
Abstract

Partitioning data parallel computations across a net-
work of heterogeneous workstations is a difficult problem
for the user. We have developed a runtime partitioning
method for choosing the number and type of processors to
apply to a data parallel computation, and a decomposition
of the data domain in order to achieve reduced completion
time. The partitioning method utilizes information about
the problem in the form of callback functions and uses a set
of topology-specific communication functions to estimate
communication costs. We show that the method makes
effective partitioning decisions and has runtime overhead
that is easily tolerated. In particular, we show that for two
implementations of a canonical stencil application, mini-
mum elapsed times are obtained for a range of problem
sizes on a network of heterogeneous workstations1.

1.0 Introduction
The increasing availability of network computing

resources, including high-speed networks and high perfor-
mance machines, presents an opportunity for delivering
good performance on a range of parallel applications.
Developing applications to run efficiently in such an envi-
ronment however can be extremely difficult. We have seen
the advent of software tools that help enable parallel pro-
gramming on a heterogeneous network [2][10]. Unfortu-
nately, most of these tools are limited in one way or
another: the programmer is still often responsible for prob-
lem partitioning, data domain decomposition, processor
selection, and task placement.

We have developed a runtime partitioning method for
choosing the number and type of processors to apply to a
data parallel computation, and a decomposition of the data
domain in order to achieve reduced completion time. The
problem of automatically choosing the number of proces-

1. This work has been partially funded by grants NSF ASC-9201822,
JPL-959303, and NASA NGT-50970.

sors is quite difficult and has received little attention in the
literature.

The partitioning method utilizes information about
the computation and communication structure of the
implementation provided in the form ofcallback functions.
The method also relies upon a set oftopology-specific
communication functions that have been constructed off-
line. These communication functions and callbacks allow
an estimate of the computation granularity to be computed
at runtime based on the available processing resources.
This estimate is used to determine the number and type of
processors that are best applied to the computation. The
partitioning method also computes a static decomposition
of the data domain that gives processor load balance. We
believe that the partitioning method is applicable to a large
class of data parallel computations.

The partitioning method is based on a heterogeneous
network model which is hierarchical in structure. This
organization is more realistic than a flat organization. The
method is also based on a model for data parallel computa-
tions. Both the network model and data parallel computa-
tion model are discussed. We then present the partitioning
method. The results show that the method makes effective
partitioning decisions and has runtime overhead that is eas-
ily tolerated. In particular, we show that for two implemen-
tations of a stencil application, minimum elapsed times are
obtained for a range of problem sizes on a network of het-
erogeneous workstations.

2.0 Related work
A number of research efforts in the area of partition-

ing data parallel computations on a heterogeneous network
have emerged [1][9]. The dataparallel C runtime system
[9] is targeted to partitioning regular data parallel computa-
tions using a dynamic load balancing strategy to handle
processor heterogeneity. One advantage of this approach is
that load imbalance due to processor sharing can also be
handled. This approach is limited to regular data parallel
computations and only addresses the data decomposition

Network Partitioning of Data Parallel Computations

Jon B. Weissman and Andrew S. Grimshaw

Department of Computer Science
University of Virginia

problem. It is also assumed that the problem is of sufficient
size to utilize all processors and amortize the cost of
dynamic load balancing. Reeves et al [1] propose a strategy
for partitioning data parallel computation based on bench-
marking. Their approach is limited to specific data parallel
operations such as reductions and a set of possible proces-
sor configurations. Our approach is not limited to a set of
data parallel operations or processor configurations, but
only to a common set of communication topologies.

3.0 Heterogeneous network
The heterogeneous network contains a number of

physical network segments connected by one or more rout-
ers. The essential property of a network segment is that it
hasprivate bandwidth. We partition the processors on the
network into groups calledclusters. A cluster contains a
homogeneous group of processors. We make a number of
assumptions about this organization:

• Segments have equal communication bandwidth
• Each segment contains a single cluster
• Every pair of segments is connected by a single router

The first assumption requires that the network segments
have the same communication capabilities, e.g., all seg-
ments are ethernet-connected or FDDI-connected. The sec-
ond assumption restricts each network segment to be
homogenous since a single cluster will contains processors
of the same type. The first assumption simplifies the parti-
tioning algorithm (Section 5.0) and the second and third
assumptions simplify the communication cost functions
presented later in this section. The third assumption means
that messages will travel one hop at most. These assump-
tions are valid for most cluster computing environments
such as Sandia HEAT. An example of a network containing
three clusters (Sun4’s, HP’s, and RS-6000’s) on three eth-
ernet-connected network segments joined by a router is
shown in Fig. 1.

