s e ar e sa b s ee bR e R R sa R s e r et
4.5.1 XGM/Application Process Interfacecconenene. cerensensesrsaenaas
4,52 XGM/XTP Interfacecoivvvvniinenceninennens ceesresenssenens s
Chapter 5 Reliable Multicast Service using XTPcccccceevenne cerrereernenennans
5.1 Introduction ..o creereerrereressssarenaeans erereesersan s
52UVAXTP e creeeraernssssressenssaenares ceesreeesenaesesraens wvesrenrrenereseas
5.3 Multidriver ereveeessnneetenesstirie reetrererers s ers ceeereerent et eraesseans
5.3.1 Multidriver Designcoveivvinnnnns creerrenrenraesereans rreebeerarereenseneaanane .
5.3.2 Multidriver Service Primitivescecceennee eeeeresereeeseeenee s
5.3.3 Control Schemeccoveeenecnnnens cererrsrebesreenenaes ereerrenrrr e ersssrniaees
5.4 List-Based Multidriverccveeiennens rreerrensssstssneirens ceeereseee e rerse s
5.5 Performanceccceeveveee JOUTUUURRURO ceeerenerre et ens reeeneraeeesneates
5.5.1 Target Environmentc.c..... vereerraearsssarees crevererereaserssrssnrarans

5.5.2 Multicast LatenCy ..., rerrrere e saanns

25
28
31
32
32
33
35

37
38
39
42
44
44
44
45
47
50
51
53
57
57

37

XL I ER YT

teesssnensdantars

ansnanssitadtrrren

5.5.3 Multicast Throughput

ssssrnenne Sednaumssssrensriettnr iy

Chapter 6 Conclusionscceeeieiniin.

saresaiier

6.1 Summary

T T T L L L R A AR R e i

6.2 Future Workooveeennn.

assusasirnns

TLYTL LT

Haubasrrantas

REFERENCES ...

aneenbabrbars

T T T T PR srasnassasssn sasresnee

g g

66

68

LIST OF FIGURES

Chapter 1

1 Multicasting TermMinOIOZY ..virivrerreemrmessesrerioniesonssssessesnssnsrssssanasasns 3
Chapter 2

1 802.5 Token Ring Addressingcoooviverisimmnsessnnimiisssnienini 11
Chapter 5

1 XTP Driver PrmiliVEScoccceiiiiisiimieiissnrmsissmnisssne s sstissinsass o 46

2 Multidriver Control SChEemE .ivverciiiiniinererisie st 52

vii

LIST OF TABLES

Chapter 5
1 LMB Roundirip Latency presssereassenens retreesestesesresasaasnaees cresnan 58
2 Unicast Roundtrip Latency ..., reeerrersrrere s aaas 59
3 Multidriver Roundtrip Latency cerereeererbesassae e nraas rosravennes 60
4 LBM Throughputc.cvememeeneccnnnennens crvessennas veenenen rreeraseseesstsnentane 61
5 Unicast Throughput SETOTUR reeraessesraeertesse et b bR Ee s n e s 61
6 LBM Throughput using a FlexCache 62
7 MUltAFVer TROUGAPUL coetcrrersssssmismns 63

viii

Chapter 1

Overview of Multicast Issues

1.1. Introduction

Many distributed applications require efficient, reliable communication between a
set of distributed processing entities, or a process group. Existing point-to-point
protocols force the use of multiple unicast transmissions for group communications.
These protocols are ill-suited for multi-party conversations in two fundamental ways.
First, they are not designed to take advantage of underlying selective broadcast hardware
support available on most modern networks. Second, since failure modes are more
complex, the notion of a reliable transfer changes radically under a multi-party
gommunication model, requiring functionality not present in existing point-to-point
protocols. In particular, first generation Transport Layer protocols (e.g. the DoD
Transmission Control Protocol (TCP) ([14]) and ISO TP-4 ([54])) did not anticipate the
changes over the past decade in underlying network hardware, transmission speeds, and
communication patterns that have enabled and driven the interest in reliable multicast.
Much recent research has focused on integrating the underlying hardware multicast
capability with the reliable services of peer protocols in the higher layers of the ISO OSI
Reference Model. A reliable multicast facility is a communication protocol that provides

distributed applications with reliable message delivery to 2 well—dcﬂned‘ set of

destinations using a single logical address and provides support for group management.

Multicasting frames at the Data Link Layer is supported in virtually all standard
Media Access Control (MAC) protocols. Local Area Networks (LANs) conforming t0
the TEEE 802 standards ([31-33], Ethernet (1221), and the ANSI Fiber Distributed Data
Interface (FDDI) standard (I3]) propagate frames such that all nodes on 2 frame’s
originating segment have the opportunity 10 capture it. Host interfaces to the network
support hardware filtering on group addresses, and, as interest in multicast has risen,
nardware for efficient address filtering has become increasingly sophisticated. Thus,
each Link Layer frame can be delivered, within the constraints of the fltering interface,

to exactly the set of destination hosts, O host group, for which the frame is intended.

Proposals have been made to extend Network Layet protocols, in particular the
Internet Protocol ({147), so that host groups can span networks. These efforts to provide
a multicast capability for datagram packets wraveling over wide-arca networks (WANS)
focus on host group management and efficient utilization of routing information ({8} (ih.
There also exists & body of literature on routing multidestination packets over point-to-

point links ((181[173(56D-

Considerable complexity arises in translating a machine-level multicasting
capability into 2 reliable multicast facility. At the Transport Layer, the layer
traditionally associated with a reliable messaging service, a multicast originator transmits
messages using a single network address to a set of endpoints (contexts), the multicast
group. As with unicasting, & Transport Layer multicast consists of two parts: binding

of a message’s address 10 some set of receiver entities and a delivery mechanism 0

HOST A HOST B

© Process O OS LEVEL
- o

1] t i

] [} 1 1

1 1 1 1

§ t []

Pl et e e e e e e T T s Rl et - =

] H i H

] 1 |]

' O : Multicast : i TRANSPORT
i O : Group H O ' LAYER

! ! : i

1 |] H

Host MAC

E:j Group E:] LLAYER

Cable plant

Figure 1.1 — Multicasting Terminology

deliver the message to every receiver entity to which its address binds ([8)). The
functionality to perform the latter component must come from (next generation)
Transport Layer protocols. As for the former, multicast addresses dynamically bind a
logical set of communication endpoints to the physical set of endpointé currently
listening on the mu_iticast address. This distributed, run-time binding is both powerful
and the source of much complexity since some ancillary mechanism outside the data
transfer protocol must in the general case manage shifting group membership. This
group management aspect of the multicast problem has no unicast analogue and requires

a management entity that is properly located above (or beside) the Transport Layer.

Group management functionality includes handling reliability semantics relating to

dynamic group membership.

1.2. Environments for Multicast

Three different network environments for multicasting may be identified: multicast
over a wide-area network (WAN), a multi-segment environment, and a single-segment
environment. Multi-segment environment refers to an extended LAN, i.e. one or more
LANs connected by Network Layer relay nodes into a single addressing domain. A
single-segment environment denotes a network consisting of a single LAN with links, if

any, consisting of Data Link Layer bridges.

In a single-segment environment a multicast facility has no routing considerations
and can expect (with high probability) nearly simultaneous delivery at the receivers. The
high bandwidth and low latency of single-segments allow multicast conversations that
are traffic-intensive, such as those in which receivers multicast their control information
to the entire group as well as (or including) the transmitter. With the introduction of
routing through Network Layer relays, the delivery characteristics experienced by
receivers are much less uniform, and consideration must be given to the natural
bottleneck at the router in any traffic-intensive scheme. Multicast across WANSs
introduces the possibility of having point-to-point links in the delivery path, which

implies a different routing problem from that for multi-segment environments.

1.3. Multicast Applications

The need for multicasting arises naturally in a number of existing and emerging
applications: resource location in a LAN ([2]), distributed databases ([6] [7]), industry
process control ([38]), support for distributed operating system services ([37] [9]),
replicated procedure calls ([15]), support for real-time command-and-control platforms
([411), and collaborative development systems ([39]). One taxonomy of multicast
applications classifies the behavior of the process groups as either deterministic or

nondeterministic ({40]).

Deterministic process groups require strong data and behavioral consistency
between their members. They use peer-to-peer communication, i.e., only members of the
group send messagés to the group. Examples include parallel processing entities sharing
partial results and distribution of status information and coordination among components
in autornated control programs ([49]). Nondeterministic groups typically do not require
the transmitter to be a member of the group. The prevailing model is of a client talking
to a functional group of servers. Emphasis is placed on transparent group
communication. Examples include resource location, replicated procedure calls, and

most applications involving group querying and reporting.

One-to-many communication has inherent efficiencies when compared with
equivalent service using multiple unicasts. Multicasting allows the source to generate
only a single copy of the data, rather than one copy per receiver. Receivers process the
distribution concurrently. If connection-oriented service is desired, a single one-to-many

connection will most likely be faster and less costly to set up than multiple one-to-one

connections. Multicasting thus speeds delivery and saves processing cycles at the source

node, bandwidth, and remote host resources.

In shipboard or ground-based command and control environments, for example,
 signal processing techniques are applied to raw data from sensors and the processed data
distributed across high-performance networks to display workstations for human
operators ((13D). In [41] 2 scenario depicting the needs of future Navy platforms,
specifically a Tactical Console Display subsystem, 18 discussed in detail. Twenty display
workstations receive multiple data streams, ON€ being a periodic update of the ship’s
primary track file in which various types of sensor data have been merged. A multicast
capability is required to support rapid multidestination distribution of these graphics
images, which range from one to ten Megabytes. The real-time constraints present in this

environment make multicasting crucial since time does not permit a series of unicasts.

Multicasting offers fundamental benefits besides efficiency. Multicast addressing
serves as a run-time binding mechanism for associating a group identifier based on a
logical grouping of processes with the actual physical servers. A diskless workstation,
for instance, may use, instead of a hard-wired unicast address, a multicast address for the
group of boot servers (I81). The number and location of the servers arc unknown at the
workstation and possibly change with time. More generally, this de-coupling of logical
addresses and physical resources supports distributed data and resources through group
querying and reporting.

This functionality will be useful, for example, in achieving substantial increases in

network connectivity. A proposal being studied by the National Science Foundation for

a National Collaboratory foresces the need for a very rich interconnection between
multi-disciplinary scientists in order 10 accelerate the pace and quality of research
projects such as mapping the human genome and global change ([57D). In the realm of
application development tools, plans are nOwW underway to move up the next step from
distributed software development t0 collaborative development in which a number of
contractors spread over wide area will interact daily in the concurrent planning and
developing of large software projects. This new software development environment will
require multicast in at least three ways. First, there must be rapid file sharing among 2
number of physically dispersed sites. Second, the substantial increase in the total number
of nodes on which project resources will reside will have a dramatic impact on Directory
Services. In particular, the need for inquiries to distributed name and route servers will
rise. Thirdly, collaborative development will require on-line electronic conferencing and
clectronic mail distribution lists to which interested parties can subscribe. Both of these
applications are most naturally supported by a multicast mechanism. Existing projects
represent first steps toward designing powerful distributed systems that provide the full

range of services required for collaborative development.

Reliable one-to-many communication also opens up the possibility of synchronizing
distributed processes without incurring the network-wide processing overhead and
security problems inherent to broadcasting. If the current work on global time within a

network proves successful, this property of a multicast may become especially valuable.

14. Organization

The provision of a general purpose reliable multicast facility involves functionality
at several layers of the ISO OSI stack. Chapter 2 deals with the Data Link Layer at
which group addressing and, in lafge LANs, routing multicast frames in bridges are
issues ([18]). Chapter 2 also covers the Network Layer where the central problem is
providing for the efficient routing of multidestination packets and maintenance of
information on host groups. Chapter 3 examines the Transport Layer issues raised by
one-to-many Transport Layer connections, including the development of control
algorithms and the efficient collection and coalescing of control information at the
multicast originator. Four Transport Layer protocols that address reliable multicasting are
explored in detail. Chapter 4 discusses the need for a group ménagement protocol to
handle group membership requirements tied to reliable delivery between multipeers at
the Transport Layer. A service interface for a group management facility to complement
the Xpress Transfer Protocol’s reliable multicast algorithm is proposed. Chapter 5
details the incorporation of group management functionality into the Multidriver, a
reliable multicast service built into thé implementation of XTP by the University of
Virginia Computer Networks Laboratory. Performance measurements of the Multidriver
and its extension are presented for a single-segment testbed network. Chapter 6
summarizes the conclusions from this work and notes the interesting possibilities for

further work in this area.

