ANDF: Finally an UNCOL
after 30 Years

Jack Davidson, Manuel E. Benitez, et al

Computer Science Report No. TR-91-05
March 6, 1991

ANDF: Finally an UNCOL after 30 Years
(Extended Abstract)

Manuel E. Benitez?, Paul Chan:i;, Jack W. Davidsont, Anne M. Hollert,
Sue Meloy#, Vatsa Santhanam:

tHewlett-Packard Company
California Language Laboratory
19447 Pruneridge Avenue
Cupertino, California 95014

tUniversity of Virgirﬁa
Department of Computer Science
Charlottesville, VA 22903

Abstract

In the late 1950°s it was proposed that a Universal Computer Oriented Language (UNCOL) be developed to facilitate
the development of language processors for various architectures. While an UNCOL was never realized, the use of
some type of intermediate language for supporting the construction of compilers has found widespread use. Popular
examples include P-code which is used to support Pascal, U-code, a descendant of P-code, which has been used to
support several languages, OCODE which was used as the intermediate language for BCPL, and EM-1 which is used
in the Amsterdam Compiler Kit and also supports several languages, These are only a few of the more well-known and
widely used intermediate languages. This paper describes an intermediate language developed in response to the Open
Software Foundation's request for the development of an Architecture Neutral Distribution Format (ANDF). The
intermediate language, called HPcode-Plus, permits the distribution of a single version of an application that, without
modification, will run on any hardware platform. The intermediate language and the accompanying translators
demonstrate that an UNCOL is now technologically feasible. Clearly, if accepted in the marketplace, such an
intermediate language will have tremendous benefits for end-users.

1. Infroduction

The acronym UNCOL (Universal Computer Oriented Language) is well-known to the compiler construction
community{AHOS6, FISC88, TREMSS]. In the late 1950’s, UNCOL was proposed as a way 10 reduce the effort to
construct compilers for new languages and new architectures[STEE61, STRO59]. The classic argument was that if there
were M languages and N machines, M>xN compilers would be required to make each language available on all the
machines. The creators of the UNCOL concept noted that only M+N translators would be required if a language could
be constructed 1o serve as a bridge between the languages and the architecture. For each language, a source-language-
10-UNCOL translator would be constructed. To implement the language on any machine would simply réquire the
construction of an UNCOL-to-machine-language translator. |

Conceptually the apprdach is quite appealing. In addition to reducing the cost of developing compilers,
programs written in a language where a source-language-t0-UNCOL translator exists could be immediately moved to
any machine for which there was also an UNCOL-to-machine-language translator. This would, of course, include the
translators themselves.

Unfortunately, despite the benefits, UNCOL was never realized. There were a number of technological
problems that could not be overcome. A major problem was that the UNCOL process could not produce executable

code that was as fast as the executable code produced by a compiler that was designed specifically for the target
architecture. Consequently, applications produced using UNCOL wanslators would run much slower than those
produced using a conventional compiler. The primary reason for this loss of performance was existing code generation
and optimization technologies were not able to efficiently map a language-independent, architecture-independent
intermediate language onto the range of architectures available.

Another problem was the inability to design an intermediate language and construct the accompanying source-
language-to-UNCOL translators that avoided assumptions about the target architecture. Typical source-language
 translators are written with knowledge of various key characteristics of the target architecture. For example, most
source-language translators or front ends are written with knowledge of the sizes and alignment requirements of the
basic data types supported by the target architecture. Such information permits the front end to compute sizes of
records and structures, determine offsets of variables, properly initialize locations in memory, and in some cases decide
the most appropriate operations to use. In order to minimize the effort to move these translators to different
architectures, such information is usually isolated and parameterized so that it is easy to change. Nonetheless, tiis
information as well as other information about the target architecture is used and its ramifications appear in the
intermediate language the front end produces. -

This paper describes the design of an intermediate language and accompanying translators that addresses the
problem UNCOL attempted to solve 30 years ago. The intermediate language was developed in response to the Open
Software Foundation’s Request for Technology to produce an Architecture Neutral Distribution Format
(ANDF)[OSF90]. The intermediate language, called HPcode-Plus, contains no architecture dependencies. Application
programs compiled into HPcode-Plus can be moved to any architecture that has a HPcode-FPlus-to-machine-code
translator, To demonstrate the feasibility of the process, we have constructed a front end that translates ANSI C
programs to HPcode-Plus as well as translators for three machines (Motorola 638020, Hewlett-Packard PA-RISC, and
Intel 80386/80387) that translate HPcode-Plus programs to machine code. Many applications totaling over 500,000
lines of code have been compiled and the resulting HPcode-Plus files have been moved to and installed on the three
machines. The paper focuses on the features of the intermediate language that allow architecture dependencies to be
avoided.

