
A Systematic Approach to Optimizing and
Verifying Synthesized High-Speed ASICs

Trevor C. Landon, Maximo H. Salinas, Robert H.
Klenke, James H. Aylor, Sally A. McKee, Kenneth L.

Wright

Computer Science Report No. CS-95-51
December 11, 1995

This work was supported in part by a grant from Intel Supercomputer Division and
by NSF grants MIP-9114110 and MIP-9307626.



Appeared in ASIC’95, Austin, TX, September 1995 1

I. INTRODUCTION

One of the promises of hardware synthesis is providing logic
designers with little or no experience in ASIC design a means
of designing complex ASICs successfully. Often, the design
and fabrication environment are not ideally matched to that
described by tool vendors, however, and discrepancies must be
overcome by creative solutions in order to allow tools to deliver
on their promise. In this paper, we describe the methodology we
designed and put into practice which enabled us to design and
fabricated a 71,000 transistor ASIC using graduate students to
do the actual logic design.

The ASIC discussed in this paper was produced in the second
phase of a multi-year project. The complexity of the second
phase IC required that careful attention be paid to the design and

Figure1: SMC IC

revision process. As new functionality was added to the IC, a
number of critical circuit paths were introduced that needed to
be modified to meet timing requirements. Relying on synthesis
alone proved inadequate for meeting our ambitious timing
specifications [1], [2], [3]. In order to reduce design time and
expense and to increase our confidence in the functionality of
the completed ASIC, we developed a systematic approach to
synthesized-circuit optimization. This paper discusses the
methodology used to design and verify the ASIC and to
optimize it to meet the timing requirements of the Intel i860
host processor [4].

II. SMC ARCHITECTURE OVERVIEW

Processor speeds are increasing much faster than memory
speeds. While microprocessor performance has improved
steadily at a rate of 50-100% per year over the past decade,
DRAM performance has increased at an annual rate of less than
10%. Not only is the current problem serious, but the difference
in performance is growing at an exponential rate, and caching
alone cannot bridge the processor-memory performance gap.
Streaming computations -- including vector processing, multi-
media (de)compression, encryption, signal processing, image
processing, text searching, some database queries, some
graphics applications, and DNA sequence matching -- suffer
particularly acutely.

Most modern memory devices provide special capabilities
that make it possible to perform some access sequences faster
than others, e.g. page-mode DRAMs [5]. These capabilities can
be exploited viaaccess ordering to improve effective memory
bandwidth for streaming computations. Our team is developing
a combined hardware/software scheme for implementing
access ordering dynamically at run-time. The hardware
component of this approach is the Stream Memory Controller
(SMC), a 132-pin ASIC implemented in a 0.75µm process (see
Figure 1).

The SMC provides a set of FIFOs which can be set up to
buffer data between the processor and system memory for
constant stride sequential read or write accesses. By ordering
memory accesses appropriately, the SMC memory controller
minimizes the number of DRAM page misses incurred as
FIFOs are serviced.

The architectural components of the SMC IC are shown in
Figure 2. The FIFOs are implemented using a dual-ported
SRAM and a FIFO controller state machine which generates the
address for both Bank Controller and processor accesses to the
FIFOs. The Command, Status and Control (CSC) register is

A Systematic Approach to Optimizing and Verifying Synthesized

High-Speed ASICs

T.C. Landon, M.H. Salinas, RH. Klenke, J.H. Aylor, S.A. McKee, K.L. Wright
Center for Semicustom Integrated Systems

Department of Electrical Engineering, University of Virginia
Charlottesville, Virginia 22903

(804) 924-6101, (804) 924-8818 (fax)
{landont | msalinas | klenke | jha | mckee | wright}@virginia.edu

Abstract -- This paper describes the design process used in
developing a Stream Memory Controller (SMC)*. The SMC can
reorder processor-memory accesses dynamically to increase the
effective memory bandwidth for vector operations. A 132-pin
ASIC was implemented in static CMOS using a 0.75µm process
and has been tested at 36MHz.

* This work was sponsored by the National Science Foundation under
Grant MIP-9307626.



Appeared in ASIC’95, Austin, TX, September 1995 2

also implemented using a dual ported SRAM and is used to
store the base, length, and stride information for each stream.
The Processor Bus Interface (PBI) state machine provides the
logic necessary to interface the SMC with the i860 processor
bus.

The Bank Controller logic handles the interleaved memory
system interface and fills or drains the FIFOs as required. The
Bank Controller also provides support for scalar accesses to the
SMC memory space. The FIFOs buffer data between the
processor bus and the memory system bus and can be accessed
by both simultaneously. The present version of the SMC
contains fixed depth FIFOs, but future versions are planned
with a software programmable depth (deeper is not always
better as discussed in [6]. The FIFO controller logic provides
full, near full, and empty signals to both the Bank Controllers
and the PBI for each FIFO. These signals allow the PBI to
determine if a given access can be serviced, and the Bank
Controllers to determine if a FIFO needs servicing by the
memory system [7].