Chapter 2

Multicast Issues at the Data Link and Network Layers

Several underlying mechanisms are necessary to support the efficient delivery of
Transport Layer multicast messages. At the MAC sublayer, group addressing addressing
and packet filtering hardware are widely available for sending multidestination frames.
Proposals have been made to enhance routing algorithms for both MAC sublayer bridges

and Network Layer routers to handle multidestination delivery.

2.1. MAC Sublayer Addressing and Packet Filtering

At the MAC sublayer, multicasting frames requires the capability of binding a
frame’s destination address to multiple hosts. Standa:rd MAC protocols support this. The
10 Mbit/s Ethernet ([22]) reserves the two most significant bits to indicate if the address
is a group address and whether the address is locally or globally administered. The
remaining 46 bits are available to create 2*® unique group addresses. Similarly, the IEEE
802 MAC protocols for 802.4 Token Bus ([32]) and 802.5 Token Ring ([33]) as well as
the addressing scheme for the ANSI FDDI standard ([3]) support a wide group address

space.

In addition to the ability to create MAC sublayer group addresses, however,
multicasting MAC frames relies on a host being able to recognize which multicast

packets are intended for it. Ideally this packet filtering should be done entirely in the

10

network interface hardware since doing it in software is orders of magnitude slower. The
advantage of having large group addressing spaces is mitigated by the fact that current
network interfaces cannot filter for more than a small number of group addresses, though

hardware designers are paying increasing attention to this problem.

Consider, for example, the group address support provided by the TMS380 chipset,
a popular token ring interface developed by Texas Instruments for the IBM 4 Mbit/s
token ring architecture ([551). The adapter board associates three addresses with a node at
initialization: the ring station address, a group address, and a functional address. The
ring interface also copies any frame with the destination address representing an all-

stations broadcast. There are two bit patterns that represent an all-stations broadcast.

The token ring MAC address fields are 48 bits long (Figure 2.1). The high bit
signifies a group address; the next-to-highest bit signifies whether the address is locally
administered or universally administered. A ring station address uses the lower 46 bits.
The group address format has a fixed bit pattern in the upper 17 bits and the group
address in the lower 31 bits. Functional addresses also have a fixed bit pattern in the
upper 17 bits and 31 bits of system-supplied address. When the destination address is a
functional address, the station matches its functional addressing mask against the
functional address. If any bit position is set in both, the station copies the frame from the
network. Thus, functional addresses are encoded in a bit-significant manner, and any
station may filter for any or all of the 31 functional groups. Five functional groups have
already been designated by the IBM token ring architecture for special purposes (e.g. use
by a bridge, network manager, or active monitor). A multicast facility has approximately

27 distinct group addressing filters — the 26 unclaimed functional addresses and the one

11

bb T
Ring Station Addrema (46 bita)
.. Locally administered
.. Group
byte 0 byte 1 l
Lt 9 0
Group Address (31 bits)
L-Non-i’um:tiorml
b Locally administered
b GGroup
byte O byte 1
AN 0 ol
Functional Address {31 bits)
L-Ncm-fuuctim'nal
b Locally administered
b Group

Figure 2.1 — 802.5 Token Ring Addressing
group address— supported in hardware at each node at any one time.

2.2. Routing

A LAN is constrained by limits on the number of stations, maximum distance
between any pair of stations, and maximum wraffic loads. Thus multiple LAN segments
are often needed for a single community of network users. These multiple LANs are
connected by intermediaries known in the ISO terminology as relays, and a relay may be

present at any layer of the ISO OSI Reference Model. If the relay shares a common layer

12

n protocol with other systems, but does not participate in a layer n+1 protocol in the
process of relaying information, it is known in the ISO terminology as a layer n relay.
Common terminology denotes a Physical Layer relay as a repeater, a Data Link Layer
relay as a bridge, a Network Layer relay as a router, and any higher layer relay as a
gateway. While this terminology is common, it is not used universally and one should be
aware that the term gateway is sometimes used in the literature to describe a relay at any

layer ([46)).

2.2.1. Network Layer

Routing techniques for multicast in store-and-forward networks have been
examined in a number of contexts. Historically, these multicast routing techniques were
first examined for point-to-point networks ([56]). Most strategies are built around
spanning trees, a natural solution to the problem of taking an arbitrary topology and
producing an edge set in which there exists exactly one path between any pair of nodes,

i.e., eliminating cycles.

Networks in which, instead of point-to-point, multiple-access links connect routers,
ot bus-based networks, have different characteristics and routing criteria than point-to-
point WANSs. Cost is an important consideration in general for WANS, but plays no role
in routing through a bus-based network, where packets do not incur tariffs. An excellent
summary of techniques for multidestination routing in this environment appears in [25].
Recent work on this problem also appears in [42], though the authors point out that their
algorithms for multicast trees are more appropriate for multiprocessors and multichannel

LANs than for interconnected LANs or MANs since the algorithms depend on

13

maintaining complete knowledge of the network topology at all network nodes.

The Internet Group Management Protocol (IGMP) was recently defined to extend
the network layer Internet Protocol (IP) so that IP datagrams can be delivered to a host
group instead of a single host ([19]). TGMP allocates a certain portion of the IP address
space for host groups and addresses the mapping of IP | addresses to MAC group
addresses. The protocol mandates the existence of multicast routers, which may or may
not be distinct from conventional IP routing nodes on the network, for routing IP
datagrams addressed to a host group. The IGMP service interface allows higher layer
users to join and leave host groups. Miulticast routers learns of the presence of group
members on an attached segment via periodic reports by member hosts. Membership
reports are transmitted on the MAC multicast address so that hosts in the same group
overhear each others’ transmissions and avoid redundant reporting. For communication
between multicast routers Deering ([18]) has proposed extensions to two standard routing
algorithms for Network Layer routers—distance-vector routing and link-state routing—
using in the former case refinements to reverse path forwarding ([17]). IGMP should

soon begin appearing in commercial products.

2.2.2. Data Link Layer

The IEEE 802 protocols specify two sublayers within the ISO Data Link Layer, the
Medium Access Control sublayer, located next 10 the Physical Layer, and the Logical
Link Control (LLC) sublayer above. As intended by the 802 Committee, the term bridge
| refers not just to a Data Link Layer relay, but more specifically to a relay operating

below the MAC sublayer service boundary within the Data Link Layer. This definition

14

ensures that the relay will operate independently of all LLC and higher layer protocols.
Bridges are store-and-forward routing swiiches that attach to two Of more electrically
independent cabling LAN segments. Hence 2 frame arrives on one of the cable
segments, the incoming link, and is forwarded onto one OT more outgoing links. A

bridged LAN refers to a LAN in which ail relays aré bridges (or repeaters).

Two routing algorithms for bridged LANs have been endorsed by the TEEE 802
Standards Committee: the TEEE 802.1 Transparent Spanning Tree (TST) Scheme and the
IEEE 802.5 Source Routing Scheme. Transparent bridges, bridges as defined by the
{EEE 802.1 Medium Access Control Bridge Standard (129D, provide transparency in the
sense that end nodes do not participate in routing decisions. Instead TST bridges use 2
distributed algorithm to transform the arbitrafy mesh topotogy of the given network into
a single, acyclic spanning tree through which frames are forwarded. These bridges
maintain a forwarding database of the location of nodes as determined through
examination of the source addresses in frames. Topology changes are detected by intra-
bridge communication, and a new spanning tree determined. The bridges self-configure

upon initialization and even recover if misconfigured by human installers.

Source routing is based on including the route to the - destination node(s) in a
variable length field of the frame. Under this scheme, a bridge performs string matching
on the routing field to determine to what links, if any, this bridge should forward the
frame. Source routing has 2 number of advantages. Perhaps most important of all,
source routing bridges are relatively anaffected as the size of the network grows and
transmission speeds increase unlike TST bridges, which are tied to address-table

maintenance and fook-up. A major limitation t0 source routing is that a key element of

15

dynamic route discovery by the source host consists of broadcasting frames throughout
the network to explore all possible paths to the target ([23]). Consequently, its use is

more appropriate in bridged LANs of small diameter.

In a bridged LAN of small diameter, multicast packets are simply broadcast to all
segments. The abundance of switching resources and bandwidth compensate for the
inefficiency of delivering packets to segments where no receivers exist. Filtering
hardware offloads hosts in the task of discarding packets. Thus, added complexity in the
bridge routing algorithms to achieve scope-controlled multicasting, 2 multicast that
propagates 2 fixed ndistance” from the originator instead of throughout the network,
cannot be justified for small diameter networks. It follows that attention should be

focused on the TST Scheme and not the Source Routing Scheme.

In [18] the authors propose extensions to the TST Routing Scheme to accommodate
efficient multicast for large bridged LANs (on the order of 10 segments). The scheme
au‘gments routing tables to handle multicast addresses and dictates that the members of
the multicast host group, G, issue periodic membership report packets by which bridges
learn the links on which to forward packets with destination G. In this way bridges learn
the paths for multicast packets and confine multicasts to portions of the network where
members of the destination group reside. The overhead of sending membership reports
in order that bridges can learn about the location of group members is shown to be very
manageable. The primary drawback to this proposal is the loss of transparency in the
hosts. The authors argue that the appropriate functionality may appear in future LAN
interfaces and can in any case be provided by modifications to LAN device drivers, but

for current systems such modification may not be deemed justifiable.

16

In {53] the authors develop algorithms that allow the use of (non-standard) bridges
in extended LANS of arbitrary topology without confining the traffic to a single spanning
tree. The scheme depends on decomposing the network graph into some number of
spanning trees, numbering them, and then marking each packet as traveling on a single
ree. The TST-bridge technique of building routing tables based on the source address of
packets passing the bridge ([5]) can be preserved while traffic flows along multipie paths.
Given the ability to perform such a multitree decomposition of the network, the authors
go on to present a routing algorithm for efficient (i.e., scope-controlled) multicasting.
The algorithm does depend on two-way communication to resolve a path so that hosts
involved in the exchange must transmit at some guaranteed minimum rate in order for

the bridges to retain the proper routing information.

The idea of using multiple spanning trees has a number of appealing characteristics.
Like source routing, it allows dynémic load balancing, leading to better overall network
performance, and in the case of a link failure, it enables a connection to switch very
quickly to another route. Unlike source routing, all the preparation cost of determining
and numbering a set of spanning trees (i.e. a set of well-known routeé cached at each
node) can be confined to network initialization time. Addressed-based table look-up
suffers the same drawbacks as the TST Routing Scheme, only the address tables are even
larger with multiple tree forwarding. And, of course, an implementation of this scheme
would require special purpose hardware bridges, which may be expensive and risks

interoperability problems with existing networks based on international standards.

Chapter 3

Transport Layer Multicast

Traditional Transport Layer (unicast) service shields higher layers from the details
of the underlying unreliable network, including transparent recovery from lost or
duplicated data. Since packets can be lost, the receiving context in most point-to-point
Transport Layer protocols sends control packets back to the sender. These packets
typically include an acknowledgement of received data (error control) and an indication
of the availability of buffers for more data (flow control). In order to recover from lost
~ control packets, the sender usually employs a timer. If the timer expires before the
arrival of an expected control packet, the control packet is assumed lost, and the sender

takes actions accordingly, e.g. requesting the receiver to issue another control packet.

The presence of multiple receiving contexts — reliable Transport Layer multicast
— complicates this scenario. First and foremost there are group membership questions.
A unicast address binds to a single, unique endpoint within the network. If that endpoint
does not exist at connection set-up or fails during a data transfer, then the transmitter
easily detects the failure since no control information arrives. With the dynamic binding
of multicast addresses, a connection involving some but not all members of the multicast
group is possible. Higher level mechanisms must ensure that, in any given exchange,
group membership is ‘correct’. Even if membership is ‘correct’, a Transport Layer

transmitter may not have a separate control channel for each receiver and hence can not

17

18

know when all multicast group members have reported their status.