2. ANDF Rationale, Terminology and Requirements

2.1 Rationale

The widespread availability of applications for personal computers has been enabled because there is only one
target architectﬁre, the Intel 80X86, and only one operating system, MS-DOS. Thus software vendors can develop an
application for one platform and yet be assured of a large market for their application. Furthermore, the vendor only
needs to distribute one type of executable, While the workstation market has standardized on UNIXT there is not one
common hardware platform. Thus, a primary goal of ANDE is to bring the advantages of having one target architecture
to vendors of applications for workstations.

2.2 Terminology

Figure 1 contains a diagram of the major ANDF components. The Producer is essentially a compiler front end

+ We will ignore the fact that all Unixes are not the same.

that transtates the source code to ANDF. For each target machine, an Installer is responsible for translating the ANDE
files into target machine code and producing an executable version of the application. The installer is similar to a

386
Installer Executable

68K
Installer ‘ Executable

compiler back end.

Producer

Application
~ Source

PA-RIS

'Figure 1. Major ANDF Technology Components

2.3 Requirements

There are a number of requirements that must be met if a successful ANDF is to be realized. Some of these

requirements are:

+ Architecture neutrality-—ANDF must not contain any hidden assumptions about the target architecture,

+ Excellent run-time performance—an application produced using ANDF technologies must perform as well
as an application produced using the native compiler of the development platform,

+ Programming language neutrality—ANDF will initially support ANSI C, but must be capable of being
extended to support other languages.

« Consistent application behavior—applications produced using ANDF technologies must exhibit the same
behavior on all hardware platforms,

« Reasonable installation times—installing an application should take no more than twice the time it would take
to install source code. ' ‘

- Small file sizes—the distributed files should be reasonably compact, ideally no bigger than an executable.
» Debug support—the ANDF must support the a variety of symbolic debuggers.

« Protection of proprietary information—the ANDF must protect a developer’s intellectual property.

Of these requirements, there are two that standout as keys 1o the technological success of an ANDFT, First, an
ANDF must truly be architecture neutral. Independent software vendors must be assured that their applications will
exhibit consistent behavior on all platforms. Second, applications must not suffer a performance penalty because they
were distributed in ANDF format, The following sections describe how these goals were achieved.

+ This paper will ignore the myriad marketing issues that will affect whether ANDE becomes widely accepted and used.

3. HPcode-Plus

_3.1 Overview

HPcode-Plus is derived from HPcode, the compiler intermediate language used by Hewleti-Packard in many of
its compilers for its 32-bit RISC and 16-bit stack-based architectures, HPcode is descended from the U-code developed
at the University of San Diego and Stanford [CHANS0).

HPcode-Plus is essentially an assembly language for a virtual stack machine. The virtual machine prqvides the
foliowing abstractions:

« an expression stack for carrying out most computations.
+ aread-only memory area for storing instructions and constants.
- a static storage area for global and local variables.

» an implicit memory stack for pushing and popping stack frames on procedure calis and returns.

Currently there are 67 HPcode-Plus operators. These are sufficient to support ANSI C (including the standard
header files). It is expected that a handful of additional operators and data types will be added to support other
languages such as Fortran, C++, and Ada. Indeed, HPcode supports Fortran, Ada, Pascal, Cobol, and C++. For the most
part, HPcode-Plus resembles the instruction set of a typical stack-based machine. Operators such as add and subtract
take their operands from the expression stack and push the result back onto the stack, HPcode-Plus, however, includes
a data type system and several special operators that allow programs that are ranslated to HPcode-Plus to not contain
any architecture dependencies. These special features are described in the following sections.

3.2 DataTypes

~ Data objects are declared using the HPcode-Plus SYM operator. Using the SYM instruction, producers may
declare data objects of simple or aggregate HPcode-Plus data types. The actual storage allocation is deferred to the
installer. HPcode-Plus has the following predefined data types. For the integral data types, 2 minimum range is defined.

