
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA
THORNTON HALL
CHARLOTTESVILLE, VIRGINIA 22903-2442
(804) 982-2200 FAX: (804) 982-2214

High Performance Access to Radio Astronomy Data:
A Case Study

John F. Karpovich
James C. French

Andrew S. Grimshaw

July 11, 1994

Appeared in Proceedings of the Seventh International Work-
ing Conferenence on Scientific and Statistical Database Man-
agement, pp. 240-249, Charlottesville, VA, September 1994.
Also available as University of Virginia, Department of Com-
puter Science Technical Report CS-94-25 via the web @ ftp:/
/ftp.cs.virginia.edu/pub/techreports/README.html.

Work partially sponsored by NSF, NASA, CESDIS and
NRAO.

2

Abstract

As CPU performance has rapidly improved, increased
pressure has been placed on the performance of accessing
external data in order to keep up with demand. Increasingly
often the I/O subsystem and related software is unable to
meet this demand and valuable CPU resources are left un-
derutilized while users are forced to wait longer than nec-
essary for results. This problem is especially acute for many
scientific applications which use large data sets and require
high performance. This paper presents our experiences
with working to alleviate an I/O bottleneck in radio astron-
omy applications at the National Radio Astronomy Obser-
vatory (NRAO). We first present our model, the ExtensibLe
File Systems model (ELFS), for improving both the perfor-
mance of data access and the usability of access software.
We then present the current situation at NRAO, our solu-
tion, performance results and our plans for future work.1.

1: Introduction

Over the past decade raw CPU processing power has in-
creased dramatically, improving by more than a factor of
one hundred. At the same time the performance of disk stor-
age devices has increased at a more modest rate, improving
only about four-fold over the same period. Many programs
that were once dominated by their CPU time, calledCPU-
bound programs, have now become dominated by the time
spent performing I/O (i.e. they areI/O-bound). For exam-
ple, assuming the speedup rates given above, a program that
10 years ago spent 90% of its time using the CPU and 10%
waiting for I/O would now run on a state-of-the-art comput-
er spending only 26% of its time using the CPU and 74% of
its time waiting for I/O operations. Therefore the difference
in the rates of performance improvement between the pro-
cessor and I/O devices has created a bottleneck for many
application programs at the I/O devices, and in accordance
with Amdahl’s law has caused much of the increased CPU
capacity to be wasted (at least from the point of view of a

1. This work has been partially funded by grants NSF ASC-
9201822, NASA CS-CESDIS 5908-93, and NASA NGT-50970.

single program). This disparity in growth rates is likely to
continue. Coupled with the increased use of parallel pro-
cessing it appears that the situation will only get worse.

Over the last few years, NRAO has experienced an I/O
bottleneck in running many applications. Because of this,
programs spend a significant portion of their run-time per-
forming I/O while the processor is idle. Expensive CPU re-
sources are left underutilized and more importantly
researchers are less productive because they have to wait
longer for results. NRAO projects that data volume will in-
crease significantly in the near future as new instruments
come on-line. If nothing is done to alleviate the I/O bottle-
neck, the combination of continued unbalanced CPU speed
improvements and increased data volume will cause the sit-
uation at NRAO to worsen considerably.

Since we cannot rely on new hardware developments
providing an answer to the I/O bottleneck in the short-term,
we propose implementing methods to better utilize the
available I/O bandwidth by improving the way files are or-
ganized and accessed. Organizing files to better match ac-
cess patterns can reduce the number of I/O accesses needed
to fulfill a request, reduce the latency of each request, or
both. For example, using an indexed file can reduce the
number of I/O requests needed to retrieve a piece of data by
reducing the search space of the request from the entire file
to a small section of the file. Using advanced access tech-
niques like prefetching can also significantly improve per-
formance by better overlapping I/O and CPU usage.

It is also important that the file interface be tailored to the
type of data in the file and the applications accessing it. A
type specific file interface allows the user to provide infor-
mation about access patterns that can be used to improve
performance. For example, the user can express the inten-
tion to access every record beginning with the lettera or that
the user intends to reuse the data repeatedly. Using this user
provided information, the implementation can attempt to
improve performance: in the first case, by initiating
prefetching to read the data before the user needs it; in the
second case, by caching the data, reducing the latency of
subsequent requests for the same data. Besides potentially
improving performance, a type specific interface can im-
prove the program development process by presenting the

High Performance Access to Radio Astronomy Data: A Case Study

John F. Karpovich, James C. French, and Andrew S. Grimshaw
Department of Computer Science, University of Virginia

{jfk3w | french | grimshaw} @virginia.edu

3

file and its data in an intuitive manner, e.g. rows, records,
volumes, shapes, etc., rather than unformatted bytes.

The current environment at NRAO has provided us with
an ideal testing ground for our general approach to high per-
formance file systems. We have completed the first phase of
the project by finding, implementing and testing the perfor-
mance of an appropriate file structure for NRAO data. The
second phase of the project, applying advanced access tech-
niques, creating a distributed version of the file structure,
parallelizing the implementation and providing an im-
proved interface, is currently underway and nearly com-
plete. The remainder of this paper discusses our approach
and the current NRAO environment in more detail and then
presents the details of phase one of the project, including a
brief discussion of the file structure chosen, a sketch of the
implementation and performance results and observations.
The final section presents our future plans for the remainder
of the project and beyond.

2: Approach

Our approach to alleviating the I/O bottleneck follows
the ELFS (ExtensibLe File System) method [1,2] first pro-
posed by Grimshaw and Loyot. The ELFS philosophy for
developing file systems has four central ideas:
• Use file structures matching data and access patterns of

applications.
• Using object-oriented techniques, encapsulate the inner

workings of each file type so that the application pro-
grammer can easily incorporate the appropriate file
structure into a given application.

