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1 Introduction

The survivability of critical, information-intensive infrastructure systems, such as electric power
generation and control, banking and financial systems, telecommunications, and air traffic control
systems, has emerged as a major national concern [16, 22]. By survivability, we mean the ability
of such systems to continue to provide acceptable levels of service under predefined adverse
circumstances [11]. Acceptable service is defined in terms of the aggregated impact of service
disturbance to users who depend on the system. Such service might be a degraded form of normal
service or an alternate service, differing in whole or in part from normal service, as determined by
application experts and policy makers [20]. Adverse circumstances might be widespread
environmental damage, major equipment failures, coordinated information attacks, and so on. In
this case, survivability can be thought of as requiring fault tolerance with very specific and
usually elaborate requirements for continued service. Novel forms of error detection, damage

assessment, and so on are specific to the context of a complex distributed system.
\

Our concern is with survivability in the face of disruptions to the vulnerable distributed
information systems that automate and operate the infrastructures. Tremendous efficiency
improvements and service enhancements have been made in recent years in many infrastructure
systems by the introduction of sophisticated information systems. In some cases these changes are
very visible, e.g., the worldwide access to funds provided by ATM machines. In other cases they
are not, e.g., just-in-time delivery of manufacturing materials by freight rail. The high-level
problem is that enterprises, including civil and military organizations, are put at risk by
vulnerabilities of critical infrastructure systems to disruption of their information systems in a

world of increasingly complex information systems and increasingly capable adversaries.

Our research goal is to design survivable systems and to enhance the survivability of existing
systems against threats that pose risks to the provision of acceptable levels of service. Achieving
this goal in practice will require major investments in research, development, and reengineering.
We view survivability as a property that is made attainable, at least in part, by a system’s
architecture. Thus, we seek to explore, develop and evaluate innovative architectural techniques

for achieving survivability in complex new and existing systems.

The survivability enhancement of existing systems is complicated by their size and complexity
and thus their resistance to change. We therefore seek survivability enhancement techniques that
can be imposed largely transparently on existing systems. The ability to do this is constrained, of

course—often heavily—by the particular properties of any given system.



Experimentation is a crucial element of research in this area. It is vital, for example, to the early
evaluation of novel survivability techniques. Unfortunately, several factors present serious
impediments to experimentation. First, infrastructure systems are privately owned. Second, they
are, by definition, critical from both business and societal perspectives. It is inconceivable that
their operators would permit experimentation on them. Third, infrastructures are enormous in

physical scale, cost and complexity, which makes it infeasible to replicate them in the laboratory.

We have thus adopted an approach based on the use of operational models of infrastructure
systems as test-beds for developing and evaluating prototype architectural mechanisms for
survivability. In this paper we describe a framework that permits a wide range of representative
models of critical infrastructure systems to be built rapidly and made the subject of
experimentation. Provision is made within the framework for creation, manipulation, and
observation of models of infrastructure systems as well as the introduction of architectural
elements designed to enhance survivability. The ability to develop and analyze models and
prototype survivability mechanisms rapidly is an important aspect of the work because we wish to

explore a range of infrastructure applications and a variety of architectural concepts efficiently.

The rest of this paper is organized as follows. Section 2 discusses the basic modeling concepts.
Section 3 presents key aspects of infrastructure applications. Section 4 discusses the requirements
for a modeling framework. Section 5 presents our framework in detail. Section 6 summarizes an
example model that we have been built using the modeling framework. We discuss related work

in Section 7. Section 8 presents our concluding remarks and plans for future work.

2 Operational Models

Given the impediments to direct experimentation with real infrastructures, we have adopted an
experimental approach based on operational models. By an operational model, we mean a
simplified version of the real system that executes as the real system does—as a true distributed
system—but that provides only a restricted form of its functionality. The goal for a given model
is to have a simplified laboratory version of the associated infrastructure system that is made
manageable by implementing only relevant application functionality and implementing only
essential characteristics of the underlying target architecture. Most infrastructure applications, for
example, are distributed and this is an essential characteristic, although the particular protocols
used in the underlying network are not in most cases. Thus for our purposes an operational model

needs to be truly distributed but it need not use any specific network protocol.