TYPE_BOOLEAN—TRUE/FALSE or LOGICAL

TYPE_UNS_CHAR—character, not sign extended when converted to TYPE INT (0 <range < 255)
TYPE_SCHAR—character, sign extended when converted to TYPE_INT (-127 € range < 127}
TYPE_CHAR—character, installer determines whether signed or unsigned
TYPE_SHORTINT—signed short integer (-32767 < range < 32767}

TYPE_INT—signed integer (-32767 < range < 32767)

TYPE_LONGINT—signed long integer (-2147483647 < range < 2147483647)
TYPE_UNS_SHORTINT—unsigned short integer (0 < range < 63535}
TYPE_UNS_INT-—unsigned integer (0 < range < 65535) -
TYPE_UNS_LONGINT—unsigned long integer (0 $ range < 4294967295)
TYPE_REAL—float real

TYPE_DOUBLE—double real

TYPE_LONGREAL-long double real

TYPE_ANY_PTR—address for unknown type data object

TYPE_VOID--void type for function

In general, no producer may make any assumptions about the format of the data type on the target machine. A

producer can make use of the minimum ranges of values representable by each predefined data type. It is the
responsibility of the installer o use the appropriate representation for the target machine. Furthermore it is the
responsibility of the installer to insure that the allocated data satisfies the hardware’s alignment requirements.

All other data types are constructed using the following special constructor data types:

KIND_POINTER—define pointer type

KIND_ENUM—define enumeration type

KIND MEMBER-—define members of enumeration type

KIND ARRAY—define array type

KIND_STRUCT—define structure type

KIND_UNION-—define union type

KIND_FIELD—define structure or union field
KIND_FUNC_PTR—define pointer to function type
KIND_MODIFIER—define additional attributes such as volatile or const

For example, a pointer to an integer would be defined as:

SYM symid KIND POINTER static type [name]
where symid is the identifying tag for the new data type, static isaflagthat indicates whether the symid is freed
when the enclosing function is terminated, and type is the identifying tag for the type that the pointer points to. The
optional name of the pointer type is specified when debugging support is requested. When debugging information is
not requested, user variable and type names are removed in order to protect proprietary information. '

It is the responsibility of the HPcode-Plus installers to map the predefined and synthesized HPcode-Plus data
types into the appropriate machine data types. For example, TYPE_INT can correspond to a 16-bit data type on one
machine and a 32-bit data type on another. It is also the responsibility of the installers to use a storage atlocation
scheme that obeys any target architectural requirements such as the alignment of data items in memory. Typically an
installer would use an allocation scheme that is consistent with the native compiler. This allows a program generated
by an installer to invoke naﬁvely compiled code such as library routines.

Consider the following typdef and structure declarations:
typedef struck s2 {
int k;
double 1;
stru];:';:. 82 var;
Typical front ends compute the offset of the fields and emit the appropriate constant offsets in the intermediate
language. On a machine with four-byte integers and eight-byte doubles that requires all data items to be aligned on
four-byte boundaries, the computed offset of var. 1 would be four. On a machine that requires data items to be
aligned on boundaries that cérrespond to their size, the computed offset of var . 1 would be eight. In order 10 remain
architecture neutral, the computation of the offsets of the fields and the size of the structure must be deferred to install

time.

3.3 Special Operations

Just as the producer must defer storage allocation (o the installer, it must also defer to the installer certain type
conversion decisions as well. This has two effects on the design of HPcode-Plus. First, because maintaining type

information must be the responsibility of the installer, HPcode-Plus operators do not require a type specifier. The data
type of an item on the expression stack is initially determined by the instruction that created that item. Subsequent
operations on the stack item are tracked by the installer and the type information for the item is updated accordingly.
The second effect was that several new operators were required to support ANSI C conversion rules. These operators

are described below.

3.3.1 ACVT .

'This operation performs an arithmetic conversion as defined by ANSI C. It directs the installer to check the data
types of the two operands on top of the expression stack and to emit code to perform the necessary type conversions
on the operands to prepare them for an arithmetic operation. This operatlon is required because the producer may not
be able to determine the type of data object in an expression: 1) where an operand’s type after integral promotion
cannot be determined by the producer (see the following example), 2) where an operand is a constant loaded by CLDC,
3) where the type of an operand is defined by a system standard include file, 4) inside a macro body where the operands
afe macro arguments, and 5) where an operand is the result of a previous ACVT or UCVT instruction.

