
Parallel Rule-Based Isotach Systems

Rashmi Srinivasa

Technical Report No. CS-99-04
February 5, 1999

Contact: rashmi@virginia.edu

Web: ftp://ftp.cs.virginia.edu/pub/techreports/CS-99-04.ps.Z

i

Abstract

The rule-based system is an important tool used to build expert systems. Much

research has gone into trying to speed up rule-based systems, especially by using parallel-

ism, but limited success has been observed so far. Most of the attempts have been in the

direction of improving the Match-Recognize-Act (MRA) cycle [BROW85], which is the

technique used in the sequential execution of rule-based systems.

We present a parallel algorithm (ISORULE) for the execution of rule-based pro-

grams, which is based on isotach time [REYN89], and which eliminates the MRA algo-

rithm. We compare ISORULE to a conventional parallel technique based on MRA

(PARAMRA). We describe the design and implementation of ISORULE, and analyze the

ways in which ISORULE exploits parallelism. We describe a static model to analyze

ISORULE performance, and use it to demonstrate that ISORULE exploits most of the stat-

ically determinable parallelism in a rule set. We detail our simulation of ISORULE and

PARAMRA, and report results obtained by running synthesized as well as real rule-based

programs on it. Our experiments with synthetic rule sets reveal order of magnitude perfor-

mance improvement of ISORULE over PARAMRA. Since our initial analysis suggests

that the performance improvement increases with the amount of concurrency in the rule

sets, multiple orders of magnitude in performance improvement seem likely with larger

rule sets exhibiting a low degree of conflict. Further, we analyze the results obtained from

our initial investigation of real rule sets, and explain the more limited performance

improvement we observed with these sets.

ii

Contents

1 Abstract i

2 Contents ii

3 Introduction 1
3.1 Organization of Thesis 3

4 Rule-based Systems 5
4.1 Sequential Rule-based Systems 6

4.1.1 The MRA Cycle 6
4.1.2 Rete Match 8

4.2 Parallel MRA 9
4.2.1 Rule-level Match Parallelism 9
4.2.2 Node Parallelism 10
4.2.3 Intranode Parallelism 10
4.2.4 Action Parallelism 10
4.2.5 Data Parallelism 11
4.2.6 Overlapping Phases of the MRA Cycle 11
4.2.7 Multiple Rule Firing 11

4.3 Asynchronously Parallel Approaches 15
4.3.1 Offline Analysis 16
4.3.2 Locks Acquired by a Single Process 17
4.3.3 Locks Acquired by Multiple Processes 17

4.4 Chapter Summary 18

5 Isotach Rule-based Systems 20
5.1 Isotach Time and Atomicity 20

5.1.1 The Concept of Isotach Time 20
5.1.2 Atomicity 21
5.1.3 Flat Atomic Actions 22
5.1.4 Structured Atomic Actions 23
5.1.5 Sequential Consistency 24
5.1.6 Performance of Isotach Networks 25

5.2 Model of an Isotach Rule-based System 25
5.2.1 Assumptions 26
5.2.2 Partitioning 26
5.2.3 Types of Operations 28
5.2.4 Asynchronous Evaluation and Logical Firing Times 29
5.2.5 A Discussion of Correctness 30
5.2.6 Deadlock Freedom 32
5.2.7 Waiting Time 32

5.3 Parallelism 33
5.4 Chapter Summary 35

6 Implementation 37

iii

6.1 Review of the Basic ISORULE Algorithm 37
6.2 Components of ISORULE 38

6.2.1 Rule Process 38
6.2.2 SIU Process 42
6.2.3 WME Process 43
6.2.4 Isotach Network 45

6.3 Optimizations 45
6.3.1 CANCELs and CONFIRMs 45
6.3.2 Speeding Up the Progress of a Firing Token 46
6.3.3 Throttling the Rule Process 46

6.4 A Conventional Parallel Paradigm 47
6.5 A Comparison of ISORULE to PARAMRA 48
6.6 A Comparison of ISORULE to Other Asynchronous Techniques 49
6.7 Chapter Summary 50

7 Performance Analysis 52
7.1 The Simulation 54

7.1.1 Workloads 54
7.1.2 Synthetic Workload 54
7.1.3 Real Workload 57
7.1.4 Simulation Parameters 58

7.2 A Static Model for ISORULE Performance 58
7.2.1 Dependence Analysis 59
7.2.2 A Static Model to Assess Parallelism 61

7.3 Synthesized Rule Sets 63
7.3.1 Analysis 63
7.3.2 Results from the Synthesized Rule Sets 65
7.3.3 Effect of Number of Processors on ISORULE Performance 70
7.3.4 Effect of Degree of Pipelining on ISORULE Performance 71

7.4 Real Rule sets 73
7.4.1 Sequential Nature of Rule-based Programs 73
7.4.2 The Monkey and Bananas Rule-based Program 73
7.4.3 The Tourney Rule-based Program 74
7.4.4 The Manners Rule-based Program 75
7.4.5 The Toru-Waltz Rule-based Program 76

7.5 Analysis of the Results 76
7.6 Chapter Summary 78

8 Summary and Conclusion 79
8.1 Future Work 81

9 Parameters to Simulation 83

10 References 85

1

Chapter 1
Introduction

The goals of Artificial Intelligence research include building expert systems and

representing human cognition. To achieve these goals, different models have been devel-

oped for knowledge representation and application. One of the most widely used of these

models is therule-based system model. Many expert systems are expected to exhibit high

performance in real-time domains or interactive domains, and hence, efficiency in rule-

based systems is an important issue. Sequential executions of rule-based systems have

been unable to meet these performance requirements. This thesis addresses the issue of

speeding up the execution of rule-based systems through the use of an evolving technol-

ogy called isotach timing [REYN89].

Several attempts have been made to speed up rule-based systems, especially by

introducing parallelism into their execution paradigm; but these efforts at parallelism have

had limited success so far. Most of the attempts have concentrated on improving the

Match-Recognize-Act (MRA) cycle [BROW85], which is the technique used in the

sequential execution of rule-based systems. Various types and granularity levels of paral-

lelism have been explored in the endeavour to speed up different stages of the MRA algo-

rithm. A few other approaches towards parallelizing rule-based system execution have

eliminated the MRA cycle, and use an asynchronous paradigm instead. Existing parallel

rule-based system paradigms experience one or more of the following problems.

• Failure to fully exploit the concurrency available

• Load imbalance

• Failure to share common tasks among processors

2

• High processor synchronization overhead

• High communication costs

• Memory contention

• Need for expensive runtime analysis

• Overly restrictive access to shared objects

• Cost of dealing with deadlock

In this thesis, we describe a parallel algorithm (ISORULE) for the execution of

rule-based programs, which eliminates most of the problems listed above. The high-level

design and implementation models for ISORULE are due to Craig Williams and Paul F.

Reynolds. ISORULE is based on isotach networks [REYN89, WILL91], and does not use

the MRA algorithm. Our simulation of ISORULE runs on an isotach network simulator

due to Bronis R. de Supinski. This thesis makes the following contributions:

• We describe the design and implementation of ISORULE — a new technique for the

parallel execution of rule-based systems — and analyze the ways in which

ISORULE exploits parallelism.

• We detail the design and implementation of our simulation of the ISORULE system

and of a conventional parallel MRA-based system (PARAMRA) for rule-based

system execution.

• We use results obtained from the simulation to demonstrate that ISORULE performs

significantly better than PARAMRA.

• We describe the design and implementation of a static model for the analysis of

ISORULE performance.

• We use our static model and our simulation on synthesized rule sets to demonstrate

3

that ISORULE exploits most of the statically determinable parallelism in a rule set.

• We describe the introduction of a real Rete network algorithm [FORG82] and a

parser for OPS5 [FORG81] rule-based programs into our simulation, and evaluate

the performance of real rule-based programs on ISORULE.

Our experiments with synthetic rule sets show order of magnitude improvement in perfor-

mance of ISORULE over PARAMRA. Since our initial analysis suggests that the perfor-

mance improvement increases with the amount of concurrency in the rule sets, we believe

that multiple orders of magnitude in performance improvement are possible with larger

rule sets exhibiting a low degree of conflict. Other results demonstrate the effect of the

number of processors and of pipelining on ISORULE performance. Also, we have begun

an investigation of real rule-based programs with four programs written in the language

OPS5 [FORG81]. Results from these rule sets are not as impressive as the order of magni-

tude improvement result we obtained from synthesized rule sets. We explore the character-

istics of the rule sets and discover that the more limited performance improvement we

observed is due to an embedded sequential control structure, and a small number of rules

exhibiting a high degree of conflict.

Organization of Thesis

Chapter 2 introduces rule-based systems and describes the three components of a

rule-based system: working memory, rules and inference engine. It explores existing

sequential and parallel paradigms for execution of a rule-based system, and describes the

MRA cycle. The various phases of the MRA cycle are discussed, including the Rete match

algorithm. Chapter 2 further discusses different attempts at parallelization of rule-based

4

systems; these attempts differ in their levels of granularity. The advantages and disadvan-

tages of each of these approaches are discussed.

Chapter 3 introduces our technique (ISORULE) for parallel rule-based system

execution, which is based on isotach networks [REYN89, WILL91], and compares it with

existing asynchronous and synchronous systems. Some background on isotach networks is

provided, along with a discussion of the features which make them suitable for rule-based

systems. This chapter presents the salient aspects of the ISORULE algorithm, and dis-

cusses the ways in which the system exploits the parallelism available to it from the rule

set.

The implementation of the ISORULE system is discussed in detail in Chapter 4.

The various components of the system, along with the functions they perform are detailed

in the chapter, along with a description of optimizations that enhance ISORULE perfor-

mance. A conventional parallel rule-based system (PARAMRA) is described, and com-

pared with ISORULE.

In Chapter 5 we describe a new method for statically evaluating the potential par-

allelism in a rule set. We predict and evaluate the performance of the ISORULE system

compared to that of PARAMRA. Our simulation of ISORULE and PARAMRA is

described, along with the workloads we used — both synthetic and real. The chapter pre-

sents the results obtained from the execution of the rule sets on ISORULE and

PARAMRA, and analyzes the results. Finally, it elaborates rule-set-writing techniques

which make the rule sets suitable for parallel rule firing.

Chapter 6 presents a summary and final conclusions, and proposes avenues for

future research.

5

Chapter 2
Rule-based Systems

A rule-based system (also called a production system) is defined by a working

memory, a set of rules in a production memory, and an inference engine. The working

memory is a database of facts or assertions called working memory elements (WMEs). A

working memory element has a class name, and a set of attributes with their corresponding

values. An example of a WME (in the language OPS5[FORG81]) is:

(forecast ^where Boston ^when tomorrow ^weather rainy)

Here, forecast is the WME class name, where, when and weather are its attributes,

and Boston, tomorrow and rainy are the corresponding values of the attributes.

A rule (or a production) consists of a conjunction of condition elements (called

the antecedent), and a set of action elements (called the consequent). Firing of a rule

involves execution of the action elements when the condition elements are satisfied. Con-

dition elements can be positive (which are satisfied when a matching WME exists) or

negative (which are satisfied when no matching WME exists). Action elements add new

WMEs, or/and modify existing WMEs, or/and delete existing WMEs. Variables can occur

in the place of values, and these variables are consistently bound through all of the ele-

ments of a rule. An OPS5 rule looks like this:

(p make-possible-trip
(city ^name <x> ^state Massachusetts)
-(forecast ^where <x> ^when tomorrow ^weather rainy)
->
(make possible-trip ^where <x> ^when tomorrow))

The rule make-possible-trip has a positive condition element of class city, a nega-

6

tive condition element of class forecast, and an action element which adds a new WME

of class possible-trip to the working memory. A rule instance with all its condition

elements satisfied and all variables bound, is called an instantiation.

The inference engine (or interpreter) is the control mechanism which drives the

rule-based system. It determines, for a certain state of working memory, which rules are

eligible to fire, decides which to fire, and executes the rule(s). A variety of problem-solv-

ing strategies can be built into an inference engine. The two main reasoning strategies are

forward-chaining and backward-chaining [BROW85]. In forward-chaining (also called

data-directed inference), the series of inferences proceeds from antecedents to the corre-

sponding consequents. The backward-chaining (also called goal-directed inference) pro-

cess starts from a specification of the desired consequents, and proceeds by trying to prove

antecedents that will justify concluding the consequent. Many production systems use

both types of reasoning, and one can be emulated by the other. An inference engine that

directly supports backward-chaining must have a large amount of control built into it, and

therefore, backward-chaining production systems suffer from reduced flexibility. In this

thesis, we consider forward-chaining production systems.

2.1 Sequential Rule-based Systems

 The inference engine in a sequential rule-based system executes an algorithm

called the Match-Resolve-Act (MRA) cycle [BROW85]. We describe the MRA cycle

executed by a forward-chaining inference engine.

2.1.1 The MRA Cycle

The MRA cycle is made up of three phases which are repeatedly executed by the

7

rule-based system interpreter. In the Match phase, the facts in the working memory are

matched against the condition elements of the rules, and a set of satisfied rule instantia-

tions is determined. This set is called the conflict set.

The Resolve phase consists of selecting one of the rule instantiations in the conflict

set to fire. This selection is carried out based on a conflict resolution strategy. Two of these

strategies are MEA and LEX [FORG81]. LEX uses four steps to successively eliminate

rule instantiations from the conflict set so that the one remaining instantiation can be fired.

The first step is refraction, which means that all instantiations previously selected and

fired are deleted from the conflict set. The second step of LEX discards all but the instanti-

ations whose condition elements matched the most recently changed WMEs. The third

step selects the instantiation(s) with the maximum number of tests in the condition ele-

ments of that rule. And finally, step four arbitrarily selects one of the remaining instantia-

tions for firing. If there is a unique instantiation left in the conflict set at the end of any

step, that instantiation is selected, and no further steps are necessary. The MEA strategy

adds one extra test just after the refraction step of LEX. This test selects the instantia-

tion(s) whose first condition element matches the most recent WME(s). This strategy is

useful to handle subgoaling, that is, when the first condition element of a rule is always a

goal element. Another way to specify control over rule selection is by using metarules

[DAVI80]. Metarules are rules which determine how to apply other rules, and can be writ-

ten in the same language as the normal rules, or in a separate control language. LEX and

MEA can both be coded as metarules.