Building operational models of critical infrastructure information systems presents two significant
challenges: (1) modeling the critical and no other aspects of infrastructure systems with sufficient
accuracy and completeness; and (2) facilitating inclusion in the model of relevant architectural
mechanisms to be developed or evaluated. For purposes of experimentation, an operational model
has to represent relevant functional and architectural features of a given system, as well as its
operational environment, including a dynamic model of internal failures and external threats.
Once such a model is built, mechanisms must be present to allow prototypes of architectural
survivability mechanisms to be introduced. Both models and architectural supplements must be

instrumented for collection of data needed to analyze and evaluate survivability mechanisms.

The prima facie validity of conclusions derived from studies based on models and prototypes
depends on the extent to which they capture the relevant properties of modeled situations.
Validation of such results by other means is essential. Our results are not validated to the degree
required to warrant adoption into real infrastructure systems. Rather, at this early stage of
scientific inquiry into the critical area of infrastructure survivability, our work is at the level of

basic experimental systems research, in both the technical and methodological dimensions.

3 Relevant Features of Critical Infrastructures

The design of the modeling framework is based on two sets of issues. The first centers on key,
relevant features of critical infrastructure domains determined through our in-depth study of
several critical infrastructures systems [10]. The second centers on the need to enable
experimental architectural research in largely transparent monitoring and control. In this section,

we summarize the key domain properties; in the next section, support for experimental research.

The features of the infrastructure domain that we selected for explicit representation in our
models were derived from the research questions with which we are concerned. An important
aspect of this selection is that the open research problems are posed by precisely those properties
that distinguish infrastructure systems from other, more familiar, systems for which high levels of

dependability are required. The properties with which we are most concerned are as follows:

e System Size
The information systems supporting critical infrastructure applications are very large, both
geographically and in terms of numbers and complexity of computing and network elements.

For example, the banking system of the United States includes thousands of nodes in many



business situations. Infrastructure systems are also widely distributed, in large part because

they must deliver service streams over large, sometimes even worldwide, geographic regions.

Hierarchic Structure

Many of these systems are structured hierarchically, although “short circuits” are sometimes
present for performance reasons. The United States financial payment system, for example,
can reasonably be viewed as roughly tree-structured with the Federal Reserve System at the
root of the tree. In reality, the Federal Reserve competes with other financial institutions to
provide many important services, such as check clearing, so a forest is perhaps a more
accurate description of the payment system. When interdependencies among infrastructures
are taken into account (e.g., the dependence of banking on electric power and vice versa), the

structure of the infrastructure system-of-systems is seen as a complex nested hypergraph.

Serial Functionality

At the highest level many of these systems operate as loosely coupled subsystems, each
implementing a function that provides only part of the overall service. The complete service
is only obtained if several subsystems operate correctly in the correct sequence. For instance,
the U.S. payment system operates through computations at local branch banks, centralized
money-center banks, and very centralized clearing organizations, including the Federal

Reserve Bank. In most cases, at least one bank at each level has to operate to clear a check.

COTS and Legacy Components

The information systems underlying critical infrastructures are and will continue to be built
from commercial off-the-shelf components, including standard hardware, operating systems,
network protocols, database management systems, job control mechanisms, programming
environments, and so on. These systems also include custom-built software, much of it of a
“legacy” nature. That is, the software has grown and changed over many years, has a

degraded structure, and is thus hard to understand and costly to change.