• Improve the file interface to reduce the programming bur-
den and to allow exploitation of user knowledge to
improve performance.

• Apply file type specific access software within an imple-
mentation to speed retrieval, e.g. prefetching or caching.

2.1: File Structures Matching I/O Requirements

There has been a great deal of work over the past decades
in developing file structures for various uses. The database
literature contains many examples of creative file structures
that are well suited for particular application needs or types
of data. Examples include tree-based structures such ask-d
trees [3] andR-trees [4], partitioning-based structures like
grid files [5] and Piecewise Linear Order-Preserving-hash-
ing (or PLOP) files [6,7], indexed sorted files, and many
others. Each has advantages and disadvantages under dif-
ferent access requirements and data attributes. For example,
indexing schemes work well for single record retrieval
when one or more of the indices can be used. Because of
data locality, they also work well when a range of data is ac-
cessed along the key by which the primary file is sorted.
However, a range retrieval along a key that is not the prima-

ry file’s sort key may not perform well because the request
will access data blocks scattered across the file.

For I/O performance to be maximized, it is crucial to
choose file structures that best match an application’s ac-
cess patterns. Neither of the two most common approaches
used in the scientific computing community, sequential
files and relational DBMSs, match the access requirements
for many applications. Sequential files are only good for ap-
plications that access data in the order in which it is stored.
Using any other access pattern can be very costly. Relation-
al DBMSs are designed to support a wide range of types of
data, but rather than tailoring the file structure to the data
type and access patterns, the data and access patterns must
be made to fit the relational model. While the relational
model is flexible enough to afford decent performance for
many applications and files, their general nature often does
not give the high performance necessary for scientific appli-
cations that can be achieved with file structures tailored to
their needs. For example, it is easy to store a two dimension-
al array in a relational DBMS and perform row and column
retrievals. However, using a relational DBMS will usually
not lead to the best performance for such operations be-
cause the underlying file structures employed by the DBMS
are designed to fit the relational model not the model of ma-
trix data. An appropriate structure for matrix data that will
be accessed by both rows and columns is a block partition
structure. In a block partition structure (Figure 1), the ma-
trix is divided into rectangular blocks and each block is
stored in one data page within the file, maintaining data lo-
cality among both rows and columns. This ensures that both
row and column operations can be performed efficiently.

2.2: Object-Oriented File Structures

Many of the file structures mentioned in the previous
section are complex and often require a significant effort to
implement them. As a result, many of these file structures
have not seen widespread use. Applications that could have
benefitted from a specialized file layout have been designed
with simpler file schemes either due to ignorance of the ex-

Figure 1 - Block Partitioning File Structure

m α

β

n

2D n x m matrix 2D α x β matrix file block

4

istence of better schemes or due to the higher development
costs of using a more advanced structure. Even when an ap-
plication is developed using an advanced file structure, the
implementation is often difficult to reuse and incorporate
into new applications because their implementation is often
intertwined with the rest of the application code. To help al-
leviate this problem ELFS uses an object-oriented approach
to the development of new file structures. These structures
encapsulate the details of the implementation while provid-
ing an interface for the user to operate on the file, such as
operations to open and close the file and to insert, update,
retrieve, and delete data items. The necessary file objects
can then be incorporated in any application and easily ex-
tended by deriving new application-specific file classes.

2.3: Improved File Interfaces

Most file systems today fail to present an interface that
reflects the type of data in the file or the file organization.
As a result, many current file systems suffer from one or
both of the following drawbacks: 1) the interface is difficult
to use for application programmers because data is present-
ed in a format that is not intuitive; or 2) the file system does
not fully exploit the programmer’s knowledge of the se-
mantics of the data or the application domain because the
interface does not allow the programmer to express this
knowledge. A good example is the UNIX file system which
suffers from both of these drawbacks. Unix treats all files as
a stream of bytes, imposing no structure or meaning on the
data. Therefore, the burden of interpretation and reformat-
ting the data is entirely up to the user. Unix also makes no
attempt to provide an interface where the user can declare
properties of the file or intended access patterns to help im-
prove performance. An example of a better interface is pre-
sented by Pane for a two dimensional matrix file [8]. The
matrix file interface presents data in meaningful units, i.e.
rows and columns, provides functions for manipulating the
file in terms of these units, and provides a way for program-
mers to express how the file will be accessed, for example
a method to declare the stride for upcoming accesses. This
interface provides improved efficiency for developing ap-
plications software while supporting improved perfor-
mance.

2.4: Type Specific Access Methods

The fourth part of our approach encompasses a set of
methods that can be applied where appropriate to any file
scheme to improve effective I/O bandwidth, latency, or
both. These methods include intelligently prefetching data,
caching data likely to be used again in the future, and paral-
lelizing file operations and I/O related activities such as
sorting. Using an object-oriented class scheme allows the
implementor to choose which of the above methods are ap-

propriate for a given file type and how they will be imple-
mented. The details of the implementation are hidden; the
user only needs to be concerned with the class interface. Se-
lection and application of access methods can be further
fine-tuned if application-specific file classes are derived
from the base classes.

3: NRAO Envir onment

In order to effectively apply our approach to alleviate the
I/O bottleneck at NRAO, we had to first understand their
environment. This section describes the current environ-
ment at NRAO and the factors that will determine the suc-
cess of a solution.

3.1: Data Volume

NRAO collects a large amount of data from its sensors.
Currently, large data sets can contain up to 3-5 million mea-
surements with each measurement ranging in size from 1
byte to 8K words of measurement data. Although in prac-
tice data sets usually do not have both a large volume of
measurements and a large data size, it is not uncommon to
have data sets as large as a few gigabytes. There are already
plans for future systems to collect and process much larger
sets of data than currently in use. For example, planning has
begun on a single dish radio telescope project that could
produce up to 80 gigabytes of raw data daily. In general, as
new and more sophisticated astronomical instruments and
methods have developed, along with increased computer
power, the trend has been towards collecting and processing
ever increasing amounts of data. Clearly, this trend must be
considered for any long-term solutions.