The selected rule instantiation is fired in the Act phase, and the working memory is

modified accordingly. The MRA cycle is repeated until one of two things happens: either

8

the conflict set is empty, that is, there are no more rule instantiations to fire; or an explicit

halt is executed as a result of firing a rule instantiation.

It has been observed that Match constitutes the most expensive phase of the MRA

cycle. Literature puts the percentage of MRA cycle time that Match takes, from more than

90% [FORG79] in earlier systems, to about 50% [KUOS91] in more recent ones. The

Rete algorithm [FORG82] has become the standard match algorithm for rule-based sys-

tems.

2.1.2 Rete Match

The Match phase of the MRA cycle involves matching a large number of patterns

(represented by the condition elements of the rules) against a large collection of facts

(WMEs). When one realizes that a typical working memory consists of hundreds of

classes each with ten to a hundred attributes [FORG82], it is easy to see why the Match

phase is so time-consuming.

The Rete match algorithm requires compilation of the condition element patterns

into a data-flow network called the Rete network. The match involves no iteration over

WMEs because state is saved between cycles. Each time a new WME enters the working

memory, this state is updated. The Rete network also avoids iteration over the rules by act-

ing as an index for the rules. Common test evaluations are shared between rules instead of

being repeated for each rule.

Faster sequential match algorithms have been invented, like TREAT [MIRA87]

and YES/RETE [HIGH89]. TREAT implements faster deletions from the working mem-

ory, at the cost of slower additions to the working memory. If deletions are more frequent

than additions, TREAT obtains better performance than Rete. YES/RETE implements

9

faster updates to the working memory, and also increases the amount of sharing in the

Rete network.

2.2 Parallel MRA

Attempts have been made to speed up the execution of rule-based systems, by par-

allelizing parts of the basic sequential MRA algorithm. These attempts vary in the granu-

larity of parallelism as well as on the portion of the MRA algorithm which is divided up

among the processors. We discuss sources of parallelism in rule-based programs with

respect to the classic MRA control structure. However, several of these sources of parallel-

ism are applicable to other control structures. Alternatives to the MRA control structure

are discussed in Section 2.3.

2.2.1 Rule-level Match Parallelism

In this approach, the set of rules in the production memory is partitioned, and the

subsets are allotted to the available processors. Each processor independently performs the

Match phase on the rules in its subset. One processor performs the Resolve phase and

selects a firable rule instantiation from the conflict set obtained collectively by all the pro-

cessors doing the match. The advantage of this strategy is that no interprocessor communi-

cation is required for performing the match. But there are several disadvantages, one being

that of load balance: different rules may need different amounts of time to be matched, and

so some of the processors might be idle while the others are working away at their Match

phases. Another cause of processor idleness is the small cycle problem [GUPT86]: each

working memory change affects very few rules, and so there is very little work for the

match processors to do in each iteration of the MRA cycle. Yet another disadvantage is

10

loss of sharing in the Rete network: since each processor has a separate Rete network for

its own subset of the rule set, tests common to rules belonging to two different processors

are not shared.

2.2.2 Node Parallelism

This strategy exploits finer grain parallelism by partitioning the set of nodes in

the Rete network, and allotting subsets to several processors. The advantage over the rule-

parallelism approach is that common tests are shared, since there is a single Rete network.

But on the minus side, more interprocess communication is required during the Match

phase. Two examples of systems which have implemented or simulated this technique are

PSM-E [GUPT88] (an implementation) and PSM-M [ACHA89] (a simulation).

2.2.3 Intranode Parallelism

Going on to even finer grain parallelism, intranode parallelism allows multiple

activations of the same Rete network node to be evaluated in parallel. This is in addition to

allowing different Rete network nodes to be evaluated in parallel as in the node parallel-

ism approach. An obvious disadvantage is that there is strong memory contention at the

working memory, since several processors will try to access the same WMEs. PESA I

[SCHM90] and DRete [KUOS90] are systems which use intranode parallelism in the

Match phase.

2.2.4 Action Parallelism

A rule instantiation firing causes WME changes. These WME changes are pro-

cessed concurrently in the action parallelism technique. Since very few WME changes are

caused per firing (about 2.4 for OPS5 programs [GUPT89]), potential parallelism is low.

11

Action parallelism can be used in conjunction with the intranode parallelism strategy.

2.2.5 Data Parallelism

This method relies on extremely fine grain parallelism. The processing required for

each node activation in the Rete network is done in parallel. This implies very high syn-

chronization and scheduling costs since the method is so fine grain. It works fairly well

with specialized hardware like DADO [STOL82], and other parallel machines like NON-

VON [SHAW85] and the Connection Machine [WALT87].

2.2.6 Overlapping Phases of the MRA Cycle

Moving on to the other phases in the MRA cycle, one can achieve an improvement

in performance by overlapping the Resolve and the Act phases [GUPT89]. This is done by

following these steps:

• Guess which rule instantiation is going to fire next. (For instance, the second-best

rule instantiation from the Resolve phase of the previous cycle.)

• Evaluate potential WME changes by that rule instantiation.

• After the actual Resolve phase, if the guess was right, just change the working

memory; if the guess was wrong, reevaluate the changes to be made to working

memory.

As long as the ratio of good guesses to bad guesses is reasonably high, performance of the

system improves.

2.2.7 Multiple Rule Firing

An important issue in parallel rule firing is conflict among rules. The firing of one

12

rule instantiation can make another rule instantiation invalid. A non-conflicting set of rule

instantiations can be selected from the conflict set by building a data dependence graph.

Rule data dependence has been explored in [DIXI87], [ISHI90], [KUOS91], [MIRA90]

and [SCHM90].

If a WME is added by a rule, the WME class is said to be "plus-changed" by that

rule. If a WME is deleted by a rule, the WME class is "minus-changed" by that rule. If a

WME occurs in a positive condition element of a rule, that WME class is "plus-refer-

enced" by the rule. And if a WME occurs in a negative condition element of a rule, the

WME class is said to be "minus-referenced" by that rule.

Potential conflict exists between two rules when there is a WME class that is

• plus-changed by one and minus-referenced by the other; or

• minus-changed by one and plus-referenced by the other; or

• plus-changed by one and minus-changed by the other.

These are the pairwise conditions for potential conflict or interference.

More parallelism can be captured by using cyclic conditions instead of the pair-

wise conditions. Here, the constraint is that a set of rule instantiations cannot be executed

in parallel if the set has a data dependence cycle. For instance, take three rules ruleA,

ruleB and ruleC. Consider the two cases shown in figures 2.1 and 2.2 [ISHI94]. In figure

2.1, the three rules can be fired in parallel because there is a sequential execution (ruleC

=> ruleB => ruleA) which is equivalent to the parallel execution. But in figure 2.2, there

is a cyclic dependence, and there is no sequential execution which produces the same

result as any parallel execution.

13

ruleA class 1 class 4

ruleC

ruleB

class 2

class 3

+

-

+

-

+

-

(p ruleA

(class 1)

-->
(remove class 2))

(p ruleB

(class 2)
-->
(remove class 3))

(p ruleC

(class 3)
-->
(remove class 4))

Figure 2.1
Data Dependence: No cycle

ruleA

ruleC

ruleB

class 2

class 3

-

+
+

-

(p ruleA

(class 1)

-->
(remove class 2))

(p ruleB

(class 2)
-->
(remove class 3))

(p ruleC

(class 3)
-->
(remove class 1))

+

 -

class 1

Figure 2.2
Data dependence cycle

14

The cost of computing cyclic dependences is, however, higher than that of computing pair-

wise dependences, because the constraint for detecting cyclic dependence requires that all

strongly connected regions be detected from a data dependence graph.

Multiple rule firing alleviates the small cycle problem by providing more working

memory changes per cycle, thus keeping more match processes busy. However, it comes

with the cost of having to do interference analysis to ensure serializability. A parallel

execution is serializable if there exists an equivalent serially correct sequential execution.

Serializability is the most widely used correctness criterion for concurrency control in

databases [BERN81, PAPA86].

Interference analysis (by using either the pairwise or the cyclic conditions) can be

done either at compile-time or at run-time. While compile-time analysis is less expensive

computationally, run-time analysis has the advantage that all variables are bound at run-

time, and it is possible to detect dependences among rule instantiations rather than just

among rules. A mixture of compile-time and run-time analyses is what is commonly used

[ISHI90, KUOS91, MIRA90].

Parallelism gained from firing multiple rule instantiations concurrently stems from

the following three sources:

• Rule Parallelism: If there is a set of rules in which no rule conflicts with (invalidates)

another rule in that set, the rules in this set can be fired in parallel without

synchronization among the PEs that fire the rules. The larger the set of non-

conflicting rules, the greater the rule parallelism offered by the rule-based system

program.

• Pipeline Parallelism: In pipeline parallelism, data is pipelined through rules. As an

15

example, let rule R1 fire its first instantiation which enables rule R2 to fire its first

instantiation.While R2 is firing its first instantiation, R1 can go ahead and fire its

second instantiation which enables R2 to fire its second instantiation, and so on. This

is an example of a rule pipeline of length two, and is shown in figure 2.3. Once the

pipe is full, the rules forming the pipe can be fired concurrently. The longer the pipe,

the greater the pipeline parallelism.

• Instantiation Parallelism: More than one instantiation of a rule may be valid at a

given time, and these instantiations can be fired in parallel.

Systems that use multiple rule firing include IRIS [ROMA89], Ishida’s simulated system

[ISHI85], PARS [SCHM90], RUBIC [MOLD89], CREL [KUOC91] and PARULEL

[STOL91]

2.3 Asynchronously Parallel Approaches

We know of three parallel rule-based system schemes which have eliminated the

MRA cycle, allowing multiple instantiations to fire simultaneously. These systems use an

alternative control structure to ensure that the results obtained by the parallel execution

time

RULE 1 inst 1 inst 2 inst 3

inst 1 inst 2

inst 4

inst 3RULE 2

enable enable enable

Figure 2.3
Pipeline Parallelism

16

could have been obtained by some sequential execution. The algorithms that have been

proposed to guarantee this property of serializability are described below. Several of the

sources of parallelism described in Section 2.2, most notably rule parallelism, pipeline

parallelism and instantiation parallelism (Section 2.2.7), can be exploited by asynchro-

nous approaches.

2.3.1 Offline Analysis

Schmolze and Nieman have proposed an algorithm which uses offline analysis to

aid in guaranteeing serializability. [SCHM92]

They define a "clash" between two rule instantiations as the property that one of

the instantiations plus-changes a WME and the other minus-changes the same WME.

Also, a rule instantiation "disables" another rule instantiation if the first plus-changes and

the second minus-references the same WME, or if the first minus-changes and the second

plus-references the same WME.

To ensure serializability, no two coexecuting instantiations must clash, and there

should be no cycle of disables. Offline analysis synthesizes LISP functions that check for

clashes and disables between two instantiations.

In their system, there are several demon processes and a scheduler process. The

scheduler process schedules instantiations from the conflict set and places them in a

shared queue. A demon process removes one of the scheduled instantiations from the

shared queue (there is a mechanism which prevents multiple demon processes from select-

ing the same instantiation), and adds it to the list of executing instantiations (by executing

a many-reader single-writer critical code section). The demon process tests this instantia-

tion for clashes/disables with the set of previously enqueued executing instantiations, and

17

then checks to see if the system has marked the instantiationdead in the meantime, due to

it being disabled by the execution of an instantiation by some other process. If the instanti-

ation is not dead, and no clashes/disables are detected, the instantiation is executed by the

demon process and removed from the list of executing instantiations. Otherwise, the

instantiation is removed from the list of executing instantiations, and returned to the con-

flict set if it is not dead. Each demon process repeats this procedure until the shared queue

of scheduled instantiations is empty. The scheduler process keeps trying to schedule

instantiations from the conflict set until the conflict set is empty, the shared queue is

empty, and all the demon processes are idle, in which case it exits.

2.3.2 Locks Acquired by a Single Process

Another technique, also by Schmolze and Nieman [SCHM92], uses locks to per-

form synchronization. There is no checking for clashes or disables. The scheduler process

tries to acquire locks for an instantiation. If the required locks can be obtained, the rule

instantiation is scheduled. Each demon process chooses an instantiation out of the ones the

scheduler has scheduled, and executes it. Since acquisition of locks is a sequential opera-

tion performed only by the scheduler process, there is no possibility of a deadlock. Also, a

demon process doesn’t have to perform any checks to make sure that it is safe to execute

that instantiation.

2.3.3 Locks Acquired by Multiple Processes

Schmolze also proposed an asynchronous system PARS [SCHM88, SCHM90] in

which different processors coordinate rule firings by acquiring locks. PARS modifies the

phases of the MRA cycle, and adds two more phases. The five phases are:match, select,

18

disable, act and enable. The rule set is divided up among the processors, and the WMEs

referenced by the rules allotted to a processor are stored at that processor. Each processor

executes the PARS cycle asynchronously.

In the match phase, the rules are matched against the WMEs, and a local conflict

set is formed. In the select phase, one of the instantiations from the local conflict set

(which is not disabled) is selected. If no such instantiation exists, the process goes back to

the match phase, else it proceeds to the disable phase. In the disable phase, the processor

sends disable messages to all of the processors which have rules that are incompatible

with this one. To prevent deadlock caused by cyclic disable messages, rules are priori-

tized, and disable messages are sent only to processes that have incompatible rules with a

priority higher than this one. The processor then waits for receipt of messages confirming

the disabling of all of the incompatible rules. In the interim, if this rule is invalidated, the

processor has to abandon the execution of the rule and jump to the enable phase. Other-

wise, the act phase is executed. In the act phase, the selected rule instantiation is fired, and

the resulting WME changes are sent to the affected processors. The processor then waits

for acknowledgments from all receiving processors, and sends reacknowledgments to all

of them. In the enable phase, the rules which were disabled in the disable phase are

enabled by sending enable messages.

2.4 Chapter Summary

A rule-based system is composed of a working memory, rules and an inference

engine that drives the system. A rule is made up of condition elements and action ele-

ments. Sequential rule-based systems execute the MRA (Match-Resolve-Act) cycle. The

condition elements are matched against WMEs in the match phase. The resolve phase uses

19

a conflict-resolution strategy to select a firable instantiation from the conflict set. The

selection can be done by implicit strategies like MEA and LEX, or by embedded

metarules. The instantiation is fired in the act phase. The Rete algorithm is the most popu-

lar match algorithm.