Multiple Administrative Domains

Many infrastructure information systems span multiple administrative domains. For example,
the U.S. payment system is an extremely complex system of systems for managing transters
of value and commitments to transfer value among financial and other institutions. The
institutions include not only local and money-center banks as already noted, but credit card

issuing and clearing organizations, check clearing organizations, loan organizations, financial



and other exchanges, and so on. Moreover, in traditional physical infrastructures, such as
transportation, computing systems are becoming integrated across corporate boundaries to

achieve previously impossible supply chain efficiencies.

s Availability
The requirements for availability in infrastructure systems are considerable as would be
expected; but availability is a more complex issue than it might appear. In some cases,
availability requirements vary with function. It is important in power generation, for example,
to maintain power supply if possible, but it is not necessary to maintain an optimal generation
profile, and some customers can tolerate some interruptions. In other cases, availability
requirements vary with the type of application node. In the banking system, for example,
there are many branch banks but very few banks permitted to transter value between
organizations. Thus the availability of service at a local bank is relatively unimportant but it
is essential for banks conducting value transfer. Finally, availability requirements vary among
infrastructures, and they certainly vary among customers, and even over time. Longer-term

power outages are more critical to hospitals than to homes, and in winter than in summer.

e  Complex Operational Environments
The operating environments of critical infrastructures are of unprecedented complexity. They
carry risks of natural, accidental, and malicious disruptions; sometimes highly variable loads;
varying levels of criticality of service; and so forth. For example, freight rail service is
especially critical in October—harvest time. Moreover, operational environments are now
believed to have potential to exhibit previously unrealized behaviors such as widespread,
coordinated information attacks. Cascading failures of infrastructure systems, in which the

failure of one node leads to the failure of connected nodes, and so on, are also a real concern.

4 Modeling Requirements to Support Architectural Research

The general requirements for a modeling system derive from the two challenge areas identified
earlier: modeling of infrastructure applications and modeling of architectural supplements. In
addition, of course, support for experimentation has to be provided to allow for model control and
display of results. The details of the requirements derive from the features of critical
infrastructures discussed in the previous section, the architectural research goals, and the
experiments that are to be performed. In this section, we outline the requirements that the

framework is designed to satisfy.



4.1

Infrastructure Application Modeling

The requirements for modeling the application infrastructure break down into four categories:

Application target architecture.

Support must be provided to model distributed systems with large numbers of nodes.
Heterogeneous nodes need to be supported along with arbitrary application network
topologies. Since infrastructure applications typically make provision for availability, it must
be possible to model all forms of redundancy. Finally, the model must allow rapid change of

any element of the target architecture so as to permit a wide variety of systems to be modeled.

Application functionality.

Crucial aspects of application functionality must be modeled. This includes typical
processing that takes place on a single node and serial functionality where a series of nodes
operate on a data stream to provide a single service to the user. In the infrastructure
applications that we have analyzed, a great deal of functionality is associated with
manipulation of databases and generation of associated reports. This does not mean, however,
that the framework needs to provide some form of elaborate database support. In fact, it is
such details that have to be abstracted away to produce useful models of tractable size.
Database issues associated with a single node are not relevant for our modeling purposes

except in so far as they affect system-wide issues.

Application operating environment.
All relevant input sources and output sinks have to be modeled. Input sources include all
types of user requests as well as all forms of application data. Output sinks include displays,

reports, application data, etc.

Application failures.

All relevant types of failure have to be modeled along with all relevant failure parameters.
Types of failure include hardware failure, software failure, operator mistakes, environmental
trauma (e.g., hurricanes), security penetrations, and so on. Of particular importance are
failures that affect large parts of the system such as coordinated security penetrations and
local failures that cause cascading effects through the network. Failure parameters of interest

include timing, scope, duration, extent, and so on.