3.2: Current File Structure

The standard file organization at NRAO follows the
Flexible Image Transport System (FITS) format. This for-
mat organizes a file into a series of records, each of which
is a tuple containing key and data elements. The key portion
may be a single key component or may be composed of sev-
eral different key fields. For example, radiation intensity
data may be collected at a particular right ascension and
declination sampled at certain times and frequencies. The
data for this example would be stored as tuples with the
combination of right ascension, declination, time, and fre-
quency forming the key of the tuple and the intensity value
forming the “data” part of the tuple. These records are
stored one after the other in the physical file.

Currently, NRAO’s data files are stored only once, sort-
ed by one key component and no auxiliary index files are
created or stored. This arrangement is due partially to limit-
ed storage capacity and partially to the programming com-
plexity involved in index generation and maintenance. To

5

access data in an order different from the sort key, the user
must either accept poor performance, or sort the data be-
forehand using an auxiliary program and temporarily store
the sorted data in another file. Clearly, the overall process-
ing time for both of these alternatives is unattractive for
large files. As discussed below, looking at data sorted by
different keys occurs quite frequently and this procedure
adds a significant overhead to a user’s task.

3.3: Data Access Requirements

Due to the wide range of data collected and the diversity
of applications that process this data, there is no single way
of categorizing NRAO’s data access needs. Each applica-
tion has different needs, and future applications may require
new access patterns, therefore flexibility is a key concern.
Typically data is collected and stored once, retrieved many
times, and updated occasionally (key values are rarely up-
dated). There is little or no requirement for adding or delet-
ing data items after a file has been created. Because of this
pattern, retrieval of data is the primary performance con-
cern at NRAO as it is the dominant operation performed af-
ter the file is created. The ability to update information is
important, but data modifications are much less frequent
and therefore the performance of update operations is less
crucial. Often a wide range of data values are updated at
once, such as when the values need to be scaled in some
way. In these cases, it is acceptable to recreate the file from
scratch, incurring the costs associated with doing so.

3.3.1: Data Retrieval Requirements

NRAO views the data in each file as being contained in
a multidimensional data space. The number of keys deter-
mines the dimensionality of the space; each key, or axis,
corresponds to a dimension in the data space. Figure 2a
shows an example of a two dimensional data space where
the keys are X and Y. Depending on the specific applica-
tion, NRAO researchers require access to data in many dif-
ferent patterns. Many applications require sub-ranges of
data for some key or keys. We call the data within the inter-

1000.0

X

Y

Figure 2 - Sample Two Dimensional Data Space

100.0

0.0

-100.0

-1000.0

1000.0

X

Y

100.0

0.0

-100.0

-1000.0
101-1-10-500 500

(a) Sample Data Space (b) Sample Sub-volume

101-1-10-500 500

section of all sub-ranges a sub-volume of the file. Some typ-
ical sub-volumes include data in a particular time range,
data within a time range for a certain frequency range and
polarization values, and data generated by a specific anten-
na. In general, NRAO requires the ability to specify limits
or boundaries on the data retrieved based on key value(s).
Figure 2b shows a sample 2D data space with a highlighted
sub-volume (1 < X < 10 and -200.0 < Y < 200.0). The order
in which the data items are retrieved is also important. Flex-
ibility is required to allow sorting along the different keys
or iterating through the data in various ways (such as step-
ping through every fourth data item, etc.).

Often the same data is used by different applications,
each with its own access pattern. This complicates matters
since the data storage and retrieval scheme must be able to
deliver acceptable performance for all applications. This is
one of the major areas where NRAO’s current strategy does
not perform well.

3.3.2: Data Update Requirements

Although data is updated much less frequently than it is
retrieved, the ability to modify data is still an important op-
eration at NRAO. Updates can occur at the level of individ-
ual data values or on a much more massive scale,
encompassing the entire file or a large subset of the data.
Modification of an individual value may occur to correct for
an error of some sort, while the modification of large
chunks of data at once often occurs to scale the data values
in some manner. The large majority of updates modify only
the measurement data, i.e. modifications to key data is in-
frequent. NRAO also needs the ability to logically delete
data from a file. This capability is necessary, for example,
when an uncorrectable instrument error has been detected
and some portion of a data set must not be used.

4: The File Structure - PLOP Files

To improve NRAO’s I/O performance we looked at sev-
eral file structures and evaluated their suitability for
NRAO’s needs. Structures evaluated include indexed sort-
ed files, R and R+ trees [4,9], quadtrees [10], k-d and k-d-b
trees [3,11], grid files [5] and PLOP-hashing files[6,7]. We
found that both grid and PLOP-hashing files are good can-
didates for NRAO data because both are specifically de-
signed to support high performance range searches, the
dominant access pattern at NRAO. Both grid files and
PLOP files support range searches by physically clustering
data along multiple dimensions. However, there are some
important differences between them. The strategy em-
ployed by grid files for mapping logical data space to phys-
ical pages allows grid files to attain a reasonable storage
utilization when the data keys are related. This is not true
for PLOP files, where utilization rates can be quite poor un-

6

der these conditions (as discussed in our results). However,
the mapping strategy for grid files has its price. First it is a
more complicated strategy that is much more difficult to
implement than the PLOP file mechanism. Second, the grid
file mapping requires a directory structure that may be too
large to fit in memory, whereas the PLOP file does not.
When the directory does not fit in memory an extra I/O op-
eration is needed to retrieve it, making each point retrieval
take 2 I/O operations for the grid file. Depending on the par-
titioning, PLOP files may require significantly less I/O op-
erations for a point access on average (we believed we
could get such an advantageous partitioning by collecting
data distribution statistics before partitioning our files - see
section 6). Another difference is that PLOP files lend them-
selves very well to parallel sorting (see below for more de-
tail), which we intend to employ in the next phase of the
project. Based on these factors we chose to implement
PLOP files rather than grid files, though this does not indi-
cate that we feel that either file structure is clearly superior.
For a detailed account of our search for an appropriate file
structure and a more in depth discussion of the other struc-
tures refer to [12].