Existing parallel rule-based systems have explored different types of parallelism:

rule-level, node, intranode, action, data, overlapping phases and multiple rule firing. We

describe these parallelism sources with respect to the classic MRA control structure, but

several of these sources are applicable to alternative control structures too. Data depen-

dence analysis of the rules is used in multiple rule firing systems. The only previously

published asynchronously parallel approaches use either offline analysis or locks to syn-

chronize multiple rule firing. Section 4.6 provides a qualitative comparison of these asyn-

chronous approaches to the technique we present.

The approach we present falls under the asynchronously parallel multiple rule-fir-

ing category, but differs from the other asynchronous techniques described in that it does

not introduce locking, and eliminates the bottleneck of a central control process.

20

Chapter 3
Isotach Rule-based Systems

We present a parallel rule-based system algorithm (henceforth called ISORULE),

which is based on isotach networks [REYN89, WILL91]. An isotach network uses an

embedded logical time network to reduce the cost associated with the coordination of mul-

tiple processors in a parallel system. ISORULE does away with the MRA cycle, and coor-

dinates processors by using a completely different paradigm. ISORULE differs from other

asynchronous techniques in that it does not introduce locking, and eliminates the bottle-

neck of a central control process. Each rule in the ISORULE system executes atomically,

and rules fire asynchronously. Rules can be selected for execution whenever the state of

the working memory renders them executable.

3.1 Isotach Time and Atomicity

Isotach networks support atomicity — a property which, as we shall see, is quite

useful to the efficient execution of parallel rule-based systems. With isotach time, a pro-

cessor can control the time at which the messages that it sends are processed at the receiv-

ing processor.

3.1.1 The Concept of Isotach Time

Isotach time is an extension of Lamport's logical time [LAMP78]. Lamport's logi-

cal time system expresses potential causality by three rules: Event A happens before event

B , and A is assigned a timestamp less than the one assigned to B if

• A takes place before B, on the same process;

A B→()

21

• A is a message-send and B is the receipt of the same message; or

• there exists an event C such that and .

A message is received when the SIU (switch interface unit) of the destination pro-

cess removes the message from the network. Isotach logical times are lexicographically

ordered n-tuples of integers, of which the first is called the "pulse". There are two changes

to Lamport's system:

• If , then the time assigned to A is less than or equal to the one assigned to B;

and

• More importantly, isotach networks maintain the isotach invariant: a message is

received exactly d pulses after it is sent, where d is the logical distance the message

travels.

In this discussion, the isotach logical time n-tuple is of the form (pulse, pid, rank)

where pid is the identifier of the process that issued the message, and rank is the issue rank

of the message, that is, rank = r if the message is the message issued by the process

identified by pid. Since a processing element (PE) can control the logical time of receipt of

any message it sends in an isotach system, an isotach network gives the power to enforce

properties like atomicity and sequential consistency.

3.1.2 Atomicity

An atomic action is a group of operations issued by a process, where the set of

operations appears to be executed indivisibly (without interleaving with other operations).

Conventional systems usually use locks to enforce atomicity; but locks come with some

disadvantages; there is lock maintenance overhead, overly restrictive access to shared

A C→ C B→

A B→

r
th

22

objects, and the possibility of deadlock and livelock. Atomic actions can be flat or struc-

tur ed.

3.1.3 Flat Atomic Actions

Structured atomic actions can have internal data dependences among shared

variables. Flat atomic actions can have no such dependences. Isotach systems can execute

flat atomic actions without synchronizing with other processes, and can execute structured

atomic actions without acquiring locks.

A processor in an isotach system executes a flat atomic action by sending all oper-

ations in the atomic action so that they are received at the destinations in the same pulse.

An equidistant network is a network in which the distance (number of switches) between

any two PEs is the same. For an equidistant network, the condition for execution of a flat

atomic action would reduce to: Send all operations in the flat atomic action in the same

pulse.

Consider the non-equidistant network shown in figure 3.1. A and B are shared vari-

ables in two memory modules, P1 and P2 are processing elements, and the circles are

switches. P1 needs to read the variables A and B atomically, and P2 needs to write A and B

atomically. In a conventional system, one of the PEs would lock the two variables (or two

sets of variables), and perform its operations, during which time the other processor would

be unable to do anything. Once the locks were released by this processor, the other proces-

sor would go ahead and acquire locks, and perform its operations. Provisions would have

to be made to avoid deadlock. But in an isotach system, P1 and P2 could execute their

atomic actions asynchronously as follows: P1 sends the read on A one time pulse after it

sends the read on B, so that both the reads arrive at their destinations in the same pulse. P2

23

sends its write on B one pulse after it sends the write on A, again to ensure that both the

writes arrive at their destinations in the same pulse. Since the isotach system maintains the

isotach invariant, both operations in each atomic action are received in the same pulse. If

all four operations happen to reach their destinations in the same time pulse, the execu-

tions will still be atomic because the operations in the same pulse will be executed in order

of pid of the sender.

3.1.4 Structured Atomic Actions

The data-dependences among operations in structured atomic actions require an

P1

A

P2

BMM

MM

PEPE

switch

 Operation Sender time.send distance time.receive

read A

read B

write A

write B

P1

P1

P2

P2

(i+1, 1, x)

(i, 1, x+1)

(j, 2, y)

(j+1, 2, y+1)

2

3

3

2

(i+3, 1, x)

(i+3, 1, x+1)

(j+3, 2, y)

(j+3, 2, y+1)

Figure 3.1
Flat Atomic Actions on an Isotach Network

24

extension to the basic isotach atomicity technique described in the previous section. This

extension is implemented in form of split operations [WILL93]. A split operation per-

forms an access in two steps: scheduling the access, and transferring the value. If a pro-

cess has incomplete knowledge about an access due to an unsatisfied data dependency, it

can reserve a slot in the variable's history, which ensures that the access will appear to be

executed in the same time pulse as the other operations in the structured atomic action. An

unsubstantiated write or a sched (a write which has been scheduled but not executed)

holds up reads scheduled up to the next write; but other reads and writes are not delayed.

A processing element in an isotach system executes a structured atomic action by

issuing a set of split operations scheduling all of the reads and writes making up the

atomic action, so that they're received in the same logical time pulse at each variable

accessed. As the values to be assigned are determined, the second step of each access —

the assign — is performed. On the other hand, if the process determines that it is no longer

able to perform the write, it can cancel the scheduled write. So the set of operations in the

structured atomic action effectively reserves a consistent time slice over the access-histo-

ries of the concerned variables, thus guaranteeing atomicity.

3.1.5 Sequential Consistency

Another property provided by isotach systems is sequential consistency. A sequen-

tially consistent execution is one in which the overall order of execution of operations is

consistent with the order of execution implied by each individual process' sequential pro-

gram [LAMP79]. In conventional systems, sequential consistency would be enforced by

disallowing pipelining; so a process would have to wait for information telling it of the

execution of its outstanding operation before it can issue its next operation. An isotach

25

network imposes no such restrictions on pipelining. To enforce sequential consistency in

an isotach system, all that a processor has to do is timestamp each send operation so that it

is received in a pulse greater than or equal to the pulse in which the preceding operation

was received.

3.1.6 Performance of Isotach Networks

An isotach network has lower raw power than a comparable conventional network

This means that assuming that there are no atomicity or sequential consistency constraints,

an isotach network would be slower than a conventional network because the former has

to bear the cost of maintaining isotach logical time. However, a simulation study

[REYN92] comparing the performance of isotach networks to that of conventional net-

works has revealed that isotach networks outperform conventional networks when con-

fronted with a workload imposing atomicity and sequential consistency constraints. The

improvement in both throughput and delay has been observed to be more than ten-fold in

some cases.

3.2 Model of an Isotach Rule-based System

The importance of atomicity in rule-based systems lies in the fact that correct exe-

cution of a rule demands the satisfaction of the condition elements of the rule at the time

the action elements are executed. So a rule is a structured atomic action where the condi-

tion elements are reads to some variables, and the action elements are writes based on the

values returned by the reads. There is a data-dependence because the action elements

depend on the truth of the condition elements. ISORULE does not currently handle

metarules; but if it did, the order of execution of rules would become important, and the

26

property of sequential consistency would be useful to guarantee this ordering. Recall that

metarules impose an ordering on the execution of normal rules, and the same order has to

be perceived at all of the processors in the system.

In ISORULE, rules fire asynchronously, depending on the underlying isotach net-

work to guarantee atomicity and hence correct execution. Processing elements don't syn-

chronize with other PEs before they schedule a rule instantiation firing. A firing can be

scheduled whenever the rule is eligible, that is, whenever there is a firable instantiation of

the rule. Eliminating the MRA cycle removes the loss of rule-parallelism that is inherent

in the MRA algorithm. This section gives an overview of the ISORULE algorithm.

3.2.1 Assumptions

We assume in the course of this discussion that the PEs are connected in an equi-

distant network of delta stages. This assumption can be removed. We also assume that the

rule set is static, that is, rules are not added, deleted or modified in the course of execution

of the rule set. This assumption too, as we shall see, is not necessary. An assumption that

cannot be removed as yet, is the assumption that there are no metarules. And finally, we

assume that any serializable execution of the rules is a correct execution.

3.2.2 Partitioning

The set of rules is partitioned among the processors. These are some of the terms

used in the discussion that follows:

• The read set for a PE is the set of WME classes referenced by the condition

elements of each of that PE's rules.

• The write set for a PE is the set of WME classes referenced by the action elements

27

of each of that PE's rules.

• The reader set for a WME class is the set of PEs whose read set includes that class.

• The writer set for a WME class is the set of PEs whose write set includes that class.

Assuming a static rule set, these sets are statically determinable and don't change

during the course of the execution. But with dynamic rule sets, these sets could change

while the rule set was being executed. Isotach networks can provide the basis for building

systems which handle dynamic rule sets as well, by using a technique similar to delta

cache protocols [WILL93]. We assume a static rule set here.

Each PE in the ISORULE system is given a copy of all of the WMEs belonging to

its read and write sets. Each PE is also given a copy of the reader set for each of the WME

classes in its write set. That is, each PE knows which PEs will read the WME classes that

it changes in the course of a rule firing. This completes the preprocessing phase of the

ISORULE algorithm.

ISORULE has to ensure that the set of WMEs in each PE's local memory is up-to-

date. This is similar to the problem of maintaining cache coherence, but simpler. The

reader and writer sets are analogous to the set of PEs in a cache block's directory. In cache

coherence protocols, these sets can change during execution. Delta cache protocols have

been used to solve the cache coherence problem by using isotach networks, and the

ISORULE technique is similar to the delta cache technique. The simpler nature of the

rule-based system problem lies in the fact that since the reader and writer sets in a rule-

based system are static, a PE changing a WME knows the destinations to which it has to

multicast the change. If the sets were dynamic, the PE would have to send the change to a

home node that tracks the reader or writer set.

28

3.2.3 Types of Operations

The operations used in the ISORULE system are based on the split operations —

sched, assign and cancel — discussed in Section 3.1.4. A SCHED is the logically syn-

chronous multicast message that a processor issues to schedule the WME changes caused

by a rule firing. In this case, the WME changes to be made are actually known at the time

of sending the SCHED, so it is not really an unsubstantiated write. The receiver of a

SCHED does not make the WME changes scheduled by the multicast, but instead, waits

for a corresponding CANCEL or CONFIRM from the issuer of the SCHED. Figure 3.2

shows multicasts of SCHEDs, CANCELs and CONFIRMs.

On receiving a CANCEL, a process deletes the corresponding SCHED. The CONFIRM, a

variation of the assign type of split operation (Section 3.1.4), is used to signal the receiver

that the previously scheduled WME changes are valid.

Multicast
received

Multicast
received

Reevaluate
firing

SCHED
Multicast

CANCEL/
CONFIRM
Multicast

READ/
WRITE

Multicast

logical time

Multicast
received

Figure 3.2
Structured atomic actionsFlat atomic actions

29

3.2.4 Asynchronous Evaluation and Logical Firing Times

Each PE evaluates (performs match on) the rules in its partition asynchronously.

The logical firing time(LFT) of a rule firing is chosen to be the logical time at which the

SCHED for that rule firing is received by the PEs in the firing PE's reader set for the

selected rule. More formally, if P is the pid of the process scheduling the firing, t is the

pulse in which process P multicasts the SCHED, the SCHED is the rth multicast by pro-

cess P, and delta is the distance between any two PEs in the equidistant network, then LFT

= (t+delta, P, r). Recall that with isotach systems, a PE can send out a multicast of opera-

tions and have all of the operations received at the same logical time at all destinations.

Therefore, all receivers agree on the value of the LFT. Note that with a non-equidistant

network, LFT could still be the logical time of receipt of the SCHED, and the isotach net-

work would ensure that this LFT was the same at all receiving PEs (that is, the SCHED

multicast was received by all destinations in the same logical time pulse).

Each PE in the ISORULE system executes the following algorithm:

• The PE tentatively schedules a rule firing by sending the SCHEDs for a rule firing so

that they arrive in the same pulse at all PEs in the reader set for that rule.

• The PE re-checks the validity of the rule firing at the LFT for that firing, by

reevaluating the rule.

• If the instantiation is still valid, the PE confirms the scheduled changes by sending

CONFIRM messages, else it cancels them by sending out CANCELs to the PEs in its

reader set.

30

Figure 3.3 shows this procedure of evaluation, scheduling, reevaluation and confir-

mation or cancellation for a rule firing. The waiting time (the rectangles marked Evaluate

and Reevaluate) is indeterminate, but bounded.

3.2.5 A Discussion of Correctness

Figure 3.4 shows the ISORULE system execution for two rules R1 and R2, where

the firing of R2 invalidates R1, and the firing of R1 has to be cancelled. Here, processor

PE2 schedules an instantiation of rule R2 to fire, and sends out a SCHED multicast. Before

the SCHED can get to processor PE1, PE1 schedules an instantiation of rule R1 and multi-

casts the SCHED for it. The SCHED for R2 arrives at PE1 at the logical time LFT(R2).