Consider the following example:

unsigned short int i:
short int k;
int jg;

=3+ i
je=3+ ks

this must be translated as:

LOD <symid of 3>
LOD <symid of i>
ACVT

ADD

CVT TYPE INT
STR <symid of j>

load 3

lead i

: convert ocperands according to zntegral promotion rules
; add converted operands

; convert result to integer

store result

Ne my e e ca me s v

LOD <symid of 3> icad j

LOD <symid of k> load k

CVT TYPE INT ; convert k to integer
ADD ; add |

STR <symid of 3> store result

Note that 1 may be converted to a TYPE_INT or TYPE_UNS_INT depending on whether TYPE_INT can represent
all the possible values of TYPE_UNS_SHORTINT according to ANSI C rules. ACVT checks the types of the two
operands on the expression stack and performs the necessary conversions reqmrcd by the language definition. In this
case, on a machine where a value of TYPE_UNS_SHORTINT cannot be represented by TYPE_INT, ACVT will
promote i to TYPE_UNS_INT and j 1o TYPE_UNS_INT. For the expression ‘j+k’, the producer can determine that
k should be converted to TYPE_INT, and thus an explicit conversion to integer is generated.

~

3.3.2 UCVT parcevt

This operation takes one argument parcvt which indicates whether to apply ANSI C integral promotion ruies
10 the operand, or whether to apply ANSI C default argument promotion rules (o the operand.When parcvt is 0, the
operation performs integral promotion of the value on top of the stack. The result type depends on the data type of the
operand and its range relative to that of TYPE_,INT. The following table describes the conversions possible.

Original Type ' Range Result Type

TYPE_UNS_CHAR,TYPE_SCHAR, TYPE_CHAR, TYPE_INT object can TYPE_INT
TYPE_SHORTINT, TYPE_UNS_SHORTINT, ora represent all numeric
KIND_ENUM, or a bit-field KIND_FIELD, ora values of the origiral type.

KIND_MODIFIER whose base-type is one of the

aforementioned data types.
TYPE_INT object cannot TYPE_UNS_INT

represent all numeric values
of the original type,
Other data types Same as the Originai Type
When parcvt is 1, UCVT performs default argument promotion on the operand. The semantics of the operation
is identical to the case when parcvt is 0 when the data type of the operand is anything other than TYPE_FLOAT. When
parcvt is 1 and the data type of the operand is TYPE_FLOAT, the operand is converted to TYPE_DOUBLE.

To illustrate the use of the operation, consider the following C code:
unsigned short i;
unsigned short k;

int j;

foo(i};
3=~ki

This example yields the following HPcode-Plus instructions:

LOD <symid of i> p load i

ucvT 1 ; apply default argument promotion rules
PAR ; pass parameter to function

CUP <symid of foo> ; call feoo

LOD <symid of k> load k

; apply integral promotion rules tok
y apply bitwise not

; convert to integer

; store valué into j

ucvT 0

NOT

CVT TYPE_INT
8TR <symid of >

. Note that i may be converted to a TYPE_INT or TYPE_UNS_INT depending on whether TYPE_INT can represent
all possible values of TYPE_UNS_SHORTINT. Similarly, k may be converted 1o TYPE_INT or TYPE_UNS_INT.

wy my s a e e %

333 CLDC flag constant

This instruction pushes a simple integer constant onto the expression stack. The type of the constant is
determined by the installer based on the flag parameter. As per the ANSI C specification, the type of an integer constant
is the first type from the following corresponding list in which its value can be represented:

Flag Type of Constant List of Types (ordered by priority)
0 Unsuffixed decimal TYPE_INT, TYPE_LONGINT, TYPE_UNS_LONGINT
1 Unsuffixed octal or hexadecimal TYPE_INT, TYPE_UNS_INT, TYPE _ LONGINT
' TYPE_UNS_LONGINT
2 SuffixedbyuorU TYPE_UNS_INT, TYPE_UNS_LONGINT
3 Suffixedbylor L TYPE_LONGINT, TYPE_UNS_LONGINT
4 Suffixed by uor Uand lor L TYPE_UNS_LONGINT

Note that since the result type is unknown to the producer, the result cannot be used immediately for an arithmetic
operation. The ACVT or UCVT instruction should be used if an arithmetic operation is to be performed. The following

example illustrates the necessity and use of the CLDC operation.
int j;

se. 3440000 ...
‘.. 3+32000...

would result in the following HPcode-Plus operations:

LOD <symid of 3>
CLDC 0 40000

ACVT

ADD

IOD <symid of 3>
LDC TYPE_INT 32000
ADD

; load 3

load constant and convert according to ANSI C rules
do arithmetic conversion

add the operands

locad j

lecad constant 3200

L B TR TR

Note that since 32000 is within the minimum range of TYPE_INT, CL.DC and ACVT are not necessary. In the
example, the 40000 may have a type of TYPE_INT, TYPE_LONGINT, or TYPE_UNS_LONGINT depending on
which one on the target machine can first represent the value 40000. This will be determined by the installer. Onal6-
bit machine on which TYPE_LONG_INT is the minimum type to represent 40000, the installer will convert the
constant to TYPE_LONG_INT. ACVT will promote J to the same type before doing the addition.