In the current implementation, only one FIFO may be
serviced at a time, and the Bank Controller determines which
FIFO will be serviced next. Eligible FIFOs are selected in
round-robin fashion; eligible FIFOs are defined as read FIFOs
that are not full and write FIFOs that are not empty. When a
FIFO is selected, the Bank Controller services the FIFO until
one of the following three conditions occurs:

the FIFO is full or empty, for a read or a write FIFO,
respectively

there is a page miss on a required DRAM access

the stream operation on the FIFO is complete

Architectural level simulations indicated using a round-robin
selection algorithm along with the above three conditions to
determine the FIFO’s service interval approached optimal
performance.

III. OVERALL PROJECT DESIGN PROCESS

The primary logic designers for the SMC IC were graduate
students with little prior experience in ASIC design. Extensive
virtual prototyping of the SMC was used to verify its
functionality and to complete the design quickly. In addition,
hardware synthesis was used for the majority of the design.
Furthermore, an overall SMC project design process was

PBI

CSC
Control

State Machine

CSC

FIFO
Controller

State Machine

FIFO

Stream
Machine

Memory
Scheduling
Unit

SRAM

M
em

or
y

C
on

tr
ol

le
r

Figure2: SMC Architecture

Bank ControllerFIFO

CSC

SRAM

devised in which ICs are designed and fabricated in phases in
order to reduce the risk of fabricating faulty ICs.

The overall project development process is shown in
Figure3. The first phase chip is described in [7] and was used
to verify that the synthesis and silicon compilation tools
available can produce a working design at the required speeds
using fabrication processes available through MOSIS. The first

phase IC implemented the PBI, the CSC logic, FIFO controller
and SRAM. In order to reduce costs, the IC was bit sliced so that
each IC provides 16 of the 64 data bits to the processor. Since a
full SMC for a 64-bit system with 2-way interleaved memory
requires 198 pins for the data lines alone. The IC pin count
approaches 300 when the control and power pins are added.

In the second (and current) phase of the SMC, the modules
required to interface to the DRAM memory susbsystem and to
generate stream accesses into this memory were added. In
particular, the Stream Machine, the Memory Controller, and the
Memory Scheduling Unit were included. The majority of the
modules from the first phase IC were reused in the second phase
IC with little modification. The reused modules were only
modified where it was needed to improve the timing of some
critical circuit paths.

The third phase of the IC will be include a redesign of the
SMC FIFO architecture and provide software-programmable
depth FIFOs to allow applications to fine tune SMC
performance as needed.

IV. DESIGN METHODOLOGY

An overall view of the design methodology used in this
project is shown in figure 4. The various paths shown can be
described by their primary function in the design cycle:
functional simulation, gate-level simulation, static timing
analysis, and back-annotated timing simulation.

Functional simulation consists of the path through Mentor
Graphic Corporation’s (MGC’s) Design Architect into MGC’s
QuickSim II and back into MGC’s Design Architect. This
design cycle verified the operation of the ASIC against its
specification and demonstrated that its expected performance
agreed with that of previous bus-level software simulations. For
these simulations, the state machines were described in
functional VHDL, and the datapath components were modeled

Analytical Model

Architectural Simulations

Phase 1 Phase 2 Phase 3
IC Development

Uninterpreted Model

Board Development
Phase 1 Phase 2

1995199419931992

Figure 3: SMC Project Timeline



Appeared in ASIC’95, Austin, TX, September 1995 3

at the gate level with unit timing delays. This simulation model
was used for initial development because changes to any
module could be incorporated and tested quickly.

When the functional model was believed to be correct,
hardware synthesis was performed on the state machine VHDL
using Cascade Design Automation’s (CDA’s) EPOCH Circuit
Design System tool. The resulting description was used to
verify that the synthesized versions of the behavioral VHDL
components (i.e. the various controller state machines) operated
correctly.

The majority of our high-speed optimizations were made to
address potential problems indicated by static timing analysis
tools and by simulations including back-annotated timing
information. The static timing analysis design cycle used the
simulation models generated in the EPOCH place and route
stage to characterize worst-case output delays, and identify
critical paths for individual modules in the system. This cycle
allowed the designer to determine exactly how each component
in the system affected critical path timings. Unfortunately,
many of the paths identified as critical by static timing analysis
were not actually valid paths in that SMC operations would not
require those paths to be traversed. However, static timing
analysis does provide a rapid analysis of paths known to be
critical and allows adjustments to be made and verified on the
state machine or datapath descriptions.