Each cluster contains a processor that is responsible
for managing the resources of the cluster for scheduling.
This processor is known as thecluster manager (shaded
nodes in Fig. 1). Each cluster manager stores the following
information:

• bandwidth (bits/sec)
• processor nodes (total, available)
• instruction speed (integer, floating point)

We assume that the processors on the network are
shared. The cluster manager monitors the load status of its
processors and uses a simple threshold policy to determine
if a processor isavailable. We treat all processors below
this threshold as available and equal in terms of computa-
tion power. The threshold can be made sufficiently small to
support this assumption. This assumption simplifies the

partitioning algorithm, but is not a necessary requirement.
In the general case, we will allow all processors to be avail-
able but with the associated instruction speed adjusted to
reflect current load. The instruction speed refers to the
speed of the processor type contained in the cluster.

Communication between all machines on the network
is enabled by a reliable heterogeneous message-passing
system (MMPS) based on UDP datagrams [5]. Partitioning
the data parallel computation requires that an accurate esti-
mate of the communication costs using MMPS be known.
Consider the simple case where all communication occurs
within a clusterCi. The communication cost function forCi
depends on threeapplication-dependent parameters: (1)
the size of messages exchanged, (2) the number of commu-
nicating processors, and (3) the application communication
topology. In the model we present in the next section, these
parameters will be known at runtime and the number of
communication topologies will be limited to a restricted
set.

The latter assumption allows a set of very accurate
message cost functions to be constructed for each cluster
type by benchmarking a set oftopology-specific communi-
cation programs. Although we have assumed that clusters
have equal communication capacity, the cost functions for
different clusters may be different due to processor speed
differences. For example, we would expect that communi-
cation is faster on a cluster of Sun4’s than on a cluster of
Sun3’s. The topologies we consider include a common set
of regular patterns such as1-D, tree, broadcast andring.
These communication topologies aresynchronous in that
all processors participate in the communication at the same
logical time. The synchronous nature of the communica-
tion means that the communication cost experienced by all
processors is roughly the same and is determined by the
processor experiencing the greatest cost. This observation
has been verified by empirical data.

These cost functions determine the average commu-
nication cost, measured as elapsed time, incurred by a pro-
cessor during a single communicationcycle. During a
communication cycle, each processor does an asynchro-
nous send to each neighboring processor followed by a

RS-6000

HP

Sun4

Figure 1. Network Organization

R

blocking receive from each neighboring processor. For
example in a 1-D topology, each processor sends to its
north and south neighbors and then receives from its north
and south neighbors. For each cluster Ci and communica-
tion topology τ, we have a communication cost function of
the form:

Tcomm [Ci, τ] (b, p)
The cost function is parameterized by p, the number of pro-
cessors within the cluster, and b, the number of bytes per
message. For example suppose C1 refers to the RS-6000
cluster in Fig. 1. The cost function Tcomm [C1, 1-D] (b, p)
refers to the average cost of sending and receiving a b byte
message in a 1-D communication topology of p processors
within the RS-6000 cluster computed as elapsed time. The
parameter p is one way to capture contention effects within
the cluster since the offered load is linear in p on ethernet.
The cost functions have a latency term that depends on p
and a bandwidth term that depends on both p and b (c1 and
c2 are latency constants and c3 and c4 are bandwidth con-
stants):

Tcomm [Ci, τ] (b, p) = c1+c2 p + b(c3+c4 p) (EQ 1)

Each communication function is benchmarked using dif-
ferent p and b values to derive the appropriate constants. A
set of communicating tasks are mapped over the processors
to perform the benchmarking. The placement of tasks
depends on the communication topology and several strat-
egies are presented in [11].