The technique of making the control channel reliable by timing out lost control
packets encounters problems when extended to the multiple receiver case. First, the
timer must be based on the maximum of a set (possibly of unknown cardinality) of
roundtrip times. Second, if a time-out occurs and a control packet from each receiver has
not been received, then the protocol may act on the partial report from the receiver group
and risk making a wrong decision that degrades the efficiency of the transfer or, worse,
loses data due to the premature release of a transmit buffer. Alternatively, the receivers
not responding can be offered another chance to respond. This approach, however, leads
to the problem of how to contact these silent receivers. Two possibilities exist: (1) the
sender initiates a new response from all receivers, which may be expensive in terms of
network resources and may well result in another partial report from the set; or, (2) the
sender attempts the potentially prohibitively slow action of unicasting requests for
control packets to each silent receiver, assuming that all receivers are known
individually. A reliable Transport Layer multicast mechanism must specify one-fo-many
(flow, rate, and error) control algorithms that are robust and efficient in the face of partial

updates.

For many-to-one data flow within a LAN (e.g. collecting acknowledgements from
the receiver set), the phenomenon of network implosion must be addressed. Under any
transmitter-driven control scheme the set of multicast receivers will tend to synchronize
the sending of their control packets. Synchronized transmission can result in bursts of
traffic on the network and the inability of the multicast source’s network interface to

capture frames arriving back-to-back.

19

Even if all receivers send control information, the multicast transmitter must collate
the multiple status reports into directives that drive the multicast transfer. When the
sender determines that data has indeed been lost in transit to some subset of the receivers,
for example, the data must be retransmitted. If retransmissions are multicast, when a
single receiver or a small number of receivers causes retransmission of a data packet,
there is much work lost in resending data to the rc_ceivers who have already successfully
received it. If retransmissions are unicast, the sender may have to frame and send a large

number of copies of the same data.

3.1. Four Transport Layer Reliable Multicast Mechanisms

Reliable Transport Layer multicast mechanisms must first ensure effective
collection of control information from multiple receivers and secondly specify robust
one-to-many control algorithms. Below we examine four Transport Layer protocols that
address reliable multicasting. These protocols emerge from different design philosophies
and assumptions about use, performance, and environment. Perhaps the most important
difference to note in comparing their approaches to reliable multicast are the assumptions
about group management support from higher layer protocols. Two of the four assume
that the transmitting context has been supplied with an explicit list of the receivers at the

beginning of the data transfer; the other two do not posit any group management entity.

3.L1 CP

The Transport Layer reliable multicast protocol proposed in [16], called here CP,
represents a straightforward, but detailed attempt to handle reliable multicasting by

having the multicast sender manage separate transmit windows for each receiver. The

20

protocol assumes that process group membership is managed by some mechanism that -
allows the Transport Layer user to state the group membership and lock onto it for the
duration of each individual exchange. The transmitting multicast context therefore has a
list of group members. CP supports a range of reliability requirements, gives explicit
consideration in its design to the possibility of internet links of low-bandwidth and/or a

point-to-point nature in the delivery path, and has two proposed service interfaces.

3.1.2. Versatile Message Transaction Protocol

The Versatile Message Transaction Protocol (VMTP) ([11]) is designed as a next
generation protocol to accommodate communication strongly oriented toward request-
response behavior and uses the transaction paradigm as the basis of all communication.
Reliable multicast transactions are defined as transactions with group entities in which at
least one response from the multicast group is received. Responses aftcf the first one are
buffered for the user and delivered if requested. Hence, messaging service reliability
depends, beyond the initial response, on the reliability of user-level transactions. The V
Distributed Operating System ([9]), to which the development of VMTP has been closely
coupled, defines a service interface that includes process group management primitives.
VMTP itself has an integrated management facility that handles creating, modifying, and

querying for group entities (multicast group identifiers).

3.1.3. Xpress Transfer Protocol

The Xpress Transfer Protocol ([12][47]) (XTP) is a lightweight transfer layer (the
transfer layer being defined as the Transport and Network Layers merged) protocol being

developed by a group of researchers and developers coordinated by Protocol Engines,

21

Inc. It is designed to provide the end-to-end data transmission rates demanded in high
speed networks such as FDDI and the gigabit/sec wide area networks without
compromising reliability and functionality, including in particular, support for reliable
multicast. XTP intends to accomplish its goals through streamlining the protocol,
combining the Transport and Network layers, and utilizing the increased speed and
parallelization possible with a VLSI implementation ([51]). XTP defines a reliable
multicast mechanism such that a transmitting context, knowing only the group address,
can perform a flow, rate, and error-controlled one-to-many message delivery. Like
VMTP and unlike CP, the mechanism described has been carefully designed so that
reliable multicast impeées a minimum of overhead on unicast protocol processing. The
reliability guarantee is fragile in the sense that transmit buffers are released based on

estimations of the maximum roundtrip time between the sender and the receiver set. '

3.1.4. NAPP

A mechanism based on Negative Acknowledgement with Periodic Polling (NAPP)
([50]) takes the novel approach of having background daemons at each receiver that
assure progress and periodically send liveness messages to the source during a multicast
distribution. The mechanism assumes that a one-to-many ‘virtual circuit like connection’
has already been established; thus, the sending context has explicit knowledge of the
receiver set. Receivers multicast control information so that all group members overhear
each other, and each control message that reaches the multicast source contains a report
on all receivers’ sliding windows. This relaying of control. information reflects a

fundamental assumption underlying the design of NAPP, namely that the failure of one

22
receiver to receive a packet strongly suggests that others have missed the packet as well.

3.2. Flow Control

Flow control refers to the receiver’s ability to throttle the source in order not to
overrun the available buffer space on the receiving host. A multicast exchange’s flow
control must be governed by the minimum of the flow control parameters for all the
receivers in the exchange. The alternative is to allow a situation in which some subset of

receivers is deliberately overrun, a strategy that would normally be counterproductive.

Maintaining proper flow control parameters at the sending context is particularly
important since hardware improvements have produced networks with vanishingly low
bit-error rates, meaning the majority of errors on these networks will occur due to
incorrect flow control. The control information collection strategy should ensure that the
transmitter knows about or quickly learns the correct flow control parameters at
connection set-up. If for any reason during a data exchange (i.e. early release of transmit
buffers) the receiving group is pruned, the transmitting context should ideally recompute
the new minimum flow control parameters since some slow receivers may have been

dropped.

XTP, CP, VMTP, and NAPP base flow control on the most limited receiver in the
receiving group. The success of their flow control algorithm therefore depends on the
effectiveness of their control packet collection schemes. Unlike CP and NAPP, XTP and
VMTP do not assume that the multicast transmitting context has explicit knowledge of
the receiving group and therefore cannot know with absolute certainty whether all

receivers have reported their flow control parameters or not.

23
3.3. Collection of Control Packets

3.3.1. Simple Reporting: CP

The CP f)rotocol takes the simplest approach to structuring the flow of control
informat_ion by having multicast receivers unicast their control packets to the source,
which knows the receiving set and manages a control channel for each receiver. The
strong reliability guarantees possible under this scheme result from (1) the maintenance
of a control channel for each receiver and (2) the underlying assumption of a powerful
group management support facility. This facility maintains a lock on the multicast group
membership for the duration of an exchange and notifies the n'ansfxaitter should a server
leave the group abnormally. As for network implosion, the designers of CP acknowledge
the problem, present some mathematical analysis of it, suggest some general approaches

to dealing with it, and finally leave it to implementors of the protocol to solve.

3.3.2. User-Level Responses: VMTP

In the VMTP unicast, a transaction starts with a client issuing a request to a server
entity. At the server, on-demand connection set-up creates a transaction record upon
receipt of the request. It is expected that a response packet containing the user-level
response data will usually be quickly generated at the server, and that this response
packet will function as an acknowledgement to its associated request. Otherwise, based
on a time-out, the client sends a demand for an explicit acknowledgement to the server,
who responds immediately. In this way, the client is assured that the delay is due to

server processing and not because the request was lost.

. ' 24

VMTP’s multicast capability focuses on compatibility with unicast mechanisms. A
multicast transaction follows the same sequence of events as descﬁbed above for unicasts
except that the client sends its request to a group entity. The VMTP sender sets its timer
upon issuing a request. Receipt of the first response disables the timer, and thereafter the
VMTP client awaits responses without taking any further action. If the timer expires
before any response arrives, the VMTP client issues a demand for an immediate
acknowledgement from the group of servers. No special mechanisms address network
implosion, though user-level acknowledgements generally ‘produce a much greater
variance than control packets generated within the communications protocol itself,
making implosion less likely.

VMTP’s 1-reliable multicast primitive is tailored toward the protocol’s target
environment of rapid exchange of small amounts of data over a network with low error
rates (e.g. remote procedure calls over LANs). (The protocol accommodates large
requests and responses through packet groups.) For the common case of a single packet
multicast request, the VMTP multicast provides a low-overhead service. The
application-level transaction determines reliability beyond the initial response, which
indicates a high probability that the members of the server gfoup will see the request.
For the k-reliable semantics of multicast introduced in the V System, this 1-reliable
primitive appears to be adequate. The specification of VMTP ([10]) does not explicitly
describe how to provide flow-, rate-, and error-controlled one-to-many delivery of multi-
packet requests, though it could be argued that the existing protocol features are adequate

to build such a service.

25

3.3.3. Adaptive Timers and Slotted Damping: XTP

XTP protocol processing for multicast uses a: bucket algorithm at the sending
context. As with unicast, the multicast transmitter sets a status request bit (SREQ) in an
out-going packet in order to get receivers to issue a control (in XTP parlance, CNTL)
packet. The time at which a request was issued as measured by the XTP sync counter,
which is incremented by one each time a packet is transmitted from the context, is
recorded at the transmitter. Each in-coming CNTL packet contains an echo value that
reflects the value of sync as known at the receiver. (If the sender uses a CNTL packet to
send a SREQ, this packet will contain the new sync value.) The sync/echo mechanism
enables in-coming CNTL packets to be sorted into buckets by "age", i.e. sync value, and
CNTL packets in the same bucket are coalesced by recording the minimum of the flow
parameters, the byte-based sequence number (rseq) that indicates the highest consecutive
sequence number received without error at the issuing receiver, and the maximum of the
round trip time estimate. The wait interval for determining when to act on the oldest
bucket is calculated by a smoothing procedure suggested by Van Jacobsen to the round
trip time values obtained in CNTL packets. Unless transmit buffers are nﬁistakenly
released early, the XTP error control algorithm ensures that all correctly functioning

receivers will eventually receive the multicast distribution.

In XTP a multicast receiver issues a control packet to the group address. For large
groups the XTP specification document ([48]) suggests a heuristic, called damping, that
lessens the number of superfluous control packets flowing to the transmitter and
addresses network implosion. Damping requires that receivers, upon seeing another

receiver’s control packet, dequeue any control packets that they have which contain an

26

rseq value greater than or equal to the overheard value. Damping does not presuppose

any knowledge of group membership at either the sender or the receivers.

The primary disadvantage to the proposed damping mechanism Tesults from its
fragility due to timing considerations that may vary widely over disparate environments.
It is not clear that a node, R, can receive CNTL packets and pcrform quickly enough the
processing necessary to locate and dequeue R’s own CNTL packet. These timing
concerns may seriously jeopardize the robustness of the multicast mechanism.
Accordingly, a second heuristic xnown as slotting is introduced in the specification
document. Slotting refers to the introduction of a random back-off time before a receiver
generates its CNTL packet. This technique allows time for CNTL packets 10 arrive that -

might damp the out-going CNTL packet.

While an enhancement to just damping alone, slotted damping, like damping, seems
susceptible to environment-specific timing dependencies. The density, homogeneity, and
number of receivers all will play a role in the effectiveness of the slotting technique. A
group management scheme for XTP could provide hints about these group
characteristics. The XTP specification document also notes that slotted damping is
compatible with the bucket algorithm, but care must be taken to insure that slot delay is

less than the lifetime of a bucket ([48)).

TP multicast is currently focused on multicast over a single segment. In particular
slotted damping may not prove effective in avoiding congestion problems at routers due
to the multicasting of all XTP Protocol Data Units (PDUs). Modifications or alternatives

1o the siotted damping heuristics may be considered by the designers of XTP as

27

multicasting matures. One approach would be the collection of control information
through relaying information back to the transmitter via a control channel structure such
as a tree or a ring. The multicast sending context, the receiving contexts acting
independently, or group management could establish and maintain the relay route. If the
structure is created at connection set-up time, long-lived connections are preferable since

they amortize more efficiently than short-lived connections the cost of set-up.