In PLOP files a k dimensional data space is dynamically
partitioned by splitting each dimension into a series of slic-
es. The intersection of one slice from each dimension de-
fines one logical data bucket. Each logical bucket
corresponds one-to-one with a particular fixed size physical
storage bucket (called a primary page) and data points are
stored in the bucket that maps the corresponding subspace
in each dimension. This property has several important
ramifications. First, splitting a dimension creates possibly
many new physical storage buckets and causes all buckets
within the to-be-split slice to realign their data points. This
makes minimizing the number of splits a priority to reduce
the work done while splitting and to reduce the storage re-
quirements for the PLOP file. Second, because the physical
primary page can be determined uniquely from the logical
bucket, a separate directory mapping a logical bucket to
physical storage is not necessary. All that is required is a
tree structure, called a split tree, which tracks the values
where splits occur in each dimension. Since this structure is
small it can be kept in main memory. Therefore, the primary
page for a logical bucket can be accessed with one I/O op-
eration unlike other structures that require large indexes or
directories.

To help reduce the number of splits occurring in the data
space, PLOP files do not require that all overflowing buck-
ets cause a split. Rather an overflowing bucket can create a
new auxiliary bucket or extent in a separate file and put ex-
tra data points there. Extent buckets are connected together
to form a chain of data pages that all map to the same logical
bucket in the data space. The decision of when to split vs
when to chain extent pages is up to the implementor, but

several common strategies include splitting when an entire
slice is on average 100% full or when a particular chain has
grown beyond some threshold length. Figure 3 shows a
sample two dimensional data space (a) and one possible se-
quence of snapshots describing the layout of the PLOP file
during the insertion of the points (b) - the points are inserted
in order a,b,c,d,e; the numbers indicate the number of the
bucket; 3.1 indicates the first extent page of bucket 3.

PLOP files fit NRAO’s requirements very well because
they were designed specifically for multidimensional range
queries, exploiting data locality along multiple keys, and re-
ducing the search space through partitioning of the data
space. With a good partitioning of the file, point accesses
are efficient in the average case with a lower bound of one
file I/O operation. However, the average and maximum
number of accesses needed for a single item depends on the
average and maximum length of extent page chains created,
which in turn depends on the strategy employed while par-
titioning the file.

PLOP files have another property that is useful for opti-
mizing sorted range queries, especially when parallel re-
trieval techniques are applied. The physical buckets for any
slice along a dimension are disjoint from the physical buck-
ets of all other slices along that dimension. Therefore sort-
ing a query that spans several slices for the sort key can be
broken into several smaller sorted queries, each working on
one slice. This strategy can improve performance in two
ways. First, breaking the problem into smaller pieces can
improve the performance of the overall sorting computation
from O(n log n) time to O (n log n/p) on one processor in
the best case (where n is the total number of items sorted
and p is the number of pieces). Second, each of the slices
can be sorted in parallel on separate processors. In the ideal
case, with even split sizes, homogeneous computing re-
sources and no added overhead, sorting time could be re-
duced to O(n/p log n/p).

5: Implementation

3.1
e

Figure 3 - Building a Two Dimensional PLOP File

0 0 1
0 1

2 3

0 1

2 3

(b) Snapshots of Growing PLOP File

a b a b
c

a

c

b

d

a

c

b

d

Y

X

a

c

b

e
d

(a) Sample Data Space

7

Our implementation is comprised of a set of C++ classes.
The main structure is a hierarchy of file classes for PLOP
files: a base class for the general PLOP file (plopFile), a
derived PLOP file class specifically for a group of data files
that hold interferometry data (IFPlopFile), and two fur-
ther derived subclasses, one each for line-spectrum and
continuum interferometry data (IFLinePlopFile and
IFContPlopFile). For retrieving data and testing per-
formance, aqueryWindow class was created which pro-
vides the interface to the user to describe queries and obtain
results from the PLOP files.

The goal of the PLOP file hierarchy is to provide a
framework for building high performance type-specific
PLOP files and in particular PLOP files designed for
NRAO’s data and access requirements. We used C++ be-
cause it supports the object oriented paradigm which en-
courages modularization and encapsulation of functionality
and, through inheritance, extensibility and code re-use.

The interface revealed to the end user consists of a hand-
ful of member functions: a constructor and destructor, and
open , readHeader , writeHeader , addRecord ,
reportStats andcreateFromFits functions. These
few functions allow the user to create the PLOP file and add
data to it. Since our tests will not require updating records
or deleting them, no update functions have been included in
the interface. In the future, these functions can be added to
the existing interface as needed.

Retrieval mechanisms for the PLOP files are implement-
ed in a separate C++ class,queryWindow . By packaging
the retrieval portion separately from the file, the user can
define multiple data windows simultaneously in the same
application, each related to the same file or to different files.
The interface forqueryWindow allows the user to easily
specify the types of queries required by NRAO, i.e. sorted
and unsorted range queries and point queries. Setting up a
query is done by declaring aqueryWindow object and
then setting the range or ranges to search for each key and
specifying the dimension by which to sort the resulting data.
For example, to search for all data with times between 0.1
and 0.2 and U values between -1000 and +1000 sorted by
time, three calls are necessary, two to set the query ranges
and one to set the sort key:set(“Time”,0.1,0.2) ,
set(“U”,-1000.0,1000.0), and sortBy
(“Time”,1,ASCENDING). The “set” functions can all
take multiple ranges for a single query. The result of such a
query is that all data matching any of the ranges specified is
retrieved. If the user desires the data for times (0.1,0.2),
(0.5,0.75), and (0.9,1.0), a query can be made by using the
set() function three times, one for each range. Single axis
value queries are formed by specifying the same value for
the upper and lower part of the range, such as (0.1,0.1).