4.2 Architectural Supplement Modeling

The architectural concepts of particular interest to us focus on monitoring and control [20]. This
requires that sufficient state information be available to permit system-wide errors to be detected
and system-wide damage assessment to be undertaken. In addition, we wish to implement
continued service for applications in which many nodes cooperate to provide functionality, and in
which continued service therefore requires the manipulation of the system as a whole. These

general notions lead to the following three basic requirements:

e Application information.
It must be possible to acquire information about both running and corrupted application
elements. This requires the ability for applications to supply prescribed information and the
ability to acquire application information by observation. The acquisition of application
information should be by means similar to those that might be used in a production
implementation of the architectural ideas being explored. A key aspect of this requirement is
that the facilities be transparent to the application to the extent possible. Thus architectural

technologies related to the idea of “transparent wrappers” are of particular significance.

e Application enhancement.
It is necessary to be able to introduce enhanced functionality over and above the required
application functionality. Enhanced functionality might have to be added at the network link,
computing node, subsystem, or complete system levels. Again, this requirement has to be met

by the modeling system in the same manner as will occur in a complete application.

e  Reconfiguration.
Reconfiguration of application architectures is a significant aspect of the way in which
continued service is likely to be provided in infrastructure systems recovering from a failure.
The modeling system obviously has to support this in as general and flexible a manner as

possible.

4.3 Support for Experimentation
Since the purpose of the framework is to enable a variety of experiments to be performed, support

for experimentation has to be provided, specifically:



e Model control.
Typical models that might be used for architectural research will involve large numbers of
nodes and such models will be executed on diverse physical platforms. Provision must be
made to control models in terms of mapping models to platforms, model initialization,
induction of failures, and so on. These facilities are especially important for complex models
that operate on target systems with large numbers of computers, some of which might be

geographically remote.

e Data acquisition and display.
Data capture and the display of raw and processed data is essential. But it is difficult with
large operational models of the type we require. The difficulty arises from the volume and the
asynchronous nature of the data that might be generated in an experiment. A typical model
might involve hundreds of application nodes, each of which might generate a data stream
such as statistics on local network message traffic. For purposes of analysis, it might be
necessary to process this data centrally and have ordering information so as to be able to

predict recovery actions.

5 The Modeling Framework

5.1 Framework Facilities

Since for our purposes an operational model is a distributed system, the framework implements
distributed systems with arbitrary numbers of nodes and arbitrary interconnections between
nodes. The basic communications paradigm that the framework provides is message passing.
Thus, an operational model within the described framework is a collection of concurrent
computational nodes between which messages of arbitrary complexity can be passed. In reality,
the nodes and their communication are provided by a set of networked Windows NT workstations

with a prescribed association between nodes in the model and physical computers.
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Figure 1 - Infrastructure modeling framework

Figure 1 provides an overview of the framework. Solid rectangles represent physical computers;
gray circles, nodes in the model; and solid lines between gray circles, communications links.
Small dashed circles are proxy processes that act on behalf of the manager, represented by the
large dashed circle. The manager provides an interface to control individual nodes remotely so
that, for example, nodes can be managed on physically remote workstations. Each workstation

executes a proxy process to implement management functions for the nodes on that workstation.

“Data From Model” is a mechanism for collecting data about the operating model for display.

For purposes of experimentation, our framework provides the user with an efficient, easily
manipulated operational model of a distributed application with extensive control, monitoring,

and display facilities. It also includes mechanisms for modifying the architecture of the system

(see below) to permit experimentation with a wide variety of architectural concepts.




5.2 Building Block for Models ‘

The framework provides building blocks that permit models to be built, executed with typical
data streams, observed, and controlled. The basic building block (i.e., the gray nodes in Figure 1)
is an executable Windows NT process that we refer to as a virtual message processor. A virtual

message processor provide two basic functions:

e A mechanism for interpreting messages.

e A mechanism for sending and receiving messages to and from other virtual message
processors.

Figure 2 depicts the general structure of a virtual message processor. A virtual message processor

maintains a queue of incoming messages and a queue of outgoing messages. Incoming messages

are routed from the input queue to programmable message interpreters. Any new messages

generated as a result of interpreting a received message are placed in the output queue. Messages

can be generated asynchronously also if needed based on, for example, a timer event.