Consider the following scenario. Each group will contain a small number, say four,
of special receivers, called collectors, from which any sender to the group will receive all
control packets for the transfer. When a processing entity joins a group, it is given a
collector’s address, to which the new group member will unicast its control packets.
Collectors coalesce control packets and relay (unicast) them in a single composite control
packet to the multicast sender. A collector needs only enough knowledge to set up its
address filters correctly and some logic with which to coalesce control packets. From the
multicast sender’s viewpoint, the data transfer is considerably simplified. The sender
establishes a connection with the group and receives a fixed number (here four) of
control packets on each sender-generated request for control packets as well as error

reports whenever errors occur ([21]).

This caching strategy offers many benefits. Four collectors would widen the
bottleneck at the source host’s network interface by a factor of four. The two-step
unicasting of control packets avoids the potential for generating a large number of packet
interrupts at participating hosts. This consequence is inherent in the schemes that have
receivers multicast their control packets to the group (like XTP). Collectors perform a

sort of localized suppression of control packets in coalescing packets. This feature would

28

be useful in reducing traffic through routers for a group residing on multiple segments
and in partitioning the problem of collecting control packets for large groups on a
single-segment LAN. Moreover, the collector algorithm could possibly be designed to
collapse to a simple scheme of receivers unicasting responses directly to the sender for
small groups that do not need two-step control packet reporting. The delay of relaying
packets, especially on single-segment LANs, the heavy processing duties of the
collectors, and the overhead of managing the relay structure represent the primary

drawbacks to this idea.

3.3.4. Polling: NAPP

NAPP and CP have similar design goals in the following sense. Both protocols
emphasize a high degree of reliability in multicast data delivery at the expense of
producing lightweight, fast protocols. (For XTP and VMTP, the trade-off is roughly the
opposite.) In NAPP the multicast source transmits data and performs retransmissions
based on control information from the receivers. Like XTP, NAPP uses multicast control
packets so that receivers may monitor each other’s state and thereby reduce the amount
of control traffic. NAPP receivers, however, interact in a far more complex manner than

the simple damping behavior found in XTP.

Receivers issue three packet types for control information: ACK, PACK, and SREL
All three are multicast so that receivers overhear and monitor each other’s state upon
transmission of every control packet. All three contain a state vector reporting the
highest in-sequence packet received at each of the receivers. The data source uses the

in-flow of state vectors to decide when to slide forward its transmit window,

29

Some terminology is needed for the discussion of NAPP that follows. Let M be the
maximum number of packets that can be outstanding, that is, pending to be
acknowledged at any one time. Let V; be the first in-sequence packet not received at
receiver i. Finally, let W; be the window of receiver i consisting of packets sequenced V;,

s Vi+M ~1, All timers are assumed to have a granularity of milliseconds.

A receiver issues a poll-cum-acknowledgement (PACK) every T pack milliseconds.
The PACK is numbered V; (expressed here as PACK(V;)) and serves to solicit
(re)transmissions, if any, of packets in W; and acknowledgés the packets in the range
Vi—M, .., V;—1. APACK is rescheduled for T pack milliseconds later upon reception of
a packet in W;, upon transmission or receipt of an SREJ(m), m W;, or upon receipt of a
PACK(g), g 2 V. Thus, PACKSs serve as sort of background daemons that are never

actually transmitted as long as data continues to flow to the receiver.

An SREJ(m) packet is scheduled for transmission by a receiver as soon as message
m is detected as being lost. However, any SREJ packet is transmitted at its scheduled
transmission time only with probability P and otherwise rescheduled for T gy
milliseconds later. When a receiver, R, overhears another receiver's SREJ(m), if
message m is known to be lost already, then its own SREJ(m) is rescheduled for some
time later, presumably putting off SREJ(m) long enough that the overheard SREJ(m) will
have gotten message m retransmitted in the meantime. Any scheduled SREI(mn) is
dequeued upon reception of m. If message m has already been received at R, the
overheard SREI(m) is ignored. Otherwise, message m is now perceived to be lost, and a
SREJ(m) is scheduled for later transmission. Furthermore, receiver R checks to see if

any messages from V;, ..., m - 1 are lost. Thus, the reception of SREJ(m) at the source

30

serves to acknowledge (possibly redundantly) V;-M, ..., V; - 1.

The third component in the trio of control packet types is an ACK(p) packet. ACKs
are positive acknowledgements that receivers issue upon receiving some number of
packets in sequence. To ensure reliable delivery, upon transmitting an ACK, a receiver
reschedules the transmission of the same ACK for T 5o« milliseconds later. ACKs are not
necessary for the correct working of the protocol, but they do speed up the process of
conveying acknowledgement status and advancing the source’s transmit window.
ACK(V;) acknowledges V;~M.,..., V;—1 at the source. Also, receivers overhear other
receivers’ ACKs and use them to monitor status in ways similar to those outlined for

PACKs and SREJs.

Though there are more aspects to NAPP, this description gives the flavor and the
most important aspects of its operation. In an actual implementation of NAPP, much
attention must be given to the mechanisms to determine the correct settings for its many
timers; the paper describing NAPP ({50]) does not focus on these implementation details,
but instead notes the relative lengths of timers, €.g., Tpack > Tack. A primary drawback
to NAPP’s approach is the management of adaptive timers in the face of dynamic system
parameters, changes in group size, and connections made by multicast sources of varying
processing power. The defaults for the timers that drive the background daemons at each
multicast group member may be inappropriate for a particular connection. Short
transfers will suffer unpredictable delays and/or periods of temporary instability as timers

adapt.

31

3.4. Error Control

Error recovery at the multicast source must address whether to unicast or multicast
retransmissions and whether to selectively retransmit or use go-back-N. Go-back-N
requires less processing to determine the exact data that was lost, but risks generating
large amounts of data if multiple requests for the same data are processed at the multicast
source. Multicasting retransmissions burdens up-to-date listeners with processing
duplicate packets. Unicasting to the unsuccessful receivers forces the sender to frame
and send multiple copies of the data and to know how to address individuai group

members.

XTP uses go-back-N multicast retransmission and relies on an implementation
having a robust method for calculating of the proper processing checkpoints. VMTP
does not specify multicast retransmission policy, though the logical choice seems to be
selective multicast retransmission. NAPP provides for selective multicast
retransmission. Multicasting the data follows from the NAPP designers’ belief that the
Joss of data at one receiver strongly suggests loss of data by other set members. Selective
retransmission makes sense given the sophisticated interaction between NAPP receivers,
which reduces the possibility of retransmission requests overlapping. Finally, CpP
employs a more elaborate mechanism. In deference to the possibility of a multicast
exchange over low bandwidth delivery paths, retransmissions are unicast to individual
receivers unless the proportion of failed deliveries to group size is larger than some user-
supplied threshold value. In the latter case, retransmissions are rm;lticast to the entire
group. The threshold value would be set based on the number and relative dispersion of

the host group, lower for groups on LANS and higher for groups across internetworks.

Chapter 4

Multicast Group Management

4.1. Introduction

The presence of multiple receivers in a Transport Layer exchange introduces
reliability issues related to communication with the ‘correct’ multicast set. As support
for multicast at the Transport Layer is a relatively recent development, ligtle attention has
yet to be paid to designing auxiliary mechanisms for determining and controlling the
membership and status of multicast groups. We believe that this multicast group
management (MGM) functionality is properly handled outside of the Transport Layer
jtself (see Section 4.3), though the exact nature of a MGM facility will vary with the
multicast primitives and service interface of the Transport Layer protocol that is being

supported.

A body of literature exists on atomic multicast protocols ([6][491[26]), which are
designed for distributed applications that require strong reliability afld message ordering
guarantees. For this class of applications, reliability is typic_aliy defined as atomic
delivery — if one process receives the message, then all do — and consistent message

ordering — all multicast messages addressed to the same group are delivered in the same

order to all the process group members, even if the messages originate from different

groups. Atomic muiticast protocols are process-level strategies for maintaining these

32

33

requirements in the presence of process and network failures. Techniques include
passing a token among group members ([49]), having a rotating primary receiver ({7]),

and two-phase sequencing protocols ([6]).

In contrast, by multicast group management, we mean a facility that would provide
applications with a set of services much less powerful, but also much less expensive, than
those of the higher layer atomic multicast protocols. MGM primitives are intended to
enable the application to discover and control multicast group configuration and to
express membership requirements precisely for a particular multicast exchange. At least
within a client-server model for multicasting, MGM represents a general-purpose
mechanism by which applications can tune the Transport Layer multicast service using
application-specific knowledge. A properly designed MGM facility augments the
multicast data transfer protocol with the goal of providing the Tra.nsport Layer user (at
the transmitting node) with control over the configuration of the receiving set and

programmatic reliability for each instance of group communication.

4.2, MGM Possibilities

We now look back to the protocols examined in Chapter 3 to see how they can be

related to MGM.

CP and NAPP specify that the multicast sender have explicit knowledge of the
multicast group. NAPP assumes that some separate mechanism establisﬁes a "virtual
circuit like connection” ([50]) between the sender and the receiver set. During this
connection phase the sender builds a list of the receivers. Once the connection phase

completes, the loss of a multicast receiver causes delivery to the group to fail. Hence

34

process group members leéving the group after a connection has been formed should be
reported to the multicast sender if the exchange is to be completed and we are to avoid
rebuilding the connection. Though NAPP as defined does not address group
management, the polling acknowledgment (PACK) mechanism at each receiver is well-

suited to handle reporting membership changes.

CP specifies a transaction-based service interface in which the user can pass two
parameters, a list of essential servers and a minimum number of servers, that together
determine the required multicast group. The designers of CP ﬁosit’ the support of a group
management facility that allows the multicast sender to lock onto the group membership
for the duration of a single exchange. Specifically, a server which has begun responding
to a request is prevented from leaving the group, and, if the server leaves abnormally, its

departure is reported to CP.

VMTP and XTP define multicast primitives that do not depend on enumerating the
receiver set. VMTP relies on the higher layer client to determine the success of the
transaction based on the number of responding servers. A more powerful multicast
service could be constructed by incorporating group management functionality into the
management module specified to be co-resident with every VMTP host implementation.
This module, which has a shared memory interface with its associated VMTP instance,
appears to remote sites as a server and currently handles, for example, callbacks for

authentication on secure requests,

XTP provides reliable one-to-many data delivery in the sense that control messages

from the receiver set that arrive within a time window are processed ([48]). All XTP

35

PDUs, data and control, are sent to a group address. Control algorithms at the data
source continue to function as long as at least one member of the receiving set is active.
Lagging or failed receivers are dropped from the exchange without notifying the XTP

user.

Under the XTP multicast algorithm, applications have no ability to enumerate the
multicast set or to achieve reliability beyond probabilistic delivery based on time-outs.
To some extent applications could handle group management directly using
concentration, a technique whereby contexts for a set of in-coming data streams are
spawned from a master context. An XTP implementation can be specialized for this
behavior ([48]). A MGM facility offers primitives to handle group management tasks sO
that every application does not have to perform management from scratch, Also, XTP’s
target environments such as the 100 Mbit/s FDDI network can support on the order of
1000 nodes on a single segment. Multicast applications in these environments can be
expected to involve host groups with as many as a few hundred hosts. With such large

receiver sets, concentration becomes resource-intensive and clumsy.

4.3. Anatomy of MGM

Multicast group management is a service distributed across all hosts‘ within the
management domain. Though the service could be controlied by a central agent,
robustness and efficiency argue for a local agent at each host, a group management entity
(GME), that handles group management in a fully distributed fashion. These local agents
offer two service ‘interfaces: one to application processes and the other to the Transport

Layer protocol.

36

Application processes will use the mechanisms available through MGM to
determine and control multicast group configuration and enumeration. These application
processes may be distributed applications themselves or process-level group management
protocols implementing, for instance, distributed operating system services ([97). MGM
can provide group polling mechanisms and some low-level control over the network-
visible distributed entities (multicast group members) associated with a process group.
This functionality is required by many process-level group management schemes, may be
difficult to achieve outside the communications protocol, and possibly can be more
efficiently implemented within MGM. On the last point, for example, polling in which
GMEs use the Transport Layer protocol may invite, based on knowledge about the set of
MGM internal messages, the design of a streamlined many-to-one communication

mechanism that could not be supported in the general Transport Layer interface.