3.4 Header Files

Supporting the standard header files required by ANSI C and maintaining architecture neutrality proved quite
a challenge. Support for the standard headers is achieved by providing HPcode-Plus versions of the headers for both
the producer and installers, All machine-specific characteristics are removed from the producer versions of the
headers; predefined symids are provided in order for the producer to reference these symbols. The definitions of these
symids will be present in the installer versions of the headers. The installer version of the header files can then, if
desired, be implemented using HPcode-Plus that contains machine-dependencies. HPcode-Plus includes a powerful
macro facility that permits the macros and conditional compilation often found in the standard header files to be
reproduced. |

Of course it is necessary for the producer to have access 1o the machine-dependent symbols typically found in
the header files in order to process the source code. Pragmas are used 1o communicate this information to the producer.
These pragmas indicate the syntactic category and predefined symid of each symbol, and may include informeation
about the type. The producer must not generate SYM declarations for these machine-dependent symbols; they will be
provided in the installer versions of the header files. The producer should simply use the symid provided by the pragma
wherever the symbol is referenced. |

The following example using i salnum illustrates how standard library functions are handied. While ANSIC
specifies £ salnum be a library function, implementations are free to provide macro definitions for efficiency.

Producer’s ctype.h {abbreviated):

fpragma OSF_ANDF FUNC _OSE_ANDF_isalnum -2
extern int isalnum{int)

extern-int OSF_ANDF isalnum{int);

¢define isalnum(__c) _OSF_ANDF_isalnum((__c})

User program:

#include <ctype.h>
main (}
{

int i =isalnum({'a"}:

}
Producer output:

OPTN HEADER_FILE "ctype.h"

SYM 257 KIND_FUNCTION TYPE_INT 00 "main"

ENT 257

SYM 258 KIND_DVAR TYPE INT O i)

MST ~2 ; call isalnum as a function
LDC TYPE_INT "a" ; character to test
PAR

CUp ~2

STR 258 ; store result in i
END 257

SYM 257 KIND_END.

For a machine that implements i salnum as a macro, the installer implementation of ctype.h is (abbreviated):

SYM -275 KIND POINTER 0 TYPE_UNS _CHAR

SYM -285 KINDWSVAR 0~2751"_ CTYPE" ; declare the mask array

SYM -2 KIND_MACRO
MINST LOD ~283
MINST %1

load pointer to ctype table

: load character to look up

; installer will have passed

; {LDC TYPE_INT "a") as the parameter te
; the macro

index inte CTYPE table

load the mask at __ CTYPE{”"a"]

do the test

. e we ms wa ma

MINST IXE TYPE_UNS_CHAR
MINST ILOD
MINST AND

SYM -2 KIND _END

AR

The producer’s ctype.h includes a pragma that defines the mapping between the prefixed name and the
predefined symid for the symbol. It also includes a normal declaration of the function using the standard name. This
is required in order to reference the real function if the user undefines the macro definition or the address of the function
is taken. The header also includes a normal declaration of the function using the prefixed name as a special symbol.
This declaration provides the parameter and return type information for that symbol. The last line of the producer’s
version of ctype is a define that maps the standard name to the prefixed name. This must be a function-like macro o
that object-like references in the user’s code will not be substituted.

When an installer is mapping the HPcode-Plus program t0 a particular architecture, the call to isalnum will
be expanded into the code supplied by the macro supplied with installer for that machine. Thus, the resulting code is
able to take advantage of any implementation tricks available on the target machine. Standard symbol definitions (such
as ermo), standard expression definitions (such as DBL_MAX), standard structures (such as div_t found in stdlib.h),
and standard types (such as size_t found in stddef.h) are handled similarly to the standard library functions, but some
details differ.