The back-annotated simulation models were created by
attaching delays calculated by EPOCH to the gate-level
simulation model used by QuickSim II. These delays were
based on capacitive loading and routing of the synthesized IC.
The back-annotated simulation model was exercised using the
same test patterns as the functional model in order to identify
timing paths which could be critical in actual SMC operations.

The different simulation models required us to establish a
revision process which would facilitate incorporating each
design change with little disturbance to the rest of the IC. Our
protocol consisted of first testing any new changes in the
functional model to insure that they did not hinder the operation
of the original system, or drastically effect system performance.

VHDL
State Machines

Datapath
Components

MGC’s:
QuickSim II

Synthesis

TSSI’s
WaveMaker

MOSIS
Fabrication

HP82000
Tester

i860 Board
Tests

Placement and
Routing

MGC’s Design Architect

CDA’s EPOCH

Tactic Static
Timing Analysis

Figure 4: IC Design Process

The amended component was then synthesized on its own and
incorporated into the gate level model. Once the gate level
model was verified, all the components of the IC would be
placed and routed anew and timing analysis would be
performed again.

V. HIGH-SPEED OPTIMIZATION TECHNIQUES

When critical paths were located, a number of techniques
were used to shorten their total delays in our IC. The first
technique was used in critical paths observed in unbalanced
pipeline stages. These paths were typically found through the
full timing simulations. In this situation, one stage in the
pipeline would complete its required operation in a shorter time
then that of a neighboring stage. These timing path problems
were sometimes resolved by simply moving the registers which
separated the stage and modifying the associated control
circuitry. Although generally difficult to do, it was sometimes
necessary to reorder pipeline stages to accommodate late arrival
of control signals. Similarly, extra states were sometimes added
to break critical paths, but this had the potential of affecting
SMC performance by adding extra cycles to its control
mechanism.

Static timing analysis using CDA’s Tactic tool indicated
other critical timing paths. In cases where a signal from a state
machine was on a critical path, tailoring the VHDL input code
to the synthesis tool allowed us to improve state-machine
performance. One of the techniques frequently used was to
modify the tool’s state assignment with hand-optimized
encodings so that some of the state bits could be used as Moore
outputs. Our encodings improved performance by either
decreasing the signal output delay for all signals, or by
shortening the path for a particular critical signal. To improve
overall performance various different state encoding were
synthesized and analyzed to determine a near optimal encoding
for the machine.

Timing optimizations could also be made by EPOCH by
collapsing boundaries between functional blocks in order to
perform logic minimization over larger portions of the circuit at
any one time. This was particularly useful in cases where a
critical net consisted of components in multiple functional
blocks.

VI. DESIGN FOR TESTABILITY

In order debug any problems which may arise in the
fabricated IC, two testing mechanisms were incorporated into
its design. First, a large multiplexer was used to observe any of
128 internal signals. The signal to be observed was selected by
the value placed on seven external pins on the IC. This provided
an easy way to observe a single internal signal during operation.
However, because we had to avoid adding extra capacitance to
critical paths, critical timing signals could not be directly
observed through the test mux.

The second testing mechanism in the IC is a partial scan path.
This test mechanism was used primarily on the state machines
and provided a means of observing and/or modifying the state
of any of the state machines in the IC. Because the testing
circuitry consisted of hand-placed datapath elements, we had to
encode our state assignments manually, even in cases where
timing analysis did not force us to do so. This was because the
VHDL enumerated data type used for automatic state



Appeared in ASIC’95, Austin, TX, September 1995 4

assignment encoding could not be directly connected to the bit-
vector data inputs of the datapath elements. For various reasons,
we were unable to use automated test circuitry insertion tools.

VII. IC TESTING

The lower four blocks on figure 4. are primarily concerned
with testing of the fabricated IC. The Test System Strategies,
Inc.’s (TSSI’s) WaveMaker tool stage [8] on the diagram
converts the test suite used in the QuickSim II modeling of the
design to a format that can be used on the HP82000 IC tester.
This stage was intended and used primarily for functional
verification of the IC.

After minimal functionality was verified with the HP82000,
further testing proceeded in parallel on a custom SMC Daughter
Card illustrated in Figure 5. SMC board tests were stored in and

executed from the i860 host processor’s boot PROM. This stage
validated the interface between the Intel i860 and the SMC.
There was some concern over this interface since the simulation
models for the Intel i860 which were used during the design of
this system only simulated external i860 bus transactions. Many
bus cycles observed on the board, e.g. code fetches and cache
fills, had not been included in our simulations. In addition the
board testing provided further proof that the SMC concept can
realize the effective bandwidth gains expected.