For communication that crosses cluster boundaries,
there are two complications that make cost estimation
more difficult. First, if communicating processors in differ-
ent clusters support different data formats, then a per mes-
sage coercion cost must be included. Second,
communication between clusters must pass through a
router and a per message router cost must be included. We
extend the benchmarking strategy to measure these costs:

Trouter [Ci, Cj] (b)
Tcoerce [Ci, Cj] (b)

Suppose now that processors spanning clusters Ci and Cj
are communicating in a 1-D topology. A processor in Ci
that communicates with a processor in Cj will incur a
greater communication cost and vice-versa. The empirical
evidence indicates that the router may be treated as an
additional station that contends for the ethernet channel
plus internal router delay. Both coercion cost and router
delay is a per byte penalty. Thus, the communication cost
for a processor within Ci or Cj that communicates across
the router will be (shown for a processor in Ci):

Tcomm [Ci, τ] (b, p+1) + Trouter [Ci,Cj] (b) +
Tcoerce [Ci, Cj] (b)

Since Trouter and Tcoerce are linear in the message size b,
this equation has the same form as Eq. 1 with the constant
c3 reflecting coercion and router costs. For communication
topologies that are not bandwidth-limited (i.e., broadcast),
the actual communication cost, which we denote by
Tcomm [τ], experienced by all processors is the maximum
cost over all clusters:

Tcomm [τ] = max {Tcomm [Ci, τ]} (EQ 2)

For bandwidth-limited topologies such as broadcast, the
available bandwidth is linear in the total number of proces-
sors. The cost functions should be viewed as average case
due to the large amount of non-determinism inherent in
UDP-based communications. For example, large messages
and many communicating processors will increase the like-
lihood of packet retransmissions, but in the average case
the cost functions presented are fairly accurate.

4.0 Data parallel computations
We have adopted an SPMD model of computation in

which a set of identical tasks are instantiated across some
number of processors with a single task placed on each
processor [3][4]. Each task computes on a separate region
of the data domain. The data domain is decomposed into a
number of primitive data units (PDUs), where the PDU is
the smallest unit of data decomposition. The PDU is prob-
lem and implementation specific. For example, the PDU
might be a row, column, or block of a matrix in a matrix-
based problem, or a collection of particles in a particle sim-
ulation. The PDU is similar to the virtual processor, but is
more general since the PDU may arise from unstructured
data domains unlike the virtual processor. The partitioning
algorithm does not depend on the nature of the PDU but
rather manipulates PDUs in the abstract.

We assume that the task implementation has been
provided (either by the user or as a result of a compilation
process). We discuss some properties of this task imple-
mentation later in this section. The partitioning algorithm
requires that information about the computation and com-
munication structure of the implementation be provided. In
particular, the data parallel computation may be viewed as
a sequence of alternating computation and communication
phases [8]. A communication phase may include either
sending or receiving messages or both. A computation
phase contains only computation. If communication and
computation are overlapped, it is common to have a com-
munication phase consisting of asynchronous sends, fol-
lowed by a computation phase, followed by a
communication phase consisting of blocking receives.
Most data parallel computations are iterative in nature with
the computation and communication phases repeating after
some number of phases or cycles.

In our model, annotations associated with the compu-
tation and communication phases must be provided. The
annotations distill critical information about the implemen-
tation that is needed by the partitioning algorithm and may
be provided by the user or a compiler. In this paper, we are
concerned with how the annotations are used and not the
mechanisms for specifying them. We present a method for
specifying the annotations based on callback functions [6]
that is discussed shortly.

Computation phase annotations

Each computation phase is annotated as follows:

• number of PDUs (num_PDUs)

• computational complexity

The number of PDUs depends on problem parameters
(e.g., problem size) and the nature of the PDU. The amount
of computation done on a PDU in a single cycle is known
as the computational complexity. The computational com-
plexity is the number of instructions executed per PDU.
These instructions may also include memory operations.