Since our short-term goal is to test the retrieval perfor-
mance of our PLOP file implementation, the only retrieval

command currently implemented iscountPoints() .
CountPoints() retrieves all of the data necessary to
perform the current query, sorts it if necessary, and collects
statistics about the query such as the number of pages re-
trieved, the number of points in the result, and the time re-
quired to complete the query. The only functionality
missing that a user would need for a query is some mecha-
nism for passing back the result data to the calling program,
possibly a piece at a time. In the next phase of the project,
this interface will be improved to include functions to re-
trieve chunks of data in various ways and will be extended
to allow the user to input more information about the needs
of the application. The latter will allow thequeryWindow
implementation to take advantage of this knowledge to use
advanced I/O techniques like prefetching when applicable
to improve retrieval performance.

6: Results

The purpose of implementing PLOP files was to im-
prove NRAO’s performance, particularly the performance
of I/O requests. We selected two typical NRAO data sets
and converted them to PLOP files, measuring such factors
as the storage utilization, conversion time, and bucket depth
(i.e. the number of physical pages - primary and extent -
used to store a logical bucket). We then designed a set of
data retrieval queries representative of typical NRAO re-
quests and tested their performance. The following sections
describe our experience with these test files. First, we de-
scribe the files used in more detail. Second, we present the
results of the conversion process, the characteristics of the
converted file and a discussion of choosing the dimensions
for a PLOP file. Finally, we discuss the test queries, results,
and observations about our retrieval performance.

6.1: Test Data Sets

The two data sets we selected for testing both contain in-
terferometry data collected at NRAO’s Very Large Array
(VLA) facility. The VLA is composed of many individual
radio antennas, each with a host of sensory devices. Groups
of antennas are aimed at the same area of the sky and each
antenna collects data individually. The data from each pair
of antennas (called abaseline) are synthesized into a com-
posite data element for each antenna pair in the array. Data
of this form are collected at periodic time intervals to pro-
vide a time sequence picture of the object of interest.

The two interferometry files we converted both contain
data as described above. The first file contains “line-spec-
trum” data which are collected for a series of polarizations
and a series of frequencies within a specifiedfrequency
band. The keys that make each data point unique are time,
baseline, polarization and frequency. In addition, there are
other data values associated with each record: the source of

8

the measurement (the astronomical object of interest), the
frequency domain coordinates of the baseline (U, V, W),
and the frequency band. The “data” portion of each mea-
surement is a single complex number and weight. The sec-
ond file contains “continuum” data which are also collected
for a series of polarizations, but are not collected for a series
of frequencies. Each baseline measurement is a composite
value for a range of frequencies. Therefore the unique keys
for continuum data are time, baseline and polarization. Like
line-spectrum data, each continuum measurement is com-
prised of a complex number and weight and each record
stores the frequency domain coordinates of the baseline.

These two files have some important differences. The
line-spectrum data set contains records for multiple fre-
quencies (31 frequencies for the file we used). To reduce
storage space requirements for the file, NRAO typically
stores all of the frequency and polarization records for the
same time and baseline together as one large record. This
reduces the file size by eliminating the need to duplicate the
key fields for each frequency and polarization pair. The
drawback of this approach is that the data for all frequencies
and polarizations must be read with each record even if only
a subset of these values is desired. We decided to compro-
mise by breaking out separate polarization records while
keeping all frequencies together as this provided the added
ability to search based on polarization while keeping the file
size close to the original size. The two files also differ in
record size and number of records. The line-spectrum file
contains 126,092 404 byte records (~49 megabytes) and is
considered a small file by NRAO standards, while the con-
tinuum file contains 8,440,092 32 byte records (~264 mega-
bytes) and is considered a medium sized file.

6.2: File Conversion

Before creating a PLOP file, we had to choose the di-
mensions (also called axes) of the data space. The dimen-
sions chosen determine which keys will be able to narrow
the search space and which will not. Therefore, we worked
with NRAO scientists to determine the most appropriate
keys to use as dimensions. Keys that are frequently used in
range queries and especially those keys that frequently have
a small portion of their overall range accessed are the best
axis candidates, while keys that are rarely used to filter data
requests are poor choices. An important consideration when
choosing the axes for a PLOP file is that the more dimen-
sions there are in the data space, the less each dimension
will be split. Fewer splits within an axis lowers the precision
of that axis (each slice for the dimension contains a wider
range of data values), and therefore, searches will access a
larger amount of unnecessary data on average. There is a
fundamental trade-off between the number of axes and the
precision of each axis and the choice of dimensions must
balance the benefits of more axes with the decrease in aver-

age axis precision. The final decision of which axes to in-
clude must be determined by the relative importance of
each access pattern and how useful each dimension is in
narrowing the search space for these accesses. Our experi-
ence with this project also pointed out another important
factor in determining which keys to use as axes, namely that
groups of keys whose values have some relationship among
them should not be used together. The reason is that the re-
lated values for the keys can cause a clustering of the points
in the data space, leaving very densely populated areas and
empty areas. Figure 4 shows the clustering that occurred
when we used the related keys time and source as dimen-
sions (along with 4 other keys). The table shows the number
of points in each region defined by the intersection of a time
and a source slice. The explanation for this behavior is that
data in the line-spectrum file we used was collected by
studying one source at the beginning of the time range, then
switching back and forth between two sources and finally
returning to the original source for the remaining time peri-
od. This shows a fundamental weakness in using PLOP files
for such data.