Multicast group management functionality will allow the Transport Layer protocol
to support reliable multicast services that guaranice membership management within &
one-to-many data exchange. If the Transport Layer uses an explicit list of the individual
receivers in an exchange, MGM can aid in list creation and management. If the
Transport Layer multicast primitive does not explicitly track group members, then group
management provides the polling service and handles the state information necessary to
insure a user-specified membership for an exchange. Since the GME can interrogate the
Transport Layer protocol for state variables, an exchange-specific census can include a
checkpointing of receivers’ progress, if the application is willing to incur the overhead of
this polling. Group management services also may include the means tO implement

application-specific policies concerning whether members may drop into or out of the

37

multicast connection. If the user-supplied membership requirement is violated due to
shifting membership, then the Transport Layer protocol is notified and the connection
released. This approach is consistent with regarding the required group membership as a

Quality of Service parameter on which the multicast connection is contingent ([4]).

While the overhead of communicating and updating group state will not be
worthwhile for all applications, we believe that the absence of the ability to explicitiy
track the members of a multicast group within an exchange represents a severe limitation
for a significant number of potential multicast users. On the other hand, moving the
membership-tracking functionality outside of the Transport Layer is essential with
lightweight, next-generation Transport Layer protocols like VMTP and XTP. These
protocols can not afford to have complex multicast primitives that would jeopardize their
design goals, including, in the case of XTP, a VLSI implementation. In order to
accommodate the growing number of distributed applications that will demand a wide

range of multicast services, the enhancements of MGM are needed.

4.4. Placement of Group Management in the OSI Reference Model

Reliable multicasting has only just begun to move from research topic to working
communications tool. The question of how the multipeer model will permeate the OSI
Reference Model architecture is only now emerging in the ISO standardization
committees ([44]). The direction that this work takes will determine the final placement,
focus, and form of the entity or entities that will provide group management
functionality. The placement of MGM within the OSI framework must consequently be

considered an open question at this time.

38

Natural parallels exist petween the role of MGM and two management entities
defined in the OSI Model: (1) system management at the Application Layer ([247) and
(2) the Transport Layer Management Entity (LME) ([28] [45])- Embedding MGM within
the LME of the Transport Layer is a "plausible scenario” ([45]) that fits well our
definition of MGM. The interaction between 2 LME and the layer which it manages is
implementation dependent and therefore no restrictions are placed on the nature of this
interaction ([28]). The LME would encapsulate knowledge of the multicast contexts as
an object to be managed. (A template for encapsulating Transport Layer objects to be
managed has been defined by the ANSI X3T3 Committee ({241).) Event notification
based on shifting membership within a multicast group is a form of configuration and/or
fault handling. As for the interface between a LME and an arbitrary application process,
the process would submit Common Management Information Service (CMIS) (35D
requests 1o the Application Layer, which are translated into Common Management
Information protocol (CMIP) ([36]) PDUs. These CMIP PDUs would then be
communicated, possibly directly, to the LME, whfch would decode the CMIP PDUs and

service the request ([28]).

4.5. XGM

In this section we propose a service interface for a MGM facility, XGM, that

assumes XTP to be the Transport Layer protocol being supported.

39

4.5.1. XGM/Application Process Interface

census(group, &subgroups, [&member-list], &number, timeout)
partition(group, from-subgroups, to-subgroups)
merge(group, to-subgroup, from-subgroups)

state(group, [subgroups], [member-id], we)

Multicast groups are identified by a multicast Network Layer group address used as
the value of the group parameter. XTP Revision 3.5 ([48]) relies on IGMP ([19]) to
define a mapping between the Class D IP multicast addresses used within XTP and 48-bit
IEEE-compatible MAC group addresses. If an addressing scheme other than IP is used, a
mapping to MAC group addresses must be specified. Member-ids represent a value that
uniquely identifies a multicast group member (context) on a host, which is the role of
XTP’s key values (ignoring the most significant bit). Having no knowledge of how
membef-ids are generated, applications will interpret this value as an unsigned integer.
Any individual multicast group member can thus be identified by a <MAC address,

member-id> pair, which is the form of the (optional) &member-list in census().

An application process uses the census() function to discover a multicast group’s
current membership. Knowledge of individual set members may be useful for group
management purposes or, if the XTP service ihterface permits, for specifying the
inclusion of individual group members or subsets in data transfers. For efficiency,
&member-list is returned only when required. The census() primitive will always return
the total number of members that respond to the poll (&number) and the union of all

subgroup identifiers for the polled members (&subgroups) (discussed below).

40

XGM associates with each multicast member an #n-bit vector, a subgroup vector.
Each bit position of the subgroup vector represents a logical subgroup. A group member
belongs to the k* subgroup if the member’s subgroup vector has the k** bit position set.
Each member must belong to at least one subgroup and may belong to any number up to
n. While XGM assigns each multicast group member to a random subgroup on creation,
the group management primitives collectively are designed to insure that application

processes can exert complete control over the mapping of set members to subgroups.

This simple partitioning mechanism has a number of attractive properties. By
default, given an initial assignment to a random subgroup, multicast set members are
distributed uniformly over the range of subgroups. This arrangement contributes to
efficient and effective group management for large groups. Each GME can take the
union of all subgroups to which local group members belong and use this composite
mask as a fine-grain software filter for determining whether to respond to a polling
request from a remote GME. Multiple sequential polls or distributed polling can be used
to enumerate very large groups while using a bounded number of XTP contexts at the

concenirator.

Dynamic grouping of set members can take place under application control.
Assignment of a common subgroup vector can isolate special group members such as
routers or group members that are related in some application-controlled way. Unlike
flat address spaces such as IP group addresses, subgroup vectors allow for hierarchical
partitioning schemes. Moreover, by developing subgroup assignment conventions
known and practiced by all processes in a distributed application, dynamic reassignment

of subgroup members need only take place rarely, €.g., in response to failures.

41

If XTP multicast contexts were specialized to incorporate the filtering of FIRST
packets based on subgroup bits carried in the packet, then users would have logical scope
control when multicasting data. The most efficient filtering would link subgroup
membership with MAC layer group addresses in order to allow filtering to take place at
hosts’ network adapters. A client in need of a single server from a set of identical servers
would, for example, be able to restrict its request to less than the entire set of servers.
Multicast services that reside at well-known addresses could use large numbers of
identical servers without burdening the network with a correspondingly large number of

responses to each service request.

In order that applications have the full flexibility of the subgroup mechanism
available to them, XGM provides primitives to change the group partitions, e.g., merge()
and partition(). These primitives propagate to the host group with datagram reliability.
Reliable delivery is not meaningful since we do not posit any restriction on joining and
leaving groups. In order to avoid difficulties with correct connection monitoring (see
Section 4.5.2), a multicast group member involved in a connection can have its subgroup
vector changed only if the change request comes from the GME at the data source of the

connection.

In addition to the census() and subgroup vector management primitives, XGM
should provide a service primitive by which the user can read and set variables associated
with a multicast member, a subgroup, or a multicast group. One variable that must
belong to the user’s interface is the subgroup vector. An application should be able to
read and write the value of its local multicast member’s subgréup value. Group

parameters could include a cached estimate of group size and default timer settings for

42
establishing a connection with the group.

4.5.2. XGM/XTP Interface
connection_monitor(group, connection-id, membership)
release_monitor{group, connection-id)
checkpoint(group, connection-id, checkpoint-id)

report(group, connection-id, member-id, change, source-host)

Connection_monitor{) is called at the multicast originator to initiate XGM state
information for monitoring the one-to-many data exchange identified by group and
connection-id. Membership specifies the required membership in the connection with
the exact form of sﬁeciﬁcation dependent on the XTP service interface. At the minimum,
specification in terms of subgroup vectors should be supported. The state information at
a GME concerning a connection is released as part of the XTP disconnect state machine,

which calis release_monitor(}.

The semantics of the checkpoint() primitive are that the membership associated
with the XGM internal data structure identified by group and connection-id be verified
via some form of group poll or equivalent mechanism. Checkpoint-id differentiates
between checkpoint() calls, which may take place concurrently with data transfer. The
group poll that results from a checkpoint() call can take place in a number of ways. One
scenario would be to have the Transport Layer user indicate checkpoints via placement
of a marker in the data stream. The poll request could travel in an XTP PDU using
XTP’s tagged data channel ([48]). At the receivers, the tagged data will be delivered to

the local GME, which will send an out-of-band reply to the GME at the multicast

43

originator. In this case, the checkpoint-id could be the XTP sequence number associated

with the marker.

When a multicast member drops into or leaves a multicast conversation, the local
GME issues a report() to the GME at the multicast sender. This reporting facility
maintains the integrity of the membership tracking within a connection monitor in the
face of shifting membership. A method for joining an in-progress multicast conversation
is defined in XTP ([48]). The GME plays a watchdog role in the detection of local
multicast contexts that close abnormally. Change indicates whether a member has been
added to or deleted from the group. Source-host should always be known at the remote
GME since this information is present at a multicast group member in an active

connection.

Chapter 5

Reliable Multicast Service using XTP

5.1. Introduction

present a multicast facility (the Multidriver), constructed over XTP and independent of
the XTP multicast algorithm, using the out-of-band tagged data channel provided by
XTP ({201). The Multidrivep was designed by John Fenton and the author, and Fenton
implemented it as part of the UVA XTP driver set (201). The Multidriver gathers
explicit acknowledgments from all members of the multicast set and thus achieves
reliable transfer in a much stronger sense than the XTP multicast algorithm. This thesis
extends the Multidriver scheme to Support group management, and the functionality and

performance of this multicast facility, the List-Based Multidriver, are probed.

5.2. UVAXTP

The University of Virginia Computer Networks Laboratory has implemented the
Xpress Transfer Protocol in software. The UVA XTp architecture has a layered
structure. The bottom layer represents the 802.2 Logical Link Control (LLC) ([30D

interface to the network. Above the LLC sits the XTP Engine, which performs protocol

44

45

processing on XTP contexts, the structures that hold connection state information at an
endpoint. (In UVA XTP each context must either be a transmit or a receive context.) At
the highest layer reside XTP drivers. Drivers are special purpose niodules that use the
low-level interface to the Engine to implement an XTP service interface. Engine and
driver communicate through shared memory in the context strucfures, a small set of C
subroutines, and upcalls. XTP drivers handle decisions about retransmission, flow
control, synchronization, and buffering in order that the Engine performs only the

protocol processing common o all XTP users.

The separation of policy (driver) and mechanism (Engine) enables great flexibility
in designing the user interface to UVA XTP. Drivers can be tailored to the
communication needs of a particular application or class of applications. To facilitate
driver development, a set of primitives has been implemented that are functionally
modeled on UNIX system calls 50 as t0 provide a well-known user interface. From them
XTP drivers have been written for several communication services, including file
transfer, memory-10-memory transfer, and stream L/O. Driver primitives interoperate so
that an application links With a driver library and includes only the code necessafy for
that application. The code fragment in Figure 5.1 illustrates the use of driver routines. It
shows an application that reads characters from the network and displays them until the

connecton is closed.

5.3. Multidriver

Our multicast facility is implemented as an XTP driver (the Multidriver) that

provides the user with four primitives. For unreliable service, the user calls an

46

main{)
{
XTP_startup();
if {sghandle = Xmopen(“pipein“,"r“,device)) < SUCCESS)
{ fprintf (stderr,"Unable to receive from network"):;
XTp_finish(-1); }
while ({c=X_getc(xhandle)) > EOF)
putchar (c);
chlose(xhandle);
XTP finish(l);

Figure 5.1 — XTP Driver Primitives

initializing routine to set up state for a multicast transmit context. Data transfer through
the context is then available using any of the driver routines. For reliable multicasting,
the user calls an initializing routine that carrieé out a series of actions: (1) it sets up the
transmit context; (2) it creates a user-specified number of receive contexts (response
contexts); (3) it issues a connection set-up packet from the transmit context in order to
establish the multicast (forward) connection; aﬁd (4) it monitors the contexts sef up in (2)
to ensure the establishment of some user-controlled number of connections between
multicast group members and the response contexts. After these connections are made,
the user can carry out a reliable multicast transaction with the set of receivers that have

established response channels.