Communication phase annotations

Each communication phase is annotated as follows:

• topology

• communication complexity

• overlap (computation phase)

The topologies include regular synchronous patterns
such as 1-D, 2-D, tree, ring, and broadcast. The amount of
communication between tasks is known as the communica-
tion complexity. The communication complexity is the
number of bytes transmitted by a task in a single communi-
cation during a single cycle of the communication phase. It
is assumed that each task initiates a single communication
to each neighboring task during a single cycle of the com-
munication phase. If this communication phase is over-
lapped with a computation phase, the name of the
computation phase is provided by the overlap annotation.
Among the computation and communication phases, two
phases are distinguished. The dominant computation phase
has the largest computational complexity, while the domi-
nant communication phase has the largest communication
complexity.

Partitioning determines the number of PDUs to be
assigned to each task (i.e., processor). This information is
contained in a structure known as the partition vector (A)
that is defined as follows:

Ai = number of PDUs assigned to processor pi

∑Ai = num_PDUs

The implementation is responsible for using the partition
vector in a manner appropriate to the implementation. For

example, suppose the partition vector contained a 1-D par-
tition of a 20x20 matrix across four processors (p1..p4), as
in Fig. 2. In this example, the implementation takes this
abstract partition and decomposes the data domain into the
appropriate number of PDUs (i.e., rows) to be distributed
to each of the four processors.

An example illustrating the annotations for a particu-
lar implementation of a dense NxN five-point stencil com-
putation is given below. The NxN five-point stencil
computation has been implemented using a block-row
decomposition of the grid as shown in Fig. 2. In this imple-
mentation, the PDU is a single row and the processors are
arranged in a 1-D communication topology. The stencil
computation is iterative and consists of two dominant
phases: a 1-D communication to exchange north and south
borders, and a simple computation phase that computes
each grid point to be the average of its neighbors. The com-
munication and computation phases are annotated as fol-
lows (assume 4 byte grid points and no computation/
communication overlap):

The annotations are implemented by a set of callback func-
tions that will be invoked at runtime. Notice that these
functions may depend on problem parameters such as the
problem size (e.g., N). The callbacks associated with the
dominant phases are used by the partitioning algorithm. In
particular, the callbacks associated with the computational
and communication complexity allow an estimate of the
computation granularity to be computed at runtime. This
estimate is needed in the computation of the partition vec-
tor and to determine the number of processors to use. The
topology is used to select the appropriate communication
function (Section 3.0) that is needed to estimate communi-
cation costs in the partitioning algorithm.

5.0 Partitioning
Before partitioning can be done, the available proces-

sors Ni within each cluster Ci have to be known. A cooper-
ative algorithm is run by each cluster manager that

4
8
6
2

Data domain

p1
p2
p3
p4

Partition vector

Figure 2. Partitioning the data domain

topology = 1-D
communication complexity = 4N (bytes)
num_PDUs = N
computational complexity = 5N (fp ops)

determines the available processors. The details of this
algorithm may be found in [11]. For small problems or
very large networks, it is likely that all available processors
will not be needed. It is assumed that once the available
processors have been determined, load fluctuation due to
other users is small. Under this assumption, no dynamic
load balancing will be needed.

The objective of partitioning is to (1) choose the
number of processors Pi (0≤Pi≤Ni) within each Ci to use
and (2) decompose the data domain to determine the Ai
associated with each Pi (i.e., the partition vector) in order
to achieve reduced completion time. Completion time is
determined by two factors: load balance and computation
granularity. Computation granularity restricts the amount
of parallelism that can be efficiently exploited. This is cap-
tured by (1). Load balance ensures that all processors will
finish at the same time, a necessary condition for reduced
completion time. For synchronous communication topolo-
gies, the communication costs for all processors is the
same, hence decomposing the data domain to achieve load
balance is fairly straightforward [6] and is presented later.

We are developing a class of algorithms for partition-
ing that solves (1). Once (1) is known, (2) follows easily.
The general partitioning problem can be formulated as an
optimization problem in which completion time is mini-
mized as an objective function f is minimized. We present
this objective function later in this section and show how it
is easily constructed using program information.

A heuristic for solving the general partitioning prob-
lem is based on three observations: (1) communication
locality is important since router (and coercion) costs can
increase communication overhead (2) additional communi-
cation bandwidth can be exploited by utilizing clusters on
different network segments and (3) processor power is
important since the use of faster processors will reduce
completion time. Notice that observations (1) and (2) are in
conflict. While router costs are high, these costs may be
tolerable if the gain in communication bandwidth is suffi-
ciently great. For example, a 1-D topology has a potential
for exploiting additional communication bandwidth due to
greater communication locality. On the other hand, a
broadcast topology is inherently bandwidth limited.