VIII. CAD TOOL CONSIDERATIONS

Several issues arose due to limitations in the available CAD
tools. Our concerns fall into two broad categories:
inconvenience in procedures and shortcomings in functionality.
First, it must be pointed out that a driving concern in our
selection of the tools used was the ability to design in a fast IC
process available through MOSIS. Specifically, MOSIS offers a
0.75µm HP process. Secondly, we already had experience with
and access to the full MGC tools suite. However, since no ASIC
design kit was/is available for this process for MGC’s
AutoLogic synthesis tools, we decided to use CDA’s EPOCH as
a somewhat more limited but suitable alternative. Although
CDA is an open-door partner to MGC and does provide a link
to their tools, the interface is somewhat crude and could be
improved. For example, there is a lengthy stage which must be
completed before using any of the MGC simulation tools after
EPOCH’s processing. This procedure converts the simulation

40MHz
i860
CPU

Cache-
Optimized
Memory
Controller

1Mx64 DRAM
(even)

1Mx64 DRAM
(odd)

SMC
(x4)

Control

1s
t P

ip
el

in
e 

S
ta

ge
D

is
cr

et
e Phase

Lock
Loop

16 (x4)
Mux
(x8)8 (x8)

1Mx64 DRAM
(even)

1Mx64 DRAM
(odd)

64 SMC Daughter Card

Intel GP Node

C
om

po
ne

nt
s

Figure 5: SMC Test Board

models from the native CDA format to the MGC format. In our
experience, this stage requires two to three times the computing
resources as the actual synthesis, placement and routing stages
combined. We found that this step was very sensitive to network
traffic and by storing copies of the design on a local disk, it
could be reduced by two-thirds, down to an acceptable two
hours. However, this performance increase limited the design
process to a single workstation at any one time.

Regarding the shortcomings in the CAD tools, we ran into
two problems with the simulation models from Synopsys’
Logic Modeling Group [9]. The first concerned the previously
mentioned processor bus model. A useful addition to this model
would be simulated cache line fills during instruction fetches.
This would have allowed us to debug a potentially critical
situation on the IC before fabrication. The other problem which
arose centered around a zero nanosecond setup time on one of
the control signals to the DRAM. After observing some
problems during board testing, we verified in simulation, that in
the worst case, this signal barely makes the setup time.
However, on the on the test board the signal would sometimes
miss the required setup time. In order to help avoid this
situations where the timing models used in IC and board design
are not perfectly accurate a user-defined “uncertainty region”
which would control a minimum and maximum range for all
timing values would be useful.

IX. CONCLUSIONS

A 71,000 transistor ASIC has been designed and fabricated,
and is currently being tested and used to verify expected SMC
performance gains. Our results indicate that the fabricated SMC
can deliver the expected bandwidth improvements for inner
loops of important streaming computations [6], [10], [11]. Our
need to use graduate students, our experience and access to
MGC tools, and the necessity to use a particular IC fabrication
process (0.75µm HP through MOSIS) forced us to use tools that
were not tightly integrated. This led to the development of the
design and revision process described here.

 REFERENCES

[1] EPOCH User's Manual, Cascade Design Automation, EUM-3.1, 1993.

[2] Cascade Delay Calculation Manual, Document No. 93-0071-Rev 2,
Cascade Design Automation, May 12, 1994.

[3] System-1076, QuickSim II User's Manual, Mentor Graphics Corp, 1993.

[4] i860 Hardware Reference Manual, Intel Corporation, 1993.

[5] Quinnell, R., "High-speed DRAMs", EDN, May 23, 1991.

[6] McKee, S.A., Wulf, Wm.A., Landon, T.C., "Bounds on Memory Bandwidth
in Streamed Computations", Lecture Notes in Computer Science 966 (Proc.
Europar'95, Stockholm, Sweden, August, 1995), Springer-Verlag, 1995.

[7] McGee, S.W., Klenke, R.H., Aylor, J.H., Schwab, A.J., "Design of a
Processor Bus Interface for the Stream Memory Controller", ASIC'94,
Rochester, NY, September, 1994.

[8] TDS WaveMaker User’s Guide, Test System Strategies, Inc., 1991.

[9] Smartmodel Library Reference Manual, Logic Modelling Corp, 1992.

[10] McKee, S.A., Klenke, R.H., Schwab, A.J., Wulf, Wm.A., Moyer, S.A.,
Hitchcock,C., Aylor, J.H., "Experimental Implementation of Dynamic Access
Ordering",Proc. HICSS-27, Maui, HI, January 1994.

[11] McKee, S.A., Moyer, S.A., Wulf, Wm.A., Hitchcock, C., "Increasing
Memory Bandwidth for Vector Computations", Lecture Notes in Computer
Science 782 (Proc. PLSA, Zurich, Switzerland, March 1994), Springer Verlag,
1994.