For our final version of the PLOP file we used 3 dimen-
sions: time, baseline and polarization. To attempt to pro-
duce a good partitioning of the data space our
implementation prepartitioned the data space based on
knowledge of characteristics of the data file and statistics
about the data distribution in the source file. First, since the
number of polarization values is limited and known before-
hand (2 and 4 for the line-spectrum and continuum files re-
spectively) and we know the records are distributed evenly
among the values, we split the data space at each polariza-
tion value. For the remaining two axes, we collected histo-
gram statistics for each dimension and split the data space
into roughly an even number of splits for each remaining
axis such that each slice along a dimension contained ap-
proximately the same number of records.

While this scheme will not produce an optimal partition-
ing (because the histogram statistics are collected indepen-
dently for each key and do not create a full picture of the
multidimensional data distribution), it did produce very

.
Source

T
im

e

Slice # 0 1 2

Figure 4 - Data Distribution in 4D Regions
Defined by Time and Source Axes

0 15,372 702 0
1 0 7,722 7,722
2 0 6,318 9,128
3 0 9,828 5,616
4 0 7,722 7,722
5 0 7,020 8,424
6 1,910 8,424 5,616
7 16,848 0 0

9

good results. In fact, the results were much better than we
could have attained with dynamic partitioning. With dy-
namic partitioning the data space is split as needed as more
data is added (or deleted) so the order in which data is en-
tered is crucial. Certain insertion orders can cause poor
choices for split values. In particular, if data is added in sort-
ed order along a key axis (as was the case for our line-spec-
trum file - it was sorted by time), the split choices can be
disastrous. To see why this is true we’ll assume that we
chose to split the line-spectrum file dynamically by alternat-
ing splitting the time and baseline axes whenever an extent
chain grows beyond some threshold depth. As data is en-
tered in time order, both axes will split many times. The
problem is that once a time slice is split, the lower valued
slice will never again receive new data points (because the
data being entered is sorted). With each new baseline axis
split, the storage consumed by each time slice is increased.
Therefore, more and more space will be allocated to time
slices that have a constant number of points, lowering their
data density and increasing the amount of wasted space in
the file. Using a priori knowledge about the data distribu-
tion avoids problems related to insertion order.

The results of the file conversions are shown in Table 1.
The most important statistics are the storage utilization, av-
erage and maximum bucket depths, and average record
depths achieved. The line-spectrum file was particularly
impressive, where storage utilization was almost 79%,
while the average and maximum bucket depths were 1.25
and 2 respectively (storage utilization is the ratio of total
storage needed for the raw data versus the total storage ac-

Line-
Spectrum Continuum

Number of Records 126.092 8,440,092

Record Size (bytes) 404 32

Page Size (bytes) 4,096 4,096

Records Per Page 10 127

Splits Along Polarization Axis 2 4

Splits Along Baseline Axis 79 128

Splits Along Time Axis 80 130

Total Primary Pages 12,640 66,560

Total Extent Pages 3,168 33,320

Total Storage Used (kilobytes) 63,238 399,529

Storage Required (kilobytes)
(Record Size x Number of Records)

49,747 263,753

Storage Utilization
(Space Req’d/Storage Used)

78.6% 66.0%

Empty Pages 0 128

Maximum Bucket Depth 2 5

Number of Buckets w/ Depth > 2 0 20

Average Bucket Depth 1.25 1.50

Average Record Depth 1.08 1.11

Conversion Time (minutes) 8.4 87

Table 1: Conversion Results for Line-Spectrum
and Continuum PLOP Files

tually used including all overhead and wasted space). The
average record depth reflects the average number of I/O op-
erations needed to access a single record, i.e. a record stored
in a primary page is at a depth of 1, a record in the first ex-
tent page a depth of 2, etc. For the line-spectrum file the av-
erage record depth of 1.08 means that 92% of all records are
stored in the primary page and 8% in the first extent page).

6.3: PLOP File Query Performance

To test the performance of retrieving data from our
PLOP files, we constructed a set of test queries that repre-
sent either common access patterns currently used at NRAO
or interesting benchmark queries. We ran the queries a min-
imum of three times on both of the files and recorded the
best retrieval time and other important statistics for each
query, including the number of file I/O operations needed
and the amount of total and useful data retrieved. All times
are wall clock times encompassing the entire length of the
query, including any time to calculate the pages of interest
and to sort results. Therefore, all facets of the query are in-
cluded in the timings. To avoid skewing of results due to
file caching, large file copy jobs were run in between suc-
cessive tests to clear the file cache. All tests were run on a
SPARCStation IPX with 32 MB of RAM and an attached
hard disk. The disk has an average rotational latency of 6.95
milliseconds and an average seek time of 9.8 milliseconds.

The measure we are most interested in is the effective
bandwidth of a query. The effective bandwidth of a query is
the amount of useful data per time unit that is retrieved from
the file. This measure is more useful than total bandwidth in
determining the performance of a query because it reflects
not only the speed with which I/O requests can be per-
formed, but also the accuracy of the requests (for this paper
we define total bandwidth as the rate at which all data is re-
trieved, including overhead space and empty space due to
fragmentation). For example, we may be able to achieve a
high total bandwidth of, say 2 MB per second, but if the ac-
curacy of the data retrieved is low, such as 5%, then the re-
trieval rate for “good” data is a more modest 100 Kilobytes/
second. Raising the accuracy directly raises the effective
bandwidth of a query and subsequently raises the rate at
which needed data is injected into the application program.

6.3.1: Test Queries

We chose 10 queries to test our PLOP file performance:
• 1) All data, unsorted.
• 2) All data, sorted by time.
• 3) All data, sorted by baseline.
• 4) Time Range (approx. 10%), all other data, unsorted.
• 5) Time range (approx. 10%), all other data, sorted by U.
• 6) 1 time, 1 polarization, all baselines, unsorted.
• 7) Time range (approx. 10%), 1 polarization, all base-

lines, unsorted.