The general partitioning problem requires that a sys-
tem of nonlinear equations be solved for Pi. We are cur-
rently exploring heuristics for the general case. What
makes the general problem difficult is that the relationship
between (1) and (2) can be subtle. In this paper, we present
a heuristic for solving a simpler partitioning problem that
is biased toward (1). The basis for our partitioning algo-
rithm is that it is possible to order processors and clusters
under a set of assumptions. Since we have assumed equal
communication capacity and processor homogeneity
within each cluster (Section 3.0), we order clusters based

on the instruction rate of the processor type. Clusters are
considered in this order with more powerful clusters cho-
sen first. In order to maintain communication locality, all
available processors within a cluster are considered before
choosing processors in another cluster. This heuristic con-
siders the use of faster processors and communication
locality as more important than additional communication
bandwidth.

The heuristic algorithm we propose explores a series
of processor configurations. A processor configuration is a
set of values Pi for each Ci, i.e., a fixed set of processors. If
Si is the instruction rate for cluster Ci, then for a fixed num-
ber of processors Pi, we can compute the partition vector Ai
by requiring that the processors are load balanced (m is the
number of clusters):

(EQ 3)

This form for Ai assumes that the computational complex-
ity is linear in the number of PDUs. While this is often the
case, a more general form for Ai that does not have this
restriction is discussed in [6]. Solving for the best Pi
requires that an objective function f be constructed. We
define the objective function f as an estimate of the proces-
sor elapsed time per cycle which we denote by Tc. If the
processors are load balanced and the computation is syn-
chronous then the total elapsed time Telapsed is defined as
follows (I is the number of cycles):

Telapsed = I*Tc + Tstartup

The startup overhead includes any startup costs such as ini-
tial data distribution. In this paper, we assume that the
computation is of sufficient granularity to amortize the
startup costs. If Tstartup is sufficiently small relative to Tc,
then Telapsed is minimized as Tc is minimized. Tc is based
on three quantities that can be computed efficiently at runt-
ime using callbacks: Tcomp, Tcomm, and Toverlap. Tcomp is the
time that a processor spends in computation during a cycle
of the dominant computation phase. Tcomm is the time that a
processor spends in communication during a cycle of the
dominant communication phase. Toverlap is the portion of
Tcomm that can be overlapped with Tcomp. These estimates
are computed for a particular configuration. For this con-
figuration, Ai is first computed by Eq. 3 and these estimates
are computed as follows (shown for processor pi in cluster
Ci):

Tcomp [pi] =Si *computational complexity*Ai (EQ 4)

Tcomm [Ci, τ]= βb + γ (EQ 5)

Tc [pi] = Tcomp[pi] + Tcomm[pi] - Toverlap[pi] (EQ 6)

The computational complexity and Si are determined by
invoking the appropriate callbacks. For Tcomm, the topol-
ogy of the dominant communication phase (τ) is used to

Ai

Si

Sj Pj⋅

j 1=

m

∑

NumPDUs⋅=

select the appropriate communication cost function at runt-
ime (Eq. 1). For a fixed number of processors (i.e., p=Pi)
the communication cost function reduces to the form of Eq.
1 where β and γ are constants and b is the size of messages
exchanged (which may depend on Ai in some cases). All of
these equations are computed at runtime using program
information provided by the callback functions. We have
shown Tc for a particular pi, but it does not matter since Tc
will be the same for all processors since the communica-
tion cost is the same and the computation is load balanced.

The heuristic works as follows. For each candidate
processor configuration considered, the algorithm com-
putes the associated Ai via Eq. 3. Once Ai is known, the
elapsed time estimate Tc can be computed via Eq. 6 for this
configuration. The canonical relationship between Tc and
number of processors is depicted in Fig. 3.