Note that PE1 should not cancel R1 at this point because R2 might get cancelled. Now PE2

completes reevaluation and sends out a CONFIRM multicast. On receiving the CONFIRM

Evaluate

Reevaluate

SCHEDs

CANCELs

or CONFIRMs

Select

logical time

LFT

predetermined

delay

predetermined

delay

logical time

logical time

Figure 3.3
A Rule Firing

31

and on processing the WME changes caused by R2, PE1 knows that R1 has to be can-

celled, as it has been invalidated by R2. So PE1 sends out a CANCEL multicast, and aban-

dons execution of the R1 instantiation. Since the LFTs for all rule firings are agreed upon

by all processors, the observed firing order of rules is the same at all processors.

Any SCHEDs arriving before the LFT of a rule instantiation RI1 are taken into

account in the reevaluation of RI1 at its LFT. That is, RI1 cannot be reevaluated until these

R1 at PE1 R2 at PE2

LFT(R2)

LFT(R1)

CONFIRM

CANCEL

Figure 3.4
Conflicting rules

32

SCHEDs have been resolved (either cancelled or confirmed). Any SCHEDs arriving after

the LFT of RI1 cannot make the firing of RI1 incorrect because the rule firings represented

by these SCHEDs all have LFTs later than that of RI1, and hence these firings come later

than RI1 in the order of rule firings. It is the LFT alone that determines the firing order of

rule instantiations. Since the LFTs are consistent across all processors, all processors

agree on the same firing order.

3.2.6 Deadlock Freedom

A rule firing is outstanding if the rule process has issued the SCHEDs scheduling

the firing, but has not yet sent out CANCELs or CONFIRMs for the firing. All outstanding

rule firings are totally ordered by their LFTs, and all processors agree on the values of

these LFTs. The rule firing with the lowest of these LFTs can always make progress.

Hence the ISORULE system always progresses, and there is no possibility of deadlock.

3.2.7 Waiting Time

A rule firing RF1 has a finite waiting time between its LFT and the time at which

the decision is made to either cancel or confirm RF1. In this waiting time, the processor is

waiting for all SCHEDs with LFT earlier than that of RF1 to be cancelled or confirmed. In

the worst case, RF1 may have to wait for all other outstanding rule firings at all PEs to be

cancelled or confirmed before a decision can be made to cancel or confirm RF1. In other

words, instantiation RF1 potentially conflicts with instantiation RF2 which potentially

conflicts with instantiation RF3, and so on, until instantiation RFn-1 conflicts with instanti-

ation RFn, where n is the maximum number of outstanding rule firings across all proces-

33

sors. If there are p processors in the system, and a maximum of o outstanding rule firings

are allowed per processor, then the maximum number of outstanding rule firings across all

processors is

If the average evaluation time per rule firing is et, and lt is the average latency time

of the network to deliver a SCHED/CANCEL/CONFIRM corresponding to a single rule

firing, then this bound on the waiting time is:

Worst-case waiting time

physical time units.

3.3 Parallelism

Previous attempts to speed up rule-based systems by parallelization have had lim-

ited success. In the parallel-match MRA approach, only one rule is fired per cycle. This

rule firing will affect very few rules owing to the small cycle problem. This means that

most processors will be idle a significant portion of the time. Trying to speed up rule-

based systems by using node parallelism in the Rete network increases synchronization

overhead. On the other hand, trying to speed them up by firing multiple rules in the Act

phase increases the length of the Resolve phase of the cycle because a set of non-conflict-

ing rules has to be selected for firing.

Production systems based on the MRA cycle suffer from the effects of the small

cycle problem because only one rule fires every cycle, and very few rules are affected by

this firing, leaving a large percentage of the processors idle in the match phase. In

ISORULE, no eligible rule is blocked by artificial contrivances of the algorithm like firing

only one rule even though several may be eligible to fire. Hence, ISORULE diminishes the

n p o×=

n et lt+()×=

34

effect of the small cycle problem. The coarser grain of parallelism (rule-level rather than

node-level) avoids the increased synchronization overhead problem inherent in node-level

parallel systems. At the same time, pipelining allows more parallelism than simple rule-

level parallelism would. Finally, even though multiple rules are fired, no analysis to deter-

mine a set of non-conflicting rules is required. The only parallelizing overheads in the

ISORULE system are the cost of cancelling a scheduled firing due to detection of conflict

at the logical firing time, and the network latency cost of enforcing the isotach invariant.

Thus we expect the ISORULE system to exploit all or most of the parallelism available in

a rule-based application. Parallelism in ISORULE is exploited in two ways:

• Parallelism across processors: The process of performing match is divided among

the PEs, and is done independently, without any need for synchronization. Each PE

also schedules rules for firing asynchronously, whenever they are eligible. This

provides one facet of the parallelism exhibited by ISORULE.

• Parallelism due to pipelining: The other facet of parallelism in the ISORULE

system is obtained by the fact that each PE can have more than one outstanding

scheduled firing at a time. That is, a PE does not have to wait until a firing is

completed before it schedules a new firing.

The overall improvement in performance for ISORULE is a multiplicative result of the

speed-ups gained by these two facets of parallelism. Figure 3.5 shows these two aspects of

parallelism. Each processor pipelines rule firings. The first rule firing by P2 is cancelled on

reevaluation; all other firings are confirmed. In general, we expect CANCELling to be

infrequent as compared to CONFIRMing because of the observed fact that each working

memory change affects very few rules [GUPT86], and so there is very little conflict among

35

rules.

3.4 Chapter Summary

Our parallel rule-based system algorithm (ISORULE) eliminates the MRA cycle,

and synchronizes among processors without using locks. Rules fire asynchronously and

can be scheduled whenever they are eligible. ISORULE is based on isotach networks.

Isotach networks support atomicity which is essential to rule-based systems since

each rule firing is one atomic action. Isotach networks are based on isotach logical time

and maintain the isotach invariant. A PE can control the logical time of receipt of any

P1 P2 P3

Figure 3.5
Parallelism in ISORULE

36

message it sends in an isotach system, and can hence execute atomic actions. Flat as well

as structured atomic actions can be executed by a PE in an isotach system. A rule is a

structured atomic action, and is hence executed with the help of a variant of split opera-

tions in the ISORULE system. A simulation study has shown that confronted with a work-

load imposing atomicity constraints, isotach networks outperform conventional networks

by up to an order of magnitude [REYN92].

In ISORULE, the rule set is partitioned among the PEs, and a PE uses a SCHED

multicast to schedule a rule firing. After delta pulses, when the SCHED has been received

at all its destinations (Logical Firing Time LFT), the scheduling PE reevaluates the rule

instantiation, and either CANCELs it (if the instantiation is no longer valid) or CON-

FIRMs it. ISORULE is deadlock-free, there is always progress, and the waiting time

between the LFT and the time of sending out a CANCEL or a CONFIRM is bounded. The

only parallelizing overheads in ISORULE are the cost of cancellation and the network

latency due to enforcing the isotach invariant. The final improvement in performance of

ISORULE is the product of the parallelism across processors, and the parallelism due to

pipelining.

37

Chapter 4
Implementation

ISORULE was implemented as three co-executing processes at each processor,

relying on the isotach network to maintain isotach logical time. This chapter describes the

functions performed and data structures used by the three processes, and presents some

optimizations that were implemented to enhance the performance of the ISORULE sys-

tem. A conventional parallel rule-based system paradigm based on the MRA cycle

(PARAMRA) was also implemented, so that its performance could be compared to that of

ISORULE.

4.1 Review of the Basic ISORULE Algorithm

We restate our assumptions. The PEs form an equidistant network of delta stages:

each PE is the same distance delta from each other PE. The rule set is static; that is, addi-

tion, deletion and modification of the rules in the production memory are not allowed.

Recall from chapter 3 that these two assumptions are not necessary. The other assumptions

are that there are no metarules, and that any serializable execution is correct.

The ISORULE algorithm partitions the set of rules among the PEs so that the rules

can be processed in parallel. A process schedules a rule firing by sending out a multicast

of SCHEDs to all of the PEs in the reader mask for that rule. It reevaluates the rule instan-

tiation exactly delta pulses later to see if it is still valid at the LFT. The reevaluation

includes all changes to working memory made or scheduled to be made up to LFT. If the

instantiation is still valid, the PE confirms the rule firing by multicasting CONFIRMs to

the PEs in the reader mask for the rule, else it cancels the firing by sending them CANCEL

38

multicasts.

4.2 Components of ISORULE

The tasks that need to be performed at any PE in an ISORULE system can be

divided into three concurrently executable sub-tasks which communicate through buffers.

The first of these sub-tasks comprises matching rules against WMEs, scheduling rule fir-

ings and reevaluating the firings at LFT. These are the functions that are more closely

related to the rule set itself, and we assign a rule process to perform them. The second

sub-task involves interfacing with the isotach network and multicasting and receiving

messages, and we call the process handling this the SIU process. The third of the sub-

tasks requires presentation of WME changes to the rule process in the correct order, and

we call the process assigned to this the WME process. Messages are sent through an iso-

tach network that maintains isotach logical time across all the PEs.

Ideally, each of the three processes would run on a separate co-processor. The

interaction among the three processes is shown in figure 4.1. The write buffer, the opera-

tion buffer and the token buffer provide the communication among the three processes.

4.2.1 Rule Process

We assume that each process can have a maximum number of outstanding rule fir-

ings at any given time. A large number of outstanding instantiations at a processor means

more pipeline parallelism. But it also means more potential for cancellation, and for buffer

overflow.

39

.

The rule process maintains the data structures shown in figure 4.2:

• rete: the Rete network for the set of rules in this PE's partition;

• valid table: the set of valid instantiations output by the Rete network;

• firing table: a table of outstanding rule firings with a limit on the number of entries.

The rule process is responsible for scheduling rule firings. If the rule process has

fewer outstanding rule firings than the maximum allowed, it tries to schedule a new firing.

buffer

write

buffer

 operation

buffer

token

pending

queue

Rete

network

valid

table

firing

table

RULE WME

SIU

NETWORK

PROCESS

PROCESS

 PROCESS

Figure 4.1
Components of ISORULE

40

If any new non-outstanding instantiations exist in the valid table, it picks one. The crite-

rion for this selection could be anything, and meta-rules could be applied here. The rule

process then allocates an entry in the firing table for this selected instantiation, marking it

valid. The index of this entry in the firing table, called the firing number, uniquely identi-

fies this instantiation among the outstanding instantiations at this PE. The rule process

records the firing number in the valid table entry and marks this entry outstanding. It then

enqueues a SCHED in its write buffer for this instantiation.

The rule process also handles tokens passed to it by the WME process. Each token

can be:

• a WME token, representing a change to working memory resulting from a

successful rule firing; or

• a firing token, signalling the LFT (time to reevaluate an outstanding instantiation).

When the rule process finds a WME token at the head of the token buffer, it pushes the

token through the Rete network. If the change to working memory caused by this token

results in the invalidation of an outstanding instantiation, the process cancels the firing of

the instantiation and marks the corresponding entry in the firing table invalid so that when

the firing token for the instantiation comes in, the process will know that the firing has

already been cancelled.

When the rule process finds a firing token at the head of the token buffer (which

signals the LFT for the rule firing represented by that token), the rule process determines if

the instantiation is still valid by checking the invalidation status of the corresponding entry

in the firing table. If the entry in the firing table indicates that the firing is still valid, the

rule process enqueues a message confirming the firing. Otherwise, the instantiation has

41

already been cancelled.

The main algorithm followed by the rule process is shown in figure 4.2.

Data structures:

rete
valid table

is_outstanding; /* TRUE if this instantiation is outstanding */
firing_number; /* index into firing table if is_outstanding is TRUE */

firing table /* indexed by firing_number */
inst; /* pointer to rule instantiation */
invalidated; /* TRUE if this instantiation has become invalid */

Main algorithm:

initialize_rete();
repeat until end of program

if token buffer is not empty
remove token from head of token buffer;
if token is a WME token

rete_push(token); /* push WME token through rete */
else /* it's a firing token signalling LFT */

reevaluate_firing(token); /* LFT: reevaluate the instantiation */
else if firing table is not full /* below limit max_outstanding */

inst = select from valid_table; /* choose instantiation that isn’t outstanding */
if inst exists

schedule_firing(inst); /* schedule instantiation to be fired */

Figure 4.2
Rule process algorithm

The sub-procedures invoked in the main algorithm are shown in figure 4.3.

initialize_rete()
push initial WME tokens through rete, updating valid table;

rete_push(WME token)
push WME token through rete, updating valid table;
for each outstanding instantiation invalidated in valid table

enqueue CANCEL in write buffer; /* cancel firing */

42

set firing table[].invalidated to TRUE; /* mark instantiation invalid */

reevaluate_firing(firing token)
get firing number f of the instantiation from firing token;
if firing table[f].invalidated is FALSE

enqueue CONFIRM in write buffer; /* confirm firing */
remove entry f from firing table;

schedule_firing(inst)
f = allocate entry for inst in firing table;
firing table[f].invalidated = FALSE;
enqueue SCHED in write_buffer; /* schedule inst */
set

firing_number = f and
is_outstanding = TRUE

in valid table, for the entry for inst;

 Figure 4.3
Rule process algorithm: sub-procedures

4.2.2 SIU Process

The SIU process at each PE holds a copy of the reader mask for each rule assigned

to that PE. Recall that the reader mask tells which PEs must be notified when that rule is

scheduled, cancelled or confirmed. When the rule process issues an operation (SCHED,

CANCEL or CONFIRM), the SIU process looks up the reader mask for the corresponding

rule, and multicasts the operation to all the PEs in the reader set. Also, when a SCHED for

a rule firing is multicast in pulse p, the SIU process generates a firing token for that firing

exactly delta pulses after p. That is, the SIU process generates the firing token for a rule

firing at the LFT for that firing, and sends it to the WME process. The order in which the

SCHED and the firing token are delivered to the WME process is crucial. The SCHED has

to be appended after the firing token because if the order is reversed, deadlock is immedi-

43

ate: the firing token cannot get to the rule process because there is an unsubstantiated

SCHED blocking it, and the only way the SCHED can be substantiated is if the rule pro-

cess processes the firing token and either cancels or confirms the firing. The process by

which a firing token reaches the rule process is explained in Section4.2.3.

The SIU process also receives SCHED, CANCEL and CONFIRM messages from

the network, and passes them on to the WME process. The algorithm for the SIU process

is shown in figure 4.4.