XTP provides a packet of type FIRST, which can carry user data as well as
addressing information, to set up a connection. After a FIRST packet establishes the
connection, the data source issues DATA packets. In a reliable unicast, the sending

context determines when the receiving context will issue CNTL packets, which contain

47

control information, by ‘setting certain request bits in out-going DATA (or FIRST)
packets. Within the byte-sequenced data stream of an XTP connection, out-of-band, or
tagged, data can appear as the first 8 (BTAG header bit set) or the last 8 (ETAG header
bit set) bytes of a DATA or FIRST packet. At the remote end, XTP passes up tagged data
uninterpreted to the user ([47]). The Multidriver suppresses XTP’s error control, e.g., the
multicast transmitting context never sets status request header bits in a DATA packet.
For reliable multicasting, the Multidriver manages its own control scheme by sending
control information as tagged data, which can be multiplexed with user data, in both the

forward and reverse channels.

5.3.1. Multidriver Design

The Multidriver design focuses on extending the unicast virtual circuit paradigm to
a one-fo-many connection. Implementation of this model requires solving
synchronization and coordination problems not encountered in umicast protocols.
Control information for th_e multicast connection must be efficiently and effectively
collected at the multicast source and there coalesced into directives for the multicast

transmit context.

Reliable one-to-many delivery implies the existence of some method for tracking
the progress of a set of receivers. Otherwise, the multicast sender cannot provide reliable
delivery since it cannot detect lagging or failed receivers. Rather than constructing its
own method for handling the control flow from multiple data sinks, the Multidriver uses
a well-defined mechanism already available within the Xpress Transfer Protocol — XTP

connections. Unicast connections to response contexts create channels for driver-level

48

control information as well as client data.

Laminating together XTP connections is attractive for a number of reasons. First,
XTP supports rapid connection set-up and tear-down. An XTP FIRST packet can
establish a connection and carry user data (as well as deliver tagged data). Connection
tear-down involves a 2- or 3~§acket handshake that is initiated by the final DATA packet
in the transfer. Second, the mapping of individual receivers to their response channels
takes place dynamically as in-coming FIRST packets establish connections with response
contexts; no prior coordination or management is needed. Finally, since control
communication can be handled using tagged data, the side channels enable bi-directienal.
user data flows, i.e., multicast transactions. Reply handling in client/server interactions-
has been recognized as an important component of multicast communication in many

classes of applications ([40]).

For many-to-one data flows, particularly within a LAN, the phenomenon of nerwork
implosion must be addressed. Implosion refers to the tendency of multicast receivers to
synchronize the sending of their control packets in any transmitter-driven scheme.
Synchronized transmission can result in bursts of traffic on the network and the inability
of the multicast source’s network interface to capture frames arriving back-to-back. Since
the Multidriver supports the gathering of user-level responses from multicast group
members, the problem of coordinating the reverse channels grows with the product of the
amount of data in the reverse channel from each receiver and multicast set size. The
Multidriver implements mechanisms that allow the multicast source to control network
implosion. The administrator of implosion control policy, whether a human user or a

management protocol, can use these mechanisms to determine the appropriate implosion

49

control strategy. The synchronization issues involved with network implosion are highly
dependent on system parameters. Hence the appropriate strategy is for the multicast
communication facility to provide the user with parameters that can be tuned to the target

environment,

The Multidriver design implements error, flow, and rate control for the multicast
connection. The multicast source solicits control parameters from the set of receivers in
the exchange. At the multicast source, after each receiver has responded, the Multidriver
takes the minimum of the reported control parameter values and submits this information
to the multicast transmit context in the form of an XTP CNTL packet. Since the
multicast transmit context is unaware that CNTL packets are being manufactured from
above (by the Multidriver) instead of arriving from below (from the network), protocol
processing inside the XTP Engine takes place exactly as with reliable unicasting. In this
way, control information from multiple communication endpoints is coalesced into
directives for controlling the multicast transfer without the addition of extra checks

within the transmit Engine.

Error control uses a go-back-N retransmission strategy as selective retraﬁsmission
for multicast in a LAN environment (e.g., low latencies and relatively high bandwidths)
seems unjustifiably complex. The Multidriver releases data in the transmit buffer as soon
as arriving control information indicates that all receivers in the exchange have that data.
Flow and rate control policies conform to the smallest values reported from the receiver

group since faster transfer will only result in costly errors due to dropped packets.

5.3.2. Multidriver Service Primitives

X Mopen(name, mode, device)

50

Depending on the value of mode, this routine either opens a multicast context
for unreliable multicast transmission or opens a context for multicast reception.
In the latter case, X Mopen () opens a receive context that listens on the
group address associated with name.

For unreliable multicast transmission, a transmit context is initialized such that the
header bits for multicast (MULTI) and datagram transmission (NOERR) will be set
in all FIRST and DATA packets issued from the context. Header bits requesting
CNTL packets are guaranteed not to be set in any out-going packet. Otherwise,
X Mopen () performs the same state initialization as its unicast counterpart,
X _Open(). X Mopen () returns a handle of type XFILE that the user must use in
driver calls to identify the opened XTP context.

The parameter name has a string value identifying a multicast group. The string is
mapped internally to the addresses that identify the set of listeners that make up the
multicast group. These addresses include the medium dependent hardware address,
typically a group address, and the transfer layer address. The format of the transfer
layer address depends on the environment since XTP supports multiple addressing
modes. The parameter device is present since a single implementation of XTP
can multiplex between multiple network interfaces.

X_MRopen(group, response, device, min, max, &xfiles[])

X_MRopen () performs a series of actions. It sets up a transmit context to send
to the multicast address to which group maps, and if initializes max receive
contexts to listen on the address to which response maps. A FIRST packet
is issued from the transmit context with tagged data containing the value of the
parameter response, and a timer initialized. Upon expiration of the timer,
X_MRopen {) returns to the user with an error indication if fewer than min
multicast set members have established connections with local response con-
texts. Otherwise, X MRopen returns a XFILE handle to the multicast transmit
context and places a XFILE handle in the array xfiles[] for each active
response context, up to a limit of max.

X_MRclose(xfile, &xfiles[])

X MRclose () closes a reliable group transmit context, x£1ile, and its asso-
ciated response contexts, xfiles[].

51

X_MRreply(xfile)

The multicast receiver opens a receive context (using X Mopen ()) that
listens on the group address. Upon the arrival of a FIRST packet, the Mul-
tidriver checks the ETAG header bit. If ETAG is set, the Multidriver opens a
transmit context (the return context) and sends a FIRST packet to the address to
which the string in the ETAG field maps (see Figure 5.2).

X_MRreply () allows the local client process to send data to the multicast source
using the return context. The parameter xf ile provides the handle of the multi-
cast receive context, not the return context, since the return context is managed
completely internally by the Multidriver. ¥X_MRreply () returns a special handle
of type KEY for the return context. The KEY handle can be used in place of an XFILE
handle in driver routines, which check for this special case. With the exception of
this indirection and the loss of the tagged data feature, the return channel functions
as an ordinary XTP reliable unicast connection.

The multicast receive context and its return context are always closed together and
can be closed in two ways. Either the remote end transmits a close indication to the
receiving context or the return context, or the local user closes the receiving con-
text. The local user cannot close the return context directly.

5.3.3. Control Scheme

All tagged data in a reliable multicast transaction exchange represents driver-level
control information, which is embedded in both the forward and reverse data streams. At
a multicast group member, if fhe local application process does not generate reverse
direction data, then the return context will be issuing XTP DATA packets containing
only tagged data. For tagged data in thé source-to-group (forward) direction, the first
byte of the the tagged data field serves as a control byte (see Figure 5.2). In the reverse
direction, no control byte is needed. ETAG fields carry responses to the flow/error

control flag (see below), and BTAG fields carry rate control parameters.

(1) connection establishment flag — indicates the presence in the tagged data field of

two items: first, a string that maps to the address on which to open the return context

daia
in S T ";'}f """"""""""""""""
DATA ',' . Eeserved ‘\‘ \\\ deliver-to
J b ', backoff \\\ sequence
,’I control \‘\\ ‘\‘mulﬁplier v, number
u” byte \\\ \ N
! AN
0 e e = =
LL reserved
deliver-to
flow/error control
|__ rate control
| use-backoff

L connection establishment

tagged
data 0 1 2 3 4 5 6
0 ettt > NAME <-----="="""""""
FIRST ;’
I ~ N
4 .
/ ~
1 A N
! -
L ~
i ~
[~ -

|1 [backoff _ multiplier

connection establishment

Figure 5.2 —

Multidriver Control Scheme

52

(2)

(3)

@

(3

53

and second, an integer denoting multicast set size. Before transmitting the FIRST
packet from the return context, the Multidriver receiver waits a random amount of
time between 0 and BACKOFF_TIME, which is determined by the multicast set

size,

flow/error control flag — requests the remote end to report one plus the sequence
number of the last byte received in order at the receiving context and one plus the

sequence number of the last byte that the receiving context will accept.

rate control flag — requests the remote end to report its XTP rate control

parameters, BURST and RATE.

deliver-to flag — notifies the remote end not to deliver data to the destination
process beyond the enclosed sequence number. The deliver-to flag offers the

multicast source a mechanism for synchronizing message commitment.

use-backoff flag — delivers an integer used for BACKOFF_TIME computation.
The flag indicates that a multicast receiver must use the accompanying integer to
compute thé value of its BACKOFF_TIME variable and begin using a random
backoff between 0 and BACKOFF_TIME for each packet transmitted from the

return context.

5.4. List-Based Multidriver

The List-Based Multidriver (LBM) is an extension of the Multidriver scheme that

gives the user more control over the multicast transfer. Under LBM, a multicast transmit

context has an explicit list of receivers, a transfer list, associated with it. The application

may fill in the transfer list from a private address table or, as with the Muitidriver, the list

54

can be built from the network during a group connection set-up phase. Each multicast
context has a user-settable subgroup vector associated with it. For receive contexts, the
subgroup Vector serves as a filter on the set of in-coming connections 0 which it will
belong. Fora transmit context, the subgroup vector determines the set of group members

that will participate in a reliable one-to-many data ransfer.

The contents of the control tags are the same for LBM as for the Multidriver except
that the subgroup vector of the context issuing the tag is included in the tag. Tags in the
many-to-one direction are now sent as reliable datagrams, breaking the one-10-0n¢
association between members of the receiver set and response CONtexts. At the multicast
originator, a set of response Contexts are available to accept and acknowledge in-coming
FIRST packets that will contain control tags. These contexts acknowledge the receipt of
the packet. LBM logic reads the control tag and updates the transfer list. It then closes

the response context and opens a replacement context.

The LBM strategy of having a transfer list hold the state information of the
multicast set‘tradcs off a reverse data channel per receiver for greater flexibility in group
management and XTP resource allocation. On the latter point, the number of COntexis
available in UVA XTP is currently 16 and will be 32 when UVA XTP is updated to
reflect XTP Revision 3.5. These values are significant in the sense that they allow certain
atomic bit mask operations that lend tremendous efficiency gains to the implementation
as a whole. While the target environments for UVA XTP have small enough node
populations that 32 contexts seems adequate, multicast groups could grow 1o a size where

having a response context dedicated to each receiver would not be feasible.

35

LBM has been implemented in a modular fashion so that all the Multidriver
primitives and semantics can coexist with it. During data transfer by any of the XTP
driver primitives, if a multicast transmit context has no transfer list, the Multidriver’s
scheme for processing control tag information is followed. Otherwise, LBM processing

takes place.

The primitives for LBM include:

G_Subgroup(xfile, &subgroup, mode)

This primitive allows the subgroup vector of a context to be set or read, depend-
ing on the value of mode. In our implementation we allow 8 subgroups.
X _Mopen () has been modified such that it selects a random subgroup with
which to associate the multicast receive context being opened. For transmit
contexts, the subgroup vector is set using the G_MRopen () primitive.
G_Subgroup () allows the user to change the subgroup vector in order to
shift a receive context into another subgroup or to change the reliability cri-
terion for data transfers from a transmit context.