A requirement that is especially difficult to satisfy is the need to model both normal and alternate

application functionality. Clearly, no simple mechanism will allow arbitrary functionality to be

Message
Interpreter
Message
C Dispatcher Message
Interpreter
Input Message Buffer P
Message
P Network Interpreter
N Interface
Asynch.
Message Message
Output Message Buffer | Generation Interpreter
< v

Figure 2 - Virtual message processor structure
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Figure 3 - Virtual processor direct and indirect node addressing. All
network traffic associated with node 1 is passed through node 1".

modeled. The way that the framework meets this requirement is to allow explicit programming of
message interpreters. Message interpreters absorb a message destined for them and effect
whatever minimal processing is required to achieve the required level of functionality. Naturally,

message interpretation often involves generation of new messages for transmission elsewhere.

Virtual message processors provide network addressing and message transmission at the model
level to support required communication structures. To accommodate experimentation, messages
to and from virtual message processors can be configured in two ways—with direct or indirect

addressing. Other nodes are unaware of how any given node is being addressed.

With direct addressing, the message traffic for any particular virtual message processor is routed
to and from destinations and sources normally. With indirect addressing, all messages to and from
that particular virtual message processor pass through a second “wrapper” node that is not part of
the application functional model (see Figure 3). Since the second virtual message processor can
contain message interpreters for all messages, this provides a mechanism for monitoring

transparently all network traffic in which a virtual message processor engages.

We refer to the interposed virtual message processor as a protection shell since conceptually it is
a shell around the target virtual message processor. The target message processor cannot
communicate except through the shell. If the shell’s message interpreters merely copy received
messages to the output, then the shell’s presence is entirely transparent. However, since it can

“see” all messages and process them at the application semantic level, it can manipulate them in
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any manner that is required. Minimally, it can monitor message types and content, but more
importantly, it can synthesize information about the state of the virtual message processor that it

surrounds for use by higher levels of control.

Finally, virtual message processors can transmit messages to their own shells and vice versa
(message are just messages) thereby permitting any degree of state communication that is desired.

Thus shells can acquire and also change any information about their subject processor’s state.

5.3 Building Operational Models

5.3.1 Application Model

Models are built by combining virtual message processors in various ways. A model of a
distributed infrastructure application could be built using a virtual message processor for each
application node in the network. The network topology is defined in a file using a simple format
that defines node addresses and communication links. Each virtual message processor has an
integer address within the model and network links can be specified between any pair of nodes.
Thus arbitrary network topologies are easy to specify, and large models can be defined easily.
Models are limited in size mostly by available resources. The virtual message processor

mechanism within the framework thus satisfies most of the requirements listed in Section 3.

Models can be executed on any available set of workstations running Windows NT. Application
nodes and their interconnections in the model are mapped to physical workstations by specifying
a mapping from node number to IP address. To enable more effective performance studies of
prototype architectural survivability mechanisms, network connections in the model are mapped

to efficient low-level socket connections.

Architectural supplements, such as superimposed survivability control systems, are also built for
the most part using the same virtual message processors as building blocks. These components
provide the additional computational facilities that the architecture requires. Shells give the
ability to insert an additional virtual message processor transparently into an otherwise active link
between two virtual message processors. This, coupled with the ability of nodes to communicate
by passing arbitrary message types provides all the necessary facilities for interaction between

model components and the supplementary survivability architectural mechanisms to be evaluated.
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5.3.2 Operational Environment Model

Modeling the environment requires supporting the application system’s input and output
requirements and making provision for all types of faults. The virtual message processor
construct supports these requirements. Virtual message processors model application input and
output by producing and transmitting appropriate messages to application model nodes and by

receiving and processing their output messages.

Finally, the virtual message processor construct supports control, display, and failure injection
with specialized messages. The manager and proxy processes are merely virtual message
processors that effect control by message transmission. Failure injection is implemented by
sending messages from the manager to the virtual message processors to be affected, which then
interpret the messages suitably. Thus, for example, node failures are effected by the node ceasing

to process messages after the failure message is received.