/* incoming messages */
siu_in_process(in_operation)

append in_operation to operation_buffer;

/* outgoing messages */
siu_out_process()

get operation from head of write_buffer;
create destination list for message from reader_mask;
build multicast message and pass it to the network;
/* generation of firing token */
if operation was a SCHED

after delta pulses
generate firing token
append firing token to operation_buffer before SCHED

Figure 4.4
SIU process algorithm

4.2.3 WME Process

It is the WME process’ job to match incoming CANCEL and CONFIRM opera-

tions with the corresponding SCHEDs. The WME process stores an incoming SCHED in

a FIFO queue of pending changes. When a CANCEL or a CONFIRM arrives, it searches

the pending queue for the corresponding SCHED. (The corresponding SCHED is identi-

44

fied by the rule number and the firing number.) When the corresponding SCHED is found,

either both operations are deleted (in the case of a CANCEL), or the SCHED is replaced

with the WME tokens representing the rule firing (in the case of a CONFIRM).

The other responsibility of the WME process is to deliver WME tokens to the rule

process in the order in which the changes were scheduled. This order is not necessarily the

same as the order in which the CONFIRMs arrive. An incoming firing token is appended

to the pending list. The first item on the pending list can be delivered to the rule process if

and only if it is a token — either a firing token or a WME token. Matching a CANCEL or

CONFIRM with a SCHED may enable delivery of one or more tokens. Each time a

SCHED is matched with an incoming CANCEL or CONFIRM, the WME process moves

all the tokens, if any, from the head of the pending list to the token buffer.

A firing token is moved from the pending list to the token buffer only after all of

the SCHEDs received before it are either cancelled or confirmed. Therefore, the rule pro-

cess sees a WME token if and only if the LFT of the rule firing represented by the WME

token is earlier than the LFT of the local rule firing represented by the firing token.

The algorithm for the WME process is shown in figure 4.5.

remove operation from operation buffer;

if operation is a firing token or a sched, append it to pending list;
else /* operation is a CANCEL or a CONFIRM */

search pending list for corresponding SCHED;
assert: corresponding SCHED will be found;
if operation is a CANCEL

delete operation and corresponding SCHED;
else /* operation is a CONFIRM */

turn SCHED into WME tokens;
leave in pending list at spot where corresponding operation
 was found;

45

while first item in pending list is a firing token or a WME token
move item to token buffer;

Figure 4.5
WME process algorithm

4.2.4 Isotach Network

The isotach network accepts the messages given to it by the SIU process, and

routes them to the proper destinations, handing them to the SIU processes of the receiving

PEs. The network maintains isotach logical time while doing so. The individual messages

in a multicast are delivered to their destinations in the same logical time pulse. Our imple-

mentation included an isotach network simulation [DESU94].

4.3 Optimizations

4.3.1 CANCELs and CONFIRMs

SCHEDs need to arrive at all their destinations in the same logical time pulse, and

therefore SCHEDs reserve a consistent time slice across all processors for a rule firing. On

the other hand, the time of arrival of CANCELs/CONFIRMs need not be the same at all

destinations. In fact, the sooner they arrive the better, because CANCELs and CONFIRMs

eliminate SCHEDs from the pending queue, allowing tokens to progress towards the rule

process. For this reason, CANCELs and CONFIRMs destined for the sending PE itself (let

us call them self-CANCELs and self-CONFIRMs), are directly placed in the operation

buffer instead of being sent out into the network. Since a self-CANCEL can arrive at the

operation buffer before the corresponding SCHED, the WME process algorithm needs to

be modified so that the WME process retains a self-CANCEL until the corresponding

46

SCHED arrives.

4.3.2 Speeding Up the Progress of a Firing Token

A firing token may be held up in the pending list by operations which are ahead of

it but which do not affect it, thus delaying the firing of the local rule represented by that

firing token. Since it is desirable to fire rules as quickly as possible, we work a firing token

forward through the operations ahead of it in the pending queue. Whenever an incoming

firing token is appended to the pending list, the WME process tries to work it forward in

the list by checking if the operation ahead of it potentially invalidates it. If there is no such

invalidation, the firing token is moved ahead of the operation. If the operation does invali-

date the firing token, the firing token cannot be moved any further, and it is left at that

position in the pending list. Further, if the operation that was found to invalidate the firing

token is a WME token (a confirmed rule firing), then the firing token is marked invalid,

and moved to the head of the token buffer. On seeing this invalidated firing token, the rule

process immediately knows that a CANCEL has to be sent out.

4.3.3 Throttling the Rule Process

If the rule process keeps emitting SCHEDs for new rules quickly, the buffers at the

PEs receiving these SCHEDs may fill faster than they can empty, leading to an unstable

condition. While this unstable condition can be remedied to some extent by keeping the

number of outstanding instantiations low, a finer degree of control is achieved by throt-

tling.

When the SIU process at a PE finds that the length of the token buffer at that PE, or

the combined lengths of the operation buffer and pending list (also at that PE) has

47

exceeded some preset limit, it sends a THROTTLE message to all of the PEs that can send

messages to it. When the SIU process receives a THROTTLE message, it registers the

message by incrementing the throttle count associated with all rules writing to the PE that

sent it the THROTTLE by one. Now when the rule process tries to schedule a rule instan-

tiation, it checks the throttle count associated with that rule to see if any of the destination

PEs for that rule have sent it THROTTLE messages. If the throttle count is greater than

zero, that rule firing is not scheduled, and the rule process attempts to pick a different rule

to schedule.

When the buffer lengths at a PE which has sent a THROTTLE go below a preset

level, it is ready to receive new SCHEDs again, and so multicasts an UNTHROTTLE mes-

sage. A PE receiving an UNTHROTTLE message decrements the throttle count associated

with all rules writing to the PE that sent the UNTHROTTLE by one. When the throttle

count for a rule goes down to zero, the PE knows that no PEs have an objection to that rule

being scheduled for firing.

4.4 A Conventional Parallel Paradigm

A popular parallel paradigm used in the execution of rule-based systems is what

we will call the PARAMRA paradigm. PARAMRA is based on the MRA cycle, but the

match phase of the cycle is performed in parallel by all the processors. Hence it is a paral-

lel-match MRA paradigm.

In the PARAMRA system, one processor is designated to perform conflict resolu-

tion. (Let us call this the "resolve-PE".) The set of rules is divided among all the other PEs

(let us call these the "match-PEs"). The match-PEs perform the match on the rules

assigned to them in the match phase. In the resolve phase, each of the match-PEs arbi-

48

trarily selects one valid instantiation from its pool as a candidate for firing, and sends it to

the resolve-PE. If a match-PE cannot find a valid instantiation, it sends a no_instantiation

message to the resolve-PE. When the resolve-PE has received messages from all the

match-PEs, it arbitrarily selects one out of the candidate instantiations, and confirms that it

is to be fired by sending it to all the match-PEs. If there are no candidates, it means that

there no more firable rules in the entire system, and the program is terminated.

When a match-PE receives a confirmed rule firing from the resolve-PE, it fires the

rule and updates its local copy of the working memory. This completes its act phase, and it

now goes back to the match phase.

4.5 A Comparison of ISORULE to PARAMRA

Clearly, the synchronous nature of the PARAMRA paradigm prevents it from tak-

ing advantage of all of the parallelism in the rule set. The only parallelism PARAMRA

avails of is match parallelism. Match is the most expensive phase of the MRA cycle and it

makes sense to try to speed it up. But as match becomes cheaper and cheaper, the other

phases of the MRA cycle become more and more significant. Even though there may be

several rules eligible to fire in the act phase, the PARAMRA system fires only one.

ISORULE, on the other hand, fires rules asynchronously whenever they are eligi-

ble to fire. So if, at any instant, there are N rule instantiations eligible to fire, PARAMRA

can fire only one, while ISORULE can fire all N concurrently, provided there are enough

processors available to it. This analysis does not take into account the increased network

latency of the isotach network (introduced because of the cost of maintaining isotach logi-

cal time), and the cost of rule cancellations in the ISORULE system. These factors will

reduce the performance gain of ISORULE over PARAMRA, but we do not expect this

49

reduction to be high enough to cancel out the advantages offered by ISORULE over

PARAMRA. We expect the number of cancellations in ISORULE to be low because rule-

based system literature says the amount of conflict among rules in a rule-based system is

very low [GUPT89]. Hence, we expect to see the ISORULE system outperform

PARAMRA by taking advantage of more of the parallelism offered by a rule set.

Another advantage of ISORULE is its completely distributed control. The resolve-

PE in the PARAMRA system is a bottleneck: message traffic to and from the resolve-PE

increases as the number of processors is increased. ISORULE has no such bottleneck, and

is therefore more scalable than PARAMRA.

4.6 A Comparison of ISORULE to Other Asynchronous Techniques

Asynchronous algorithms [SCHM92] which use either offline analysis

(Section 2.3.1) or locks (Section 2.3.2) were described earlier. In contrast to these other

asynchronous approaches, ISORULE does not require any kind of offline analysis to

determine which rules to fire. Besides, there is no central scheduler process which might

become a bottleneck, nor is there contention for a central resource like a shared queue.

Moreover, overhead associated with acquiring and releasing locks is not present in

ISORULE.

PARS [SCHM88, SCHM90] was described in Section 2.3.3 as the final asynchro-

nous algorithm for rule-based system execution. Processors in PARS use enable and dis-

able messages to lock out conflicting rules from executing, and have to wait for

acknowledgments. Besides, the system incurs the overhead of having to deal with dead-

lock. ISORULE involves no enable/disable messages, waiting for acknowledgments, or

deadlock detection/recovery. However, ISORULE does bear the cost of cancellations of

50

rule firings, and the cost of maintaining isotach logical time.

4.7 Chapter Summary

The rule set in the ISORULE system is partitioned among the PEs, and the WME

classes read by each PE are stored in that PE's local memory. The reader and writer sets

and the reader mask are calculated and stored. A process schedules a rule firing by sending

out a multicast of SCHEDs to all the PEs in the reader mask for that rule. It reevaluates the

rule instantiation exactly delta pulses later to see if it is still valid at the LFT. If the instan-

tiation is still valid, the PE confirms the rule firing by multicasting CONFIRMs to the PEs

in the reader mask for the rule, else it cancels the firing by sending them CANCEL multi-

casts. The ISORULE system is composed of four components:

• a rule process at each PE, that executes the rule-based program;

• a WME process at each PE, that ensures that the rule process gets the correct view

of its read set;

• an SIU process at each PE, that interfaces between the rule process and the network

on one hand, and between the network and the WME process on the other hand;

• an isotach network, that maintains isotach logical time.

Optimizations can be carried out to speed up a rule firing.

We chose to implement a popular parallel rule-based system paradigm

(PARAMRA) which parallelizes the match phase of the MRA cycle. Only one rule instan-

tiation is fired in a single cycle in PARAMRA, thus losing out on a lot of the available par-

allelism in the rule set. Since ISORULE fires rules asynchronously and whenever they are

eligible to fire, we expect ISORULE to outperform PARAMRA. The cost in network

51

latency due to maintaining isotach logical time, as well as the cost of cancellation of rule

firings in the ISORULE system will reduce the performance gain of ISORULE, but we do

not expect these factors to outweigh the advantages ISORULE offers over PARAMRA.

52

Chapter 5
Performance Analysis

 To recapitulate, ISORULE fires rules asynchronously whenever they are eligible

to fire. If there are N rule instantiations eligible to fire, PARAMRA can fire only one,

while ISORULE can fire all N concurrently, provided there are enough processors avail-

able to do so. Actually, the improvement is not quite N because of the cost of maintaining

isotach logical time and the cost of cancellation of rule firings in ISORULE. Since cancel-

lations are generally few due to very little conflict typically occurring in a rule set, we

expect the performance improvement of ISORULE over PARAMRA to come very close

to N.

Our efforts and contributions are outlined below and elaborated in the rest of this

chapter:

• A significant amount of effort was put into a simulation of the ISORULE and the

PARAMRA systems. Section 5.1 describes the simulation in detail, including the

generation of synthesized rule sets, and the integration of a real Rete network

algorithm and a parser for real rule sets.

• We devised a static dependency model to analyze the effects of rules in a rule set on

one another, and to predict ISORULE performance based on this analysis. The

design and implementation of this model is detailed in Section 5.2.

• We computed performance predictions on synthesized rule sets using our static

model, simulated the rule sets, and compared our predictions with actual results. The

experiments we performed, and the results we obtained are described in Section 5.3.

• We investigated the effects of pipelining and the number of processors on ISORULE

53

performance for synthesized rule sets; Section 5.3 reports on this investigation.

• We evaluated the performance of real rule-based programs written in OPS5 and

executed using ISORULE and PARAMRA. We discuss the performance of these

real rule-based programs in Section 5.4.

• Finally, we analyzed the performance results we obtained, and listed characteristics

of rule sets that would allow ISORULE to exploit a large portion of the available

parallelism.

The results of our performance study are listed below:

• Experiments with synthesized rule sets revealed that ISORULE outperforms

PARAMRA by up to an order of magnitude. Our initial analysis suggests that the

performance improvement increases with the amount of concurrency in the rule sets,

and hence multiple orders of magnitude in performance improvement seem likely

with larger rule sets exhibiting a low degree of conflict.

• We expected ISORULE to perform better with more pipelining up to a point, and

then decline due to increased cancellations, messages and throttling. Tests confirmed

this trend in the behaviour of ISORULE.

• Experiments on up to 32 processors revealed that ISORULE performance improved

with an increase in the number of processors, up to the point where the number of

processors equalled the number of rules.

• Tests with actual OPS5 rule sets did not yield the spectacular results obtained from

the synthesized rule sets. We attribute the limited speed-ups to the limited potential

parallelism of the OPS5 rule sets. ISORULE still exploited most of the limited

parallelism offered by the OPS5 rule sets.

54

5.1 The Simulation

We simulated the ISORULE system on an isotach equidistant network, and the

PARAMRA system on a conventional equidistant network. As discussed in chapter 3, the

assumption of an equidistant network can be removed with slight changes to the

ISORULE algorithm. A simulator for the underlying networks was provided by Bronis R.

de Supinski [DESU94]. It was important to simulate the networks to such detail because

we wanted to include the cost of maintaining isotach logical time in the ISORULE system.