G_Members(xfile, & memberlist, mode)

This primitive allows the user to read or write the membership list of a mult-
cast transmit context, xfile. The memberlist is a linked list of entries,
each of which has two fields, a 48-bit IEEE compatible MAC layer node ad-
dress and a byte representing the subgroup vector. The memberlist is
copied into the transfer list for xfile if the mode is WRITE, and it is re-
turned with the contents of the current transfer list for =xfile if the mode is
READ.

G_MRclose(xfile)

G_MRclose () closes a reliable group transmit context, xf1ile, and its asso-
ciated response contexts.

56

G_MRopen(group, response, subgroups, device, &min, max)

The parameters group, response,and device have the same functions
for G_MRopen() as for X MRopen(). G_MRopen () performs group
set-up by sending to the address group a FIRST packet with a tag that in-
cludes the subgroup vector subgroups as well as the other control informa-
tion. A receiver only responds to the multicast FIRST packet if its subgroup is
among those in subgroups. The multicast sender opens max response con-
texts on the response address. Atleast min receivers must respond and the
actual number that respond is returned in min. Max response contexts will be
retained for the duration of the group connection.

As receivers respond, they are entered into the transmit context’s transfer list.

Each responding control tag contains the subgroup of the responding member,

and the transfer list clusters members by subgroup. As with X MRopen (),

this process continues until a timer expires.

G_MRopen () imposes an initial selection process on group formation using the
subgroups parameter. LBM also offers the flexibility of pruning the group after the
group formation phase. After examination of the transfer list by a call to
G Members (), the user may reset the subgroup vector of the transmit context using
G_Subgroup (). To suppress extraneous network traffic, LBM always transmits the
subgroup vector of the transmit context in the initial packet containing user data. Each
receiver checks this packet to see if its subgroup has been pruned. If so, the receiver
leaves the conversation immediately. Excluded members close their contexts with an
indication to the local user. Since receivers are not associated with specific response
contexts, the loss of receivers that were entered into the transfer list during connection

set-up does not alter the number of response contexts available at the multicast originator

for many-to-one control flow.

57

5.5, Performance

In this section we present performance numbers for the Multidriver and LBM over a

heterogeneous single-segment network.

5.5.1, Target Environment

UVA XTP is designed to serve as the transfer layer component for a real—tirhc
communications subsystem such as that specified in the SAFENET standards for military
and commercial ships ([271). In the UVA implementation, XTP runs on top of a real-
time, link layer messaging service ([52]). The performance measurements below were
done on a single-segment Proteon ProNET-4 802.5 token ring operating at 4 Mbit/s.
Network nodes include ALR 25 MHz Intel 386 FlexCaches (Flexs), Zenith 16 MHz Intel
386 machines (Zeniths), and Core 25 MHz Intel 386 machines (Cores). All nodes have

AT buses.

5.5.2. Multicast Latency

To measure multicast latency, we perform a number (typically 100) of consecutive
reliable 1-byte data transfers and measure the average message latency. Multicast
latency is defined as the time between submission of the message to the XTP driver level
and confirmation that all members in the multicast exchange received the message. The
timing routines used are believed to be accurate to within a few milliseconds; they have
been verified to be accurate within 50 ms by comparison with the packet timestamping of
WireTap ([43]), a real-time network monitor developed by the University of Virginia
Computer Networks Laboratory. Though crude, the upper bound on timing error

provided by WireTap ensures a maximum timing error of less than 10% for all individual

58

measurements and less than 3% in most cases. Timing ambiguities are further smoothed
by taking the average of at least three separate runs of the test program. The numbers

given in the tables below are such averages.

Table 5.2 presents the unicast user latency for one-byte messages from a Flex to
each of the other types of machines. Table 5.1 presents the LBM multicast latency from
the Flex to receiver sets varying from 1 to 5 nodes. The figures show that the LBM
scheme imposes a much higher latency cost than unicast, !_)ut latency costs increase
slowly as the size of the receiving set grows. For a Flex-to-Zenith transfer, multicast
latency is over three times the unicast latency. As the nﬁmber of nodes increase,
however, the multicast latency grows slowly, more slowly than the increase for a series
of unicast transfers to the same receiver set. By fhe time a 5-node receiver set is reached,

the multicast latency, 36.3 ms, is within 20% of the sum of the unicast transfers, 30.5 ms. -

Multicast Roundtrip Latency (LBM)
Transmitting Nede: 25 MHz 80386 Flex
l1-byte messages

| Number of Receiving Nodes___Receiving Nodes __ Average Roundtrip Latency
1 1 Zenith _ 19.8 ms
2 2 Zeniths 23.1ms
3 2 Zeniths, 1 Core 27.1ms
4 2 Zeniths, 2 Cores 31.8ms
2 Zeniths, 2 Cores,
5 1 Flex 36.3 ms

Table 5.1 — LMB Roundirip Latency

59

By extrapolation, the experimental data suggests that the LBM multicast scheme offers
lower latencies only in the case where the number of nodes in the multicast group is
relatively large (e.g., generally ‘greater than 8-10) and/or the unicast latency is high with -

some members of the multicast group.

The relatively high minimum latency of the LBM scheme reflects its reliance on
multiple crossings of the boundary between Engine and Driver. Unicast latencies
measure Engine-to-Engine interaction since, upon reception of the FIRST packet
containing the byte of user data, the receiving Engine sends back an XTP CNTL packet.
The transmitting Engine receives the CNTL packet and signals the user, and the clock is
stopped. In contrast, under the Multidriver, the arriving DATA packet at the remote end
contains tagged data, which must be delivered to the driver level. The receiving
Multidriver constructs a DATA packet containing the driver-level acknowledgement and
ransmits it from the return context. This reverse-direction DATA packet is
acknowledged with an XTP CNTL packet at the original transmitter’s response context.

Both the response context and the multicast transmission context are updated by the

Unicast Roundtrip Latency
Transmitting Node: 25 MHz 80386 Flex
i1-byte messages

Receiving Node Average Roundtrip Latency |

Flex 5.7 ms
Core 5.6 ms
Zenith 6.8 ms

Tabie 5.2 — Unicast Roundtrip Latency

Multidriver before the user is notified and the clock stopped.

Table 5.3 shows the Multidriver latencies for the same transmitter and receiver sets
as in Table 5.1. The LBM scheme is more expensive than the Multidriver scheme in that
the reliance on reliable datagrams from the receivers forces the opening and closing of
contexts as tags are processed. Table 5.3 confirms that, at least with respect to message

latency, the overhead for the greater flexibility of LBM is negligible.

5.5.3. Multicast Throughput

Table 5.4 shows the achievable throughput for LBM in delivering a large file (500
Kbytes) reliably to a multicast group. The message buffers are 16 Kbytes for all
contexts, except those involved in the reliable giatagram exchange for control messages.
The latter need only very small, typically 128-byte, buffers. Using the same driver
routines, unicast transfers from the same transmitting node (a Zenith) to the other lnode

types achieved the throughputs shown in Table 5.5.

Multicast Roundtrip Latency (Multidriver)
Transmitting Node: 25 MHz 80386 Fliex
l-byte messages

| Number of Receiving Nodes___Receiving Nodes _ Average Roundtrip Latency

1 1 Zenijth 17.5ms

2 2 Zeniths 22.5ms

3 2 Zeniths, 1 Core 26.7 ms

4 2 Zeniths, 2 Cores 31.8 ms

5 2 Zeniths, 2 Cores, 37.0 ms
1 Flex

Table 5.3 — Multidriver Roundtrip Latency

61

Multicast File Transfer (LBM)
Transmitting Node: 16 MHz Intel 386 Zenith

1 1 Flex 273.8 Kbits/s
2 1 Flex, 1 Zenith 235.3 Kbits/s
3 2 Flex. 1 Zenith 225.4 Kbits/s

2 Flexs, 1 Zenith, .
4 1 Core 206.9 Kbits/s

2 Flexs, 1 Zenith ' .
5 2 Cores 191.1 Kbits/s

Table 5.4 — LBM Throughput

Unicast Throughput
Transmitting Node: 16 MHz 80386 Zenith
L Receiving Node Average Throughput
Flex 606.1 Kbits/s
Core 640.0 Kbits/s
Zenith 347.8 Kbits/s

Table 5.5 — Unicast Throughput

Multicasting to a group containing only one receiver causes a 55% drop in
throughput when compared to unicasting. In the two-receiver case, however, reliable
multicasting yields essentially the same throughput as sequential unicasting. To see this,
consider that the average of the two nodes’ unicast throughputs is 476.9 Kbits/s; hence
sequential unicast delivery to the two nodes will yield an overall transfer rate of one half
the average, or 238.5 Kbits/s. As shown in Table 5.4, the multicast throughput is 235.3
Kbits/s. With each node after the second, the advantage of multicasting grows rapidly.
At five nodes, the sequential unicast rate is 113.6 Kbits/s, only 59% of the multicast rate

of 191.1 Kbits/s. These figures indicate that for bulk data movement the LBM scheme

62

can achieve substantially better performance than unicast transfers and that these

efficiencies are realized as soon as more than two hosts have joined the multicast group.

As shown in Table 5.5, the use of the slower machine, a Zenith, as a receiver causes
a substantial drop in potential unicast throughput. (This unfortunate situation is being
rectified by a more robust buffer strategy as the UVA XTP implementation is being
updated to XTP Revision 3.5.) Multicast throughput suffers a similar decrease, as
indicated by Table 5.6. This table shows the throughputs attainable when the FlexCache
is used as a transmitter and the Zeniths as receivers. Like the Zenith transmitter, the Flex
can unicast to a Zenith at roughly 350 Kbits/s. The multicast throughput to-a single
Zenith reflects a drop of about 45% from unicasting. With two Zeniths in the multicast
set, multicast and sequential unicast become essentially equivalent with rates of 175.7
Kbits/s and 173.9 Kbits/s, respectively. Hence our experimental results suggest that the
relative performance gains of the LBM are stable with respect to the relative processing

power of the multicast transmitter and its receivers.

Table 5.7 shows that the Multidriver outperforms LBM by as much as 15%. While

the Multidriver has greater throughput for every receiver set shown, the discrepancy

Multicast File Transfer (LBM)
Transmitting Node: 25 MHz Intel 386 FlexCache

| Receiving Nodes Receiver Set Averape Throughput |
1 1 Zenith 189.5 Kbits/s
2 2 Zeniths 175.7 Kbits/s

Table 5.6 - LBM Throughput using a FlexCache

63

Multicast File Transfer (Multidriver)
Transmitting Node: 16 MHz Intel 386 Zenith
Receiving Nod Receiver.S 3 T})

1 1 Flex 320.0 Kbits/s

2 1 Flex, 1 Zenith 241.7 Kbits/s

3 2 Flex. 1 Zenith 233.4 Kbits/s
2 Flexs, 1 Zenith, .

4 1 Core 230.0 Kbits/s
2 Flexs, 1 Zenith .

5 3 Cores 221.4 Kbits/s

Table 5.7 — Multidriver Throughput

between the two schemes ranges from 2.6% to 14.4%. Curiously, the maximum
difference as measured by percentage appears in both the single node and the five node
case. This decrease in throughput can be taken to be the price paid by the LBM for
manipulating the transfer list and opening and closing contexts for the transmission and

reception of each control tag.

Chapter 6

Conclusions

6.1. Summary

As classically defined, the Transport Layer turns the underlying unreliable service
of the Network and Data Link Layers into a reliable service. A Transport Layer reliable
multicast facility taps the power of the underlying broadcast and multicast hardware
found in many modern LANS for efficient multidestination delivery of messages. With
multicasting, the term reliable denotes error-free, in-order delivery of the Transport
Layer Service Data Unit to the ‘correct’ set of destinations. Since multicast addresses
commonly represent 2 logical set whose membership is determined by run-time bindings,

the notion of a reliable multicast necessarily implies multicast group management

mechanisms.

The range of distributed applications that would benefit from a reliable multicast
facility is sufficiently diverse 10 insure that no single multicast facility will be right for ail
communication environments. For tightly coupled distributed processing Sroups in
which each member of the group may send messages to the other members, powerful
atomic multicast protocols have been proposed to ensurc the atomic delivery and
identical ordering of messages to the group- For these protocols, reliability mechanisms

at the Transport Layer are generally not useful. On the other hand, many distributed

64

65

applications can be expected to exhibit a client-server communication pattern in which
there is one, or a few, data sources and a set of data sinks. These applications will need
primitives at the Transport Layer for determining and controlling the set of destinations

for a particular data exchange or series of exchanges.