10

• 8) Time range (approx. 50%), 1 baseline, all polariza-
tions, unsorted.

• 9) Time range (approx. 50%), 1 antenna, all polariza-
tions, unsorted (A search by antenna encompasses all
baselines for which the antenna is a part.

• 10) All times, 1 baseline, 1 polarization, sorted by time.

6.3.2: Query Results and Observations

Tables 2 and 3 summarize the results of our test queries
for the line-spectrum and continuum data sets, respectively.
The first query retrieved the entire data set without sorting
the results. The unsorted query achieved an average total
bandwidth of over 1.1 megabytes per second and an effec-
tive bandwidth of almost 900 kilobytes per second for the
line-spectrum file and almost 1.1 megabytes/second total
and over 700 kilobytes/second effective bandwidth for the
continuum file. The total bandwidth for this query was sig-
nificantly below the maximum transfer rate for the disk
drive (3 megabytes/second) because of the head movement
required to follow chained buckets and possible head move-
ment due to disk fragmentation. The difference between the
bandwidth figures for the two files can be explained by the

Total
Recs

Good
Records

#
Primary
 Pages

#
Extent
Pages

Total
Data
(KB)

%
Good
Data

Time
(secs)

Effect-
ive BW

(KB/
sec)

1 126,092 126,092 12,640 3,168 63,232 78.7% 55.49 897

2 126,092 126,092 12,640 3,168 63,232 78.7% 70.5 706

3 126,092 126,092 12,640 3,168 63,232 78.7% 181.8 274

4 14,742 12,636 1,422 474 7,584 65.7% 4.10 1,216

5 14,742 12,636 1,422 474 7,584 65.7% 6.85 728

6 702 351 79 0 316 43.8% 0.271 511

7 7,371 6,318 711 237 3,792 65.7% 2.33 1,079

8 752 186 84 20 416 17.6% 1.45 51

9 15,026 4,836 1,512 360 7,488 25.5% 14.5 132

10 720 180 80 20 400 17.7% 1.49 48

Table 2: Performance for Line-Spectrum File

a. We have not implemented an out-of-core sort. Therefore we can only sort re-
sult sets of a limited size and could not perform query 5 for the continuum file.

Total
Recs

Good
Records

Prim-
ary

Pages

#
Extent
 Pages

Total
Data
(KB)

%
Good
Data

Time
(secs)

Effect-
ive
BW
(KB/
sec)

1 8,440,092 8,440,092 66,560 33,320 399,520 66.0% 375 703

2 8,440,092 8,440,092 66,560 33,320 399,520 66.0% 637 413

3 8,440,092 8,440,092 66,560 33,320 399,520 66.0% 1,382 191

4 968,220 951,320 7,680 3,344 44,096 67.4% 49.3 603

5a N/A N/A N/A N/A N/A N/A N/A N/A

6 31,673 351 256 130 1,544 0.71% 1.29 8.5

7 242,055 237,830 1,920 836 11,024 67.4% 13.3 559

8 40,124 13,256 260 208 1,872 22.1% 8.0 52

9 673,924 326,172 5,200 2,596 31,184 32.7% 175 58

10 19,379 6,256 130 90 880 22.2% 6.3 31

Table 3: Performance for Continuum File

difference in the average bucket depth between the two
files. The line-spectrum file had an average bucket depth of
about 1.25 compared to 1.50 for the continuum file. The re-
sult of this difference is that the continuum query had to fol-
low a chain more often (once every two primary pages on
average rather than once every four pages) than the query
for the line-spectrum query. This caused the continuum
query to have more disk head movement on average.

The second and third queries also retrieved the entire
data set, but the results were sorted by time and baseline, re-
spectively. We would expect that the sorted queries would
not perform as well as the unsorted queries due to the time
required to sort the results, and this was the case for both
files. We would also expect that the query sorted by time
would be faster than the query sorted by baseline. To see
why this is the case, the procedure for retrieving data sorted
along an axis key must be understood. To retrieve a range
of data sorted by one of the PLOP file dimensions, the query
is broken into several subqueries, one for each slice along
the sort key. These queries are then processed in sequence,
each retrieving, filtering and sorting one slice along the sort
key. The performance of retrieving one slice of data de-
pends on the layout of the primary pages for the slice, which
is dictated by the manner that the file was originally parti-
tioned. In both PLOP files, the polarization axis was split
completely first, then the baseline dimension was complete-
ly split and finally the time dimension was split (Figure 5a).
This order of splitting was done purposely, so that the pri-
mary pages for each time slice would all be contiguous (ig-
noring disk fragmentation) and therefore queries sorting by
the time axis would require less head movement and per-
form better than the other dimensions (time was identified
as the most used key for sorting by NRAO). Figures 5b and
c show how retrieving a time slice requires a contiguous
section of the primary file, while retrieving a baseline slice
requires primary pages scattered across the file.

We would expect query 4 (10% time range, unsorted) to

Figure 5 - Time Slice vs Baseline Slice Retrieval

0 1

Polarization

0 1

Polarization

2 3

4 5

6 7

156157

0/1 158/

Polar.

2/3

4/5

6/7

156
157

B
as

el
in

e

Time
159

160/
161

162/
163

164/
165

315
314 . . .

. . .

314/
315

157/
156 . . .

. . .

. . .

. . .

. . .