In region A, computation granularity is too large and
insufficient parallelism is being exploited. In region B,
computation granularity is too small and too many proces-
sors have been used. The ideal number of processors,
p_ideal, occurs at the minimum of the curve. An iterative
algorithm to locate p_ideal based on binary search has
been developed. The algorithm assumes a single global
minima. In some cases, several minima may be possible
due to architecture or message-system protocol characteris-
tics. An algorithm to deal with this more general case is
being developed.

The algorithm begins by ordering the candidate pro-
cessors (clusters) as discussed earlier. The algorithm then
chooses clusters in this order. For example, suppose that a
cluster containing N1 processors is selected first. The algo-
rithm then computes the number of processors within this
cluster (1 .. N1) to apply to the problem by trying different
processor configurations and estimating the cost. Then the
next cluster is tried, assuming the previous allocation of
processors, and so on. The details of this algorithm may be
found in [11].

This algorithm requires that Equations 3 and 6 are
recomputed Klog2P times worst case, where K is the num-
ber of clusters and P is the total number of processors. We
believe that this is a scalable algorithm. For smaller prob-
lems, both K and P will tend to be small. For example, sup-
pose K = 5 and P = 20. In the worst case where all clusters
and processors are selected, this will require that the equa-

A BTc

processors

|
p_ideal

Figure 3. Elapsed time vs. processors

tions are recomputed 5log220 or 20 times. Each time the
equations are recomputed, the number of floating point
operations executed is proportional to K (the loop bound
on Eq. 3). This overhead is quite small.

6.0 Results
To demonstrate the feasibility of the partitioning

method, we have implemented a dense NxN iterative five-
point stencil application on a network of heterogenous
workstations containing two clusters (6 Sun4 Sparc2’s and
6 Sun4 IPC’s on two ethernet-connected network segments
joined by a router). The implementation uses a row decom-
position of the underlying grid (i.e., the PDU is a row of
the NxN grid) as depicted in Fig. 2. The callbacks for the
dominant phases of the stencil computation were given in
Section 4.0. Communication is handled by calls to the
MMPS library [5].

The implementation arranges the tasks (i.e., proces-
sors) in a 1-D topology. Since the Sparc2 is more powerful
than the IPC, the Sparc2 cluster is considered first by the
partitioning algorithm. Processors in the IPC cluster will
only be used if the entire Sparc2 cluster is used. Task
placement is important in the event that both clusters are
used since router costs may be large. For the 1-D topology
placement is simple: tasks are assigned to the processors in
the Sparc2 cluster followed by processors in the IPC clus-
ter north to south. Only a single processor in each cluster
needs to communicate across the router.

We have implemented two versions of the stencil
computation to test the applicability of our approach,
STEN-1 and STEN-2. In STEN-1, communication is not
overlapped with computation. In STEN-2, transmission of
the north and south borders is overlapped with the grid
computation. We present results for STEN-1 and STEN-2
for several problem sizes: N=60, 300, 600, and 1200. All
data presented is the result of multiple runs with averages
shown. All benchmarking has been done when the network
and processors were lightly loaded.

For STEN-1 and STEN-2, the partitioning algorithm
computes the computation time estimate using callbacks
(shown for processor pi):

Tcomp [pi] = Si * [5N]* Ai

The algebraic term in square braces is the computational
complexity or the number of operations or instructions per
PDU, Si is the average floating point instruction rate for pi,
and Ai is the number of PDUs (rows) for processor pi. The
communication time estimate Tcomm was determined by
benchmarking the 1-D communication topology for differ-
ent numbers of processors and message sizes. Since all
processors are Sun4’s, no message coercion was necessary.
The parameter b is determined by the communication com-
plexity callback and is equal to 4N for a problem of size N.