This thesis proposes a service interface for a group management facility to
complement the Xpress Transfer Protocol’s multicast algorithm. It then details the
incorporation of group management functionality into the Multidriver, a reliable
multicast service built into UVA XTP that is independent of the multicast algorithm in
the XTP protocol specification. Performance measurements of the Multidriver and the
List-Based Multidriver allow the quantification, within the testbed environment for UVA

XTP, of performance characteristics for these two facilities.

These measurements verify that multicasting offers significant performance
advantages over sequential unicasting. In our experiments the Multidriver schemes
achieve greater throughputs than sequential unicasting as soon as there are more than two
nodes in the receiving set. With five nodes receiving, the LBM improves the throughput
available from sequential unicast delivery by 68%. Measurements of the roundurip
latency for short messages indicate that, for smail multicast groups, the Multidriver
schemes can not match the delivery rates of sequential unicasts.. As nodes are added to
the multicast group, however, the multicast latency performance converges rapidly
towards that of sequential unicasts. While with one receiving node the multicast
latencies measured were close to 300% of the unicast latencies, the performance gap has
closed to only a 20% difference by the time the multicast set has grown to five nodes. By

extrapolation, when the receiving set enters the range of 6 to 10 nodes, multicast

latencies can be expected to best those of sequential unicasts.

The Multidriver and its extension for list-based transfers performed comparably
with respect to both latency and throughput measurements, Latency measurements were
quite similar with the exception of the one-node multicast case, for which the Multidriver
was 12% faster than the LBM. With respect to throughput capability, the Multidriver
consistently outperformed the LBM, though again the performance differences were
slight. The Multidriver achieved from 2.6% to 14.4% greater throughput for the receiver
sets tested. This difference can be attributed to the overhead imposed on control tag
processing by the LBM’s use of reliable datagrams, instead of connections, for control
flow in the many-to-one direction. As noted above, the LLBM is nonetheless more
efficient than sequential unicasting in the muItidestinaﬁon delivery of large messages

when the receiving set consists of more than two nodes.

6.2. Future Work

Research in the area of reliable multicasting remains somewhat immature. |
Experience with large sets is particularly rare. With the porting of UVA XTP to
Ethernet, which is in progress, and the support of UVA Academic Computing, we have
the unique opportunity to study the performance of the Multidriver and the LBM over
heavily populated networks. Especially interesting issues to probe include: (1) to see
how gracefully and to what point the mechanisms in the Multidriver scheme will scale,
(2) fo investigate algorithms to deal with the problem of network implosion, (3) to
explore the effect on multicasting of the improved buffer strategies within UVA XTP,

and (4) to measure directly the performance differences between the XTP multicast

67

algorithm, which will be implemented in UVA XTP, and the Multidriver schemes. This
work should lead to additional insights into reliable multicasting, insights that are very

difficult to glean from small node populations.

ey

10.

11.

12.
13.

14.

15.

REFERENCES

L. Aguilar, “‘Datagram Routing for Internet Multicasting’, Computer
Communications Review (USA) 14, 2 (1984), 58-63 .

M. Ahamad, M. H. Ammar, J. M. Bernabeu-Arban and M. Khalidi; ‘‘Using
Multicast Communication to Locate Resources in LAN-Based Distributed
System’’, Proceedings of the 13th Conference on Local Computer Networks,
Minneapolis, Minnesota, 1988,

FDDI Token Ring Media Access Control Standard, American National Standards
Institute, Feb. 1986. Draft proposed Standard X37T9.5/83-16, Rev. 10.

S. Andersen, Multicast Connection Oriented Services, PEI Document 90-81, June
1990.

F. Backes, ‘“‘Transparent Bridges for Interconnection of IEEE 802 LANs™’, JEEE
Network 2, 1 (January 1988).

K. Birman and T. Joseph, ‘‘Reliable Communication in the Presence of Failures”’,
ACM Transactions on Computer Systems 5, 1 (February 1987), 47-76.

J. Chang and N. F. Maxemchuk, ‘‘Reliable Broadcast Protocols™, ACM
Transactions on Computer Science 2, 3 (Aug. 1984), 251-273.

D. R. Cheriton and S. E. Deering, ‘‘Host Groups: A Multicast Extension for
Datagram Internetworks”, Proc. of the Ninth Data Communications Symposium,
Whistler Mountain, BC, Canada, Sep. 1985, 172-179,

D. R. Cheriton and W. Zwaenepoel, ‘‘Distributed Process Groups in the V
Kernel’', ACM Transactions on Computer Systems 3, 2 (May 1985), 77-107.

D. Cheriton, VMTP: Versatile Message Transaction Protocol -- Protocol
Specification, Stanford University, February 1988. Version 0.7.

D. Cheriton and C. L. Williamson, ‘“VMTP as the Transport Layer for High-
Performance Distributed Systems”’, IEEE Communications Magazine, June 1989,
37-44. :

G. Chesson, ‘“The Protocol Engine Project”’, Unix Review, September 1987.

M. Cohn, ‘‘Functional Addressing: Another Way of Looking at Multicast’’,
Tr_ansfer 2, 6 (November/December 1989), 13-15.

D. Comer, Internetworking with TCP/IP, Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

E. C. Cooper, ‘‘Circus: A Replicated Procedure Call Facility’’, Fourth Symposium
on Reliability in Distributed Software and Database Systems, 1984,

68

16.
17.
18.
19.
20.
- 21.

22.

23.

24.
25.

26.
27.

28.
29,
30.

3L

32.
33.

34,

69

J. Crowcroft and K. Paliwoda, ““A Multicast Transport Protocol », CCR 18, 4
(Aug. 1988), 247-256,

Y. K. Dalal and R. M. Metcalfe, “‘Reverse Path Forwarding of Broadcast
Packets”’, Comm. of the ACM 2] » 12 (Dec. 1978), 1040-1048.

S. E. Deering and D. Cheriton, “‘Multicast Routing in Datagram Internetworks and
Extended LANs™", Computer Communications Review 18, 4 (August 1988).

S. E. Deering, Host Extensions Jor IP Multicasting: RFC 1] 12, August 1989,

B. J. Dempsey, J. C. Fenton and A. C. Weaver, ““The Multidriver: A Reliable

Multicast Service Using the Xpress Transfer Protocol’’, 15th Conference on Local
Compuser Networks, Minneapolis, Minn., October 1990, 351-358.

B. J. Dempsey and A. C, Weaver, Multicast Strategies for XTP, PEI Document
90-5, January 1990,

The Ethernet: A Local Areq Network — Data Link Layer and Physical Layer
Specifications, Digital Equipment Corporation, Intel Corporation, Xerox
Corporation, November 1982,

R. Dixon and D, Pitt, *‘Addressing, Bridging, and Source Routing *°, IEEE
Newwork 2, 1 (January 1988).

J. Foley, X3T5 Chair, personal conversation, September 1990,

A. J. Frank, L. D. Wittie and A. J. Bernstein, ‘“Multicast Communication on
Network Computers®’, JEEE Software, May 1985, 49-61.

H. Garcia-Molina and A. Spauster, “Message Ordering in a Multicast
Environment **, Proceedings of the Ninth International Conference on Distributed
Computer Systems, Newport Beach, California,, June 1989, 354-361 .

D.T. Greenand D. T, Marlow, ““SAFENET — A LAN for Navy Mission Critical
Systems”, Proc. of the 14th Conference on Local Computer Networks,
Minneapolis, Minnesota, October 1989,

E. Harris, Vice-Chair X375 4, personal conversation, August 1990,

IEEE Standard 802.1D MAC Bridges, Institute for Electrical and Electronic
Engineers Project 802-— Local and Metropolitan Area Network Standards , 1985 .

IEEE Standard 802 .2 Logical Link Control, Institute of Electrical and Electronics
Engineers, 1984.

IEEE Standard 802.3 Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications, Institute of
Electrical and Electronics Engineers, 1985.

IEEE Standard 802 .4 Token-Passing Bus Access Method and Physical Layer
Specifications, Institute of Electrical and Electronics Engineers, 1985.
IEEE Standard 8025 Token Ring Access Method and Physical Layer
Specifications, Institute of Electrical and Electronics Engineers, 1985.

“Information Processing Systems - Open Systems Interconnection - Basic
Reference Model”’, Draft International Standard 7498, Oct. 1984,

35.

36.

37.

38.

39.

40.

41.

42.

43,

45,
46.

47.

48.

49.

50.

51,

52.

70

“Common Management Information Service (CMIS) Definition’’, Draft
International Standard 9595, June 1989.

««Common Management Information Protocol (CMIP) Speciﬁcation”, Draft
International Standard 9596, June 1989,

M. F. Kaashoek, A. S. Tanenbaum, S. F. Humme! and H. E. Bal, ‘“‘An Efficient
Reliable Broadcast Protocol **, Operating Systems Review 23, 4 (October 1989).

j. Kramer, J. Magee and A. Lister, “CONIC: An Integrated Approach to
Distributed Computer Control Systems’”, [EE Proceedings PartE 1 30, 1 (January
1983), 1-10.

J. Lederburg and K. Uncapher, «Towards a National Collaboratory”’, Report of an
Invitational NFS Workshop, March 1989.

L. Liang, S. T. Chanson and G. W. Neufield, «process Groups and Group
Communications: Classifications and Requirements’’, JEEE Computer 23, 2
(February 1990), 56-66. :

D. T. Marlow, ‘ ‘Requirements for a High Performance Transport Protocol for Use
on Naval Platforms’’, Revision 1, Naval Surface Warfare Center, July 1989.

P. McKinley and J. Liu, o <“Multicast Tree Construction in Bus-Based Computer
Networks"”’, Communications of the ACM 33,1 (January 1990), 29-42.

1. F. McNabb and A. C. Weaver, <A Real-Time Network Performance Monitor for
Token Rings’’, MILCOM 89, Boston, Mass., October 1989.

j. Moulton, ‘‘OSI Networking Paradigm Shift: Next Generatibn Transport
Protocols’’, Transfer 3,2 (March/April 1990), 11-18.

3. Moulton, X353 member, personal conversation, September 1990.

R. Periman, A. Harvey and G. Varghese, ‘Choosing the Appropriate 1SO Layer
for LAN Interconnection’’, IEEE Network 2,1 (January 1988), 81-85.

Xpress Transfer Protocol Definition: Revision 3.4, Protocol Engines, Incorporated,
Santa Barbara, California, July 1989.

Xpress Transfer Protocol Definition: Revision 3.5, Protocol Engines, Incorporated,
Santa Barbara, California, August 1990.

B, Rajagopalan and P. McKinley, ‘A Token-Based Protocol for Reliable, Ordered

Multicast Communication’, Proceedings of Eighth Symposium on Reliable
Distributed Systems , Seattle, Washington , October 1989.

S. Ramakrishnan and B. Jain, ‘A Negative Acknowledgement with Periodic
Polling Protocol for Multicast oOver LANs”’, IEEE INFOCOM 1987: The
Conference on Computer Communications Proceedings, San Francisco, California,
April 1987. ‘

R. Sanders, The Xpress Transfer Protocol (XTP): A Tutorial , University of
Virginia, 1989 . .

R. Simoncic, A. C. Weaver, B. G. Cain and M. A. Colvin, ‘‘SHIPNET: A Real-
time Local Area Network for Ships’’, Proc. of the 13th Conference on Local

53.

54.

55.

56.

57.

71

Computer Networks, Minneapolis, Minnesota, October 1988.

W. D. Sincoskie and C. J. Cotton, *‘Extended Bridge Algorithms for Large
Networks’’, IEEE Network 2, 1 (January 1988), 16-24.

W. Stallings, Handbook of Computer Communications Standards, Volume 1: The
Open Systems Interconnection (OSI) Model and OSI-Related Standards,
Macmillan, Inc., 1987.

TMS 380 Adaprer Chipset User’s Guide, Revision D , Texas Instruments , 1986.

D. W. Wall, ““Mechanisms for Broadcast and Selective Broadcast (excerpts
from)”’, 190, Computer Systems Laboratory, Stanford University, June 1980.

W. A. Wulf, The National Collaboratory — A White Paper , National Science
Foundation , December 1988 .