(a) Building of PLOP File - Primary Page Layout

0 1 1571562 158 159 . . . 12,639

(b) Primary Pages for Slice 0 of Time Axis

160

316/
317

318/
319

320/
321

322/
323

472/
473

473
472

316315 317

0 1 1571562 158 159 . . . 12,639

(c) Primary Pages for Slice 0 of Baseline Axis

160 316315 317

B
as

el
in

e

11

have performance characteristics similar to query 1 (all data
unsorted), but somewhat lower effective bandwidth be-
cause the query retrieves extra unnecessary data at the
boundaries of the query. For the line-spectrum file, the ac-
curacy of the query did decrease relative to query #1, but the
total bandwidth increased enough to actually increase the
effective bandwidth. The cause for the unexpected increase
in total bandwidth is unknown, but we suspect that it was
caused by favorable scheduling by the operating system.
For the continuum file, the total and effective bandwidth
measures were closer to what we expected, i.e. they were
close to those of query 1. Interestingly, the accuracy for the
continuum query was slightly better than for query 1, rather
than worse as we expected. The reason for this is that the re-
gion of data retrieved had a lower average bucket depth (~
1.44) than the file as a whole, and therefore, retrieved fewer
extent pages that were likely to be sparsely populated.

The fifth query retrieved the same data as the fourth, but
sorted the data by a non-axis key, U. The result was that
sorting the data increased the retrieval time by 67%. We
hope that in the next phase of the project we can reduce the
overall run-time of such queries by overlapping the sorting
and I/O operations more effectively.

Queries 6, 7, 8, and 10 demonstrate the speed that PLOP
files can afford for small, well directed queries. In query six,
the reduced accuracy in the continuum file caused the query
to run slower than the line-spectrum query, even though the
total bandwidth was more than 50% greater and the amount
of data retrieved was twelve times less. The lower accuracy
for the continuum file was caused by having a larger num-
ber of records per page and larger slices (caused by the size
of the file - the time slice that was searched had 128 primary
pages vs 79 for the line-spectrum file).

6.3.3: PLOP Files vs Current NRAO Practices

The real test for our project is to determine the relative
performance of our PLOP file implementation versus the
current implementation used by NRAO. Unfortunately, col-
lecting comparable timing information from existing
NRAO applications has proved to be very difficult because
the data retrieval code is intertwined with other application
code.We realize that this comparison is important in deter-
mining the success of our work, so we are continuing our ef-
fort to gather this data. We are also considering a
comparison against other file structures such as a sequential
file (like NRAO currently uses) or an indexed sorted file.

7: Future Work

We are extending the class interface to provide func-
tions, e.g. a getRecords(num) function, that return data
to application programs in an intuitive and useful manner.
We have already designed a distributed version of the
PLOP file that will allow the file to be partitioned into sev-

eral pieces and are working on its implementation. We are
also working on a new parallel architecture (using the par-
allel object-oriented system Mentat [13]) to allow us to take
advantage of the distributed file layout by allowing separate
I/O workers to access and process data in parallel. The par-
allel architecture will also allow us to better overlap I/O and
computation by implementing prefetching operations.

8: Acknowledgments

We would like to thank NRAO for partially funding this
project. Thanks to Brian Glendenning, Jeff Crouse, Gareth
Hunt, Alan Ferris, David Shone, and everyone else at
NRAO who helped with this project.

9: References

[1] A. S. Grimshaw and E. C. Loyot, Jr., “ELFS: Object-Ori-
ented Extensible File Systems,” University of Virginia,
Computer Science TR 91-14, July 1991.

[2] John F. Karpovich, Andrew S. Grimshaw, James C. French,
“Extensible File Systems (ELFS): An Object-Oriented
Approach to High Performance File I/O”, to appear in the
proceedings of OOPSLA94, Portland Or., October, 1994.

[3] J.L. Bentley and J.H. Friedman, “Data Structures for Range
Searching”, ACM Computing Surveys, Vol. 11, No. 4, pp.
397-409, December 1979.

[4] A. Guttman, “R-Trees: A Dynamic Index Structure for Spa-
tial Searching”, Proceedings of Annual Meeting, ACM SIG-
MOD Record, Vol. 14, No. 2, pp. 47-57, 1984.

[5] J. Nievergelt and H. Hinterberger, “The Grid File: An
Adaptable, Symmetric Multikey File Structure”, ACM
Transactions on Database Systems, Vol. 9, No. 1, pp. 38-71,
March 1984.

[6] H. Kriegel and B. Seeger, “PLOP-Hashing: A Grid File
without a Directory”, Proceedings of the Fourth Interna-
tional Conference on Data Engineering, pp. 369-376, Feb-
ruary 1988.

[7] H. Kriegel and B. Seeger, “Techniques for Design and
Implementation of Efficient Spatial Access Methods”, Pro-
ceedings of the 14th VLDB Conference, pp. 360-370, 1988.

[8] Brian Pane, “Efficient Manipulation of Out-of-Core Matri-
ces”, University of Virginia, Department of Computer Sci-
ence.

[9] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-Tree:
A Dynamic Index for Multi-Dimensional Objects”, Pro-
ceedings of the 13th VLDB Conference, pp. 507-518, 1987.

[10] H. Samet, “The Quadtree and Related Hierarchical Data
Structures”, ACM Computing Surveys, Vol. 16, No. 2, pp.
187-260, June 1984.

[11] J. T. Robinson, “The K-D-B-Tree: A Search Structure for
Large Multidimensional Dynamic Indexes”, ACM SIGMOD
Proceedings of Annual Meeting, pp. 10-18, 1981.

[12] John F. Karpovich, Andrew S. Grimshaw, James C. French,
“Breaking the I/O Bottleneck at the National Radio Astron-
omy Observatory (NRAO)”, technical report, University of
Virginia, Department of Computer Science, in progress.

[13] A. S. Grimshaw, E. Loyot Jr., and J. Weissman, “Mentat
Programming Language (MPL) Reference Manual,” Uni-
versity of Virginia, Computer Science TR 91-32, 1991.