The simulation proceeds in units of "simulation cycles", where one simulation

cycle models the minimum time it takes for a network switch to move an item from one

buffer to another. Hence simulation cycles represent the same real-time in both the

ISORULE and the PARAMRA systems. All other activities in the simulation are assigned

times that are scaled units of simulation cycles. If the same task is performed at a PE in

both ISORULE and PARAMRA, the task is allotted the same number of simulation cycles

in both systems.

5.1.1 Workloads

We need to provide our simulation with a workload comprising a working memory

and a set of rules. We use two kinds of workloads. The first is a synthetic workload which

was generated based on certain carefully selected parameters, and the second is a real

workload which consists of a test suite of rule-based programs written in OPS5.

5.1.2 Synthetic Workload

The synthetic workload consists of a set of WME classes, and a set of rules refer-

encing and modifying the members of these classes. The parameters used to generate this

55

workload are:

• the total number of WME classes,

• the total number of rules,

• a range for the number of condition elements in a rule,

• a range for the number of action elements in a rule, and

• parameters that control "hot" WME classes (classes that are accessed by a large

number of rules).

Figure 5.1 shows an example of a synthesized rule set which contains seven WME classes.

Rule 1 plus-references WME classes 3 and 4, and minus-references WME class 2. It also

minus-modifies WME class 4 and plus-modifies WME class 2. In other words, rule 1 can

fire if WMEs belonging to classes 3 and 4 exist, and there is no WME belonging to class 2.

When rule 1 is fired, it adds a WME belonging to class2, and deletes a WME belonging to

class 4.

WME classes:
0, 1, 2, 3, 4, 5, 6

(rule 1
(class 3)

- (class 2)
(class 4)

-->
- (class 4)

(class 2))

(rule 2
(class 5)
(class 2)
(class 6)

-->
(class 2))

56

(rule 3
(class 0)

- (class 1)
-->
- (class 0))

Figure 5.1
An example synthesized rule set

We use a probabilistic model for the Rete algorithm which matches rules against

WMEs. When a WME token is pushed through the Rete network, the Rete algorithm

determines which of the existing rule instantiations have been invalidated by the WME

token, and which new rule instantiations have been created by the WME token, and

updates the set of instantiations accordingly. We model the pushing of WME tokens corre-

sponding to the firing of a rule Ri through the Rete network in the following way:

• Invalidation of existing instantiations: Static analysis is first used to determine for

every pair of rules Ri and Rj, whether Ri potentially invalidates Rj. This static

analysis is performed by comparing the WME classes modified by Ri and those

referenced by Rj. If static analysis determines that Ri cannot invalidate Rj, then firing

Ri concurrently with Rj at run time does not affect any instantiation of Rj. On the

other hand, if the static analysis reveals that Ri can invalidate Rj, an invalidation

probability for rule Rj is used to decide for each instantiation of Rj if the instantiation

remains valid. The invalidation probability is used to model the possible matching of

attributes and variable bindings of the instantiations of Ri and Rj. For instance, static

analysis with the synthesized rule set in figure 5.1 reveals that rule 2 potentially

invalidates rule 1, since rule 2 adds a WME belonging to class 2, and a rule 1 firing

depends on a WME belonging to class 2 not being present. However, the firing of a

particular instantiation of rule 2 may not actually invalidate a particular instantiation

57

of rule 1, if the attributes and variable bindings of the WME modified and referenced

by the two rule instantiations do not match at run-time.

• Creation of new instantiations: Static analysis is used to determine if Ri can enable

Rj, for every pair of rules Ri and Rj. If Ri potentially enables Rj, a validation

probability for Rj is used to decide if a new instantiation of Ri should be created.

The invalidation and validation probabilities are generated for each rule from a range

specified by parameters to the simulation. The procedure just described simulates the

result of a Rete match. Each rule starts out in the system with a certain number of firable

instantiations, also generated from a range specified by parameters to the simulation. Note

that an actual implementation of ISORULE would use an actual Rete network.

5.1.3 Real Workload

Four OPS5 programs were chosen to comprise the real workload: Monkey and

Bananas, Tourney, Manners and Toru-Waltz. The first three of these programs solve toy

problems. The rule sets are of different sizes and exhibit varying amounts of conflict

among the rules. The parsing of the OPS5 programs, and the Rete match was performed

by CParaOPS5 code [KALP88] written at Carnegie Mellon University. CParaOPS5 pro-

vides a parser which processes a rule-based program written in OPS5 and generates a C

file containing the Rete network data for that program. We modifed the CParaOPS5 parser

to generate multiple Rete networks, one for each processor, with the rules assigned to that

processor. CParaOPS5 also provides a uniprocessor version of the code which reads the

data from the C file generated by the parser, builds the Rete network, and executes the

Rete match algorithm, updating the set of rule instantiations eligible for firing. We inte-

58

grated this part of the CParaOPS5 code with our simulation of ISORULE and

PARAMRA. Finally, we integrated the portion of CParaOPS5 that modifies working

memory in response to the execution of an action element of a rule.

5.1.4 Simulation Parameters

Apart from the parameters already mentioned, the simulation also uses the follow-

ing parameters common to both ISORULE and PARAMRA:

• the number of PEs; and

• the costs, in simulation cycles, for the tasks performed by the rule process, WME

process and SIU process. These are chosen based on the complexity of the tasks

relative to one another.

In addition, these are the parameters that are specific to ISORULE:

• the thresholds for throttling and unthrottling [see Section 4.3.3];

• the maximum allowed length of a buffer (write buffer, operation buffer, token buffer,

pending queue); and

• the maximum number of outstanding rule instantiations allowed at any time. (This

parameter controls the degree of pipelining.)

All of the simulation parameters are elaborated in Appendix A.

5.2 A Static Model for ISORULE Performance

We devised a static dependency model to analyze the potential concurrency in a

rule set, so that we could predict ISORULE performance. The model builds a data depen-

dency graph, and uses a greedy algorithm to find an approximate solution to the NP-com-

plete problem of finding a maximum independent set. The model is both conservative and

59

optimistic in its estimate of potential concurrency.

5.2.1 Dependence Analysis

If we can analyze the amount of parallelism inherent in a rule set, we can predict

the performance of the ISORULE system on that rule set. To this end, we construct a data

dependence graph representing the rule set. Interference analysis was discussed in

Section 2.2.7. There, it was discussed as a method used by conventional multiple rule fir-

ing systems to determine a set of rule instantiations that can be safely fired in parallel. We

use dependency analysis for the purpose of determining available parallelism in a rule set

in order to enable prediction of ISORULE performance on that rule set. A set of rule

instantiations can fire concurrently if the instantiations in the set do not interfere with one

another. Such a set is called a set of compatible rule instantiations. A set of compatible

rule instantiations can be selected from the conflict set by constructing a data dependence

graph.

A data dependence graph is built by determining the data dependence between

each pair of rule instantiations. Each node in this graph represents a rule instantiation, and

an edge between node N1 and node N2 represents the data dependence relation between

the rule instantiations represented by N1 and N2.

Let RIi and RIj be rule instantiations of the rules Ri and Rj respectively. Rule

instantiation RIi inhibits RIj if the firing of RIi changes working memory in a such a way

that RIj is no longer valid. Two example data dependence graphs are shown in figure 5.2.

In figure 5.2-a, rule instantiation RI1 removes the WME B that is referenced by rule

instantiation RI2, thus making RI2 ineligible for firing. In figure 5.2-b, RI1 inhibits RI2

60

which inhibits RI3 which inhibits RI1; the three rule instantiations cannot fire simulta-

neously because there is no sequential result that is equivalent to the parallel result.

Static analysis of the condition and action elements of all the rules can be used to

build a data dependence graph for a rule set. While only partial data dependence analysis

is possible with this approach (due to the presence of attributes and variables in production

rules), it has the advantage that the analysis can be done off-line. At run time, all variables

are bound, and it is possible to analyze the data dependences between rule instantiations

instead of just between rules. But the highly computation-intensive nature of dynamic

RI1 RI3

RI2

RI1 RI3

RI2

i
i

i

(P R1
 (A)
-->
 (remove B))

(P R2
 (B)
-->
 (make C))

(P R3
 (D)
-->
 (remove E))

(P R1
 (A)
-->
 (remove B))

(P R2
 (B)
-->
 (remove C))

(P R3
 (C)
-->
 (remove A))

(a) (b)

i

Figure 5.2
Dependence Graphs

61

analysis has led most researchers to propose a mixture of compile-time and run-time anal-

yses [ISHI90, KUOS91, MIRA90].

5.2.2 A Static Model to Assess Parallelism

 For each rule set, we build its dependency graph. The graph contains another type

of edges in addition to inhibiting edges: conflict edges. If rule instantiation RIi plus-refer-

ences (minus-references) a WME, and rule instantiation RIj minus-references (plus-refer-

ences) the same WME, the two instantiations cannot be valid at the same time. We draw a

conflict edge between the nodes representing rules Ri and Rj to indicate that instantiations

of these two rules may not co-exist in the conflict set. Now, if we remove nodes (and the

associated edges) from the data dependence graph such that we are left with the largest

sub-graph in which there are no edges, we have the largest subset of rules that can occur in

the conflict set such that no two rules in the subset conflict with each other. This gives us

an estimate of the amount of rule parallelism there is in the rule set. Instantiation parallel-

ism is, of course, not detected by this sort of static analysis.

The problem of finding the largest sub-graph with no inhibiting edges is a maxi-

mum independent set problem, which is known to be NP-complete [GARE79]. We use a

greedy algorithm to arrive at an approximate solution to the problem. We start with the

graph representing the entire rule set with inhibiting dependences, and remove one node

(with all edges touching it) at a time until we end up with a graph that has no inhibiting

edges. At each step, we choose the node to be removed by using the following greedy

algorithm consisting of two rules:

• Rule R1: Remove the node with the largest number of inhibiting edges either

62

emanating from it or incident upon it. This removes the rule which is involved most

in conflict. If there is more than one node satisfying this criterion, we use rule R2 to

pick one of these candidate nodes.

• Rule R2: If R1 does not yield a unique node to remove, randomly select one of the

candidates that are left, and remove it.

Figure 5.3 illustrates this process for an example rule set.

The estimate obtained from our static model may understate the amount of rule

parallelism actually available, for any of the following reasons:

• We use a heuristic that may find a smaller-than-maximal non-conflicting set.

• The existence of an edge between the nodes representing two rules does not

necessarily mean that their instantiations will actually conflict. A consideration of the

attributes and variables may reveal that there is, in reality, no conflict. Our model

0 1

2 3

ii
i i

4

R2: Remove node 2

Non-conflicting set: 0, 1, 4
R1: Remove node 3

Figure 5.3
Non-conflicting set through static analysis

0 1 4

63

takes the conservative view and assumes that the two instantiations will conflict. We

will discuss in Section 5.3.1 how this aspect of the understating problem can be

eliminated from our analysis of ISORULE performance over synthesized rule sets.

• Favourable LFTs can enlarge the set of concurrently firable rules beyond the

maximal non-conflicting set as defined above. For instance, in figure 5.3, if

instantiations of rules 0 and 1 had LFTs earlier than the instantiation of rule 2, then

rule 2 would not invalidate rules 0 and 1. Using pairwise instead of cyclic conditions

(Section 2.2.7) is responsible for this aspect of the understating problem.

Our estimate of rule parallelism may also overstate the amount of rule parallelism avail-

able, for the following reason:

• Not all of the non-conflicting rules detected by our model may actually have

instantiations simultaneously during execution of the rule set.

It would be advantageous if we could change our model so that it only understates or only

overstates the amount of rule parallelism; we leave this task to future research.

5.3 Synthesized Rule Sets

We applied our static analysis model to synthesized rule sets and discovered that

ISORULE exploits most of the statically determinable rule parallelism in a rule set. Our

experiments revealed up to an order of magnitude performance improvement of ISORULE

over PARAMRA.

5.3.1 Analysis

We varied the parameters controlling the characteristics of the synthetic rule sets,

and obtained several rule sets of different sizes and exhibiting varying degrees of conflict.

64

We analyzed each of these synthesized rule sets statically with the approximation algo-

rithm detailed earlier, producing an estimation of the maximum concurrency offered by

each rule set. This allowed us to make a prediction of how much the ISORULE system

would outperform the PARAMRA system, taking into account only rule parallelism and

disallowing pipelining. If the static analysis revealed that the concurrency in the rule set

(size of the largest set of non-conflicting rules) was N, this would mean that given this con-

flict set, the PARAMRA system would be able to fire only one rule, while the ISORULE

system could fire all N rules (assuming there were enough processors to allot each rule to a

different processor). We then ran the simulation with the rule set, placing the following

constraints on the ISORULE system so that it matched our static dependence model more

closely:

• We forced ISORULE to have at most one outstanding instantiation per rule at any

time and disabled pipelining. Since our static dependence model does not detect

instantiation parallelism, and does not consider multiple rules being executed

simultaneously at a single processor, this constraint on ISORULE brings it closer to

the model assumed by our static analysis.

• We set the invalidation probability to 1.0, which means that when static analysis has

detected that a rule instantiation potentially invalidates another rule instantiation, we

actually invalidate the second instantiation even though a consideration of attributes

and variable bindings may reveal that the two instantiations do not actually conflict.

Thus, the constrained version of ISORULE now matches the conservative analysis of

interference by our dependence model, and eliminates the second form of

understatement of the amount of rule parallelism by our static dependence model.

65

We call the constrained version of ISORULE ISO1, and the unconstrained version ISO2.

We compared the number of rule firings obtained by the PARAMRA run and the ISO1 run

over a selected number of simulation cycles, and checked this figure against the one

obtained from static analysis. We then ran ISO2 over the same rule set for the same num-

ber of simulation cycles. We expected two results:

• If the result obtained from the ISO1 run is almost equal to the result predicted from

static analysis, it means that the ISORULE system is exploiting most of the statically

determinable parallelism in the rule set. However, remember that the figure obtained

from static analysis may understate the amount of concurrency actually available. So

it is possible for the actual improvement in performance displayed by ISORULE

over PARAMRA to actually exceed the predicted improvement, as will be seen in

the graphs 5.4-b, 5.5 and 5.6-b discussed in Section 5.3.2.

• Enabling pipelining should give the ISORULE system the benefit of a second kind of

parallelism, and we would expect to see further improvement in its performance as

compared to that of the PARAMRA system. Allowing multiple outstanding

instantiations per rule will improve the performance of ISORULE if the rule-based

program results in more than one instantiation being firable at a time, for one or more

rules. In other words, we would expect the performance of ISO2 to be better than that

of ISO1.