6 Evaluation

The versatility of the virtual message processor construct has provided us the ability to build
infrastructure models and to evaluate experimental survivability mechanisms rapidly and easily.
We illustrate the use of the modeling framework with an example. We have used the framework
described in this paper to build several models of a critical application from the banking system,
namely the U.S. financial payment system. Our selection of this particular application for
modeling was based on our more detailed understanding of the domain, but from the point of the
evaluation of our framework is arbitrary and of no particular significance. For the example, we

describe the largest and most comprehensive model that we have built to date.

The research goal for this particular model is to explore a survivability architecture in which a
supplementary hierarchical control system is used to react to widespread failures of several types
[3, 14, 20]. This case addresses three critical research issues: (1) the feasibility of distributed,
hierarchical control as a survivability architecture; (2) the control algorithms required to respond
to failures of different types; and (3) mechanisms that could be employed to specify survivability

control policies for the control system.

In addition to these research questions, the development of this model was also used to evaluate
the modeling framework itself. Clearly issues such as performance, utility, flexibility, and ease of

use were of concern.
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6.1 Model Architecture

The overall network structure in this model is a tree. This is typical of the way banks are
connected for payment purposes, but our topology is strictly hypothetical. The model includes
three types of application node. The first is a branch bank providing customer service. Such
nodes appear as leaf nodes in the tree. The second type of node is a money center bank—
essentially the primary information center for a single commercial bank. A money-center bank
appears as an intermediate-level node in the tree, and has a set of local banks as children. The
third type of node represents the Federal Reserve System and is the root of the tree. Money-center
banks are connected to the Federal Reserve System. The model as it appears on one of the

framework’s status screens is shown in Figure 4.

Needless to say, the information system that effects payment in the U.S. is a very large network,
and we could not model this scale. Our current model is composed of 26 application nodes with

five money-center banks, each of which has between two and five associated branches.

The model of the Federal Reserve System includes a primary server and a local hot spare that is
permanently synchronized with the primary server and is able to mask failures of the primary.

We also model a geographically remote warm spare that mirrors the data held by the primary.

CSinterface - [CSintel] ©

Figure 4 - Example application as it appears in a status display
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The warm spare is able to provide service to the remainder of the network if the primary and hot
spare fail; but in order for it to do so the money-center banks must reroute payment requests and
wait for service to be initialized. This model is representative of the availability mechanisms

actually used by the Federal Reserve System.

6.2 Application Functionality

The application functionality we have implemented in the model includes check processing and
large electronic funds transfers. Each payment demand includes typical routing information—
source bank, source account number, and destination account number as well as the payment
amount. User’s bank accounts are held at the branch banks and it is there that all payment
requests are made. A load generator creates random sequences of payment demands that take the

form of either a “check” or an EFT request.

As in the real payment system, payment demands below a certain threshold value are grouped
together so that funds transfers between money-center banks are handled in bulk by the Federal
Reserve System at scheduled settlement times. Bulk funds received by a money-center bank have
to be dispersed through the bank’s own network so that the correct value reaches each destination

account. This part of the application models the processing of paper checks.

Transfers of funds where the value exceeds the threshold value are effected individually and upon
receipt of the demand. This aspect of the application models large EFT request processing. The
two-tier approach to payment processing is representative of the overall structure of the real

payment system.

6.3 Architectural Supplement

We have described the control systems architecture with which we are experimenting in detail
elsewhere [20]. It is a small distributed system that is separate from the application system which
senses the state of the application and reconfigures it in the face of adverse circumstances by
sendihg it reconfiguration commands. Sensing the state of application nodes and transmitting
commands for reconfiguration takes place via protection shells that surround application nodes.
To permit reconfiguration to be tailored to different semantic levels in the application network
topology, the control system operates hierarchically with lower levels supplying summary

information to upper levels to optimize control decisions.
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The function of the control system is to implement survivability policies. A survivability policy
describes a system-wide event of concern (such as a failure of more than a certain number of
application nodes) and the recovery commands and their sequence that are have to be sent to
application nodes for that particular event. The actual continued service is implemented by the

application and it is its invocation that is the responsibility of the control system.