The message cost functions were determined to be (P1 and
P2 are the number of Sparc2’s and IPC’s respectively, all in
units of msec):

Tcomm [C1, 1-D] ≈ (-.0055 + .00283P1)b + 1.1P1

Tcomm [C2, 1-D] ≈ (-.0123 + .00457P2)b + 1.9P2

Trouter [C1, C2]≈ .0006b

Tcomm [1-D] ≈ max (Tcomm [C1, 1-D],
Tcomm [C2, 1-D]) +
Trouter [C1, C2]

For P2 = 2, Tcomm doesn’t fit the data well and may take
on negative values. It turns out that the absolute value of
this quantity is a very good approximation to the actual
cost, so this solves the problem. We have also determined
that Si for the Sparc2 ≈ 0.3 usec and Si for the IPC ≈ 0.6
usec. This is an average over obtained by benchmarking
several floating point operations. Ai is computed to be (by
Eq. 3):

Ai [pi Sparc2] = 2N / (2P1 + P2)

Ai [pi IPC] = N / (2P1 + P2)

The factor 2 is the approximate ratio of Si for the Sparc2
and the IPC and reflects the fact that the Sparc2’s are about
2 times faster than the IPC’s (in floating point perfor-
mance). Consequently, the tasks on the Sparc2’s will
receive 2 times more PDUs than the tasks on the IPC’s.
The computation time estimates are the following (in
msec):

Tcomp [pi Sparc2] = 0.0003*[5N]*[2N/(2P1+P2)]

Tcomp [pi IPC] = 0.0006*[5N]*[N/(2P1+P2)]

The partitioning algorithm uses Tcomp and Tcomm to esti-
mate Tc at runtime using the callbacks. For STEN-1, the
implementation does not overlap communication and com-
putation (i.e., Toverlap = 0) and Tc is computed to be (in
msec):

Tc [pi] = Tcomp [pi] + Tcomm [1-D]

For STEN-2, the implementation overlaps communication
and computation. The amount of overlap is the minimum
of the execution time estimates for Tcomp and Tcomm. Tover-

lap and Tc are computed to be (in units of msec):

Toverlap [pi] = min (Tcomp [pi], Tcomm [1-D])

Tc [pi] = Tcomp [pi] + Tcomm [1-D] - Toverlap[pi]

The results of the partitioning algorithm are shown in
Table 1 (P1 and P2 are the number of Sparc2’s and IPC’s
respectively, and A1 and A2 are the number of PDUs (rows)
given to each Sparc2 and each IPC respectively). In Table
2, we present the measured elapsed times for STEN-1 and
STEN-2 with the minimum for each problem size denoted
by *. The number of iterations is 10. The time for STEN-1
is the top entry in the table cell. These timings do not
include the initial grid distribution cost. The sequential
time shown is for the Sparc2. As expected, STEN-2 out-
performs STEN-1 for all problem sizes due to communica-
tion overlap. More importantly, observe that the
partitioning algorithm accurately predicted the best config-
uration for both STEN-1 and STEN-2 for all problem sizes.
Notice also that the IPC’s were not utilized until the prob-
lem was sufficiently large.

For N=1200, we also show the elapsed time obtained
with an equal decomposition of the data domain for P=12
(each processor gets 100 rows). This clearly leads to a load
imbalance and indicates the benefit of a heterogeneous data
decomposition. In fact, a poor data decomposition has the
effect of significantly reducing the effective parallelism.
For example, the benefit gained by using 6 additional pro-
cessors for STEN-1 is lost - using 6 Sparc2’s results in a
smaller elapsed time (3984 vs. 4157).

These results demonstrate that it is possible to auto-
matically partition a data parallel computation at runtime
such as the stencil computation. The method is also
extremely efficient. Recall that the overhead is O(Klog2P).
For K=2 clusters and P=12 processors, the equations are
recomputed 6 times. This overhead is easily amortized
since the elapsed times for the stencil computation are in
the hundreds to thousands of msecs. There is additional
overhead required to determine the available processors
within each cluster but it is also small relative to elapsed
time [11]. The stencil computation is very regular and has
uniform computational and communication complexity.
We expect the method to work well in these cases. We have
also had success applying the method to Gaussian elimina-

N P1 P2 A1 A2 P1 P2 A1 A2

60 1 0 60 0 2 0 30 0

300 6 0 50 0 6 2 43 21

600 6 4 75 38 6 6 67 33

1200 6 6 171 86 6 6 171 86

Table 1. Results of partitioning algorithm for stencil computation

STEN-1 STEN-2

tion with partial pivoting, an application that hasnon-uni-
form computational and communication complexity.