5.3.2 Results from the Synthesized Rule Sets

We took a rule set size of 32, varied the parameters controlling the rule set charac-

teristics, and generated two groups of rule sets with the following characteristics: The first

group exhibited more conflict and, on static analysis, yielded an average concurrent set

66

size which was less than half the size of the rule set (less than 16). The second group of

rule sets exhibited less conflict, and static analysis for these rule sets yielded an average

concurrent set size greater than half the size of the rule set (greater than 16).

We made several runs of ISORULE and PARAMRA on each of the rule sets in

group 1 for a fixed number of simulation cycles (long enough to stabilize the results), and

calculated the average number of ISORULE firings per run, and the average number of

PARAMRA firings per run, for 4, 8, 16 and 32 processors. We then normalized the num-

ber of ISORULE firings by the number of PARAMRA firings for the same number of

runs. Figure 5.4-a shows the results from these runs. The dotted line is the ISO1

(Section 5.3.1) result normalized by the PARAMRA result. We compare ISO1 perfor-

mance to the performance predicted by our model because the assumptions made in ISO1

are similar to the ones made in our static dependency model. The solid line represents the

ISO2 (Section 5.3.1) result normalized by the PARAMRA result.

Figure 5.4-b shows the results from similar runs of the rule sets in group 2. Results

for rule sets containing 16 rules are shown in figure 5.5, and those for rule sets containing

8 rules are in figure 5.6 Rule sets were not run with the number of processors greater than

the number of rules because the extra processors would not be assigned any rules by either

ISORULE or PARAMRA, and would remain idle throughout the execution. Each point on

the graph represents the average over 24 runs.

67

.

Figure 5.4
Rule Sets with 32 Rules

1 2 4 8 16 32 64

no. of PEs

0

5

10

15

20

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

1 2 4 8 16 32 64

no. of PEs

0

10

20

30

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

CONCURRENT SET SIZE = 9

ISO1/PARAMRA (32 PEs) = 7.4

ISO2/PARAMRA (32 PEs) = 8.4

CONCURRENT SET SIZE = 20

ISO1/PARAMRA (32 PEs) = 22.2

ISO2/PARAMRA (32 PEs) = 29.9

(a) (b)

: ISO1 / PARAMRA

: ISO2/PARAMRA

: CONCURRENT SET SIZE FROM STATIC ANALYSIS

: HYPOTHETICAL (NOT FROM EXPERIMENTS)

68

Figure 5.5
Rule Sets with 16 Rules

1 2 4 8 16 32

no. of PEs

0

5

10

15

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

1 2 4 8 16 32

no. of PEs

0

5

10

15

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

CONCURRENT SET SIZE = 8

ISO1/PARAMRA (16 PEs) = 9.3

ISO2/PARAMRA (16 PEs) = 11.8

CONCURRENT SET SIZE = 11

ISO1/PARAMRA (16 PEs) = 12.6

ISO2/PARAMRA (16 PEs) = 15.1

: ISO1 / PARAMRA

: ISO2 / PARAMRA

: CONCURRENT SET SIZE FROM STATIC ANALYSIS

: HYPOTHETICAL (NOT FROM EXPERIMENTS)

(a) (b)

69

Figures 5.4, 5.5 and 5.6 show that the ISO1/PARAMRA results obtained (with the

maximum number of processors) come close to the values predicted by our static depen-

dence model. Hence the ISORULE system seems to exploit most of the statically deter-

minable rule parallelism available in a rule set. ISO2 does better than ISO1, thus

1 2 4 8 16

no. of PEs

0

5

10

15

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

1 2 4 8 16

no. of PEs

0

5

10

15

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

: ISO1 / PARAMRA

: ISO2 / PARAMRA

CONCURRENT SET SIZE = 4

ISO1/PARAMRA (8 PEs) = 3.1

ISO2/PARAMRA (8 PEs) = 3.2

CONCURRENT SET SIZE = 6

ISO1/PARAMRA (8 PEs) = 7.8

ISO2/PARAMRA (8 PEs) = 11.6

Figure 5.6
Rule Sets with 8 Rules

: CONCURRENT SET SIZE FROM STATIC ANALYSIS

: HYPOTHETICAL (NOT FROM EXPERIMENTS)

(a) (b)

70

confirming the second prediction we made in Section 5.3.1. All of the results for ISO2

(except the one for two rule sets with a lot of conflict: figures 5.4-a and 5.6-a) show an

order of magnitude improvement in performance over PARAMRA.

5.3.3 Effect of Number of Processors on ISORULE Performance

We expect ISORULE performance to improve as we increase the number of pro-

cessors used to execute a rule set. This improvement would stop once the number of pro-

cessors became more than the number of rules. (For a system with N rules, if there were

more than N processors, the extra processors would be idle throughout the execution, as

neither ISORULE nor PARAMRA would assign any rules to them.) The improvement in

ISORULE performance obtained by increasing the number of processors could be sub-lin-

ear due to reasons such as an increased percentage of cancellations of rule firings. On the

other hand, PARAMRA performance could deteriorate with an increased number of pro-

cessors because of increased contention for the resolve-PE.

We generated several rule sets with 16 rules, executed several runs of each of them

over 4, 8 and 16 processors, and averaged the results obtained. Figure 5.7-a shows the

results from these runs. The graph in figure 5.7-b shows similar results for rule sets with

32 rules executed over 4, 8, 16 and 32 processors. Pipelining was allowed for all cases,

with a maximum pipe length of two. Each point on the graphs is an average over 24 runs.

We obtained results from our experiments showing the number of rule firings by

ISORULE over a fixed number of simulation cycles. The results verified, for up to 32 pro-

cessors, that ISORULE performance improves as the number of processors increases. We

observed with the 32-rule cases that the percentage of cancellations increased from an

average of 5% (with 4 processors), to an average of 21% (with 32 processors).

71

The effect of the deterioration in PARAMRA performance is very pronounced in figure

5.7-a, when the number of PEs goes from 4 to 8. This deterioration makes the

 ratio improve by more than a factor of two.

5.3.4 Effect of Degree of Pipelining on ISORULE Performance

Increasing the amount of pipelining allowed (by increasing the maximum number

of outstanding instantiations allowed) increases the number of concurrent firings if there

are enough eligible instantiations to pipeline. A disadvantage of pipelining too many rule

firings is that the percentage of firings cancelled can go up. The number of messages trav-

elling through the network increases too. Another disadvantage is that the buffers at the

1 2 4 8 16 32

no. of PEs

0

5

10

15

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

1 2 4 8 16 32 64

no. of PEs

0

10

20

30

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

Figure 5.7
Effect of number of PEs on ISORULE performance

RULE SET SIZE = 16 RULE SET SIZE = 32

(a) (b)

: HYPOTHETICAL (NOT FROM EXPERIMENTS)

ISORULE
PARAMRA

72

processors receiving the SCHEDs can fill up fast, and the sending process might have to

be throttled. So the improvement in ISORULE performance due to an increase in the

degree of pipelining may deteriorate as the degree of pipelining becomes higher. The

results in figure 5.8 confirm these predictions.

The results were obtained by varying the maximum allowable length of the pipe, for a rule

set with 32 rules, and are shown in figure 5.8-a. Figure 5.8-b shows similar results for a

rule set consisting of 64 rules. All runs are on a network of 16 PEs. In both cases,

ISORULE performance improves with increasing pipelining up to a point, and then starts

deteriorating. We discovered that the percentage of cancellations increases from an aver-

age of 6% with a pipe length of one, to an average of 18% for a pipelength of four.

0 1 2 3 4 5

max_outstanding

0

5

10

15

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

0 1 2 3 4 5

max_outstanding

0

5

10

15

no
. o

f
fi

ri
ng

s:
 I

SO
R

U
L

E
/P

A
R

A
M

R
A

 32 RULES, 16 PEs 64 RULES, 16 PEs

(a) (b)
Figure 5.8

Effect of degree of pipelining on ISORULE performance

73

5.4 Real Rule sets

Available parallelism in a rule-based system program depends on the problem that

the program is trying to solve. Some programs (like Monkey and Bananas) do not allow

any concurrent firings at all. The four rule-based system programs we tested are all written

in OPS5, and permit varying degrees of concurrency. We analyzed these OPS5 rule sets by

hand to obtain the amount of concurrency they provide.

5.4.1 Sequential Nature of Rule-based Programs

Several rule-based system programs are written with sequential control-flow in

mind. For example, the Tourney rule-based program assumed that all possible instantia-

tions of the rule make-candidate would be fired before firing the rule make-choice. We

rewrote the Tourney program to remove the assumption of sequential execution. Whenever

a rule assumed that all instantiations of another rule would be fired before it, we added

condition elements to the first rule which made it ineligible to fire as long as the other rule

was still firable. For instance, let us suppose a rule-based program requires all valid instan-

tiations of rule R1 to be fired before firing any instantiation of rule R2. We could add extra

condition elements to R2 which allowed R2 to fire only when the condition elements for R1

are not satisfied, thus removing the sequential-execution assumption in the rule set.

5.4.2 The Monkey and Bananas Rule-based Program

This program consists of 18 rules, and solves a toy problem. As mentioned in the

introduction of this section, the Monkey and Bananas program permits no parallelism at

all. Only one rule is eligible for firing at any given time, and execution of the program pro-

ceeds in a strictly sequential fashion. Running the ISORULE and PARAMRA systems

74

with four processors on this program, and comparing the number of simulation cycles

each took to solve the problem gave the following result: the PARAMRA system outper-

formed the ISORULE system by a factor of 1.2.

ISORULE cannot do better than PARAMRA because there are no parallel rule fir-

ings possible. The reason PARAMRA does better than ISORULE in this case is that the

raw power of the isotach network (on which ISORULE is based) is less than the raw

power of the conventional network (on which PARAMRA is based). Since only one rule

instantiation can be fired at a time, the ISORULE system offers no advantage over the

PARAMRA system.

5.4.3 The Tourney Rule-based Program

Tourney uses 16 rules to solve the problem of scheduling a tournament, and exhib-

its instantiation parallelism. Two of the rules allow several eligible instantiations to fire

concurrently. Running this program on ISORULE and PARAMRA gave the results shown

in figure 5.9:

Figure 5.9
Normalized Results for Tourney

Figure 5.10 shows the unnormalized results (number of rule firings per 1000 simulation

cycles) for Tourney.

(pipe=1) (pipe=2) (pipe=3)

4 PEs 1.66 1.79 1.62

8 PEs 1.74 1.84 1.66

PARAMRA
ISORULE
(pipe=1)

ISORULE
(pipe=2)

ISORULE
(pipe=3)

ISORULE
PARAMRA
----------------------------- ISORULE

PARAMRA
----------------------------- ISORULE

PARAMRA

75

Figure 5.10
Unnormalized Results for Tourney

Increasing the length of the pipe (that is, the maximum number of outstanding firings

allowed) improves ISORULE performance, but when the pipelength reaches three, perfor-

mance deteriorates again. We attribute this deterioration to the disadvantages of over-pipe-

lining outlined earlier. More outstanding rule firings means that there is a greater

possibility of having to cancel rule firings. Increasing the number of processors does not

help the Tourney program very much, as there is no rule parallelism in the rule set.

5.4.4 The Manners Rule-based Program

This program solves another toy problem, and employs eleven rules for the pur-

pose. The rules are executed in a sequential order, but there is a pipe of length two in the

rule set. (Here, pipe relates to the pipeline parallelism in rule sets discussed in

Section 2.2.7, and not to the pipelining of firings in ISORULE.) Hence the available paral-

lelism in the program is the pipeline parallelism of two. We ran Manners on ISORULE

and PARAMRA, and computed the average number of rule firings per 1000 simulation

cycles for each. The results are summarized in figure 5.11.

4 PEs 8.24 13.69 14.78 13.4

8 PEs 7.65 13.35 14.1 12.75

PARAMRA ISORULE

4 PEs 11.6 16.9 1.45

8 PEs 8.6 17.1 1.9

ISORULE
PARAMRA

76

Figure 5.11
Results for Manners

Increasing the number of processors doesn’t make a significant difference to ISORULE

performance because the length of the pipe is only two, allowing only two processors to be

busy at the same time.

5.4.5 The Toru-Waltz Rule-based Program

Toru-Waltz is an OPS5 rule-based program with9 rules and an available rule par-

allelism of four. Figure 5.12 shows the results obtained by running the Toru-Waltz pro-

gram on 4 and 8 processors. The ISORULE and PARAMRA results are in terms of rule

firings per 1000 simulation cycles.

Figure 5.12
Results for Toru-Waltz

Increasing the number of processors from four to eight does not improve the ISORULE

performance much because Toru-Waltz does not allow a concurrency of more than four.

5.5 Analysis of the Results

The evaluation results from the synthesized rule sets show that the performance of

the ISORULE system beats that of PARAMRA by an order of magnitude. However, the

results from the OPS5 rule sets seem to belie these expectations. The reason for this dis-

crepancy is that the OPS5 rule sets do not have enough potential parallelism. They are

small rule sets, some of which solve toy problems, and which were designed with sequen-

PARAMRA ISORULE

4 PEs 8.25 16.6 2.01

8 PEs 4.7 18.7 3.97

ISORULE
PARAMRA

77

tial rather than parallel systems in mind.

The characteristics of the OPS5 rule sets we used are unlike those of real-world

rule sets as depicted in the literature. The small cycle problem in conventional MRA-

driven rule-based systems arises from the fact that a rule firing affects a very small number

of rule instantiations. The OPS5 rule sets, on the other hand, display a very high degree of

conflict, causing the ISORULE system to cancel a large number of scheduled firings and

also to send a large number of messages through the network since the reader set for a rule

is so large. Our experiments revealed that the percentage of rule firing cancellations in

ISORULE for these OPS5 rule sets ranges from 36% to 66%.

So the true effectiveness of our parallel rule firing strategy cannot be assessed by

these four OPS5 rule sets alone. If rule sets are written with the following characteristics,

we expect that ISORULE will exploit a large portion of the parallelism available:

• A large number of rules

• A small amount of conflict among the rules

• No sequential exploration of solution space

• No strict control embedded into the rule set via metarules

The confirmation of these expectations is left to future research.