3.5 Miscellaneous

In order to avoid architecture dependencies, an HPcode-Plus file is simply a stream of ASCII characters.
Instruction opcodes are represented by their numeric values expressed as ASCII characters followed by zero or more

operands. Instruction parameters are separated by white space. Instruction parameters may be integers, quoted strings,
floating-point numbers expressed in ANSI C syntax, or by a ‘%’ or #* followed by an integer representing a macro
argument or symid. Every instruction is terminated by an unquoted ASCII new-line character.

4. Results and Summary

To demonstrate the feasibility of our proposed ANDF, the Open Software Foundation required that we
construct a Producer that accepts source code written in ANSI C and emits the proposed ANDY as well as Installers
for three machines. The three machines should represent a spec'trurh of current architectures. At our discretion, one
machine was to be considered the ‘reference’ platform. This distinction meant that the implementation of the installer
could not be a ‘throw-away’, rather it had to be near production quality. The other installers were necessary (o
demonstrate that the proposed ANDF was indeed architecture neutral, thus they could be throw-away
implementations. We chose the Intel 80386, the Motorola 68030, and the PA-RISC, with the Motorola 68030 (HPS000
Series 300) being our reference platform. We had approximately four months (June 1990 through September 1590} to
complete the constraction of these components. '

In this abstract we do not have space to describe the interesting details of the implementation of each of these
components. However, we describe briefly the results of our efforts and whether they satisfied the requirements
outlined in Section 2.3.

Recall that there were two key requiréments: érchiwcture neutrality and generation of code that compares
favorably to that generated by the native C compiler used for development. Architecture neutrality has been
demonstrated by taking many applications compiling them to HPcode-Plus and installing them on the three machines.
For example, the producer, afccom, and all three installers have been ‘produced’ on one machine and installed on a
different one. The same is true of ANSIfied versions of the C component of the SPEC benchmark suite.

~ To assay the quality of code generated by the producer and an installer, a set of well-known benchmark
programs (including the ANSIfied C component of the SPEC benchmark suite) were used to compare the code
generated by the native C compiler and the producer/installer pair for the reference hardware platform. For both
compilers, all optimizations (pedal to the metal) were enabled. Averaging over all the benchmark programs, we
determined that producerfinstaller produced code that ran 5% slower than the code produced by the native compilers.
Given the short time spent on the implementations, we were encouraged by this resuit and feel that it proves that high-
quality code can be produced from a general, architecture neutral, intermediate language. Indeed, after some
preliminary examinations of the generated code, we feel that we can reverse the comparison, and make the producer/
installer generated code be, on average, 5% faster than that produced by the native compiler.

Have we demonstrated the feasibility of an UNCOL? We believe so. Will such technology find widespread use?

That is more difficult to devine. Certainly there are benefits to both software developers and end-users. Software

~ developers can be assured of a much larger market for their software. Furtﬁennorc, development, distribution, and

maintenance costs should be lower because with ANDF only one version of an application needs to be developed and

maintained and it will run on any hardware platform that has an installer. End-users no iéngcr will be tied to one type

of architecture. Applications will be available fora range of architectures. Because of large sales volumes the price of

applications should drop. There are problems, however, Determining the correct distribution media, determining how

to handle CPU class-based licensing, and how to isolate problems (where’s the bug—in the producer or in the
installer?) are just a few of the problems that must be resolved.

10

5. References

[AHO86]
{CHAN90]
[FISC38]
[OSF90]
[STEE61]

[STRO359]

[TREMS5]

Aho, A. V., Sethi, R., and Ullman, J. D., Compilers Principles, Techniques, and Tools, Addison-
Wesley, Reading, MA, 1986.

Chan, P, and Santhanam, V., The Evolution of the U-code Compiler Intermediate Language,
Proceedings of the Summer Usenix Conference.

Fischer, C. N. and LeBlanc, R. J., Crafting a Compiler, The Benjamin Cummings Publishing Co.,
Menlo Park, CA, 1988.

Architecture Neutral Distribution Format: A White Paper, Open Software Foundation, Cambridge,
MA., November 1990, '

Steel, T. B., A First Version of Uncol, Proceedings of the Western Joint Computer Conference, May
1961, 371-378.

Strong, J., Wegstein, J., Tritter, A., Olsztyn, J., Mock, O., and Steel, T., The Problem of
programming communication with changing machines: a proposed solution, Communications of the
ACM 1, 8 (August), 12-18.

Tremblay, J. and Sorenson, P. G., The Theory and Practice of Compiler Writing, McGraw-Hill Book
Company, New York, NY, 1985.

11