For purposes of experimentation, the current model implements two extremely simple policies
that are designed only to demonstrate and evaluate key aspects of the modeling framework and

the control-based survivability architecture:

e  Comprehensive Shutdown
This policy requires that the entire payment system be shut down if any application node
except the Federal Reserve System fails. This is quite unrealistic of course but its purpose is

to permit experimentation with hierarchic control.

e  Federal Reserve Redirection
This policy requires that the entire payment system switch to the use of the warm spare in the

Federal Reserve System in the event that the primary server and hot spare both fail.

In both of these policies the notion of failure is quite gemeral. For simplicity, we do not
distinguish between types of failure at this point. Thus “failure” might mean physical damage or a

security penetration. We plan to build richer models with more elaborate models of failure types.

None of the key services required by transaction processing systems (such as two-phase commit
protocols) are provided by the modeling framework, nor are they intended to be. The modeling of
continued service that is being developed in this example is at the level of system and application
management. We are abstracting away important issues such as consistent recovery in distributed
heterogeneous systems. Our focus is, instead, on monitoring and control in large distributed
systems. We assume that lower level details are provided by the application. They could be added

explicitly as part of the application functionality in a model built for a different research goal.

6.4 Model Implementation
The topology of this model is defined entirely in a specification in the modeling framework’s

configuration file. Application nodes and protection shells are virtual message processors and the
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application’s communications system is implemented by links between virtual message

processors. The control system architecture model is also built with virtual message processors.

The application functionality is implemented by small sections of C++ source providing message
interpretation in the application nodes. The functionality implied by the redundancy model for the
Federal Reserve System is achieved with a trivial amount of programming within the application

functionality.

For purposes of experimentation with this model we defined a set of failure injection messages
that allow us interactively to cause any group of nodes to fail either concurrently, in a random
pattern over a prescribed time interval, or in a cascading fashion over time in which only nodes
connected to a failed node can fail. These failure models provide a basis for research on

architectural mechanisms to detect and handle such occurrences in real infrastructure systems.

6.5 Resuits

Our results to date are in three areas: (1) the utility of the framework; (2) the performance of the
framework; and (3) the feasibility of hierarchic control of network survivability using the control
system paradigm. In the first area, the framework supported well and in all respects development
of the model that we have discussed. Building of the model was easy. Its specification is short.
The facilities of the model, especially the pattern of use of components, met all of our demands.

We were able to build several versions of the model quickly (in a few days) and incrementally.

To date we have assessed the runtime performance of the framework (as opposed to its support
for model construction) informally and in only two areas. The first is the runtime performance of
a physical computer. On a Pentium-based machine with 64 Mbytes of main memory and a typical
disk configuration, acceptable performance is obtained with up to about 25 virtual message

processors running concurrently processing messages associated with the payment-system model.

The second area that we have tested is the use of remote machines with communications provided
by the Internet. With the help of colleagues at three other institutions, we have executed models
using host machines at four locations: Portland State University, the University of Arizona, the
Software Engineering Institute, and the University of Virginia. The resulting model performance
was adequate though obviously slower than would occur with all local machines. The importance
of this activity is twofold. First it provides a mechanism for supporting models that are truly

distributed nationally (or globally), thereby modeling faithfully the wide-area distribution of
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infrastructure applications in the emerging Internet era. Second it provides a mechanism for
operating very large models by harnessing more physical resources than we could assemble at a

single site.