7.0 Summary and Future Work
We have presented a method for automatically parti-

tioning data parallel computations across a heterogeneous
network under a set of assumptions. The method relies
upon information about the computation and communica-
tion structure of the implementation in the form of call-
backs, and a set of topology-specific communication
functions. At present, the callbacks are provided by the
programmer, but we are exploring the possibility of com-
piler-generated callbacks. The preliminary results indicate
that the method is efficient and that minimum elapsed
times for two different implementations of the stencil com-
putation were achieved. This is an encouraging result.

Future work includes applying the partitioning
method to larger-scale data parallel computations and
relaxing the assumptions about the network model. A more
general partitioning algorithm will be needed for the latter.
A strategy to handle load imbalance due to processor shar-
ing is also the subject of future work. One possibility is to
dynamically recompute thepartition vector in the event of
load imbalance. We also plan to demonstrate that our
approach is applicable to ametasystem environment that
may contain machines of different classes such as multi-
computers and workstations together. We are currently
implementing the partitioning algorithm within the Mentat
[7], a parallel processing system developed at the Univer-
sity of Virginia.

8.0 References
[1] A.L. Cheung, and A.P. Reeves, “High Performance

Computing on a Cluster of Workstations,”Proceedings
of the First Symposium on High-Performance Distrib-
uted Computing, Sept 1992.

[2] A. Beguelin et al., “HeNCE: Graphical Development

Tools for Network-Based Concurrent Computing,”
Proceedings SHPCC-92, pp. 129-136, Williamsburg,
VA, May, 1992.

[3] G. Fox et al, “Fortran D Language Specification,”
TR90-141, Department of Computer Science, Rice
University, December 1990.

[4] P.J. Hatcher, M.J. Quinn, and A.J. Lapadula, “Data-par-
allel Programming on MIMD Computers,”IEEE
Transactions on Parallel and Distributed Systems, Vol
2, July 1991.

[5] A.S. Grimshaw, D. Mack, and T. Strayer, “MMPS: Por-
table Message Passing Support for Parallel Comput-
ing,” Pr oceedings of the Fifth Distributed Memory
Computing Conference,April 1990.

[6] A.S. Grimshaw, J.B. Weissman, E.A. West, and E.
Loyot, “Metasystems: An Approach Combining Paral-
lel Processing And Heterogeneous Distributed Comput-
ing Systems,” Journal of Parallel and Distributed
Computing, in press.

[7] A.S. Grimshaw, “Easy to Use Object-Oriented Parallel
Programming with Mentat,”IEEE Computer, May
1993.

[8] V.M. Lo et al, “OREGAMI: Tools for Mapping Parallel
Computations to Parallel Architectures,” CIS-TR-89-
18a, Department of Computer Science, University of
Oregon, April 1992.

[9] N. Nedeljkovic, and M.J. Quinn, “Data-Parallel Pro-
gramming on a Network of Heterogeneous Worksta-
tions,” Proceedings of the First Symposium on High-
Performance Distributed Computing, Sept. 1992.

[10] V.S. Sunderam, “PVM: A framework for parallel dis-
tributed computing,”Concurrency: Practice and Expe-
rience, vol. 2(4), pp. 315-339, December, 1990.

[11] J.B. Weissman, “Multigranular Scheduling of Data Par-
allel Programs,” TR CS-93-38, Department of Com-
puter Science, University of Virginia, July 1993.

N elapsed
time
1 Sparc2
msec

elapsed
time
2 Sparc2s
msec

elapsed
time
4 Sparc2s
msec

elapsed
time
6 Sparc2s
msec

elapsed
time
6 Sparc2s + 2 IPCs
msec

elapsed
time
6 Sparc2s + 4 IPCs
msec

elapsed
time
6 Sparc2s + 6 IPCs
msec

60 55

55*

52*

56

75

70

78

71

86

82

96

88

98

90
300 1346

1346

753

709

439

394

337*

313

338

266*

346

268

361

278
600 5535

5535

2862

2797

1511

1453

1117

1019

1059

943

985*

894

1099

822*
1200 21985

21985

11038

10972

5699

5554

3984

3770

3758

3398

3604

3230

3088* (4157)

2822* (3443)

Table 2. Measured elapsed times for STEN-1 and STEN-2. The * indicates the
predicted minimum point.

