Transmitting Graphics Images
Over a Local Area Network

Timothy A. Davis, W. Timothy Strayer,
Alfred C. Weaver

Computer Science Report No. TR-90-31
November 14, 1990



Transmitting Graphics Images
Over a Local Area Network

Timothy A. Davis
W. Timothy Strayer
Alfred C. Weaver

Computer Networks Laboratory
Department of Computer Science
Thomton Hall
University of Virginia
Charlottesville, Virginia

Abstract

Due to the proliferation of computer networks in the professional world and the
subsequent pursuit of new uses for them, the task of implementing applications requiring
graphics transmission naturally arises. This task is unique among other networking problems
due to the nature of graphics processing itself. Graphics applications require manipulation of a
large amount of pixel data which must be displayed in a timely manner and be free from errors,
as any slight deficiency is immediately recognizable.

Several application programs were written in C to demonstrate the usefulness of graphics
transmission in the medical field. Examples include a generalized full-screen image transmitter
for real digitized images (such as X-rays) and an animated EEG display. Though specific in
terms of application, these demonstration programs illustrate some general principles in
graphics transmission which demand consideration.



1. Introduction

Computer networks have revolutionized many different areas of the professional world
due to their high data transfer rate and overall versatility. For example, commercial banking
has undergone substantial changes in the last decade due to the networking technology
employed in automatic teller machines. Similarly, graphics processing is also experiencing
widespread use due to the large number of applications, such as microscopic imaging. As
graphics applications grow in acceptance and use, the demand naturally arises for the ability to

transport these images quickly and effectively between the end users.

In the business world the ability to transfer images such as charts, graphs, CAD displays,
and floor plans instantly from one personal computer to another is quite valuable, especially for
presentations and collaborative efforts. Graphics transmission in numerous medical fields also
hold potential as medical practices utilize computers on a larger scale. Through the
transmission of static images (e.g., X-rays) and animated sequences (e.g, a beating heart, EEG
readings, etc.), graphics transmission free doctors and other staff from hardcopy delivery. The
best technique for achieving these and other tasks of graphics transmission, however, requires

further investigation.

This paper discusses solutions and suggestions for various image transmission problems.
First, we introduce some special characteristics of graphics processing which generate
complexities for image transmission. We then suggest some general strategies and techniques
for transmitting images and discuss the advantages and disadvantages of each. Finally, we
present two implemented medical applications, a single-frame X-ray transmitter and an
animated EEG graph, which illustrate several general concems associated with the transmission

of graphics images over a network.



afford to have probabilistic errors since the erroneous data will be replaced within a short
amount of time. This can reduce the amount of protocol processing time spent ensuring
reliability. However, if the screen is transmitted without locality information, where a piece of .
data goes in the screen buffer may be dependent on in-order delivery. Distortion may occur if a
- MAC frame is lost and not recovered. Finally, there are some graphics transmission,

particularly in medical applications, where absolute reliability if unquestionability needed.

Providing generality has long been recognized as an anthesis of providing performance. If
screen formats and buffer methods are different between communicating workstations, there
must be some translation from one format to the other. Typically this is not a concemn as
installations would opt for similar or identical equipment. Yet, as the need for performance
increases, the amount of standardized, "off-the-shelf" software that one can use to achieve that
performance decreases. Algorithms are developed which are optimized for the application, and
implementation-specific techniques for manipulating the data are employed. As long as the
system is self-contained, this application-specific techniques work well. Expandability,

portability, flexibility, and adaptability all suffer.

3. Strategies

We implemented a variety of strategies ‘for the sending and receiving graphics
transmissions using reasonably powerful 80386-based personal computers over a 10 Mbit/sec
token ring LAN. Since each strategy involved a tradeoff between generality and performance,
multiple techniques were developed using varying degrees of each. Strategi‘es for transmitting
static images were eyaluated separately from those involving animated sequences since each

differ in characteristics and constraints.



areas of the screen in programmer-defined buffers (whose format is unknown) and redisplay
these images in other screen areas. The transmission algorithms are straightforward: the sender
copies part of the screen in a buffer and transmits the buffer to the receiver, which displays that

buffer on its screen.

Although this method may be the easiest to implement, it suffers from two basic
limitations. First, the built-in getimage () function manipulates the image data in an
unknown format, and thus the matching putimage () call is required. This implies that all
transmitter/receiver pairs must use these built-in image functions. Second, though the graphics
functions in Turbo C are powerful, the programs using these functions are not particularly fast.

A medium resolution image required almost 1.6 seconds for transfer (see Table 1).

Table 1 also shows that most of the performance time in our experiments is consumed by
reading from and writing to the video RAM. The network can process data at a rate much faster

than can be handled.

Time (in seconds)
Resolution __Total Delay RAM Access Network

640x200 0.93 0.80 0.13

640x350 1.59 1.37 : 0.22

640x480 2.14 1.84 0.30
Table 1

End-to-end Screen Tranfer Time for Turbo C Routines

In an effort to increase speed another method was developed involving direct access to the
data in the video memory. The sending algorithm simply addresses the binary video data in the
video memory and Sends it across the ne_twork, where the receiver loads the bits directly into its
video memory. Various complexities ’surface, how'Never, wheﬁ the programmer uses a standard
version of C and is forced to deal directly with the registers on the VGA card to perform

graphics functions. For example, Turbo C provides a useful function, initgraph(), which



with it. DOS, however, is not inherently suited for multitasking; therefore, we had to write our
own multitasking code. When the transmitting program begins, it creates a new handler for the
PC clock interrupt and then invokes a system call which begins the digitizing software. Once
an image in graphics mode appears on the screen, the new interrupt allows the graphics sending
procedure to run every clock tick. During this procedure, the sender’s screen display is
temporarily halted while VGA information (such as mode, color table, etc.) and portions of the
graphics image are transferred. No recognizable delay results in the sender’s display since the
switching between display and transmitting functions occurs quickly aqd frequently. Once the
image has been fully displayed at the transmitter, the receiver’s image is almost complete as
well since the time required to transmit and redisplay is effectively shared between the sender’s
original image and the receiver’s copy. Additionally, note that any image, X-ray or other, can

be captured on the screen, transmitted, and redisplayed due to the generality of the technique.