Finally, the model described here incorporates a preliminary hierarchic control system that is
designed to provide significant survivability enhancement. Although no performance
quantification has been undertaken, the model demonstrates the feasibility of network-wide state
assessment and damage assessment coupled with a hierarchic approach to state restoration, and
continued service. The latter is especially important since survivability of large distributed

applications will almost certainly require the following two activities to cope with major failures:

e Significant reconfiguration of the network’s topology (state restoration) where different
elements of the reconfiguration are coordinated yet tailored to different circumstances
throughout the network.

e Substantially different alternative or reduced applications (continued service) at different
locations based again on the different circumstances throughout the network.

7 Related Work

The use of models to explore systems that do not admit direct or comprehensive manipulation is
not new. Models are used widely, for example, as tools for computer architecture design and
development [12, 18, 19, 23] to permit design tradeoffs to be studied that would be infeasible by
any other means. Simulation is also used, of course, to provide environments that are not

otherwise readily available.

There are several existing frameworks and/or toolkits available that support the development of
distributed systems. For example, Java’s Remote Method Invocation (RMI) [21] supports a
distributed object model which abstracts the communication interface to the level of an object
method invocation. For our purposes, however, RMI is not close enough to the semantics of

infrastructure applications (message passing) to permit the simple development of models.

The Common Object Request Broker Architecture (CORBA) [17] is a conceptual “software bus”
that allows applications to communicate with one another, regardless of who designed them, the
platform they are running on, the language they are written in, and where they are executing. The

emphasis in CORBA is a distributed system paradigm that promotes interoperability. Again,
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however, the software that supports CORBA cannot be used easily to build the operational needs

that we require.

Much research has addressed the issue of fault tolerance in distributed applications. The Isis
toolkit [5], for example, provides a set of mechanisms to support reliable communication in a
process group. Other examples include the work on replication of Fabre et al. [9] and transaction
models by Chelliah et al. [6]. Existing techniques do not deal with modeling in the sense used
with the framework that we describe, including transparent insertion of architectural elements,
and control and measurement of experimental survivability models. Nor do existing techniques

deal with the multitude of system-wide issues that arise in critical infrastructure applications.

Modeling and characterizing of distributed systems have been studied extensively. Andrews
discusses process types and process interaction in distributed systems [1]. Nikolaidou et al.
describe a Distributed System Simulator (DSS) [15]. The DSS is an integrated environment for
performance evaluation of distributed systems. A distributed system is viewed as a combination
of a distributed application and a network infrastructure. The DSS permits analysis of the
behaviors of the network infrastructure under conditions imposed by the defined distributed
application and estimates performance parameters. Though related, our framework differs in that
the objective is to investigate vulnerabilities of new and existing infrastructure systems and to

study ways to deal with them, rather than addressing traditional performance issues.

8 Conclusions

Dealing with the survivability issues posed by modern critical information systems in
infrastructure applications presents many challenges. The systems are large, usually depend upon
COTS components, contain extensive legacy code, and must meet multiple diverse dependability
requirements. The need for improved survivability is increasing as more and larger systems are
deployed, as society becomes more dependent on critical infrastructures, and as some threats
(such as the possibility of national-scale malicious attacks) become more likely and their

perpetrators more sophisticated.

A serious impediment to research in this field is the difficulty of experimentation. Real systems
cannot be the subject of experiment for the most part because real systems are, by definition,

critical and their operators cannot risk the possibility of damage during experimentation. We have
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described a framework that begins to address this problem by supporting the development and

evaluation of operational models of infrastructure applications and survivability mechanisms.

The framework that we have described allows us to develop executable models very quickly.
Preliminary results based on an example model have shown that the framework meets the basic
requirements set forth, and that model runtime performance is adequate for our experimental
purposes. The role of the framework in our research is to permit experimentation with
architectural concepts that support survivability. The model that we have described demonstrated
a hierarchic control mechanism providing error detection, damage assessment, and facilities for
continued provision of service that can be tailored to the needs of different parts of a specific
application. ~ Of course, we have not established the utility of such a control system for real
infrastructure survivability. Nevertheless, our framework and research method provide a basis for

undertaking the basic experimental research needed to begin to evaluate such concepts.
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