5.6 Chapter Summary

This chapter presented a static model to analyze dependences among rules in a rule

set. Results from both the synthesized rule sets and the real (OPS5) rule sets showed that

ISORULE exploits most of the parallelism available in a rule set. Experiments with syn-

thesized rule sets revealed that ISORULE outperforms PARAMRA by an order of magni-

78

tude. Since our initial analysis suggests that the performance improvement increases with

the amount of concurrency in the rule sets, multiple orders of magnitude in performance

improvement seem possible with larger rule sets exhibiting a low degree of conflict. The

effect of the degree of pipelining in the ISORULE system on its performance was ana-

lyzed. These experiments revealed that ISORULE performs better with increasing degree

of pipelining up to a point when it starts declining due to an increased number of cancella-

tions, messages and throttling. Increasing the number of processors improves ISORULE

performance, but the improvement can be sub-linear due to an increased number of mes-

sages having to be exchanged, or a larger percentage of cancellations. PARAMRA perfor-

mance can deteriorate with an increased number of processors due to increased contention

for the resolve-PE.

While results from the real (OPS5) rule sets were not as spectacular as the ones

from the synthesized ones, ISORULE still exploited most of the parallelism offered by

these rule sets. If rule sets are written so that they exhibit a high degree of concurrency, we

expect that ISORULE will exploit a large portion of the parallelism available.

79

Chapter 6
Summary and Conclusion

ISORULE is an asynchronous parallel system for the execution of rule-based sys-

tems. In this thesis, we investigated various aspects of ISORULE behaviour and perfor-

mance through an analytical model and confirmed our predictions through simulations.

ISORULE has the following advantages over existing parallel execution models

for rule-based systems:

• No interprocessor communication is required for performing match, unlike systems

that used node-level parallelism;

• Pipelining of rule firings allows more parallelism than simple rule-level parallelism

would;

• ISORULE requires no dependence analysis for execution, and all rule instantiations

that are eligible can be fired;

• Processor-idleness caused by the synchrony of conventional MRA-based systems is

eliminated; thus, the small-cycle problem is not a problem for ISORULE;

• ISORULE does not introduce locking (and thus overly restrictive access);

• ISORULE has no potential for deadlock (since the rule firing with the lowest LFT

can always make progress, and all processors agree on the values of the LFTs); and

• ISORULE requires only two multicast messages per rule firing, unlike PARS, which

requires enable and disable messages, as well as acknowledgments.

The additional costs ISORULE imposes are:

• the network latency cost of enforcing the isotach invariant; and

80

• the cost of cancellation of rule firings.

Cancellations are expected to be infrequent, inferring from the observed fact that there is

very little conflict among rules.

We devised a static dependency model to analyze the available amount of concur-

rency in a rule set, and to predict ISORULE performance based on this analysis. We then

simulated the ISORULE system and a conventional parallel rule-based system

(PARAMRA), modelling the underlying networks so as to include the cost incurred by

ISORULE for maintaining isotach logical time. We discovered that ISORULE exploits

most of the statically determinable rule parallelism in a rule set. The results from the test

runs closely agreed with the predicted values from our model. Other results from our anal-

ysis were:

• We expected ISORULE to do better with more pipelining up to a point, and then

decline due to increased cancellations, messages and throttling. Tests confirmed this

trend in the behaviour of ISORULE.

• Another prediction was that with an increase in the number of processors, ISORULE

performance would improve. This improvement could be sub-linear due to an

increase in the percentage of cancellations of rule firings in ISORULE, or due to

increased message traffic. PARAMRA performance could deteriorate with an

increased number of processors due to increased message traffic and also due to

increased contention for the resolve-PE. It was verified up to 32 processors through

experiments that an increased number of processors boosts ISORULE performance.

Experiments with synthesized rule sets revealed that ISORULE outperforms

PARAMRA by an order of magnitude. Since our initial analysis suggests that the perfor-

81

mance improvement increases with the amount of concurrency in the rule sets, multiple

orders of magnitude in performance improvement seem likely with larger rule sets exhibit-

ing a low degree of conflict. Tests with actual OPS5 rule sets did not yield the spectacular

results obtained from the synthesized rule sets. This was because the OPS5 programs we

used have very little potential for parallelism, and most of them are small rule sets that

solve toy problems. Besides, the rule sets have been designed with sequential rather than

parallel execution in mind. If rule sets are written with the following characteristics, we

expect that ISORULE will exploit a large portion of the parallelism available:

• A large number of rules

• A small amount of conflict among the rules

• No sequential exploration of solution space

• No strict control embedded into the rule set via metarules

ISORULE did exploit most of the limited parallelism offered by the OPS5 rule sets.

Future Work

We have identified the following directions for future research:

• Investigation of larger real rule sets: An obvious area for future work with

ISORULE is the investigation of larger real rule sets. If these rule sets exhibit the

characteristics listed above, or if they can be rewritten to exhibit those

characteristics, then we expect that ISORULE will exploit a large portion of the

parallelism available.

• Support for metarules: ISORULE does not currently support metarules. Recall that

metarules permit the imposition of special rules on the execution order of normal

82

rules in a rule set. We mentioned the sequential consistency guarantee offered by

isotach networks as an aid toward supporting metarules. Modifying the ISORULE

algorithm to make it handle metarules is a topic which needs to be further

investigated.

• Dynamic rule sets: ISORULE makes the simplifying assumption that the rule sets are

static. Consistency techniques developed for delta cache protocols, which are also

based on isotach networks (see Section 3.2.2), provide the basis for extending

ISORULE to dynamic rule sets.

83

Appendix A
Parameters to Simulation

We provide a list of the parameters we used for our simulation. Some of the param-

eters are specific to the synthetic workload; others are used with both the synthetic and the

real workloads. The costs of various tasks are expressed in simulation cycles.

Parameter Range Comments

Number of PEs 4-32 both

Number of WME classes 10-400 synthetic workload

Number of rules 4-128 synthetic workload

Number of hot WME classes 1-20 synthetic workload

Probability of choosing a hot WME class 0.0-0.6 synthetic workload

Mean condition elements per rule 2-8 synthetic workload

Maximum condition elements per rule 4-12 synthetic workload

Mean action elements per rule 2-8 synthetic workload

Maximum action elements per rule 4-12 synthetic workload

Maximum outstanding firings 1-5 both

Maximum buffer length 40-200 both

Upper limit on invalidation probability 0.08-0.20 synthetic workload

Lower limit on invalidation probability 0.06-0.10 synthetic workload

Upper limit on validation probability 0.70-0.90 synthetic workload

Lower limit on validation probability 0.50-0.80 synthetic workload

Upper limit for initial instantiations 5-30 synthetic workload

Lower limit for initial instantiations 1-10 synthetic workload

Cycles by RULE to schedule firing 10 both

Cycles by RULE to process firing token 5 both

Cycles by WME to process firing token 2 both

Cycles by WME to process SCHED 2 both

84

Figure A.1
Simulation Parameters

Cycles by WME to process CANCEL 8 both

Cycles by WME to process CONFIRM 10 both

Cycles to pass WME tokens to Rete 10 both

Cycles by WME to pass firing token 2 both

Cycles by SIU for outgoing SCHED 5 both

Cycles by SIU for outgoing CANCEL 5 both

Cycles by SIU for outgoing CONFIRM 5 both

Cycles by SIU for incoming message 2 both

Cycles by SIU for (UN)THROTTLE 2 both

Cycles by Rete to process WME token 20 synthetic workload

Cycles for 1 iteration of MRA resolve-PE 10 both

Buffer length limit to throttle 10-20 both

Buffer length limit to unthrottle 5-10 both

Number of batches of observations
10000-
50000

both

Interval at which observations are made 1-5 both

85

References

[ACHA89] Acharya A. and Tambe M., Production Systems on Message passing
Computers: Simulation Results and Analysis, Proc. 1989 International
Conference on Parallel Processing, 1989

[BERN81] Bernstein P. A. and Goodman N.,Concurrency Control in Distributed
Database Systems, Computing Surveys 13, 2, June 1981

[BROW85] Brownston L., Farrel R., Kant E. and Martin N.,Programming Expert
Systems in OPS5: An Introduction to Rule-Based Programming, Addison-
Wesley, Reading, MA, 1985

[DAVI80] Davis R.,Meta-Rules: Reasoning about Control, Artificial Intelligence 15,
1980

[DESU94] deSupinski Bronis R.,Simulating Cache Coherence with Atomicity and
Sequential Consistency, Masters’ Project, University of Virginia, 1994

[DIXI87] Dixit V., Transformation Techniques for Parallel Processing of Production
Systems, Ph.D. Thesis, University of Southern California, Oct. 1987

[FORG79] Forgy C. L.,On the Efficient Implementation of Production Systems, Ph.D.
Thesis, Carnegie-Mellon University, 1979

[FORG81] Forgy C. L., OPS5 User's Manual, CS-81-135, Carnegie-Mellon
University, 1981

[FORG82] Forgy C. L., Rete: A Fast Algorithm for the Many Pattern/ Many Object
Match Problem, Artificial Intelligence 19, 1982

[GARE79] Garey M. R. and Johnson D. S.,Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, 1979

[GUPT86] Gupta A., Parallelism in Production Systems, Ph.D. Thesis, Carnegie-
Mellon University, March 1986

[GUPT88] Gupta A., Forgy C. L., Kalp D. and Tambe M. S.,Parallel OPS5 on the
Encore Multimax, Proc. 1988 International Conference on Parallel

86

Processing, Aug. 1988

[GUPT89] Gupta A., Forgy C. L. and Newell A., High-Speed Implementations of
Rule-Based Systems, ACM Transactions on Computer Systems, Vol. 7, No.
2, May 1989

[HIGH89] Highland F. D. and Iwaskiw C. T., Knowledge Base Compilation, Proc.
11th International Joint Conference on Artificial Intelligence, IJCAI-89,
1989

[ISHI85] Ishida T. and Stolfo S. J., Towards the Parallel Execution of Rules in
Production System Programs, CUCS-154-85, Department of Computer
Science, Columbia University, 1985

[ISHI90] Ishida T., Methods and Effectiveness of Parallel Rule Firing, Proc. 6th
IEEE Conference on Artificial Intelligence Applications, Washington DC,
1990

[ISHI94] Ishida T., Parallel, Distributed and Multiagent Production Sytems,
Springer-Verlag, 1994

[KALP88] Kalp D., Tambe M., Gupta A., Forgy C., Newell A., Acharya A., Milnes B.
and Swedlow K., Parallel OPS5 User’s Manual, The Production System
Machine Project, Department of Computer Science, Carnegie Mellon
University, Nov. 1988

[KUOC91] Kuo C. M., Miranker D. P. and Browne J. C., On the Performance of the
CREL System, Tech. Rep., Department of Computer Sciences, University
of Texas at Austin, Feb 1991

[KUOS90] Kuo S., Moldovan D. and Cha S., Control in Production Systems with
Multiple Rule Firings, Proc. 1990 International Conference on Parallel
Processing Vol. 2, 1990

[KUOS91] Kuo S., A Parallel Asynchronous Message-Driven Production System,
Ph.D. Thesis, University of Southern California, Sept. 1991

[LAMP78] Lamport L., Time, Clocks and the Ordering of Events in a Distributed

87

System, Comm. ACM 21, 7, July 1978

[LAMP79] Lamport L., How to Make a Multiprocessor Computer That Correctly
Executes Multiprocessor Programs, IEEE Trans. on Computers 28, 1979

[MIRA87] Miranker D. P., TREAT: A New and Efficient Algorithm for AI Production
Systems, Ph.D. Thesis, Columbia University, 1987

[MIRA90] Miranker D. P., Kuo C. and Browne J. C., Parallelizing Compilation of
Rule-Based Programs, Proc. 1990 International Conference on Parallel
Processing, Vol. 2, 1990

[MOLD89] Moldovan D., RUBIC: A Multiprocessor for Rule-Based Systems, IEEE
Trans. Systems, Man Cybernet, July 1989

[PAPA86] Papadimitriou C., Database Concurrency Control, Computer Science
Press, 1986

[REYN89] Reynolds P. F. Jr., Williams C. and Wagner R. R., Parallel Operations, UVa
Computer Science Technical Report 89-16, Dec. 1989

[REYN92] Reynolds P. F. Jr., Williams C. and Wagner R. R., Empirical Analysis of
Isotach Networks, UVa Computer Science Technical Report 92-19, June
1992

[ROMA89] Roman G. and Cunningham H. A., A Shared Dataspace Model of
Concurrency-Language and Programming Implications, Proc. 9th
International Conference on Distributed Computing Systems, Los
Alamitos, Ca 1989, IEEE Computer Society Press, Silver Spring, MD,
1989

[SCHM88] Schmolze J., An Asynchronous Parallel Production System with
Distributed Facts and Rules, Proc. AAAI-88 Workshop on Parallel
Algorithms for Machine Intelligence and Pattern Recognition, St. Paul,
MN, Aug. 1988

[SCHM90] Schmolze J. and Goel S., A Parallel Asynchronous Distributed Production
System, Proc. 8th National Conference on Artificial Intelligence, AAAI-90,

88

1990

[SCHM92] Schmolze J. G. and Nieman D. E., Comparison of Three Algorithms for
Ensuring Serializable Executions in Parallel Production Systems, Tenth
National Conference on Artificial Intelligence, San Jose, CA, 1992

[SHAW85] Shaw D. E., NON-VON's Applicability to Three AI Task Areas,
International Joint Conference on Artificial Intelligence, Aug. 1985

[STOL82] Stolfo S. J. and Shaw D. E., DADO: A Tree-Structured Machine
Architecture for Production Systems, National Conference on Artificial
Intelligence, 1982

[STOL91] Stolfo S., Dewan H. and Wolfson O., The PARULEL Parallel Rule
Language, Proc. 1991 International Conference on Parallel Processing,
Vol. 2, 1991

[WALT87] Waltz D. L., Applications of the Connection Machine, Computer 20,1, Jan.
1987

[WILL91] Williams C. and Reynolds P. F. Jr., Combining Atomic Actions in a
Recombining Network, UVa Computer Science Technical Report 91-33,
Nov. 1991

[WILL93] Williams C. C., Concurrency Control in Asynchronous Computations,
Ph.D. Thesis, University of Virginia, 1993