Examples of X-rays captured and digitized with an overhead projector as back lighting
and resolution of 320x200 are shown in Figures 1 and 2. A lower resolution than those
. previously mentioned was used to increase the number of shadings available in the gray scale,
thereby providing a more realistic final image. Because of this lower resolution, the amount of
time to transmit the image data and display it on both the sender’s and receiver’s screens

requires less than 1 second.

5. Animated Sequences

Unlike the transmission of single frame images, animated sequences must be transmitted
in real time to produce the desired effect. Two basic approaches to animation transmissi;)n
naturally arise: transmitting full-screen images for each frame and transmitting localized areas
of change for each frame. While the former method is more general, it does not perform

adequately. Conversely, the latter reduces performance time, but does not allow for highly



overall transmission time.

A compromise can be reached depending on the size and resoluﬁon of the imagg.
Additionally, the decision to make the shape of the divisions vertical bars, horizontal bars,
rectangles or square boxes depends on the nature of the animated sequence. For example, we
found square boxes containing 400 to 500 pixels each to be a reasonable selection in
experiments we performed on a small ball moving across many areas of the screen. Once we

have chosen size and shape, how do we choose which pieces to send?

Perhaps the simplest and most time-efficient approach is to require the process controlling
the screen image to notify the sending algorithm of the locations of recent updates. On the low
level, the sender could get this information from the graphics package controlling the current
working environment in which the animation is running. Each time part of the video RAM is
updated, the location of the changed region would be reported by the graphics package to the
sending program. Such a scheme, however, requires a common interface between the graphics
package and application program, which is not readily available in most graphics packages. On
the higher level, the sending program could require the program code producing the animation
to relay to it locational data for image changes each frame. These "hints" would greatly aid the
sender in isolating and minimizing the area of the image which has been updated; however,

another burden would be placed on the programmer for each animation program he writes.

Another approach which is less efficient but more general requirgs storage of the entire
image each frame. At given time intervals the sections comprising the current image are
compared with those stored from the last image. Only sections or pieces which have been
changed within the last frame are transmitted and updated on the receiver’s display. The
obvious drawback here is the amount of time such a method requires. On the other hand, this

consideration should be diminished over time as newer and faster graphics processors are



11

6. Conclusions

Throughout our experiments in graphics transmissions we have focused on the tradeoffs
between image reliability, algorithm complexity, software portability, and overall transmission
and display speed. Of these, speed is the crucial factor and is countered by the other three. A
high degree of reliability serves to slow transmission due to acknowledgment processing
involved, which requires timeouts and the transmission of additional packets. Generalized
algorithms also inhibit speed due to their intrinsic nature of including extra processing to ensure
coverage of all possible cases. Furthermore, highly portable software may also include
additional processing and adversely affect speed since it can make no assumptions about
existing hardware and must therefore make provisions for many types. Depending on the
application, however, we may be willing to make sacrifices in any of these areas to achieve

gains in others.

For cases of single-frame image transmissions, speed may not be a primary issue since no
real-time constraints are involved. In our experiments using low-level graphics BIOS and
assembly language programs, we achieved relatively fast transmission and display times, but we
paid the cost in tedious programming and a loss in generality. Conversely, our Turbo C
programs were slow but much more general and easier to write. Turbo C, therefore, may be
more practical to use in some cases of single-frame transmission. As for portability, both low-
level and Turbo C programming are average: low-level programming is portable only across
hardware of the same type, while Turbo C programs are portable only across Turbo C software.
Choice of programming method, therefore, may depend on existing hardware and software for
the given application. With regard to reliability, any degree of it will probably adversely affect
speed due to the processing of acknowledgments associated with the large Iamount of pixel data
which must be transmitted for each image. Because of these characteristics, general-purpose

protocols, such as TCP-IP, are most practical for single image transmission applications.



13

7. References

BORLSS8

CORER9

LEWES8S

STRAS88a

STRA88D

WEAVSE7

Borland International. Turbo C Reference Guide, Turbo C User’s Manual, 1989.
CORECO. Image Processing Product and Support, VGTIZE 2.04, 1989.
Lewell, John. Computer Graphics, Orbis Publishing Limited, London, p. 91, 1985.

Strayer, W. and A. Weaver. "Performance Measurements of Data Transfer Services
in MAP", IEEE Network, Vol. 2, No. 3, pp. 75-81, May, 1988.

Strayer, W., M. Mitchell, and A. Weaver. "ISO Protocol Performance
Measurements”, Proceedings of the ISMM International Symposium on Mini and
Microcomputers, Miami Beach, FL, pp. 263-265, December 14-16, 1988.

Weaver, A. and M. Colvin. "A Real-time Messaging System for Token Ring
Networks", Software — Practice and Experience 17 (12), December, 1987.



Figure 1
ay show

the femur.

mn

mn

steel pi

ing a

-T

zed X

iti

18

Ad

2

igure

F
ray show

f the foot

ing part o

igitized X-

Ad



Figure 3
A simulated clectroencephalograph.



